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Abstract. An accurate knowledge of the photon spectra emitted by X-ray tubes in radiodiagnostic is essential to 

better estimate the imparted dose to patients and to improve the quality image obtained with these devices. In this 

work, it is proposed the use of a flat panel detector together with a PMMA wedge to estimate the actual X-ray 

spectrum using the Monte Carlo method and unfolding techniques. The MCNP5 code has been used to model 

different flat panels (based on indirect and direct methods to produce charge carriers from absorbed X-rays) and to 

obtain the dose curves and system response functions. Most of the actual flat panel devices use scintillator 

materials that present K-edge discontinuities in the mass energy-absorption coefficient, which strongly affect the 

response matrix. In this paper, the applicability of different flat panels for reconstructing X-ray spectra is studied. 

The effect of the mass energy-absorption coefficient of the scintillator material has been studied on the response 

matrix and consequently, in the reconstructed spectra. Different unfolding methods are tested to reconstruct the 

actual X-ray spectrum knowing the dose curve and the response function. It has been concluded that the 

regularization method Modified Truncated Singular Value Decomposition (MTSVD) is appropriate to unfold X-

ray spectra in all the scintillators studied. 
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I. Introduction 
 

Obtaining X-ray spectra in radiodiagnostic units is a complex task mainly due to the high photon flux and the low 

energy of particles emitted by the tube. To reduce the high fluence reaching the detector, a dispersive or 

attenuating material is needed. The X-ray spectrum can be estimated using a flat panel detector and an attenuating 

material.  

Flat panels are based on transforming the absorbed X-rays into charge carriers by means of direct or indirect 

methods. In direct devices, amorphous Selenium (a:Se) is normally used to directly transform photon fluence into 

current. In indirect devices, a scintillator material absorbs the X-rays and converts them into visible light photons 

that pass onto a photodiode array. A semiconductor foil is used to convert visible light photons into charge 

carriers. Normally, amorphous Silicon is preferred as a semiconductor foil to convert visible light photons into 

charge carriers due to its high rate for Detective Quantum Efficiency (DQE). Although silicon has outstanding 

electronic properties, it is not a particularly good absorber of X-ray photons. For this reason, X-rays first impinge 

upon scintillators usually made from either Gadolinium OxySulfide (GOS) or Cesium Iodide. Stopping power, 

speed and luminosity are the main characteristics to take into account to have a good scintillator material. 

Stopping power is maximized by maximizing density and atomic number. High density and stopping power are 

important for reducing the amount of the scintillator material needed (Derenzo and Weber, 2003). Alternative 

materials like Cadmium Telluride and Mercury Iodide are being studied as they have better stopping power 

(Hubbell and Seltzer, 2011). Taking into account these considerations, flat panels with different scintillator 

materials have been analysed. 

 

A PMMA (polymethylmethacrylate) wedge has been used as attenuating material. This wedge is placed between 

the X-ray focus and the flat panel. When the flat panel is irradiated, a gray-scaled image is obtained. From this 

image, an absorbed dose curve can be easily obtained. The absorbed dose curve obtained using different 

scintillator materials can be transformed into tissue equivalent dose multiplying the dose in the first material by 

the ratio of mass energy absorption coefficients for the second and first material taking into account  the photons 

of interest (always under conditions of secondary charged particle equilibrium). 



 

In this frame, the Monte Carlo code MCNP5 (X-5 Monte Carlo Team, 2003) has been used to simulate the energy 

absorption in the flat panel and to obtain the dose curve corresponding to certain working conditions of a X-ray 

tube. The developed MCNP5 model can be used to analyse the behaviour of different scintillators and to 

determine their response function depending on the X-ray energy. The response function of different materials 

used in direct and indirect measurements have been determined.  

 

Simulating several monochromatic X-ray beams and calculating the dose curve for each one, the response matrix 

of the system can be obtained. Knowing the response matrix and the dose curve, the primary X-ray spectrum can 

be unfolded. However, it has been proved that response matrices characterizing the described problem are ill-

posed.  

In order to unfold the primary X-ray spectrum, regularization methods can be applied.  

 

Unfolding methods are widely used in different fields of gamma and X-ray spectrometry, environmental radiation, 

imaging and nuclear data. For instance, the Maximum Entropy Method (MEM) has been successfully used for 

gamma ray unfolding (Los Arcos J.M, 1996) and for neutron unfolding with the code MAXED (Reginatto et al., 

2002). Regarding to nuclear data, the general problem of estimating parameters in nuclear spectroscopy can be 

undertaken using stochastic numerical Bayesian technique and the reversible-jump Markov-chain Monte-Carlo 

method (Gulam Razul et al., 2003). Bayesian and Maximum Entropy methods have been used in diagnostic 

measurements with compact neutron spectrometers (Reginatto et al., 2008). All these methods, partially using the 

Monte Carlo method, represent some of the new perspectives of spectra and imaging unfolding 

 

In this work, unfolding methods  based on the Singular Value Decomposition (SVD) (Golub and Van Loan, 1996) 

of a response matrix have been used. Specifically, the Truncated Singular Value Decomposition (TSVD), the 

Modified Truncated Singular Value Decomposition (MTSVD) (Hansen et al. 1992), the Dump Singular Value 

Decomposition (DSVD) (Hansen et al., 1992), and the Tikhonov method (Hansen, 1999) have been used. These 

methods have been tested simulating the dose curve for different X-ray spectra extracted from the IPEM 78 

Report (Cranley et al., 1997) and verified with experimental measurements.  

 

II. Methodology  
 

1. The Monte Carlo model 

The Monte Carlo code MCNP5 (X-5 Monte Carlo Team, 2003) has been used to model an X-ray source, a PMMA 

wedge and different flat panel detectors including a:Se, CdTe CsI(Tl), GOS and HgI2.  

 

The theoretical spectra for certain working conditions of the X-ray tube, has been established using the IPEM78 

Report Catalogue (Cranley et al., 1997). This actual version uses the XCOM photon cross section library (Berger 

and Hubbell, 1987) to calculate linear attenuation coefficients of various materials. The unattenuated photon 

spectra are given for tungsten targets, tube potential from 30 kV to 150 kV, and target angles from 6º to 22º. The 

ripple value can be changed from 0 to 30%. In this study a Tungsten anode tube has been considered.  

 

The PMMA wedge is placed between the X-ray focus and the flat panel, as it can be seen in Figure 1. A scheme of 

a generic flat panel model it is shown in Figure 2 with all the materials that conforms a typical flat panel detector. 

The carbon filter is used to prevent the X-ray penetration the scintillator layer being interfered and absorbed 

visible light. The scintillator material absorbs the X-rays and converts them into visible light photons that pass 

onto a photodiode array (fibre optic). The semiconductor foil is used to convert visible light photons into charge 

carriers. 

When the flat panel is irradiated, it registers an absorbed dose gradient due to the attenuation of X-rays produced 

in the wedge. For certain working conditions (high voltage, filter thickness and current) of the X-ray tube, an 

absorbed dose curve is obtained.  

 

The absorbed dose curve is directly related to the primary spectrum by means of a Response function. In most 

applications, the Response function can be approximated by a matrix, which can be obtained using the Monte 

Carlo method. The photon fluence has been measured in the scintillator layer at 25 different positions along the X 

axis using a F4MESH tally (X-5 Monte Carlo Team, 2003). Photon fluence can be converted into dose using the 



 

mass energy-absorption coefficient (
𝜇𝑒𝑛

𝜌
) provided by the National Institute of Standards and Technology (NIST) 

(Hubbell and Seltzer, 2011). The mass energy-absorption coefficients for each material considered in the MCNP5 

models are shown in Figure 3. 

 

Common scintillators used in commercial flat panels present a K-edge in the energy range of interest, as it can be 

seen in Figure 2: GOS (at 50 keV), HgI2 (at 33.17 and 83.1 keV), CdTe (at 26.7 and 31.8 keV) and CsI (at 33.17 

and 35.98 keV), all of them used in indirect methods. On the other hand, a:Se (direct method) does not present any 

K-edge in the energy range studied (5 to 120 keV). Using this model as a reference, different configurations have 

been evaluated changing the flat panel configuration. The thickness of scintillator is different in each detector 

(GOS 0.14 mm (Hamamatsu, 2007), HgI2 0.25 mm (Iwanczyk et al., 2001), CdTe 0.2 mm (Izumi et al., 2001) and 

CsI 0.6 mm (Chabbal et al., 2002)). In the direct flat panel the thickness of a:Se is 1 mm (Izumi et al., 2001).  

 

Each model has been run simulating 50 million particles in order to ensure a relative error in F4MESH lower than 

1%. MODE P, E has been activated to follow tracks of photons and electrons. A default cutoff of 1 keV for 

electrons has been considered.  

 

Figure 4 shows the absorbed dose curves obtained for each case simulating different X-ray spectra varying the 

high voltage (60, 70, 80, 90 and 100 kV). In all simulations, it has been considered Tungsten X-ray spectra with 

12º anode angle and 2 mm thickness of Aluminium filter. All the curves represent absorbed dose in µGy per 

emitted photon.  

 

As it can be seen the efficiency of the detection produces important variations in the dose curves. Varying the 

scintillator material there are some bands of energy where absorbed dose curves are clearly separated, while in 

other intervals of energy they are overlapped.  

 

In the case of CdTe, it can be seen that the absorbed dose corresponding to a 100 kV X-ray spectrum is lower than 

the corresponding to 90 kV. This fact represents an important disadvantage when primary X-ray spectrum is 

wanted to be determined using the absorbed dose curves. This point will be discussed in section III.  

 

The MCNP5 model is used to determine different response matrices of the system, one per each flat panel 

detector. With this aim, different monochromatic beams have been simulated, calculating the absorbed dose curve 

for each of them. Figure 5 shows the response matrix obtained for each scintillator. In this figure it can be seen the 

effect of the efficiency on the absorbed dose when the X-ray energy is varied.  

 

The K-edge has an important effect on the response function of the system. Due to the K-edge, the relation 

between absorbed dose and beam energy is usually not linear. For example, in energies below the GOS K-edge the 

maximum dose per emitted photon is found at 30 keV. Similar behavior is observed in the other scintillator 

materials.  

 

Both features (K-edge and efficiency variation) produce an important effect on the reconstruction of the primary 

spectrum (section III). 

 

2. The unfolding method 

 

The relation between the absorbed dose curve and the primary spectrum can be defined by the Response matrix 

(R), which can be obtained simulating the response of monochromatic photon beams: 

 

𝑅𝑠 − 𝑚⃗⃗⃗                     (1) 

 

where 𝑠 is the unknown primary spectrum and 𝑚⃗⃗⃗ is the dose curve registered. This methodology has been applied 

to the different scintillator materials (a-Se, GOS, CsI(Tl), CdTe and HgI2) to obtain their Response matrix.  

Once R is known, the equation (1) theoretically permits to obtain the primary spectrum 𝑠. But as the determination 

of this matrix is affected by some errors an approximation 𝑠⃗̃ to 𝑠 is chosen in such a way that minimizes the 2-



 

norm of the residual vector ‖𝑅𝑠⃗̃ − 𝑚⃗⃗⃗‖
2
. Singular values of R rapidly decay to 0, being the last singular values 

very small.  

 

This fact can be seen in Figure 6, where the singular values of different scintillator materials considered in this 

work are shown. These small singular values make matrix R to be ill conditioned. Condition number of the 

response matrices are 3.52 ∙105 for a-Se, 3.32∙105 for CdTe, 3.13∙105 for CsI, 2.99∙105 for GOS and 1.76∙106 for 

HgI2. The high value of the condition number allows pointing out that these response matrices are ill conditioned.  

 

Due to the fact that R can be considered as rank deficient, there are a large number of solutions for the Least 

Squares problem ‖𝑅𝑠⃗̃ − 𝑚⃗⃗⃗‖
2
. A fundamental result about rank deficient matrices, which can be derived from the 

Singular Values Decomposition (SVD) of R, is that closest rank-k approximation Rk to R is obtained by 

truncating the SVD expansion at k, removing the parts of the solution corresponding to the smallest singular 

values (Golub and Van Loan, 1996). The Truncated SVD (TSVD) and the Modified TSVD (MTSVD) 

regularization methods are based on this observation in that one solves the problems: 

 

min ‖𝑠⃗̃‖
2
 subject to min ‖𝑅𝑘 𝑠⃗̃ − 𝑚⃗⃗⃗‖

2
       (2) 

min ‖𝐿𝑠⃗̃‖
2
 subject to min ‖𝑅𝑘 𝑠⃗̃ − 𝑚⃗⃗⃗‖

2
       (3) 

 

respectively.  

 

In the MTSVD method, equation 3, the 2-norm ‖𝑠⃗̃‖
2
 is replaced by the seminorm ‖𝐿𝑠⃗̃‖

2
, where L is a discrete 

approximation to the p’th derivative operator (Hansen et al., 1992). 

Finally, Tikhonov regularization method (Hansen, 1999) is based on a modification of the Fredholm integral 

equation of the first kind (a classical example of an ill-posed problem) that is intended to stabilize its solution. 

This is achieved by constructing the following functional:  

 

f(x) = ‖Rs⃗̃ − m⃗⃗⃗⃗‖
2

+ λ‖Ls⃗̃‖               (4) 

 

The idea is to define the regularized solution s⃗̃ as the minimizer of the following weighted combination of the 

residual norm and the side constraint 

 

s⃗̃ = argmin {‖Rs⃗̃ − m⃗⃗⃗⃗‖
2

2
+ λ2‖Ls⃗̃‖

2

2
}        (5) 

 

where the regularization parameter λ  ̧controls the weight given to minimization of the side constraint relative to 

minimization of the residual norm. L takes different forms in accordance with the order of regularization. 

Different L operators can be used (I, L1 or L2). In this paper it has been chosen the second order Tikhonov 

regularization, L2.  
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A less known regularization method, which is based on the SVD or the GSVD is the damped SVD/GSVD. Here, 

instead of using filter factors 0 and 1 as in TSVD one introduces a smoother cut-off by means of filter factors 𝑓𝑖 

defined as  

 

𝑓𝑖 =
𝜎𝑖

𝜎𝑖+𝜆𝜇𝑖
                  (6) 

 

for L ≠ 𝐼𝑛 

 

These filter factors decay slower than the Tikhonov filter factors and thus, introduce less filtering (Hansen et al., 

1992). 

 

The quality of the unfolding method results strongly depends on the regularization parameter (k and λ). If it is too 

small, the result will show artificial peaks. If it is too large, the result will be over-smoothed. For this reason, a 

reliable method for determination of the regularization parameter is essential to solve the inverse problem.  

 

Some methods are based on tracking the changes in the size of the regularized solution versus the size of the 

corresponding residual to determine an optimal value of k and λ. The procedure represented in graphical form is 

referred to as the L-curve criterion (Hansen, 1994, 1998). The use of such a criterion in connection with ill-posed 

Least Squares problems goes back to Miller (1970), and Lawson and Hanson (1974). The L-curve criterion is 

clearly illustrated and extensively applied to the analysis of discrete ill-posed problems by Hansen (1992). More 

properties of the L-curve are derived by Hansen and OLeary (1993) where it was also shown that the 

characteristic L-shaped corner is better pronounced in a double logarithmic plot. L-curve consists of a relatively 

vertical segment and a relatively horizontal line in an ideal setting. In this curve, the 2-norm of the solution vector 
‖𝑥‖2  or ‖𝐿𝑥‖2  is plotted versus the 2-norm of the residual vector ‖𝐴𝑥 − 𝑏‖2 for different values of the k 

parameter. Some authors recommend finding the truncation parameter k that is closest to the maximum curvature 

point, that is, selecting the value corresponding to the L-shaped corner.  

 

Figure 7 shows the L-curves obtained applying TSVD, MTSVD and Tikhonov methods with the response matrix 

corresponding to a:Se.  

 

Other method for choosing a good regularization parameter is the Discrete Picard Condition (DPC), recognized by 

Varah (1979) and analyzed by Hansen (1988, 1990). The right-hand side vector b of the Least Squares 

problem‖𝐴𝑥 − 𝑏‖ satisfies the DPC if the Fourier coefficients |𝑢𝑖
𝑇𝑏| decay, on the average, to zero faster than the 

singular values σi. Figure 8 shows the Picard condition for each scintillator material applied to MTSVD method.  

 

Let 𝛾𝑖 = 𝑢𝑖
𝑇𝑏/𝜎𝑖. Then on the average, |𝛾𝑖| decreases until some point 𝛾𝑃, where it starts to increase. Write b as b 

= bexact + berror, where bexact is the exact right-hand side vector for the problem and berror is a perturbation 

vector. Define 𝛾𝑖
𝑒𝑥𝑎𝑐𝑡 = 𝑢𝑖

𝑇𝑏𝑒𝑥𝑎𝑐𝑡/𝜎𝑖 and 𝛾𝑖
𝑒𝑟𝑟𝑜𝑟 = 𝑢𝑖

𝑇𝑏𝑒𝑟𝑟𝑜𝑟/𝜎𝑖. Then 𝛾𝑖 = 𝛾𝑖
𝑒𝑥𝑎𝑐𝑡 +  𝛾𝑖

𝑒𝑟𝑟𝑜𝑟. Additionally, it is 

assumed that, on the average, |𝛾𝑖
𝑒𝑥𝑎𝑐𝑡| decreases toward zero and |𝛾𝑖

𝑒𝑟𝑟𝑜𝑟| increases from zero. That is, the exact 

problem 𝐴𝑥 = b𝑒𝑥𝑎𝑐𝑡 satisfies the DPC completely and the error problem 𝐴𝑥 = b𝑒𝑟𝑟𝑜𝑟  does not satisfy the DPC at 

all. With these assumptions, it can be seen that for the decreasing part of the 𝛾𝑖, 𝛾𝑖
𝑒𝑥𝑎𝑐𝑡 is the dominant 

component; and 𝛾𝑖
𝑒𝑟𝑟𝑜𝑟 is the dominant one for the increasing part. 

 

Taking into account all these considerations, regularization parameters k and λ can be objectively determined. In 

Table 1 it is listed the regularization parameters k and λ obtained applying the L-curve criterion to each response 



 

matrix and dose curve for each unfolding method. As it can be seen, the optimal value of the truncation parameter 

is almost constant in the voltage interval considered for each unfolding method. For TSVD method k= 4 has been 

used in all the cases except for the GOS (k=5). For MTSVD has been considered k= 3 in all the cases. More 

differences between each material are found in the Tikhonov method (λ a:Se = 8.50 e-08, λ CdTe = 4.40 e-07, λ 

CsI, GOS, HgI2 = 2.40 e-07). 

 

 

 

III. Results and Discussion 
 

The optimal choice of the truncation parameter, k or λ, contributes to obtain a best fit of unfolded spectrum 

respect to the theoretical primary beam spectrum. When k or λ is greater than the value given by the L-curve 

corner, fluctuations and noise increase in the unfolded spectrum. On the other hand, when k or λ is lower, 

unfolded spectrum is over smoothed, loosing information.  

 

In Figure 9, it is shown a comparison between theoretical 100 kV spectrum and unfolded spectra obtained 

applying the MTSVD method for different regularization parameter k. As it has been said, solution is highly 

affected by the choice of k. Furthermore, the characteristic lines of tungsten are not present in the unfolded 

spectra. An analogous analysis can be done in the case of Tikhonov unfolding.  

 

Once the k parameter has been fixed for each unfolding method and each response matrix, the methodology has 

been tested for different tube working conditions varying the peak high voltage. 

 

Figures 10 to 16 show comparisons between unfolded and IPEM78 theoretical spectra for 70 kV and different flat 

panel configurations. TSVD, MTSVD, DSVD and Tikhonov methods have been applied to reconstruct primary 

spectra.  

 

In the case of a:Se, MTSVD (k=3) successfully fits theoretical spectra. Figure 10 shows a comparison of unfolded 

spectra (using the regularization methods MTSVD and Tikhonov). In all cases, a smooth solution is obtained 

thanks to the derivative operator L2. Bremsstrahlung distribution obtained with MSTVD adequately reproduces 

the theoretical spectra. However, the maximum of the Bremsstrahlung continuous is reached 10 keV above the 

maximum of the theoretical spectra. The most important discrepancies are found in the energy range defined 

between 40 and 70 keV. Regarding to Tikhonov regularization (λ= 8.50E-08), smooth spectra are obtained, but 

Bremsstrahlung continuous is shifted about 10 keV to the low energy range.  

 

When L2 operator is not considered, important discrepancies appear (fluctuations and distortions of the spectra). 

This effect can be observed in Figure 11. In this case, TSVD, DSVD and Tikhonov (L=I) have been applied to 

unfold spectra of 70 and 100 kV. Reconstruction obtained with TSVD method shows slight fluctuations in the 

whole energy interval. TSVD unfolded spectrum present more important discrepancies when high voltage is 

reduced. In fact, only an accurate spectrum is obtained for 100 kV. DSVD method does not offer acceptable 

results in any case.  

In general, using TSVD, DSVD and Tikhonov (L=I) important fluctuations and noise appear in unfolded spectra. 

Furthermore, solution is distorted and shifted to the high energy range. In the case of DSVD and Tikhonov (L=I), 

the regularization methods are not able to adequately determine the maximum energy of the Bremstrahlung 

continuous. This fact is more evident in the 70 kV spectrum (in both methods, the maximum energy of the 

distribution reaches 100 keV). In any case,  characteristic lines are not reproduced. 

As a conclusion, it can be said that the derivative operator, L2, is necessary to smooth the spectra in order to obtain 

an acceptable estimation of the primary spectra.  

 

Figure 12 shows the unfolded spectra obtained when CdTe response matrix is considered. It can be observed the 

same general trends explained for a:Se. It is needed the derivative operator L2 to obtain a smooth and adequate 

solution. The weak point of choosing CdTe to reconstruct spectra is its poor behaviour for voltages greater than 90 

kV. In Figure 12 it can be clearly seen that the worse reconstructions are found for 100 kV, independently of the 

unfold method used. This effect can be attributed to the reduction of detection efficiency for energies greater than 



 

90 keV. Unfolded spectra obtained with TSVD and Tikhonov (L=I) do not fit theoretical spectra for any tested 

voltage (70 up to 100 kV), as it can be seen in Figure 13. It is the same behaviour than with a:Se.  

 

In Figures 14, 15 and 16, it is shown the unfolded spectra obtained applying the MTSVD and Tikhonov (L2) 

regularization methods to CsI, GOS and HgI2 matrices, respectively. The behaviour of solutions is quite similar in 

all cases. MTSVD unfolded spectra are shifted to the low energy range, and Tikhonov spectra to high energies. K-

edge appearing at different energies do not produce any particular effect on the reconstructed spectra. It can be 

stated that K-edge of scintillator does not have a relative importance to cause the ill-posed problem. 

 

From all these results, some points should be highlighted: K-edge of different response matrices do not alter the 

ill-posed condition of the problem and do not affect the quality of the unfolded spectrum. The condition number of 

the response matrix does not depend on K-edge. It has been proved that the response matrix of all material 

analysed have a similar condition number (about 105), also with similar singular value decomposition. However, 

the efficiency of some scintillators is gradually reduced for energies up to 100 keV, for example CdTe. In this 

case, regularization methods such as MSTVD or Tikhonov do not adequately unfold spectra. On the other hand, it 

is necessary to consider a derivative operator (L2) to obtain a smooth unfolded spectrum. In general trends, from 

the mathematical point of view, it seems that the scintillator material does not represent a relevant aspect to unfold 

primary spectra. However, choosing the adequate regularization method is very important to obtain acceptable 

unfolded primary spectra.  

 

IV. Conclusions 

 

The applicability of the system PMMA wedge-Flat panel to reconstruct primary X-ray spectra has been analysed. 

It has been stated the suitability of the MTSVD and Tikhonov regularization methods to unfold X-ray spectra in 

the considered energy range.  

 

A MCNP5 model to simulate the actual acquisition process has been developed. Different materials used in 

commercial flat panels have been tested using this model. The response matrix corresponding to each scintillator 

has been obtained simulating several monoenergetic photon beams. The response matrices obtained have a large 

condition number, pointing out an ill-posed problem. Two features can, a priori, affect the quality of the solution: 

variation of efficiency depending on energy and the K-edge of the scintillator. To study these hypotheses, five 

response matrices of different scintillators have been analysed and used to unfold primary X-ray spectra in the 

radiodiagnostic range. 

 

Regularization methods such as MTSVD and Tikhonov are able to unfold primary spectra when a derivative 

operator is used to smooth the solution. TSVD, DSVD and Tikhonov (using L as identity) do not offer good 

results in any case. In any case, characteristic lines are not properly unfolded.  

 

The K-edge does not have a relevant effect in the unfolded spectra. However, the variation of efficiency strongly 

affects the quality of the unfolded spectrum.  

 

From the point of view of X-ray unfolding, it has been proved that CdTe does not allow obtaining acceptable 

results for voltages greater than 90 kV.  

 

It is recommended the use of the regularization MTSVD method for any kind of scintillator used.  

 

The effect of the K-edge is negligible during the unfolding process.  
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Figure 1: Geometry layout of the system 

Figure 2: Flat panel materials 

Figure 3: Mass Energy Absorption Coefficient (cm
2
/g) NIST  

Figure 4: Absorbed Dose curves for each material 

Figure 5: Response matrices 

Figure 6: Singular values 

Figure 7: L-curve criterion (a:Se). TSVD, MTSVD and Tikhonov 

Figure 8: Picard condition 

Figure 9: MTSVD unfolding with different k values 

Figure 10: Unfolded spectra a:Se. MTSVD and Tikhonov  

Figure 11: Unfolded spectra a:Se. TSVD, DSVD and Tikhonov (L=I) 

Figure 12: Unfolded spectra CdTe. MTSVD and Tikhonov  

Figure 13: Unfolded spectra CdTe. TSVD and Tikhonov (L=I) 

Figure 14: Unfolded spectra CsI. MTSVD and Tikhonov 

Figure 15: Unfolded spectra GOS. MTSVD and Tikhonov  

Figure 16: Unfolded spectra HgI2. MTSVD and Tikhonov  

 

 

 

Table 1: Regularization parameters  
 


