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Abstract

We find expressions for many types of generalized inverses of an arbitrary square

complex matrix by using two representations given in [J. Beńıtez, A new decomposition

for square matrices, Electronic Journal of Linear Algebra, 20 (2010) 207-225] and in [R.E.

Hartwig, K. Spindelböck, Matrices for which A∗ and A† commute, Linear and Multilinear

Algebra, 14 (1984) 241-256].
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1 Introduction

Let Cm,n be the set of m×n matrices. The symbols A∗, R(A), N(A), and rank(A) denote the

conjugate transpose, range (column space), null space, and rank, respectively, of A ∈ Cm,n.

Additionally, In stands for the identity matrix of order n. Furthermore, let A† be the Moore-

Penrose inverse of A, i.e., the unique matrix satisfying the equations

(1) AA†A = A, (2) A†AA† = A†, (3) AA† = (AA†)∗, (4) A†A = (A†A)∗.

For any A ∈ Cm,n, let A{i, j, . . . , l} denote the set of matrices X ∈ Cn,m that sat-

isfy equations (i), (j), . . . , (l) of (1), (2), (3), (4). A matrix X ∈ A{i, j, . . . , l} is called an

{i, j, . . . , l}-inverse of A.

In this paper, we find expressions for generalized inverses by using two known decompo-

sitions (see Theorems 1 and 2 below). The results given here generalize the ones established

in [3], where expressions for generalized inverses of normal matrices are given. We will not

assume the normality of the involved matrices.

Hartwig and Spindelböck arrived at the following result ([4, Corollary 6]).
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Theorem 1. Let A ∈ Cn,n be of rank r. Then there exists unitary U ∈ Cn,n such that

A = U

(
ΣK ΣL

0 0

)
U∗, (1)

where Σ = diag(σ1Ir1 , . . . , σtIrt) is the diagonal matrix of singular values of A, σ1 > σ2 >

· · · > σt > 0, r1 + r2 + · · ·+ rt = r, and K ∈ Cr,r, L ∈ Cr,n−r satisfy

KK∗ + LL∗ = Ir. (2)

From (1) it follows that

A∗ = U

(
K∗Σ 0

L∗Σ 0

)
U∗ and A† = U

(
K∗Σ−1 0

L∗Σ−1 0

)
U∗. (3)

A related decomposition was given in [1]. The symbols 1n and 0n will denote the n × 1

row vectors all of whose components are 1 and 0, respectively.

Theorem 2. Let A ∈ Cn,n be of rank r, and let θ1, . . . , θp be the canonical angles between

R(A) and R(A∗) belonging to ]0, π/2[. Denote by x and y the multiplicities of the angles 0

and π/2 as a canonical angle between R(A) and R(A∗), respectively. There exists a unitary

matrix V ∈ Cn,n such that

A = V

(
MC MS

0 0

)
V∗, (4)

where M ∈ Cr,r is nonsingular,

C = diag(0y, cos θ1, . . . , cos θp,1x),

S =

(
diag(1y, sin θ1, . . . , sin θp) 0p+y,n−(r+p+y)

0x,p+y 0x,n−(r+p+y)

)
,

and r = y + p+ x. Furthermore, x and y + n− r are the multiplicities of the singular values

1 and 0 in PR(A)PR(A∗), respectively.

For C in Theorem 2, C = C∗. A simple (but useful) expression is the following:

C2 + SS∗ = Ir. (5)

Although the decomposition given in Theorem 1 can be derived from the singular value

decomposition (s.v.d.) of A, we will show how Theorem 1 can be deduced from Theorem 2

clarifying the relation between these two decompositions.
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Let A ∈ Cn,n be decomposed as in (4). Let M = W1ΣW∗
2 be the singular value decom-

position of M. Observe that Σ is nonsingular because M is nonsingular. Define the unitary

matrix U = V(W1 ⊕ In−r). Now we have

A = V

(
MC MS

0 0

)
V∗ = V

(
W1ΣW∗

2C W1ΣW∗
2S

0 0

)
V∗ =

= V

(
W1 0

0 In−r

)(
ΣW∗

2C ΣW∗
2S

0 0

)(
W1 0

0 In−r

)(
W∗

1 0

0 In−r

)
V∗

= U

(
ΣW∗

2CW1 ΣW∗
2S

0 0

)
U∗.

Let us denote K = W∗
2CW1 and L = W∗

2S. In order to prove that we have obtained the

decomposition of Theorem 1, we need to prove that the nonzero singular values of A are

the singular values of M and (2) holds. By using the representation (4) and (5) one has

AA∗ = V(MM∗⊕0)V∗, which reveals that the nonzero singular values of A are the singular

values of M. Since W1 and W2 are unitary, C = C∗, and (5), we have that (2) holds. To

summarize: For any A ∈ Cn,n represented as in (4), if we set

M = W1ΣW∗
2 be the s.v.d. of M, K = W∗

2CW1, L = W∗
2S, U = V(W1⊕In−r), (6)

then the decomposition of Theorem 1 is obtained.

Another useful formula (it can be verified by checking the four equations of the Moore-

Penrose inverse or by applying (3) and (6)) is the following: If A is represented as in (4),

then

A† = V

(
CM−1 0

S∗M−1 0

)
V∗. (7)

2 Expressions for {1}-inverses

In [5, Lemma 2] the authors gave the following general expression for A{1} when A is repre-

sented as in (1).

Theorem 3. Let A be given as in (1) and let

B = U

(
B1 B2

B3 B4

)
U∗, B1 ∈ Cr,r. (8)

Then B ∈ A{1} ⇐⇒ ΣKB1 + ΣLB3 = Ir.

Theorem 3 is restated as follows.
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Corollary 1. Let A ∈ Cn,n be represented as in (1). Then

A{1} =
{

A† + U(D1 | D2)U
∗ : D1 ∈ Cn,r,D2 ∈ Cn,n−r, (K | L)D1 = 0

}
.

Proof. ⊂: Pick any B ∈ A{1} and let us represent B as in (8). By using the right identity

of (3) it follows that

B−A† = U

(
B1 −K∗Σ−1 B2

B3 − L∗Σ−1 B4

)
U∗.

Observe that by Theorem 3 one has KB1 + LB3 = Σ−1. Hence by (2),

(K | L)

(
B1 −K∗Σ−1

B3 − L∗Σ−1

)
= KB1 −KK∗Σ−1 + LB3 − LL∗Σ−1 = 0.

⊃: Choose any D1 ∈ Cn,r such that (K | L)D1 = 0 and pick any D2 ∈ Cn,n−r. To prove

this inclusion, it is sufficient to prove AU(D1 | D2)U
∗A = 0. This last equality follows from

the computation(
ΣK ΣL

0 0

)
(D1 | D2)

(
ΣK ΣL

0 0

)

=

(
Σ(K | L)D1 Σ(K | L)D2

0 0

)(
ΣK ΣL

0 0

)
= 0.

The proof is finished.

For a matrix A ∈ Cn,n as given in (4) we have the following result.

Theorem 4. Let A ∈ Cn,n be represented as in (4). Then

A{1} ={
V

(
XM−1 Y

ZM−1 T

)
V∗ : X ∈ Cr,r,Y ∈ Cr,n−r,Z ∈ Cn−r,r,T ∈ Cn−r,n−r,CX + SZ = Ir

}
.

Proof. Let A have the form as in (4). Define Σ, K, L, U, W1, and W2 as in (6).

If B is an arbitrary element of A{1} represented as in (8), by Theorem 3, it follows that

ΣKB1 + ΣLB3 = Ir holds. Now, by using (6) we have

B = V

(
W1 0

0 In−r

)(
B1 B2

B3 B4

)(
W∗

1 0

0 In−r

)
V∗

= V

(
W1B1W

∗
1 W1B2

B3W
∗
1 B4

)
V∗.
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Let us define

X = W1B1W
∗
1M, Y = W1B2, Z = B3W

∗
1M, T = B4.

To get the expression in the theorem, it is enough to prove CX + SZ = Ir. For this, we use

(6) and KB1 + LB3 = Σ−1.

CX + SZ = W2KW∗
1W1B1W

∗
1M + W2LB3W

∗
1M

= W2 (KB1 + LB3) W∗
1M = W2Σ

−1W∗
1M = Ir.

This proves the inclusion ‘⊂’ in the statement of the theorem. The opposite inclusion is

trivial.

The following corollary follows from Theorem 4.

Corollary 2. Let A ∈ Cn,n be represented as in (4). Then

A{1} =
{

V(X̃M−1 | Ỹ)V∗ : X̃ ∈ Cn,r, Ỹ ∈ Cn,n−r, (C | S)X̃ = Ir

}
.

Let A ∈ Cn,n be represented as in (1) and as in (2). Then A is EP (i.e., AA† = A†A)

⇐⇒ S = 0 ⇐⇒ L = 0. Observe that S = 0 implies C = Ir (in view of (5)). Thus from

Theorem 3 and Theorem 4 we get the following corollary.

Corollary 3. Let A ∈ Cn,n be EP.

(i) If A is of the form (1), then

A{1} =

{
U

(
K−1Σ−1 B2

B3 B4

)
U∗ : B2 ∈ Cr,n−r,B3 ∈ Cn−r,r,B4 ∈ Cn−r,n−r

}
.

(ii) If A is of the form (4), then

A{1} =

{
V

(
M−1 Y

Z T

)
V∗ : Y ∈ Cr,n−r,Z ∈ Cn−r,r,T ∈ Cn−r,n−r

}
.

Recall that the spectral theorem states that A ∈ Cn,n is a normal matrix (i.e., AA∗ =

A∗A) if and only if there exist a unitary matrix U ∈ Cn,n and a diagonal matrix D ∈ Cn,n

such that A = UDU∗. Thus, any normal matrix is EP. Corollary 3 extends item (a) of

Theorem 2.2 in [3].

We may restate Corollary 2 as follows.

Corollary 4. Let A ∈ Cn,n be represented as in (4). Then

A{1} =
{

A† + V(X̂ | Ŷ)V∗ : X̂ ∈ Cn,r, Ŷ ∈ Cn,n−r, (C | S)X̂ = 0
}
.
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Proof. ⊂: Let B ∈ A{1}. By Corollary 2, there exist X̃ ∈ Cn,r, Ỹ ∈ Cn,n−r such that

(C | S)X̃ = Ir and B = V(X̃M−1 | Ỹ)V∗. Let us partition X̃ and Ỹ as follows:

X̃ =

(
X

Z

)
, Ỹ =

(
Y

T

)
,

where X ∈ Cr,r, Z ∈ Cn−r,r, Y ∈ Cr,n−r, and T ∈ Cn−r,n−r. Let us define

X̂ =

(
(X−C)M−1

(Z− S∗)M−1

)
.

Now we have by (7)

V(X̃M−1 | Ỹ)V∗ = V

{(
(X−C)M−1 Y

(Z− S∗)M−1 T

)
+

(
CM−1 0

S∗M−1 0

)}
V∗

= V

(
(X−C)M−1 Y

(Z− S∗)M−1 T

)
V∗ + A† = V(X̂ | Ỹ)V∗ + A†.

Observe that by (5) we have

(C | S)X̃ = Ir ⇐⇒ CX+SZ = Ir ⇐⇒ C(X−C)+S(Z−S∗) = 0 ⇐⇒ (C | S)X̂ = 0.

⊃: Pick any X̂ ∈ Cn,r such that (C | S)X̂ = 0 and pick any Ŷ ∈ Cn,n−r. Let us define

X̃ = X̂M +

(
C

S∗

)
.

Obviously we have (C | S)X̃ = Ir and

A† + V(X̂ | Ŷ)V∗ = A† + V

([
X̃−

(
C

S∗

)]
M−1

∣∣∣∣∣ Ŷ

)
V∗

= A† + V(X̃M−1 | Ỹ)V∗ −V

(
CM−1 0

S∗M−1 0

)
V∗ = V(X̃M−1 | Ỹ)V∗.

By Corollary 2, we are done.

Observe that to use Corollary 4, we must solve (C | S)X̂ = 0, where X̂ ∈ Cn,r. Let us

define R = (C | S) ∈ Cr,n and thus, any column of X̂ must satisfy the linear system Rx = 0.

Since RR∗ = Ir, then rank(R) = rank(RR∗) = r, and therefore, dimN(R) = n − r. Let

{x1, . . . ,xn−r} be a basis of N(R). If ui is the i-th column of X̂ (for 1 ≤ i ≤ r), then there

exist λi,1, . . . , λi,n−r ∈ C such that ui = λi,1x1 + · · ·+ λi,n−rxn−r. Hence

X̂ = (u1 | · · · | ur) = (x1 | · · · | xn−r)


λ1,1 · · · λr,1

...
. . .

...

λ1,n−r · · · λr,n−r

 .
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We rewrite Corollary 4 as follows.

Corollary 5. Let A ∈ Cn,n be as in (4), {x1, · · · ,xn−r} be a basis of N((C | S)), and

P = (x1 | · · · | xn−r). Then

A{1} = {A† + V (PΛ | Q) V∗ : Λ ∈ Cn−r,r,Q ∈ Cn,n−r}.

Note that in the above Corollary 5, matrices Λ and Q are completely arbitrary. To find a

matrix P satisfying the hypotheses of former corollary, it is sufficient to solve the easy linear

system (C | S)x = 0, x ∈ Cn,1. Observe that the matrix C is diagonal and S is “almost

diagonal”.

Although Corollary 4 can be used to prove the following result (by means of A† +

V(X̂ | 0)V∗ + V(0 | Ŷ)V∗), the singular value decomposition leads to a simpler proof.

Corollary 6. If A ∈ Cn,n, then

(i) A{1} =
{
A† + B1 + B2 : B1,B2 ∈ Cn,n,AB1 = 0,B1 = B1AA†,B2A = 0

}
.

(ii) A{1} =
{
A† + B1 + B2 : B1,B2 ∈ Cn,n,AB1 = 0,B2A = 0

}
.

(iii) If B ∈ A{1}, then A{1} = {B + B1 + B2 : B1,B2 ∈ Cn,n,AB1 = 0,B2A = 0}.

Proof. Let A = U1(D⊕0)U∗2 be the singular value decomposition of A, with D ∈ Cr,r being

nonsingular. Let

A1 =
{

A† + B1 + B2 : B1,B2 ∈ Cn,n,AB1 = 0,B1 = B1AA†,B2A = 0
}

and

A2 =
{

A† + B1 + B2 : B1,B2 ∈ Cn,n,AB1 = 0,B2A = 0
}
.

We shall prove A{1} ⊂ A1: Let A− ∈ A{1}. It is well known that A† = U2

(
D−1 0

0 0

)
U∗1.

Also, it is simple to prove that A− can be written as A− = U2

(
D−1 X
Y Z

)
U∗1, where X,Y,Z

are matrices of suitable size. If we define B1 = U2

(
0 0
Y 0

)
U∗1 and B2 = U2

(
0 X
0 Z

)
U∗1, then

we have A− = A† + B1 + B2. The equalities AB1 = 0, B1AA† = B1, and B2A = 0 are

trivial to verify.

The inclusion A1 ⊂ A2 is evident. Finally, we prove A2 ⊂ A{1}. To this end, take any

B1,B2 ∈ Cn,n such that AB1 = B2A = 0. Now A(A† + B1 + B2)A = AA†A + AB1A +

AB2A = A. Hence we have proved (i) and (ii).

To prove (iii, ⊂), pick any A− ∈ A{1}. By item (ii), there exist D1,D2 ∈ Cn,n such that

A− = A† + D1 + D2 and AD1 = D2A = 0. Since B ∈ A{1}, there exist E1,E2 ∈ Cn,n such

that B = A†+ E1 + E2 and AE1 = E2A = 0. We get A− = B + (D1−E1) + (D2−E2) and

A(D1 −E1) = (D2 −E2)A = 0. The proof of (iii, ⊃) is similar to that of A2 ⊂ A{1}.
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3 Expressions for {2}-inverses

In this section we give expressions for A{2} when A ∈ Cn,n is represented as in (1) or in (4).

Theorem 5. Let A ∈ Cn,n be as in (1). Then

A{2} =

{U(D1Σ
−1 | D2)U∗ : D1 ∈ Cn,r,D2 ∈ Cn,n−r,D1(K | L) is idempotent,D1(K | L)D2 = D2}.

Proof. Let B ∈ A{2} be represented as follows:

B = U(D1Σ
−1 | D2)U

∗, D1 ∈ Cn,r, D2 ∈ Cn,n−r.

We have

BAB = U(D1(K | L)D1Σ
−1 | D1(K |L)D2)U

∗.

From BAB = B we get

D1(K | L)D1 = D1 and D1(K | L)D2 = D2. (9)

Postmultiplying the first equality of (9) by (K | L) leads to the idempotency of D1(K | L).

We have proved the “⊂” inclusion.

We now prove the opposite inclusion. Let D1 ∈ Cn,r and D2 ∈ Cn,n−r such that D1(K | L)

is idempotent and the second equality of (9) holds. By postmultiplying D1(K | L)D1(K | L) =

D1(K | L) by
(

K∗
L∗
)

and using (2), we have

D1(K | L)D1 = D1. (10)

To check U(D1Σ
−1 | D2)U

∗ ∈ A{2}, we use the second equality of (9) and (10).

U(D1Σ
−1 | D2)U

∗AU(D1Σ
−1 | D2)U

∗

= U(D1Σ
−1 | D2)

(
Σ(K | L)

0

)
(D1Σ

−1|D2)U
∗

= UD1 (K | L) (D1Σ
−1|D2)U

∗

= U
(
D1(K | L)D1Σ

−1 | D1(K | L)D2

)
U∗

= U
(
D1Σ

−1 | D2

)
U∗.

For matrix A ∈ Cn,n in (4), we can also give a general expression for A{2}.
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Theorem 6. If A ∈ Cn,n is represented as in (4), then

A{2} =
{

V(X̃M−1 | Ỹ)V∗ : X̃ ∈ Cn,r, Ỹ ∈ Cn,n−r, X̃(C | S) is idempotent, X̃(C | S)Ỹ = Ỹ
}
.

Proof. ⊂: If B ∈ A{2}, then by Theorem 5, there exist D1 ∈ Cn,r and D2 ∈ Cn,n−r such that

B = U(D1Σ
−1 | D2)U

∗, D1(K | L) is idempotent and D1(K | L)D2 = D2. Let us define

X̃ = (W1 ⊕ In−r)D1W
∗
2 and Ỹ = (W1 ⊕ In−r)D2.

By (6) we get

B = U(D1Σ
−1 | D2)U

∗

= V(W1 ⊕ In−r)(D1W
∗
2M
−1W1 | D2)(W

∗
1 ⊕ In−r)V

∗

= V(X̃M−1W1 | Ỹ)(W∗
1 ⊕ In−r)V

∗

= V(X̃M−1 | Ỹ)V∗.

Now we prove that X̃(C | S) is idempotent and X̃(C | S)Ỹ = Ỹ.

X̃(C | S) = (W1 ⊕ In−r)D1W
∗
2(W2KW∗

1 | W2L)

= (W1 ⊕ In−r)D1(K | L)(W∗
1 ⊕ In−r). (11)

Since W1⊕ In−r is unitary and D1(K | L) is idempotent, X̃(C | S) is also idempotent. From

(11), D1(K | L)D2 = D2, and the definition of Ỹ we easily get X̃(C | S)Ỹ = Ỹ.

⊃: The proof of this inclusion is similar to the proof of “⊃” in Theorem 6.

In the proof of the following corollary, we utilize the fact that every idempotent matrix

X ∈ Cn,n is diagonalizable (see e.g., [2, Theorem 4.1]), and thus there exists a nonsingular

matrix R ∈ Cn,n such that

X = R(Ir ⊕ 0)R−1, (12)

where r = rank(X). Clearly, 0 ≤ r ≤ n and if r = n (r = 0), then the latter (the first) of

the summands in representation (12) vanishes. The following result generalizes item (b) of

Theorem 2.1 in [3].

Corollary 7. If A ∈ Cn,n is EP and represented as in (4), then

A{2} =

{
V

(
R(Is ⊕ 0)R−1M−1 R

(
Y1
0

)
(Z1 | 0)R−1M−1 Z1Y1

)
V∗ :

R ∈ Cr,r is nonsingular, 0 ≤ s ≤ r,Y1 ∈ Cs,n−r,Z1 ∈ Cn−r,s} . (13)
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Proof. If A is EP and represented as in (4), then S = 0 and C = Ir.

⊂: Let B ∈ A{2}. By Theorem 6, S = 0, and C = Ir, there exist X ∈ Cr,r, Z ∈ Cn−r,r,

Y ∈ Cr,n−r, T ∈ Cn−r,n−r such that

B = V

(
XM−1 Y

ZM−1 T

)
V∗,

(
X
Z

)
(Ir | 0) is idempotent and

(
X
Z

)
(Ir | 0)

(
Y
T

)
=
(

Y
T

)
. These conditions are equivalent to

X2 = X, ZX = Z, XY = Y, ZY = T. (14)

Since X is idempotent, by the decomposition (12), there exist a nonsingular R ∈ Cr,r and

s ∈ {0, 1, . . . , r} such that X = R(Is⊕0)R−1. Now, let us define Y1 ∈ Cs,n−r, Y2 ∈ Cr−s,n−r,

Z1 ∈ Cn−r,s, Z2 ∈ Cn−r,r−s in such a way that Y = R
(

Y1
Y2

)
and Z = (Z1 | Z2)R

−1. From

the second equality of (14) we get Z2 = 0. The third equality of (14) leads to Y2 = 0. The

fourth equality of (14) implies Z1Y1 = T.

⊃: Pick B ∈ Cn,n belonging to the set of the right hand side of (13). Let us denote

P = R(Is ⊕ 0)R−1, Ỹ = R
(

Y1
0

)
, Z̃ = (Z1 | 0)R−1. We have

BAB = V

(
PM−1 Ỹ

Z̃M−1 Z1Y1

)(
M 0

0 0

)(
PM−1 Ỹ

Z̃M−1 Z1Y1

)
V∗

= V

(
P2M−1 PỸ

Z̃PM−1 Z̃Ỹ

)
V∗ = B

because P2 = P, PỸ = Ỹ, Z̃P = Z̃, and Z̃Ỹ = Z1Y1 hold.

Now we give some expressions for A{1, 2}.

Corollary 8. If A ∈ Cn,n is represented as in (1), then

A{1, 2}

=
{
U(D1Σ

−1 | D2)U∗ : D1 ∈ Cn,r,D2 ∈ Cn,n−r, (K | L)D1 = Ir, D1(K | L)D2 = D2

}
.

Proof. This follows from Theorems 3 and 5.

Corollary 9. If A ∈ Cn,n is given as in (4), then

A{1, 2}

=
{

V(X̃M−1 | Ỹ)V∗ : X̃ ∈ Cn,r, Ỹ ∈ Cn,n−r, (C | S)X̃ = Ir, X̃(C | S)Ỹ = Ỹ
}
.

Proof. This follows from Corollary 2 and Theorem 6.
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Corollary 10. If A ∈ Cn,n is EP and represented as in (4), then

A{1, 2}

=

{
V

(
M−1 RY1

Z1R
−1M−1 Z1Y1

)
V∗,R ∈ Cr,r is nonsingular,Y1 ∈ Cr,n−r, Z1 ∈ Cn−r,r

}
.

Proof. This follows from Corollaries 3 and 7.

4 Expressions for {1, 3}, {1, 4}, and {1, 3, 4} inverses

Next, we investigate the elements of A{1, 3} and A{1, 4} when A ∈ Cn,n is given as in (1) or

in (4).

Theorem 7. Let A ∈ Cn,n be represented as in (1). Then

(i) A{1, 3} =
{
A† + UDU∗ : D ∈ Cn,n, (K | L)D = 0

}
.

(ii) A{1, 4} = {A† + U(0 | D2)U
∗ : D2 ∈ Cn,n−r}.

Proof. (i) ⊂: Let A− ∈ A{1, 3}. Since A− ∈ A{1}, by employing Corollary 1, there exist

D1 ∈ Cn,r, D2 ∈ Cn,n−r such that

A− = A† + U(D1 | D2)U
∗, (K | L)D1 = 0. (15)

Since A− ∈ A{3}, the matrix AA− is Hermitian. But

AA− = AA† + U

(
ΣK ΣL

0 0

)
(D1 | D2) U∗

= AA† + U

(
Σ(K | L)

0

)
(D1 | D2) U∗

= AA† + U

(
Σ(K | L)D1 Σ(K | L)D2

0 0

)
U∗

= AA† + U

(
0 Σ(K | L)D2

0 0

)
U∗,

the hermiticity of AA− and the nonsingularity of Σ lead to (K | L)D2 = 0. It is enough to

define D = (D1 | D2) to get the desired inclusion.

(i) ⊃: Let D ∈ Cn,n such that (K | L)D = 0. It is easy to see that this condition implies

AUD = 0. Now it is obvious that A(A†+UDU∗) is Hermitian and A(A†+UDU∗)A = A.
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(ii) ⊂: Let A− ∈ A{1, 4}. Since A− ∈ A{1}, by using Corollary 1, there exist D1 ∈ Cn,r

and D2 ∈ Cn,n−r such that (15) holds. Since A− ∈ A{4}, the matrix A−A is Hermitian. We

have from the first equality of (15)

A−A = A†A + U(D1ΣK | D1ΣL)U∗ = A†A + UD1Σ(K | L)U∗.

The hermiticity of A−A together with the fact that Σ is a real diagonal matrix leads to

D1Σ(K | L) =

(
K∗

L∗

)
ΣD∗1.

Premultiplying this equality by (K | L) and using (2), (15), and the nonsingularity of Σ lead

to D1 = 0.

(ii) ⊃: This inclusion is easy to get since for any D2 ∈ Cn,n−r, U(0 | D2)U
∗A = 0.

Theorem 8. Let A ∈ Cn,n be represented as in (4). Then

(i) A{1, 3} =
{
A† + VRV∗ : R ∈ Cn,n, (C | S)R = 0

}
.

(ii) A{1, 4} = {A† + V(0 | R)V∗ : R ∈ Cn,n−r}.

Proof. (i): By Theorem 7, it is sufficient to prove {UDU∗ : D ∈ Cn,n, (K | L)D = 0} =

{VRV∗ : R ∈ Cn,n, (C | S)R = 0}. We prove only the “⊂” inclusion as the opposite

is analogous. Pick any D ∈ Cn,n such that (K | L)D = 0. By (6) we get UDU∗ =

V(W1 ⊕ In−r)D(W∗
1 ⊕ In−r)V

∗. If we define R = (W1 ⊕ In−r)D(W∗
1 ⊕ In−r), then it

remains to prove (C | S)R = 0, and to this end, we use again (6).

(C | S)R(W1 ⊕ In−r)

= (C | S)

(
W1 0

0 In−r

)
D = (CW1 | S)D = (W2K | W2L)D = W2(K | L)D = 0.

This computation yields (C | S)R = 0.

(ii): Again, by Theorem 7, it is enough to prove {U(0 | D)U∗ : D ∈ Cn,n−r} =

{V(0 | R)V∗ : R ∈ Cn,n−r}. We only prove the “⊂” inclusion as the opposite is analogous.

Let any D ∈ Cn,n−r be written as D =
(

D12
D22

)
, where D12 ∈ Cr,n−r and D22 ∈ Cn−r,n−r.

Now (6) and a simple computation reveals

U(0 | D)U∗ = V

(
0 W1D12

0 D22

)
V∗.

This finishes the proof of the aforementioned inclusion.
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Let us observe that by using Theorem 7 and Theorem 8, we can give representations for

A{1, 3, 4} for any A ∈ Cn,n in (1) or as in (4).

Next corollary is trivial in view of Theorem 8. It is noteworthy that this result can be

also deduced from the singular value decomposition as in the proof of Corollary 6.

Corollary 11. Let A ∈ Cn,n. Then

(i) A{1, 3} = {A† + B : B ∈ Cn,n,AB = 0}. If A− ∈ A{1, 3}, then A{1, 3} = {A− + B :

B ∈ Cn,n,AB = 0}.

(ii) A{1, 4} = {A† + B : B ∈ Cn,n,BA = 0}. If A− ∈ A{1, 4}, then A{1, 4} = {A− + B :

B ∈ Cn,n,BA = 0}.

(iii) A{1, 3, 4} = {A† + B : B ∈ Cn,n,AB = BA = 0}. If A− ∈ A{1, 3, 4}, then

A{1, 3, 4} = {A− + B : B ∈ Cn,n,AB = BA = 0}.

The following corollary extends of Theorem 3.3 of [3].

Corollary 12. Let A ∈ Cn,n be EP.

(i) If A is of the form (1), then

(i.a) A{1, 3} =
{

U
(

Σ−1 0
D21 D22

)
U∗ : D21 ∈ Cn−r,r,D22 ∈ Cn−r,n−r

}
.

(i.b) A{1, 4} =
{

U
(

Σ−1 D12
0 D22

)
U∗ : D12 ∈ Cr,n−r,D22 ∈ Cn−r,n−r

}
.

(i.c) A{1, 3, 4} =
{

U
(

Σ−1 0
0 D22

)
U∗ : D22 ∈ Cn−r,n−r

}
.

(ii) If A is of the form (4), then

(ii.a) A{1, 3} =
{

V
(

M−1 0
R21 R22

)
V∗ : R21 ∈ Cn−r,r,R22 ∈ Cn−r,n−r

}
.

(ii.b) A{1, 4} =
{

V
(

M−1 R12
0 R22

)
V∗ : R12 ∈ Cr,n−r,R22 ∈ Cn−r,n−r

}
.

(ii.c) A{1, 3, 4} =
{

V
(

M−1 0
0 R22

)
V∗ : R22 ∈ Cn−r,n−r

}
.

Proof. Since A is EP and represented as in (1), then K = Ir and L = 0. We apply part (i)

of Theorem 7 and the last equality of (3).

A{1, 3} =
{

U
[(

Σ−1 0
0 0

)
+
(

D1
D2

)]
U∗ : D1 ∈ Cr,n,D2 ∈ Cn−r,n, (Ir | 0)

(
D1
D2

)
= 0

}
=

{
U
(

Σ−1 0
D21 D22

)
U∗ : D21 ∈ Cn−r,r,D22 ∈ Cn−r,n−r

}
.

This proves (i.a). Item (i.b) trivially follows from part (ii) of Theorem 7 and the last equality

of (3). Item (i.c) follows from items (i.a) and (i.b). Item (ii) can be proved in a similar way,

but by using (7), C = Ir, and S = 0.
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5 Expressions for {2, 3}, {2, 4}, and {2, 3, 4}-inverses

In this section we investigate the elements of A{2, 3}, A{2, 4}, and A{2, 3, 4}, when A ∈ Cn,n

is represented as in (1) or in (4).

Theorem 9. Let A ∈ Cn,n be of the form (1). Then

(i) A{2, 3} = {U (ΛP∗ | 0) U∗ : 0 ≤ s ≤ r,P ∈ Cr,s,Λ ∈ Cn,s,P
∗P = Is, (K | L)Λ =

Σ−1P}.

(ii) A{2, 4} = {U
(
PΛ1Σ

−1 | PΛ2

)
U∗ : 0 ≤ s ≤ n,P ∈ Cn,s,Λ1 ∈ Cs,r,Λ2 ∈ Cs,n−r,P

∗P

= Is,Λ1(K | L) = P∗}.

Proof. (i) ⊂: Let A− ∈ A{2, 3}. By Theorem 5 there exist D1 ∈ Cn,r and D2 ∈ Cn,n−r such

that A− = U(D1Σ
−1 | D2)U

∗,

D1(K | L)D1(K | L) = D1(K | L) and D1(K | L)D2 = D2. (16)

Postmultiplying the first equality of (16) by
(

K∗
L∗
)

and using (2), we have

D1(K | L)D1 = D1. (17)

Since

AA− = U

(
Σ(K | L)

0

)(
D1Σ

−1 | D2

)
U∗ = U

(
Σ(K | L)D1Σ

−1 Σ(K | L)D2

0 0

)
U∗,

the hermiticity of AA− and the nonsingularity of Σ yield

Σ(K | L)D1Σ
−1 is Hermitian and (K | L)D2 = 0. (18)

The second equality of (16) and the last equality of (18) imply D2 = 0. The first fact of (18)

and (17) imply that Σ(K | L)D1Σ
−1 ∈ Cr,r is an orthogonal projector, and thus there exists

a unitary matrix R ∈ Cr,r such that

Σ(K | L)D1Σ
−1 = R(Is ⊕ 0)R∗, (19)

where s = rank((K | L)D1). Let us decompose R = (P | Q), where P ∈ Cr,s and Q ∈ Cr,r−s.

With this decomposition, equality (19) can be rewritten as

Σ(K | L)D1Σ
−1 = PP∗. (20)

Since R is unitary, then

P∗P = Is. (21)
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Observe that the columns of P form an orthonormal basis of the eigenspace of Σ(K | L)D1Σ
−1

associated with the eigenvalue 1. Equality (17) and the first fact of (18) yield

Σ(K | L)D1Σ
−1(D1Σ

−1)∗ = (Σ(K | L)D1Σ
−1)∗(D1Σ

−1)∗

= (D1Σ
−1Σ(K | L)D1Σ

−1)∗ = (D1Σ
−1)∗.

Hence any column of (D1Σ
−1)∗ can be written as a linear combination of the columns of P,

and thus, there exists Γ ∈ Cs,n such that (D1Σ
−1)∗ = PΓ, or equivalently, D1Σ

−1 = Γ∗P∗.

Now, this last equality, (20), and (21) lead to Σ(K | L)Γ∗ = P.

(i) ⊃: Let s ∈ {0, . . . , r}. Pick any P ∈ Cr,s such that P∗P = Is and Λ ∈ Cn,s such that

(K | L)Λ = Σ−1P. We prove that A− = U(ΛP∗ | 0)U∗ ∈ A{2, 3}. From

AA− = U

(
Σ(K | L)

0

)
(ΛP∗ | 0)U∗ = U

(
PP∗ 0

0 0

)
U∗

we get that AA− is Hermitian. Furthermore, one gets

A−AA− = A−(AA−) = U(ΛP∗ | 0)

(
PP∗ 0

0 0

)
U∗ = U(ΛP∗ | 0)U∗ = A−.

(ii) ⊂: Let A− ∈ A{2, 4}. By Theorem 5 there exist D1 ∈ Cn,r and D2 ∈ Cn,n−r such

that A− = U(D1Σ
−1 | D2)U

∗ and (16). Similarly as in the proof of “(i) ⊂” we get that (17)

holds. Since

A−A = U
(
D1Σ

−1 | D2

)( Σ(K | L)

0

)
U∗ = UD1(K | L)U∗

and A−A is Hermitian, we get that D1(K | L) is Hermitian, and thus D1(K | L) ∈ Cn,n is an

orthogonal projector. Hence there exist an s ∈ {0, 1, . . . , n} and a unitary matrix R ∈ Cn,n

such that D1(K | L) = R(Is ⊕ 0)R∗. Let P ∈ Cn,s and Q ∈ Cn,n−s be such R = (P | Q).

This decomposition ensures

D1(K | L) = PP∗. (22)

Since R is unitary we get

P∗P = Is (23)

and the s columns of P form an orthonormal basis of the eigenspace associated with the

eigenvalue 1 of the matrix D1(K | L). The second equality of (16) and (17) imply that any

column of D1 and D2 is an eigenvector of the matrix D1(K | L) associated with the eigenvalue

1, and thus, there exist Λ1 ∈ Cs,r and Λ2 ∈ Cs,n−r such that

D1 = PΛ1 and D2 = PΛ2. (24)
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Hence we can write A− = U(PΛ1Σ
−1 | PΛ2)U

∗. Furthermore, the first equality of (24),

(22), and (23) imply that Λ1(K | L) = P∗.

(ii) ⊃: Let s ∈ {0, 1, . . . , n}, P ∈ Cn,s such that P∗P = Is, and Λ1 ∈ Cs,r such that

Λ1(K | L) = P∗. Finally, pick any Λ2 ∈ Cs,n−r. Set A− = U(PΛ1Σ
−1 | PΛ2)U

∗. The

equality

A−A = U(PΛ1Σ
−1 | PΛ2)

(
Σ(K | L)

0

)
U∗ = UPΛ1(K | L)U∗ = UPP∗U∗

implies that A−A is Hermitian. Furthermore, by using P∗P = Is one gets

A−AA− = (A−A)A− = UPP∗(PΛ1Σ
−1 | PΛ2)U

∗ = U(PΛ1Σ
−1 | PΛ2)U

∗ = A−.

The proof is finished.

Theorem 10. Let A ∈ Cn,n be of the form (4). Then

(i) A{2, 3} = {V (∆Q∗ | 0) V∗ : 0 ≤ s ≤ r,Q ∈ Cr,s,∆ ∈ Cn,s,Q
∗Q = Is, (C | S)∆ =

M−1Q}.

(ii) A{2, 4} = {V(QΓ1M
−1 | QΓ2)V

∗ : 0 ≤ s ≤ n,Q ∈ Cn,s,Γ1 ∈ Cs,r,Γ2 ∈ Cs,n−r,Q
∗Q

= Is,Γ1(C | S) = Q∗}.

Proof. (i): Let us represent A as in (1). Let 0 ≤ s ≤ r, P ∈ Cr,s, and Λ ∈ Cn,s satisfy

P∗P = Is and (K | L)Λ = Σ−1P. We use (6) and define

Q = W1P, ∆ = (W1 ⊕ In−r)Λ.

Now we have

(C | S)∆ = (W2KW∗
1 | W2L)(W1 ⊕ In−r)Λ

= W2(KW∗
1 | L)

(
W1 0

0 In−r

)
Λ = W2(K | L)Λ

= W2Σ
−1P = M−1W1P = M−1Q,

and Q∗Q = P∗W∗
1W1P = P∗P = Is, and furthermore,

U(ΛP∗ | 0)U∗ = U ((W∗
1 ⊕ In−r)∆Q∗W1 | 0) U∗

= U

(
W∗

1 0

0 In−r

)
(∆Q∗ | 0)

(
W1 0

0 In−r

)
U∗

= V(∆Q∗ | 0)V∗.
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The first item of Theorem 10 now follows from item (i) of Theorem 9.

(ii): Let 0 ≤ s ≤ n, P ∈ Cn,s, Λ1 ∈ Cs,r, Λ2 ∈ Cs,n−r satisfy P∗P = Is and Λ1(K | L) =

P∗. We use (6) and define

Q = (W1 ⊕ In−r)P ∈ Cn,s, Γ1 = Λ1W
∗
2 ∈ Cs,r, Γ2 = Λ2 ∈ Cs,n−r.

We get Q∗Q = Is in view of W∗
1 = W−1

1 and P∗P = Is. Now,

Γ1(C | S) = Λ1W
∗
2(W2KW∗

1|W2L)

= Λ1(K | L)

(
W∗

1 0

0 In−r

)
= P∗

(
W∗

1 0

0 In−r

)
= Q∗

and (observe that the first equality of (6) can be rewritten as M−1W1 = W2Σ
−1)

U(PΛ1Σ
−1 | PΛ2)U

∗

= V(W1 ⊕ In−r)
(
(W∗

1 ⊕ In−r)QΓ1W2Σ
−1 | (W∗

1 ⊕ In−r)QΓ2

)
U∗

= V(QΓ1W2Σ
−1 | QΓ2)(W

∗
1 ⊕ In−r)V

∗

= V(QΓ1M
−1W1 | QΓ2)

(
W∗

1 0

0 In−r

)
V∗

= V(QΓ1M
−1 | QΓ2)V

∗.

By (ii) of Theorem 9, we complete the proof.

The following corollary extends Theorem 4.1 of [3].

Corollary 13. Let A ∈ Cn,n be an EP matrix and represented as in (1). Then

(i) A{2, 3} =
{
U
(

Σ−1PP∗ 0
ZP∗ 0

)
U∗ : 0 ≤ s ≤ r,P ∈ Cr,s,P

∗P = Is,Z ∈ Cn−r,s
}
.

(ii) A{2, 4} =
{

U
(

QQ∗Σ−1 QZ
0 0

)
U∗ : 0 ≤ s ≤ n,Q ∈ Cr,s,Q

∗Q = Is,Z ∈ Cs,n−r

}
.

Proof. Since A is EP, we have K = Ir and L = 0. We use Theorem 9.

(i): Pick any s ∈ {0, 1, . . . , r}, P ∈ Cr,s, and Λ ∈ Cn,s such that P∗P = Is and (K | L)Λ =

Σ−1P. By writting Λ =
(

Y
Z

)
, where Y ∈ Cr,s and Z ∈ Cn−r,s one gets (Ir | 0)

(
Y
Z

)
= Σ−1P,

and thus, Y = Σ−1P and Z ∈ Cn−r,s is arbitrary.

(ii): Pick any s ∈ {0, 1, . . . , n}, P ∈ Cn,s, Λ1 ∈ Cs,r, and Λ2 ∈ Cs,n−r satisfying P∗P = Is

and Λ1(K | L) = P∗. Let P =
(

Q
R

)
, where Q ∈ Cr,s and R ∈ Cn−r,s. One gets (Q∗ | R∗) =
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P∗ = Λ1(Ir | 0), hence Q∗ = Λ1 and R = 0. From P∗P = Is, P =
(

Q
R

)
, and R = 0 we get

Q∗Q = Is. Furthermore, one has

PΛ1Σ
−1 =

(
Q

0

)
Q∗Σ−1 =

(
QQ∗Σ−1

0

)
and PΛ2 =

(
Q

0

)
Λ2 =

(
QΛ2

0

)
,

which imply

U(PΛ1Σ
−1 | PΛ2)U

∗ = U

(
QQ∗Σ−1 QΛ2

0 0

)
U∗.

By Theorem 9, we finish the proof.

Theorem 11. Let A ∈ Cn,n.

(i) If A is of the form (1), then A{2, 3, 4} = {U
(

K∗Σ−1PP∗ 0
L∗Σ−1PP∗ 0

)
U∗ : 0 ≤ s ≤ r,P ∈

Cr,s,P
∗P = Is,Σ

2PP∗ = PP∗Σ2}.

(ii) If A is of the form (4), then A{2, 3, 4} = {V
(

CM−1QQ∗ 0
S∗M−1QQ∗ 0

)
V∗ : 0 ≤ s ≤ r,Q ∈

Cr,s,Q
∗Q = Is,MM∗QQ∗ = QQ∗MM∗}.

Proof. (i) ⊂: Let A− ∈ A{2, 3, 4}. Since A− ∈ A{2, 3} and by applying (i) of Theorem 9,

there exist s ∈ {0, . . . , r}, P ∈ Cr,s and Λ ∈ Cn,s such that

A− = U(ΛP∗ | 0)U∗, (25)

P∗P = Is, and

(K | L)Λ = Σ−1P. (26)

Moreover, we use the fact that A−A is Hermitian (since A− ∈ A{4}). From

A−A = U(ΛP∗ | 0)

(
Σ(K | L)

0

)
U∗ = UΛP∗Σ(K | L)U∗,

we obtain that ΛP∗Σ(K | L) is Hermitian. I.e., (recall that Σ is a diagonal and real matrix)

ΛP∗Σ(K | L) =

(
K∗

L∗

)
ΣPΛ∗. (27)

Postmultiplying this last equality by
(

K∗
L∗
)

and using (2), (26), we arrive at

ΛP∗Σ =

(
K∗

L∗

)
ΣPP∗Σ−1. (28)
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Inserting (28) in (27) leads to(
K∗

L∗

)
ΣPP∗Σ−1(K | L) =

(
K∗

L∗

)
Σ−1PP∗Σ(K | L),

which, by premultiplying by (K | L) and postmultipliying by
(

K∗
L∗
)
, reduces to

ΣPP∗Σ−1 = Σ−1PP∗Σ. (29)

Furthermore, observe that (28) and (29) yield ΛP∗ =
(

K∗
L∗
)
Σ−1PP∗. This last equality and

(25) reveal the required inclusion.

(i) ⊃: Let s ∈ {0, . . . , r} and P ∈ Cr,s satisfy P∗P = Is and Σ2PP∗ = PP∗Σ2. Let us

define

A− = U

(
K∗Σ−1PP∗ 0

L∗Σ−1PP∗ 0

)
U∗.

Observe that, if we define Λ =
(

K∗Σ−1P
L∗Σ−1P

)
, by (i) of Theorem 9, we immediately get A− ∈

A{2, 3}. Thus, it remains to prove that A−A is Hermitian. The condition Σ2PP∗ = PP∗Σ2

is equivalent to the hermiticity of the matrix R defined by R = Σ−1PP∗Σ. Since

A−A = U

(
K∗Σ−1PP∗ 0

L∗Σ−1PP∗ 0

)(
ΣK ΣL

0 0

)
U∗ = U

(
K∗RK K∗RL

L∗RK L∗RL

)
U∗,

we obviously get that A−A is Hermitian.

(ii): Let 0 ≤ s ≤ r, P ∈ Cr,s such that P∗P = Is and Σ2PP∗ = PP∗Σ2. Let us define

A− = U
(

K∗Σ−1PP∗ 0
L∗Σ−1PP∗ 0

)
U∗. Observe that Σ2PP∗ = PP∗Σ2 is equivalent to the hermiticity

of Σ−1PP∗Σ. Since K∗Σ−1 = W∗
1CM−1W1 and L∗Σ−1 = S∗M−1W1, we get

A− = V

(
W1 0

0 In−r

)(
W∗

1CM−1W1PP∗ 0

S∗M−1W1PP∗ 0

)(
W∗

1 0

0 In−r

)
V∗

= V

(
CM−1W1PP∗W∗

1 0

S∗M−1W1PP∗W∗
1 0

)
V∗.

Let us denote Q = W1P ∈ Cr,s. In view of the properties of W1 and P we easily get

Q∗Q = Is. In addition, since M−1QQ∗M = W2Σ
−1PP∗ΣW∗

2 we obtain that M−1QQ∗M

is Hermitian, or equivalent, MM∗QQ∗ = QQ∗MM∗.

6 Group inverses

Let us recall (see for example Section 4.4 of [6] or Chapter 4 of [7]) that if A,X ∈ Cn,n, then

X is called a group inverse of A if

(1) AXA = A, (2) XAX = X, (5) AX = XA.
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It can be proved that for a given A ∈ Cn,n, the set of matrices X satisfying (1), (2), and (5)

is empty or a singleton. When it is a singleton, it is customary to write its unique element as

A#. If X satisfies (1) and (5), then X is called a commuting g-inverse of A and we denote

by A{1, 5} the set of commuting g-inverses of A. In this section we study A{1, 5} when A is

written as in (1) or as in (4). We shall apply ∃ A# ⇐⇒ ∃ C−1 ⇐⇒ ∃ K−1 and

A# = U

(
K−1Σ−1 K−1Σ−1K−1L

0 0

)
U∗ = V

(
C−1M−1 C−1M−1C−1S

0 0

)
V∗.

See [1, Theorem 3.7] and [5].

Theorem 12. Let A ∈ Cn,n. The matrix A is group invertible if and only if A{1, 5} 6= ∅.

Under this situation, one has:

(i) If A is of the form (1), then

A{1, 5} =
{

U
(

K−1Σ−1 B2
0 B4

)
U∗ : B2 ∈ Cr,n−r,B4 ∈ Cn−r,n−r,Σ(KB2 + LB4) = K−1L

}
.

(ii) If A of the form (4), then

A{1, 5} =
{

V
(

C−1M−1 D2
0 D4

)
V∗ : D2 ∈ Cr,n−r,D4 ∈ Cn−r,n−r,M(CD2 + SD4) = C−1S

}
.

Proof. We prove A{1, 5} 6= ∅ ⇐⇒ ∃A#. If X is a commuting g-inverse of A, then

A(XAX)A = A, (XAX)A(XAX) = XAX, and (XAX)A = A(XAX), hence A is group

invertible and A# = XAX. Conversely, it is obvious that A# ∈ A{1, 5}.

Pick any A− ∈ A{1, 5}. By Theorem 3, we can write A− = U(D1 | D2)U
∗, where

D1 ∈ Cn,r and Σ(K | L)D1 = Ir. Now, we compute AA− and A−A:

AA− = U

(
Σ(K | L)

0

)
(D1 | D2)U

∗ = U

(
Ir Σ(K | L)D2

0 0

)
U∗,

A−A = U(D1 | D2)

(
Σ(K | L)

0

)
U∗ = UD1Σ(K | L)U∗.

From AA− = A−A we get(
Ir Σ(K | L)D2

0 0

)
= D1Σ(K | L). (30)

Postmultiplying (30) by
(

K∗
L∗
)

leads to D1Σ =
(

K∗+Σ(K | L)D2L∗

0

)
. Thus, having in mind

the non-singularity of Σ, the matrix D1 is of the form D1 =
(

D11
0

)
, where D11 ∈ Cr,r.

From (30) we get Ir = D11ΣK and Σ(K | L)D2 = D11ΣL. Thus, D11 = K−1Σ−1 and
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Σ(K | L)D2 = K−1L. We have proved one inclusion of (i). The other direction of the

inclusion is trivial.

To prove (ii), we use (6). Choose any B2 ∈ Cr,n−r and B4 ∈ Cn−r,n−r such that Σ(KB2 +

LB4) = K−1L and let

A− = U

(
K−1Σ−1 B2

0 B4

)
. (31)

Since K−1Σ−1 = W∗
1C
−1M−1W1, we have

A− = V

(
C−1M−1 W1B2

0 B4

)
V∗.

Thus, if we define D2 = W1B2 and D4 = B4, it is sufficient to prove M(CD2+SD4) = C−1S.

In fact,

M(CD2 + SD4) = W1ΣW∗
2(W2KW∗

1W1B2 + W2LB4)

= W1Σ(KB2 + LB4)

= W1K
−1L

= W1W
∗
1C
−1W2W

∗
2S

= C−1S.

In next results we show that if A is group invertible, then A{1, 5} is a linear manifold

passing through A#. Let us recall that a linear manifold is a subset of a vector space V of

the form v + S, where S is a linear subspace of V and v ∈ V .

Corollary 14. Let A ∈ Cn,n be group invertible.

(i) If A is of the form (1), then A{1, 5} = {A# + U(0 | ∆)U∗ : ∆ ∈ Cn,n−r, (K | L)∆ =

0}.

(ii) If A is of the form (4), then A{1, 5} = {A#+V(0 | Λ)V∗ : Λ ∈ Cn,n−r, (C | S)Λ = 0}.

Proof. (i): Pick any B2 ∈ Cr,n−r and B4 ∈ Cn−r,n−r such that Σ(KB2 + LB4) = K−1L and

define A− as in (31). We have

A− = U

(
K−1Σ−1 K−1Σ−1K−1L

0 0

)
U∗ + U

(
0 B2 −K−1Σ−1K−1L

0 B4

)
U∗.
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Thus, if we define ∆ =
(

B2−K−1Σ−1K−1L
B4

)
, then it is sufficient to prove (K | L)∆ = 0, and

this is easy to check in view of Σ(KB2 + LB4) = K−1L and the definition of ∆.

To prove (ii), pick ∆ ∈ Cn,n−r such that (K | L)∆ = 0. We can write ∆ =
(

∆1
∆2

)
, where

∆1 ∈ Cr,n−r and ∆2 ∈ Cn−r,n−r. Define Λ =
(

W1∆1
∆2

)
∈ Cn,n−r. Now

0 = (K | L)∆ = K∆1 + L∆2 = W∗
2CW1∆1 + W∗

2S∆2 = W∗
2(CW1∆1 + S∆2),

which yields 0 = (C | S)Λ. It remains to check U(0 | ∆)U∗ = V(0 | Λ)V∗:

U(0 | ∆)U∗ = V

(
W1 0

0 In−r

)(
0 ∆1

0 ∆2

)(
W∗

1 0

0 In−r

)
V∗

= V

(
0 W1∆1

0 ∆2

)
V∗ = V(0 | Λ)V∗.

Now we give an explicit representation of A{1, 5} without using representations (1) and

(4).

Corollary 15. Let A ∈ Cn,n be group invertible. Then

(i) A{1, 5} = {A# + B : B ∈ Cn,n,AB = BA = 0}.

(ii) If A− ∈ A{1, 5}, then A{1, 5} = {A− + B : B ∈ Cn,n,AB = BA = 0}.

Proof. (i) follows from Corollary 14. (ii) follows from (i) of this corollary.
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[3] B. Zheng, L. Ye, D.S. Cvetković-Ilić, Generalized inverses of a normal matrix, Appl.

Math. Comput., 206 (2008) 788-795.
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