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Abstract

The new concept archetypoids is introduced. Archetypoid analysis repre-
sents each observation in a dataset as a mixture of actual observations in
the dataset, which are pure type or archetypoids. Unlike archetype analysis,
archetypoids are real observations, not a mixture of observations. This is rel-
evant when existing archetypal observations are needed, rather than fictitious
ones. An algorithm is proposed to find them and some of their theoretical
properties are introduced. It is also shown how they can be obtained when
only dissimilarities between observations are known (features are unavail-
able). Archetypoid analysis is illustrated in two design problems and several
examples, comparing them with the archetypes, the nearest observations to
them and other unsupervised methods.

Keywords: Archetype, Convex hull, Unsupervised learning, Extremal
point, Non-negative matrix factorization.

1. Introduction

There are problems where it is fundamental to find the extreme indi-
viduals of a sample. Archetypal analysis is a very useful tool for this pur-

IA pdf file is included with supplementary material. The code and data for reproducing
the examples are available at http://www.uv.es/vivigui/software.html and they form part
of the R package Anthropometry.

∗Tel.: +34 964728390; fax: +34 964728429.
Email addresses: Guillermo.Vinue@uv.es (Guillermo Vinué), epifanio@uji.es
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pose. Archetypes were defined in Cutler and Breiman (1994) and they have
been applied in different fields such as market research (Li et al. (2003),
Porzio et al. (2008), Midgley and Venaik (2013)), biology (D’Esposito et al.
(2012)), genetics (Thøgersen et al. (2013)), sports (Eugster (2012)), indus-
trial engineering (ergonomic design and evaluation) (Epifanio, Vinué, and Alemany
(2013)), the evaluation of scientists (Seiler and Wohlrabe (2013)), astrophysics
(Chan et al. (2003), Richards et al. (2012)), e-learning (Theodosiou et al.
(2013)), multi-document summarization (Canhasi and Kononenko (2013, 2014))
and different machine learning problems (Mørup and Hansen (2012), Stone
(2002)). The archetypes returned by archetypal analysis are a convex combi-
nation of the sampled individuals, but they are not necessarily observed indi-
viduals. However, in certain problems it is crucial that the archetypes are real
subjects, that is, observations of the sample. For example, Seiler and Wohlrabe
(2013) considered the case of finding archetypal economists and, using archety-
pal analysis, found that in some cases: “the identified archetypes are artifi-
cial, i.e. no economist in our sample fits this archetype to 100%.”. A new
archetypal concept is introduced to tackle this problem: the archetypoid,
which is a real (observed) archetype.

Human modeling is widely used in automotive engineering, aviation, man-
ufacturing and defense industries, amongst others. The use of representative
human models (cases) provides designers with an efficient way of applying
the body size characteristics of the target population to ergonomic design
and evaluation. A case represents a set of body dimensions we plan to ac-
commodate in design. There are three types of cases (HFES 300 Committee
(2004)) according to the location of the cases: central (located toward the
center of the distribution of the body dimensions selected), boundary (lo-
cated toward the edges of the distribution) and distributed cases (spread
throughout the distribution of the body dimensions). The objective in our
design problems is to obtain the boundary cases. We are assuming that the
adjustable components (for instance, the seat, rudder, etc. in an aircraft
cockpit design) in each problem can be adjusted in sufficiently small incre-
ments. Therefore, we are assuming that the accommodation of boundaries
ensures the accommodation of interior points. One of the advantages of con-
sidering boundary cases is that a large range of accommodation is achieved
while using a relatively small number of cases. For example, Bittner et al.
(1987) showed that by using only 17 cases (16 boundary and 1 centroid) they
were able to achieve the same population accommodation percentage as with
400 distributed cases.
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When designing a workspace it has typically been a requirement that be-
tween 90 and 95 percent of the relevant population are accommodated. In
traditional workspace evaluation, at a later stage in the design process, a
mock-up of the workspace is built and assessed with mannequins or, even
better, with “live” test subjects (Rothwell and Hickey (1986)). If any prob-
lems are found, the mock-up has to be modified or even a new mock-up has
to be built. The cost of a mock-up is extremely expensive, in terms of both
time and economic costs (Blanchonette (2010)). Note that when a new car
model is being developed, many mock-ups have traditionally been built, and
each mock-up costs between $500,000 and $1,000,000 (Brown (1999)). Fur-
thermore, a large number of individuals are used for assessing the mock-ups
(about 30 individuals in a cockpit design (Kennedy and Zehner (1995)). If
the “hard-to-fit” extreme individuals (the boundary cases) were previously
identified, the design could be improved at the beginning and the time and
cost of the design process would be reduced, as well as the number of “live”
individuals needed for assessing the mock-ups. In this problem, we also need
to identify the archetypoids.

Another real and immediate application of archetypoids in ergonomic
product design is related to workplace adaptation in manufacturing and
production companies. These companies maintain comprehensive databases
with information about their employees. When they perform an ergonomic
study aimed at designing a new production line, a small sample of workers is
selected to support the system validation. The computation of archetypoids
allows us to select this small number of representative workers.

In some situations (Hastie, Tibshirani, and Friedman (2009, Sect. 16.5))
we only know the dissimilarities between the observations, i.e. features (vari-
ables) are unavailable. In this case, it is imperative that the archetypes are
observations of the sample, otherwise, we cannot define a mixture of objects
without having access to feature vectors. The archetypoids always exist, even
when the data are only a collection of dissimilarities. With abstract data ob-
jects, like proteins or images, archetypoids have a practical advantage over
archetypes: an archetypoid is one of the observations, and can be displayed,
which aids their interpretation.

The outline of the paper is as follows: In Section 2 we review archetype
analysis, we introduce archetypoid analysis and the algorithm for computing
archetypoids and we explain how to calculate archetypoids when features
are unavailable. In Section 3 we discuss some of the properties of archety-
poids and carry out several comparisons with other unsupervised methods.
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In Section 4, our proposal is applied to a cockpit design problem used in
Epifanio et al. (2013) and to an apparel design problem, focusing on the case
where features are not available. The implementation of our proposal is writ-
ten in R (R Development Core Team (2013)) and is available together with
the code for reproducing the examples at http://www.uv.es/vivigui/software.html
and forms part of the R package Anthropometry (Vinué et al. (2014a)).
Section 5 contains conclusions and some ideas for future work.

2. Methodology

We aim to find extremal observations or pure types, which must be specific
individuals of the database. To do this, we build upon the archetype analysis
algorithm presented in Cutler and Breiman (1994). The archetype algorithm
is implemented in the R package archetypes (Eugster and Leisch (2009)).
We will now summarize the theoretical foundation of archetype analysis and
the proposed archetypoid analysis.

2.1. Archetype and Archetypoid analysis

Let X be an n × m matrix that represents a multivariate dataset with
n observations and m variables. The goal of archetype analysis is to find a
k ×m matrix Z that characterizes the archetypal patterns in the data, such
that data can be represented as mixtures of those archetypes. Specifically,
archetype analysis is aimed at obtaining the two n× k coefficient matrices α
and β which minimize the residual sum of squares that arises from combining
the equation that shows xi as being approximated by a linear combination
of zj’s (archetypes) and the equation that shows zj ’s as linear combinations
of the data:

‖xi −
∑k

j=1 αijzj‖
2

zj =

n
∑

l=1

βjlxl
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2)
n

∑

l=1

βjl = 1 with βjl ≥ 0 and j = 1, . . . , k.

On the one hand, constraint 1) tells us that the predictors of xi are finite

mixtures of archetypes, x̂i =

k
∑

j=1

αijzj. Each αij is the weight of the archetype

j for the individual i, that is to say, the α coefficients represent how much each
archetype contributes to the approximation of each individual. On the other
hand, constraint 2) implies that archetypes zj are convex combinations of

the data points, zj =

n
∑

l=1

βjlxl. According to this definition, the archetypes

need not be observed individuals of the database. The archetypes would
correspond to specific individuals when zj is an observation of the sample,
that is to say, when only one βjl is equal to 1 in constraint 2) for each j.
As βjl ≥ 0 and the sum of constraint 2) is 1, this implies that βjl should
only take on the value 0 or 1. In the analysis of archetypoids, the original
continuos optimization problem therefore becomes:

RSS =

n
∑

i=1

‖xi −

k
∑

j=1

αijzj‖
2 =

n
∑

i=1

‖xi −

k
∑

j=1

αij

n
∑

l=1

βjlxl‖
2, (1)

under the constraints

1)

k
∑

j=1

αij = 1 with αij ≥ 0 and i = 1, . . . , n and

2)
n

∑

l=1

βjl = 1 with βjl ∈ {0, 1} and j = 1, . . . , k i.e. βjl = 1 for one and only one l

and βjl = 0 otherwise.

In summary, archetypes are points zj, j = 1, . . . , k that are a mixture of

data, such that each data point xi can be expressed as xi =
∑k

j=1 αijzj, with
the constraint that αij are positive and add up to one. Archetypoids add
the constraint that the zj must be some point in the dataset. Archetypoids
could be considered extreme points in the data.

2.2. Computing archetypoids

Various different alternatives were evaluated in order to solve this new
mixed-integer optimization problem. We considered branch and bound and
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genetic algorithms, but they have a high computational cost when the sample
size increases. Besides, the results provided by the genetic algorithm did not
satisfy the constraints of the archetypoid analysis problem. Another more
naive possibility is to calculate the archetypoids with an exhaustive search,
that is to say, to obtain the set of archetypoids that produces the minimum
value of the objective function after trying all the possible combinations.
This will be called the combinatorial or true solution. However, when the
sample size of the database is large, this possibility has a very high compu-
tational cost. Because none of these approaches are useful for calculating
archetypoids, we decided to develop an algorithm based on the Partitioning
Around Medoids (PAM) clustering algorithm, which is very well described
in Kaufman and Rousseeuw (1990). An outline of the PAM algorithm can
be seen in the supplementary material. In the next section we detail our
proposal.

2.3. Archetypoid algorithm

The outline of the archetypoid algorithm (the goal is to minimize the
RSS = ‖X− αβ ′X‖2, where

′ denotes transpose) is (each step is explained
below):

1. BUILD phase: look for a good initial set of k archetypoids from the n

data points.

2. SWAP phase: For each archetypoid a

(a) For each non-archetypoid data point o

i. Swap a and o and compute the RSS of the configuration (α
coefficients must be calculated).

3. Select the configuration with the lowest RSS.

4. Repeat steps 2 to 4 until there is no change in the archetypoids.

Our algorithm is made up of two phases, a BUILD phase and a SWAP
phase, as PAM. In the BUILD step, an initial set of archetypoids is deter-
mined. Although we could simply randomly select (without replacement) k

of the n data points as the initial set, we propose the four, from our point of
view, most meaningful ways of trying to find a good initial set which shortens
the SWAP phase. The first possibility consists in computing the Euclidean
distance between the k archetypes and the individuals and choosing the near-
est ones, as Epifanio et al. (2013) did. From now on, we refer to this candi-
date set as candns. The second choice identifies the individuals with the max-
imum α value for each archetype, i.e. the individuals with the largest relative
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share for the respective archetype. We refer to this set as candα and is used in
Eugster (2012) and Seiler and Wohlrabe (2013). The third choice identifies
the individuals with the maximum β value for each archetype, i.e. the major
contributors in the generation of the archetypes. We refer to this set as candβ .
A fourth possibility consists of using the stepwise FURTHESTSUM initial-
ization procedure, a clever way to compute possible candidates for archetypes
proposed by Mørup and Hansen (2012). We refer to this set as candFS. Our
initial set of archetypoids is therefore candns, candα, candβ or candFS. In our
implementation, the archetypes for the first three choices are computed by
the R package archetypes (the best ones are selected after running the algo-
rithm several times), whereas the fourth choice is computed with the Matlab
software available at http://www.imm.dtu.dk/ mm/downloads/PCHA.zip,
which implements the methods described by Mørup and Hansen (2012).

The idea behind the SWAP phase of our algorithm is the same as that
of the SWAP phase of PAM, and it is much more computer intensive than
the BUILD phase. However, the objective function of our optimization prob-
lem is different. This is because PAM is aimed at clustering from k central
points and our algorithm is aimed at finding k representatives that charac-
terize the extreme types in the data. Specifically, our SWAP phase attempts
to improve the set of archetypoids by exchanging selected individuals for un-
selected individuals and by checking whether these replacements reduce the
objective function of the equation 1. In the inner loop, for each given set
of archetypoids, S, the α coefficients are updated in order to calculate the
effect of the swap. The corresponding RSS is then calculated. If this RSS is
lower than the previous RSS, S is the new initial vector of archetypoids. This
second phase is repeated until there is no change in any archetypoid. Note
that as all potential swaps are considered, the results of the algorithm do
not depend on the order of the objects in the database. As mentioned, the α
coefficients need to be computed. In our implementation, we solve n convex
least squares problems as in the algorithm implemented in archetypes. In
order to solve those n convex least squares problems, a penalized version of
the non-negativity least squares algorithm by Lawson and Hanson (1974) is
used, in such a way that the convexity constraints (being non-negative and
adding up to one) are fulfilled (see specifically (Eugster and Leisch, 2009,
point 2.1 on page 3)). Furthermore, we do not update the β coefficients in
the same way as archetypes (in the inner loop by solving k convex least
squares problems). In our algorithm, the β coefficients are “updated” in the
sense that for the individuals considered as archetypoids, their β is equal to
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1, and the β for the other unselected individuals is equal to 0. The RSS is cal-
culated with the 2-norm or spectral norm, which is computed as the largest
singular value of the matrix, as in Eugster and Leisch (2009), although other
matrix norms, such as the Frobenius norm, could be used.

The archetype algorithm alternates between finding the best α for given
archetypes Z and finding the best archetypes Z for given α. However, with
our algorithm, we only focus on finding the best α for given archetypoids Z.
This is because the difference between archetypes and archetypoids is that
archetypes are not necessarily observed points, but archetypoids are.

As we said before, our algorithm is based on the PAM clustering method.
This type of algorithm aims to find good solutions in a short period of time,
although not necessarily the best solution. Otherwise, the global minimum
solution could always be obtained using as much time as necessary with the
combinatorial solution, but this would be computationally very inefficient.

As regards standardization of the data, it should be mentioned that stan-
dardizing the data depends on the nature of the data. The variables should
be standardized in cases where they measure different dimensions. Standard-
ization is suitable if the scales are not comparable and especially if the ranges
of variables are very different. This is the case of the aircraft pilot database.
In other circumstances it makes sense to work with the data as they stand.
This is the case of the database used in the apparel design example, where we
work with the configuration that aims to reproduce the original dissimilarities
between trunks. Therefore the variables have an absolute meaning.

Our procedure was therefore as follows: First, depending on the problem,
it must be decided whether or not the data should be standardized, then
the archetypes must be calculated and, finally, the archetypoids must be
calculated with our algorithm, beginning from the initial sets, for several
values of k. As in Cutler and Breiman (1994) and Eugster and Leisch (2009),
we select the k where the elbow on the RSS representation is found.

2.4. Archetypoids when features are unavailable

In some problems, especially those where multidimensional scaling (MDS)
applies, such as psychology, economy, etc., only dissimilarities are available,
for example in studies of perception. In those cases, we cannot approximate
the data directly as mixtures of archetypoids or archetypes. However, if the
dissimilarities are Euclidean distances, they can be represented exactly in at
most n - 1 dimensions (Mardia, Kent, and Bibby (1979, Theorem 14.4.1))
by means of classical multidimensional scaling (cMDS). cMDS takes a set of
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dissimilarities and returns a set of points such that the distances between the
points are approximately equal to the dissimilarities, since the dimension of
the space which the data are to be represented in is usually less than n - 1. We
can use these features to find the archetypoids. Note that the archetypes can
also be computed in this new space, but we cannot establish a correspondence
with the original subjects or create artificial subjects, for which only the
dissimilarities were available. If the dissimilarities are a distance but not an
Euclidean distance, cMDS can be used as an approximation (and it is optimal
for a kind of discrepancy measure (Mardia et al., 1979, Theorem 14.4.2), or
we can use the h-plot (Epifanio (2013)), a recent alternative method that also
works when the dissimilarity is not a distance, or any other MDS method.

Let us detail the phases for obtaining the archetypoids when features are
unavailable. Let D be the n × n matrix where dij denotes the dissimilarity
between the observations i and j.

1. Compute an MDS method for finding a representation in R
m that

preserves the pairwise dissimilarities (the information of D) in some way.
Depending on the method, a goodness of fit measure can be used to choose
m. See the supplementary material for more details. Note that the greater
m is, the more variables are available, and the computation time increases
with the number of variables (Eugster and Leisch (2009)).

2. Compute the archetypoids of the n×m matrix X, the matrix returned
by the MDS method. This matrix has the coordinates of the points computed
to represent the dissimilarities. These archetypoids correspond to a specific
set of observations, with a direct correspondence with the original observa-
tions. Note that we also obtain the α coefficients, indicating the contribution
of each original archetypoid to each original observation. However, the pre-
dictors (

∑k
j=1 αijzj) of each original observation cannot be represented with

the original information (the dissimilarities), in the same way that archetypes
cannot be represented in that space.

We use a well-known database in MDS to make our ideas clearer. Wish
(1971) asked 18 students to rate the similarity between 12 nations. Let us
call S the matrix with the mean similarity ratings. The standard transfor-
mation from S to a distance matrix D is defined by dij = (sii − 2sij + sjj)

1/2

(Mardia et al., 1979, Definition 14.2.14). Note that sij = sji and sij ≤ sii for
all i and j, therefore the quantity under the square root is non-negative and
dii = 0. As S is positive definite, D is Euclidean (Mardia et al., 1979, Theo-
rem 14.2.2). A typical application of cMDS is to consider a two-dimensional
MDS configuration of the distances in order to interpret the data. Ex-
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tremes are better than central points for human interpretation (Thurau et al.
(2012)). In Fig. 1 we display the 4 archetypes from the cMDS representa-
tion. Archetypoids beginning from candα, candβ and candFS (these three
sets are identical: Brazil, China, Congo, and USA) and candns (Brazil,
Congo, USA and Yugoslavia) are: China, Congo, USSR, and USA, which
coincides with the combinatorial (true) solution. Note that one archetype
is between China and Yugoslavia, which makes it difficult to interpret. Ac-
tual data points are more easily interpretable by individuals. None of the
initial sets (candns, candα, candβ or candFS) coincide with the true solution.
Assuming that the respondents use our knowledge of those countries in the
‘70’-s, we can interpret the archetypoids as: China was communist and more
economically underdeveloped than the USSR (communist and economically
developed), whereas the USA was economically developed and noncommu-
nist, and Congo was underdeveloped. Congo and Brazil appear in the initial
sets, and also archetypes, when both countries had the same profile: neither
of them were highly industrialized or extreme political alignment countries.
With archetypoids the contrast between countries in the ‘Political Alignment
and Ideology’ and ‘Economic Development’ dimensions is clearer.

We have also computed the KERNEL-AA proposed by Mørup and Hansen
(2012), which generalizes the archetype analysis to kernel representations,
with S. KERNEL-AA returns archetypes, not actual data points, so the
interpretation is not as clear as archetypoids. The first archetype is a con-
vex combination of Cuba (10%), China (32%), USSR (28%) and Yugoslavia
(30%), which could correspond to a profile of communist countries. The
second archetype is a convex combination of France (12%), Israel (25%),
Japan (26%) and USA (37%), which could correspond to a profile of eco-
nomically developed and non-communist countries. The third archetype is
constituted by the weighted sum of Congo (30%), Egypt (38%) and India
(32%), which could correspond to countries that are not economically devel-
oped. The fourth archetype is formed by the combination of Brazil (80.3%),
Congo (1.3%) and Cuba (18.4%), which could also correspond to countries
that are not economically developed. As D is Euclidean, the configuration
of cMDS in 11 dimensions exactly reproduces the interpoint distances. The
archetypoids in this representation beginning from candns and candα are as
follows (coinciding with the true solution): Congo, Egypt, USSR and USA.
They are the same archetypoids obtained with cMDS in 2D, except China
is replaced by Egypt. Egypt was an Arab country classed as not economi-
cally developed. Note that the paper by Wish (1971) was published before
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Egypt’s Cold War allegiance switched from the USSR to the USA in 1972.
Again, it seems that with archetypoids the contrast between countries in the
‘Political Alignment and Ideology’ and ‘Economic Development’ dimensions
is clearer.
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Egypt
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Israel

JapanChina

USSR

USA

Yugoslavia

Figure 1: 2D cMDS representation of similarity ratings of nations. Archetypes are repre-
sented by crosses.

3. Location of the archetypoids

Let Conv(X) be the convex hull of the n observations in R
m of the set X.

As the number of points in X is finite, Conv(X) is a convex polytope, which
is the convex hull of its vertices. A vertex of Conv(X) is an observation xi of
X for which xi does not belong to Conv(X\{xi}). A vertex of Conv(X) is
also called an extremal point of X. Let V be the set of vertices of Conv(X),
and N be the number of vertices.

Let us see the location of the archetypoids and the differences with the
archetype locations for different values of k.

1. If k = 1, the archetypoid is the medoid (with one cluster) of X consid-
ering the squared Euclidean distance as dissimilarity, since the minimization
of RSS coincides with the definition of the medoid (Kaufman and Rousseeuw
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(1990)) (the medoid is that object of the cluster for which the average dis-
similarity to all the objects of the cluster is minimal). In case of archetypes
the k = 1 solution is the sample mean (Cutler and Breiman (1994)).

2. If k = N (or > N), the archetypoids are V (or V plus any other
observation), as RSS = 0, since Conv(V) = Conv(X).

3. If 1 < k < N , we cannot state that the archetypoids are on the bound-
ary of Conv(X) as the archetypes are, as we can see in the following artificial
example 1. It depends on the distribution of the observations, although for
Normal distributions archetypoids seem to be vertices, as can be seen in
the example 2, where we reproduce the example of (Hastie et al., 2009, Fig.
14.35) and (Cutler and Breiman, 1994, Fig. 14).

Example 1 Fig. 2a shows the location of 7 points in R
2. Archetypes

and archetypoids are computed for k = 2 (note that with k = 4 the Conv(X)
is the square formed by vertices 1, 2, 3 and 4, and these are the archetypes
and archetypoids). Note that the archetypoids are not vertices. The nearest
points to archetypes coincide with the archetypoids in this example. The
archetypes are built as a weighted mean of the pair 2 and 3, and the pair 1
and 4. If we compute the RSS for archetypes and archetypoids, the elbow is
at k = 4. In Fig. 2b another artificial example is displayed with k = 2. In this
case, the nearest points to the archetypes are 1 and 4, when the archetypoids
are 7 and 8 (not vertices).
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Figure 2: Two examples where the two archetypoids obtained by the combinatorial method
(circles) are not on the boundary of Conv(X) as the two archetypes (crosses) are.
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Example 2 A sample of size 50 has been generated from N(µ,Σ), where

µ =
(

1
1

)

and Σ =
(

1 0.8
0.8 1

)

. Figs. 3a, 3b and 3c show the archetypes

and archetypoids (computed with our algorithm beginning from the candns
set) for k = 2, 4 and 8, respectively (in this example N is 7). Note that like
archetypes, the archetypoids do not nest (as more archetypoids are found, the
existing ones can change to better capture the shape of the dataset). In the
supplementary material, we present an expanded analysis of this example,
which has been repeated 100 times.

The stability (if the solution does not change much when the data are
modified slightly) of archetypoids is also studied in the supplementary ma-
terial. They are very stable, especially when compared with the medoids of
PAM.
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1

2
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4
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Figure 3: Archetypes (with crosses) and archetypoids (with solid circles) for simulated
Bivariate Normal Data, with k = 2 (a), 4 (b) and 8 (c) respectively. The archetypoids
beginning from candns returned with our algorithm coincide with the combinatorial solu-
tions. Although RSS for archetypes should theoretically be smaller than for archetypoids
because the range of possible solutions is larger, in (c) the RSS for archetypoids is 3.3e-15
(zero), but 9.764514e-4 with archetypes. In fact, the archetype algorithm does not recover
V, it converges to a local minimum, even considering 500 random starts.

3.1. Comparison with other unsupervised methods

In the matrix notation used in Mørup and Hansen (2012), the objective
of archetypoid analysis is to find the optimal matrices β and α′ minimiz-
ing some measure of distortion D(X′|X′βα′) (for example, ‖X′ −X′βα′‖2
or ‖X′ −X′βα′‖2F ). As an extension of Mørup and Hansen (2012), Table 1
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shows the relationship between archetypoid analysis and different unsuper-
vised methods (seen as a linear mixture type representation of data with
various constraints) in terms of possible values of β and α (note that X′β

are the feature vectors, while α′ gives the weights for the predictors of X).

Table 1: Relationship between archetypoid analysis and several unsupervised methods,
as in Mørup and Hansen (2012): Principal component analysis (PCA), Non-negative ma-
trix factorization (NMF), Convex NMF (CNMF), Archetype analysis (AA), Archetypoid
analysis (ADA), Soft k-means (i.e. fuzzy k-means or the EM-algorithm for clustering),
k-means and k-medoids. B represents the set {0, 1}.

PCA
β ∈ R

α ∈ R

NMF
X′β ≥ 0

α ≥ 0

CNMF
β ≥ 0

α ≥ 0

AA
|βk|1 = 1, β ≥ 0

|αn|1 = 1, α ≥ 0

ADA
|βk|1 = 1, β ∈ B

|αn|1 = 1, α ≥ 0

Soft k-means
βk,n =

αk,n
∑

ñ αk,ñ

|αn|1 = 1, α ≥ 0

k-means
|βk|1 = 1, β ≥ 0

|αn|1 = 1, α ∈ B

k-medoids
|βk|1 = 1, β ∈ B

|αn|1 = 1, α ∈ B

Other authors have previously compared archetypal representation with
other unsupervised methods. For example, (Hastie et al., 2009, Sec. 14.6.1)
compared archetypal analysis with k-means clustering and NMF. They also
applied AA, PCA and ICA (independent component analysis) to the same
database. Mørup and Hansen (2012) analyzed several databases with AA,
PCA, NMF, ICA and k-means, and Canhasi and Kononenko (2013) also
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compared AA with PCA, NMF and k-means and other multi-document
summarization methodologies. There is a clear difference between archety-
pal analysis and clustering. The former focuses on extremes in the data,
while traditional clustering algorithms, like k-means or PAM, segment sub-
jects based on centroids (averages) or medoids (the points obtained with
PAM). Furthermore, the main objective of archetypal analysis is to obtain
the archetypes or archetypoids, but the main objective of clustering focuses
on membership in each cluster.

Thurau et al. (2012) introduced the Simplex Volume Maximization (SiVM)
algorithm. They formulated the same problem as ADA, but they seek to min-
imize the Frobenius norm, and our algorithm can consider any matrix norm,
although in our implementation the 2-norm is considered. However, they as-
sumed that archetypoids are vertices, when we have shown in Example 1 that
it is not necessary true. Therefore SiVM cannot return the true solutions in
that example. SiVM aims to select sequentially the j + 1 vertex that maxi-
mizes the simplex (polytope which is the convex hull of its vertices) volume
given the first j vertices. For Fig. 1, SiVM returns the same countries as
the candα, candβ and candFS sets, which was not the best solution. Due to
its efficiency (low running times), SiVM gives a reasonable approximation in
the case of very large databases.

In order to better understand the differences between the different method-
ologies for obtaining representative data (most of them are clustering meth-
ods) and archetypoid analysis, the same data as in Fig. 3b will be used. Fig.
4 shows the representatives using different methods. Specifically, we have
used: a) SiVM; b) the Sparse Modeling Representative Selection method
developed by Elhamifar et al. (2012)(SMRS); c) the Affinity Propagation
algorithm (AP) by Frey and Dueck (2007); d) the HOTTOPIXX (a new ap-
proach for non-negative matrix factorization (NMF)) (Bittorf et al. (2012)),
using the code developed by Gillis (2013); e) a Bayesian partial membership
model (BPM) (Mohamed et al. (2014)), in which we have represented the
points with the highest membership in each group; and f) PAM, k-means
and fuzzy k-means.
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Figure 4: Archetypes (with red crosses) and archetypoids (with solid black circles) for
simulated Bivariate Normal Data, with k =4, together with the four representatives (with
blue squares) obtained for the following methods, respectively: (a) SiVM, (b) SMRS, (c)
AP, (d) HOTTOPIXX, (e) BPM and (f) classical clustering algorithms (PAM with blue
squares, k-means with green triangles and fuzzy k-means with magenta diamonds).

Except for SiVM and SMRS, the other methods return representatives
that are mainly in the middle of the data rather than the boundaries, as
we are seeking. On the one hand, if we consider the convex hull gener-
ated with the points obtained with SiVM (the rhombus built joining those
points), many data points fall outside this rhombus (greedy algorithms are
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fast and often give good solutions, but a certain selection in a determined
iteration could prevent a good solution being found because they do not re-
consider their selections). This fact indicates that RSS (with 2-norm) for
SiVM (2.990284e-2) is larger than using ADA (8.064882e-3), which was the
best solution. Note that one of the points obtained with SiVM is not a ver-
tex of Conv(X), maybe due to their implementation and their parameter
selection for computational efficiency (SiVM with k = 8 does not recover the
N = 7 vertices of V). On the other hand, unlike ADA (where the points
are approximated by a mixture of archetypoids and the coefficients therefore
add up to one and are positive), with SMRS each point in the dataset is
approximated by an affine combination of the representatives, meaning that
the coefficients can be negative (in fact, for this example several coefficients
are negative; the maximum value of the coefficients is 0.669, only 6 coeffi-
cients are above 0.5 and the majority of non-zero values are between 0.2 and
0.3). This makes their intuitive interpretation difficult. The RSS for SMRS
is 1.704842e-2. Furthermore, with SMRS it is not possible to select exactly
how many representatives have to be obtained. In this example, only two
representatives were returned by the algorithm, since the other two repre-
sentatives were below a certain threshold, and only four representatives were
extracted in total (without considering the threshold). We could not have
obtained five or more representatives in this dataset with SMRS. We have
also considered the fast and robust recursive algorithm for separable NMF
by Gillis and Vavasis (2014), but it only returned two points (the two upper-
most points). Note that their stopping criterion does not fix the number of
points to extract a priori.

4. Applications and results

4.1. Cockpit design problem

The dataset of this problem comes from the 1967 United States Air Force
(USAF) Survey. From the total variables, we select six anthropometric mea-
surements for 2420 Air Force personnel, which are the same as those selected
by Epifanio et al. (2013). These six dimensions are the so-called cockpit
dimensions because they are the most important dimensions when design-
ing aircraft cockpits. A description of each of them can be found in the
supplementary material. As in Epifanio et al. (2013), the variables are stan-
dardized and subjects outside the 95% density contour are discarded, as in
the expanded analysis of example 2 in the supplementary material. The
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screeplots in Fig. 5 suggest that 3 archetypes and archetypoids should be
chosen. In the interests of brevity and as an illustrative example we examine
the results of 3 archetypes and archetypoids. However, in a real situation
it would be up to the analyst to decide how many representative cases to
choose. Table 2 shows the RSS associated with this number of archetypes,
with the initial sets and with the same number of archetypoids. The smallest
RSS in Table 2 is for the archetypes. This could be expected because its set
of possible solutions is the largest. However, the RSS of the candns, candα,
candβ and candFS archetypoids (archetypoids beginning with candns, candα,
candβ and candFS, respectively) are quite close to that (in particular with
candα archetypoids). In addition, the RSS of the archetypoids decrease the
corresponding RSS of the initial sets. Although not dramatic, this reduction
is notable. Furthermore, it may be the case that the nearest individuals are
not plausible individuals (as in fact occurs in Seiler and Wohlrabe (2013),
where the nearest “economists are a mixture of different types”). In that
case, it would be necessary to look for archetypoids.
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Figure 5: Screeplot of the RSS of the archetypes and archetypoids for the aircraft pilots.
The elbow is at 3 in all the cases.

Fig. 6 shows the percentiles of the archetypoids beginning with candα.
The percentiles of each archetypoid are represented by each set of bars, where
a bar represents a different variable, from dark gray (thumb tip reach) to light
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Table 2: RSS of archetypes, initial sets and archetypoids for the aircraft pilots.

RSS
3 archetypes 0.01238078

candns (511,314,1691) 0.01824692
candα (1421,314,1691) 0.01947072
candβ (2027,611,1114) 0.01418717

candFS (187,1114,1560) 0.01417640
3 archetypoids from candns (2177,2240,1691) 0.01283086

3 archetypoids from candα (1632,1822,52) 0.01238504
3 archetypoids from candβ (107,757,110) 0.01261483

3 archetypoids from candFS (1946,1319,1114) 0.01290036

gray (shoulder height sitting), as in Epifanio et al. (2013). The first candα
archetypoid is small in all measurements. The second candα archetypoid is
high in the six variables. The third candα archetypoid has high percentiles
for the first three variables (corresponding to limb dimensions), and small
percentiles for the last three variables (corresponding to torso dimensions).
The percentiles of the three candα archetypoids are not very extreme. Finally,
it should be mentioned that given the large sample size of this database, it
was not possible to obtain the combinatorial solution in a reasonable time.

As explained in Sect. 1, the archetypoids are human live models, which
are used in the design and fit evaluation (see (HFES 300 Committee, 2004,
Ch. 6) for details about transitioning cases to products, or the ISO 15537:2004
standard (International Organization for Standardization (2004)) for deter-
mining representative subjects of the target population applicable to the
testing of industrial products and designs). This procedure and its bene-
fits (producing an effective design, while simultaneously minimizing cost and
maximizing accommodation) compared to the virtual evaluation of prod-
ucts using theoretical digital models was described in Robinette and Hudson
(2006). Note that only live models can accurately represent postures, tissue
deformation, painful pressures or forces, fatigue, and strength in marginal
reach zones. An additional possibility for using archetypoids is explained in
Veitch et al. (2013). It consists of obtaining boundary cases (archetypoids)
for designing a single cockpit. This reasoning is based on defining the anthro-
pometric dimensions of all pilots who can fly each aircraft model. There are
aircraft models with archetypoids that are not recommended because serious
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risks (safety criteria include escape clearance, minimal operation clearances
including the ability to reach emergency controls or external visual field)
have been detected in ergonomic testing with real subjects who represent
each archetypoid.
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Figure 6: Percentiles for the six variables of the 3 archetypoids beginning with candα
for the aircraft pilots. Each one is represented by a different shade of gray, from the
lightest to the darkest shade in the same order as the variables are shown in Table 3 of
the supplementary material.

4.2. Apparel design problem

A national 3D anthropometric survey of the female population was con-
ducted in Spain in 2006 by the Spanish Ministry of Health. The aim of this
survey was to generate anthropometric data about the female population for
the clothing industry (Alemany et al. (2010)). In this study, a sample of
10415 Spanish females from 12 to 70 years old were randomly selected. Im-
ages are captured by several cameras and a triangulation is generated using
associated software supplied by the scanner manufacturers, providing knowl-
edge about the 3D spatial location of a large number of points on the surface
of the body. A 3D binary image of the trunk of each woman (white pixel if it
belongs to the body, otherwise black) is produced from the collection of points
located on the surface of each woman scanned, as explained in Ibáñez et al.
(2012). The location is removed by translating each image to the origin in
such a way that its centroid coincides with the origin. Each trunk is also
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rotated to make its principal inertia axis coincide with the canonical axis of
coordinates.

We can compute the dissimilarity between trunk forms and build a dis-
similarity matrix D between women. Let A and B be two binary images
associated with the trunk of two women and defined in a lattice Λ. There
are several metrics for measuring the differences between A and B. We use
the simplest one, which is the misclassification error: d(A,B) = nu(A∆B)

nu(Λ)
,

where ∆ is the set symmetric difference and nu counts the number of pixels
in that set, that is to say, the volume of the set.

We selected 470 women: women between 25 and 45 years old with a
bust circumference between 86 and 90 cm, not including pregnant and lac-
tating women. This age range represents an important potential group for
the apparel market and, at the same time, includes a high variability of
body shapes (Alemany et al. (2010)). As a result, women with the same size
(86-90 cm bust for upper garments) may have very different body shapes
(De Raeve et al. (2012)), causing fitting problems when a garment is de-
signed to fit a body prototype perfectly. Thus, different classifications of
body types have been proposed for apparel sizing and design (Simmons et al.
(2004), Rasband and Liechty (2006), Faust and Carrier (2009), Hsu (2009)).

Within this context, it is proposed that archetypoids should be used to
identify subjects who represent the fittings problems of the target popula-
tion. Having identified the extremes of a size, and together with the central
case that represents the basic proportions in a range of clothing, the apparel
grading process within that size could begin. The designer may increase
or decrease the base pattern to ensure that each new pattern is adapted to
the measurements of the extremes. Several boundary cases can be used in
conjunction with the central case to make the adjustments needed to accom-
modate both the boundaries and all the individuals between the boundaries.
Note that we are not seeking to find sub-sizes, but to accommodate women
within a specific size. Distributed and central cases and clustering algorithms
should be used to define sizes (Ibáñez et al. (2012), Vinué et al. (2014b)).

The methodology explained in Section 2.4 has been used with D, which
describes the dissimilarity between the 470 women. We have made a sim-
ulation study (see the supplementary material), and based on this we have
chosen to use the h-plot with m = 4. The screeplots in Fig. 7 suggest that 3
or 6 archetypes and archetypoids should be chosen. In the interests of brevity
and as an illustrative example we examine the results of 3 archetypes and
archetypoids. However, in a real situation it would be up to the analyst to
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decide how many representative cases to choose.
Table 3 shows the RSS associated with this number of archetypes, with

the initial sets and with the archetypoids. The smallest RSS is for the
archetypoids (all archetypoids agree). Although the RSS for archetypes
should be theoretically smaller than for archetypoids because the range of
possible solutions is larger, the archetype algorithm converges to a local opti-
mum despite the 20 random starts. The RSS associated with the archetypoids
is smaller than the RSS corresponding to the respective initial sets. Because
the sample size is not too large (470 women), we were able to calculate the
combinatorial solution. It consists of the same individuals obtained with our
algorithm. The best set of three archetypoids was obtained after 20 days
of computation, using a forward sequential search procedure run on a single
computer. Our algorithm only needed a few minutes starting with the initial
sets to obtain the same vector.
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Figure 7: Screeplots of the RSS of the archetypes and archetypoids for Spanish women.

In addition, Table 4 describes the archetypoid women according to cer-
tain easily recognized variables: weight, height, waist circumference and hip
circumference. Finally, Fig. 8 shows the archetypoids. It should be remem-
bered that the bust circumference was between 86 and 90 cm in our sample.
We can see that MADY179 has similar bust, waist and hip circumferences.
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Her trunk is cylindrical and she is short. On the other hand, for PEGO137
her bust and waist measurements are similar, but her hip circumference is
bigger. She is bell-shaped and overweight. Finally, MADY123 has a small
waist, with an hourglass shape. She is tall and thin.

Table 3: RSS of archetypes, initial sets and archetypoids for the Spanish women.

RSS
3 archetypes 7.003166e-06

candns (287,397,459) 7.085687e-06
candα (267,287,414) 8.799861e-06
candβ (171,217,287) 7.088453e-06

candFS (170,383,414) 9.839477e-06
3 archetypoids from candns (287,394,397) 7.002191e-06
3 archetypoids from candα (287,394,397) 7.002191e-06
3 archetypoids from candβ (287,394,397) 7.002191e-06

3 archetypoids from candFS (287,394,397) 7.002191e-06

Table 4: Anthropometric measurements of women archetypoids.

Woman code Weight Height Waist circumf. Hip circumf.
MADY123 59.0 1684 698 995
MADY179 48.8 1537 796 897
PEGO137 69.0 1620 865 1130
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Figure 8: Three archetypical women: MADY123, MADY179 and PEGO137.

5. Conclusions

Archetypal analysis is widely used today in problems where the goal is
to define extreme representative data. An important drawback of archetypal
analysis is that the archetypes do not necessarily correspond to observed in-
dividuals. However, in some cases it is critical that the archetypes are real
subjects. Within this context, a new archetypal concept has been proposed:
the archetypoid. In addition, an algorithm has been developed to obtain
them quickly and efficiently in terms of computational complexity (see the
supplementary material for a comparison of our algorithm with other algo-
rithms).

In the cockpit and apparel design problems the RSS of archetypoids is re-
ally decreased to the same level as the archetype-RSS (in fact, for the apparel
problem the RSS of archetypoids was smaller than the RSS of archetypes).
It is not possible to say which initial set is the best to start with. The true
solution in Fig. 2a is only returned by beginning with the candns option.
The true solution in Fig. 3a is only returned by beginning with the candns
and candβ sets. The archetypoids obtained by beginning with all the options
are the best solution for Figs. 1, 3b and 3c and the apparel problem, while
the candα alternative offered the local minimum for the cockpit design prob-
lem. Neither of the options returns the true solution for Fig. 2b. All options
must be checked, although candFS usually begins with a higher RSS than
the other options. Obviously, this issue need not be taken into account if the
initial sets coincide.
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There are various possibilities for future work: from a practical perspec-
tive, a study about the computational complexity of archetypoids could be
carried out based on the ideas of Eugster and Leisch (2009, Sect. 4), in
addition to the implementation of the archetypoid algorithm for very large
databases. For very large databases, this algorithm is not practical. In that
case, an algorithm using samples of the data following the idea of the Cluster-
ing LARge Applications (CLARA) (Kaufman and Rousseeuw (1990)) would
be more suitable. From a theoretical point of view, it would be interest-
ing to carry out a numerical simulation with data from different probability
distributions to study the location of the archetypes and archetypoids and
to study their accuracies by means of randomization techniques. Another
direct extension would be to try to define weighted and robust archetypoids,
similarly to Eugster and Leisch (2011), or to consider missing values by mod-
ifying the objective function analogously, as Mørup and Hansen (2012) did
with AA.

Furthermore, archetypoid analysis can be used beyond multivariate vec-
tors or dissimilarity matrices. For example, it is suitable for use with func-
tional data, interval data, images (Thurau and Bauckhage, 2009), etc. The
calculus of archetypoids can be successfully applied in many fields such as
computer vision, neuroimaging, chemistry, text mining, collaborative filter-
ing, etc. (Mørup and Hansen (2012)). In fact, archetypal analysis is cur-
rently quite popular and several applications have emerged in recent years.

We intend to look in more depth at the apparel design problem by con-
sidering more body sizes and age populations. We have determined three
archetypoids in our approach. However, it may be more interesting to con-
sider a greater number of representative individuals in order to achieve a
better fit of garments. For example, as we said before, we could also have
considered six archetypoids. Lack of fit is one of the main complaints about
clothing for both customers and apparel companies. Several sociological stud-
ies have shown that a high percentage of customers have problems finding the
right size and style. In the target group we analyzed, nearly 30% of women
have difficulty finding clothes that fit them. In the whole Spanish anthropo-
metric study this percentage is as much as 40%. We expect that archetypoid
analysis will serve as a satisfactory approach to tackle this problem.
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