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Abscissas of weak convergence of vector valued Dirichlet series

José Bonet

Dedicated to my friend Prof. Manuel Maestre on the occasion of his 60th birthday

Abstract

The abscissas of convergence, uniform convergence and absolute convergence of vector
valued Dirichlet series with respect to the original topology and with respect to the weak
topology σ(X,X ′) of a locally convex space X, in particular of a Banach space X, are
compared. The relation of their coincidence with geometric or topological properties of
the underlying space X is investigated. Cotype in the context of Banach spaces, and
nuclearity and certain topological invariants for Fréchet spaces play a relevant role.

1 Introduction and preliminaries

The general theory of Dirichlet series was developed at the beginning of the last century
by Bohr, Hardy, Landau and Riesz, among others. Recently the field showed remarkable
advances, in particular combining functional analytical and complex analytical tools. We
refer to the books [21] and [33], the articles [5], [20] and [32], and the references therein
for more information. The research on vector valued Dirichlet series with coefficients in a
Banach space was initiated by Defant, Garćıa, Maestre and Pérez-Garćıa in [10], in which the
width of the largest possible strip on which a Dirichlet series with coefficients in a Banach
space converges uniformly but not absolutely is investigated. See also the survey paper [11]
and the references in the recent paper [13]. Our purpose here is to compare the abscissas
of convergence of vector valued Dirichlet series for the original topology and for the weak
topology and to relate their behaviour with the geometry of the underlying space. With this
aim in mind, locally convex spaces seem to be the proper context.

We prove that the abscissas of convergence and of uniform convergence of a Dirichlet series

D =
∑

n an
1

ns
, with coefficients an ∈ X, for the original topology and for the weak topology

on a sequentially complete locally convex spaceX coincide (Proposition 2.1 and Corollary 2.8).

In a Banach spaceX, if the abscissa of convergence of the scalar series
∑

n x
′(an)

1

ns
is finite for

every x′ ∈ X ′, then the abscissa of convergence of D is also finite, as we show in Corollary 2.4.
This is not the case for non-normable Fréchet spaces. Those Fréchet spaces which share this
behaviour are characterized in Theorem 2.5 in terms of a topological invariant of Vogt [36] of
(DN)-type. The abscissas of absolute convergence σa(D) for the original topology and σw

a (D)
for the weak topology of D do not coincide in general. We introduce the gap for absolute
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convergence of Dirichlet series in X as Ga(X) := supD(σa(D)−σw
a (D)), the supremum taken

over all the Dirichlet series D with coefficients in X such that the abscissa of convergence is
finite. We show in Proposition 3.2 that Ga(X) ≥ 1/2 for every infinite dimensional Banach
space X, and we determine Ga(X) for infinite dimensional Banach spaces X in terms of
the cotype of X in Theorems 3.6 and 3.8. These two results should be compared with [10,
Theorem 1]. A Fréchet space X is nuclear if and only if Ga(X) = 0 if and only if Ga(X) < 1/2,
by Theorem 3.10.

In what follows X denotes a sequentially complete locally convex space, that will always
be assumed to be Hausdorff. The system of all continuous seminorms α : X → [0,∞[ defining
the topology of X will be denoted by cs(X), and X ′ stands for the topological dual of X. We
write σ(X,X ′) for the weak topology in X. All the topologies of the dual pair (X,X ′) have
the same bounded sets by Mackey’s theorem [28, Theorem 23.15]. If Ω is an open subset of
C, the space of holomorphic functions on Ω with values in X will be denoted by H(Ω, X);
see [23]. Moreover, H∞(Ω, X) stands for the space of bounded holomorphic functions. Our
notation for locally convex spaces, Banach spaces and functional analysis is standard. See [1]
[9], [16], [17], [18], [23], [28].

A Dirichlet series in a sequentially complete locally convex space X is a series of the form

D =
∑

n an
1

ns
with coefficients an ∈ X and variable s ∈ C. The abscissas of convergence,

uniform convergence and absolute convergence of D are defined as follows:

σc(D) := inf{r
∣∣ ∑

n

an
1

ns
converges in X on [Re > r]},

σu(D) := inf{r
∣∣ ∑

n

an
1

ns
converges uniformly in X on [Re > r]},

σa(D) := inf{r
∣∣ ∑

n

an
1

ns
converges absolutely in X on [Re > r]}.

Here the infima are taken in the extended real line. When the Dirichlet series is nowhere
convergent, the three abscissas are +∞.

Given x′ ∈ X ′, one can consider for the scalar Dirichlet series x′(D) =
∑

n x
′(an)

1

ns
the

three abscissas of convergence σi(x
′(D)), i = c, u, a. It is clear that σi(x

′(D)) ≤ σi(D), i =
c, u, a; therefore σw

i (D) := supx′∈X′ σi(x
′(D)) is dominated by σi(D) for each vector valued

Dirichlet series D in X. Moreover, it is easy to see that each σw
i (D) coincides with the corre-

sponding abscissa of convergence of the Dirichlet series D when the convergence is considered
in the weak topology σ(X,X ′). In general the space (X,σ(X,X ′)) need not be sequentially
complete, but it is possible to define the corresponding concepts for arbitrary Hausdorff lo-
cally convex spaces. We call σw

i (D) the abscissas of weak convergence of the Dirichlet series
D. If X and Y are isomorphic, then the abscissas of (weak) convergence of X and Y coincide.
We compare the behaviour of σw

i (D) and σi(D) for i = c, u, a for all Dirichlet vector valued
series in X, and relate this behaviour with the topological structure of the space X.

The following vector valued Abel identity is needed below.

Lemma 1.1 Let (bn)n be a sequence in a sequentially complete locally convex space X. For
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x ∈ [1,∞[, set A(x) :=
∑

n≤x bn. Let φ : [1, x] → C be a C1-function. Then

∑
n≤x

bnφ(n) = A(x)φ(x)−
∫ x

1
A(t)φ′(t)dt.

Proof. All the elements in the equality are well defined in X, except the integral. However,
if m ≤ x < m+ 1,m ∈ N, then A(t)φ′(t) = (

∑j
n=1 bn)φ

′(t) for t ∈ [j, j + 1[, j = 1, ...,m − 1,
and A(t)φ′(t) = (

∑m
n=1 bn)φ

′(t) for t ∈ [m,x], j = m. This implies that the integral exists in
X. The result now follows from the scalar valued case, see e.g. [22, Proposition 1.3.6], after
evaluating both sides on each x′ ∈ X ′. 2

The proof of the next result now follows as in the scalar case [2], [22], [33].

Proposition 1.2 Let D =
∑

n an
1

ns
be a Dirichlet series with coefficients in a sequentially

complete locally convex space X and s(0) ∈ C.

(i) If
∑

n an
1

ns(0)
converges, then

∑
n an

1

ns
converges for s ∈ C,Re s > Re s(0).

(ii) If
∑

n an
1

ns(0)
converges, then

∑
n an

1

ns
converges absolutely for s ∈ C with Re s >

Re s(0) + 1.

(iii) If
∑

n an
1

ns(0)
converges absolutely, then

∑
n an

1

ns
converges absolutely for s ∈ C with

Re s ≥ Re s(0).

(iv) −∞ ≤ σc(D) ≤ σu(D) ≤ σa(D) ≤ +∞.

(v) σa(D) ≤ σc(D) + 1.

Proposition 1.3 If the Dirichlet series D(s) :=
∑

n an
1

ns
, an ∈ X, satisfies σc(D) >

−∞, then D(s) defines a holomorphic function on [Re s > σc(D)]; that is D ∈ H([Re s >
σc(D)], X). Moreover D′(s) = −

∑
n(an logn)/n

s), Re s > σc(D).

Proof. By [22, Proposition 1.7.10] or [33, Jensen’s Lemma 4.1.1], for each x′ ∈ X ′, the

function x′(D)(s) =
∑

n x
′(an)

1

ns
is holomorphic on [Re s > σc(D)]. We can apply Grosse-

Erdmann [19, Theorem 1], that is an extension of a classical result of Dunford, Hille, A.E.
Taylor and Grothendieck, to conclude that D ∈ H([Re s > σc(D)], X). 2

2 Abscissas of convergence and uniform convergence

Proposition 2.1 Let D =
∑

n an
1

ns
be a Dirichlet series in a sequentially complete locally

convex space X. If
∑

n x
′(an)

1

ns(0)
, s(0) ∈ C, converges for every x′ ∈ X ′, then

∑
n an

1

ns

converges in X for each s ∈ C with Re s > Re s(0).
In particular, σw

c (D) := supx′∈X′ σc(x
′(D)) = σc(D).
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Proof. Fix s ∈ C,Re s > Re s(0) and put bn := an/n
s(0), φ(x) := x−(s−s(0)), A(x) :=∑

n≤x bn, x ≥ 1, and apply Lemma 1.1 for N < M , to get∑
N<n≤M

an
1

ns
= A(M)M−(s−s(0)) −A(N)N−(s−s(0)) + (s− s(0))

∫ M

N
A(t)t−(s−s(0))−1dt.

The sequence (x′(A(N)))N is bounded for each x′ ∈ X ′, since it is convergent. By Mackey’s
theorem [28, Theorem 23.15], (A(N))N is bounded in X and, for each α ∈ cs(X) there is
Kα > 0 such that α(A(N)) ≤ Kα for each N ∈ N. On the other hand, for each N < M ,∫M
N t−(Re s−Re s(0))−1dt ≤ N−(Re s−Re s(0))/(Re s− Re s(0)). Therefore

α(
∑

N<n≤M

an
1

ns
) ≤ 2KαN

−(Re s−Re s(0))

(
1 +

|s− s(0)|
Re s− Re s(0)

)
,

which tends to 0 as N tends to ∞. 2

The proof of Proposition 2.1 also shows that if
∑

n an
1

ns
does not converge in X for all

s ∈ C (i.e. σc(D) = +∞), then σw
c (D) = +∞. However, it might happen that σc(D) =

+∞ and σc(x
′(D)) < +∞ for each x′ ∈ X ′, although the supremum of these values as x′

runs in X ′ must be infinity. Indeed, take X = CN the Fréchet space of all the complex
sequences x = (xi)i endowed with its natural Fréchet topology of pointwise convergence,

an = (ni−1)i = (1, n, n2, n3, ...) and D :=
∑

n an
1

ns
= (Di)i = (

∑
n

ni−1

ns
)i. For s = i, we have

Di(i) =
∑

n 1/n, hence
∑

n an
1

ns
does not converge in ω for any s ∈ C. On the other hand,

given x′ = (x′i)i ̸= 0 in X ′, there is i(x′) ∈ N such that x′i(x′) ̸= 0 and x′i = 0 for i > i(x′).

Therefore, if s ∈ C,Re s > i(x′), we get
∑

n
|x′(an)|
|ns| < +∞, and σc(x

′(D)) ≤ σa(x
′(D)) < +∞.

This phenomenon cannot happen for Banach spaces, as we will show now.

A Hausdorff locally convex space is said to satisfy the countable neighbourhood property
(see [29, 8.3.4] or [9, page 478]) if for every sequence (αj)j ⊂ cs(X) there are α ∈ cs(X) and
(λj)j ⊂]0,+∞[ such that αj(x) ≤ λjα(x) for each x ∈ X. Clearly every Banach space X and,
more generally, every (DF)-space in the sense of Grothendiek (in particular the strong dual of
every Fréchet space) satisfies the countable neighbourhood property. A Fréchet space has the
countable neighbourhood property if and only if it is a Banach space. See [29, Section 8.3] or
[28, Chapter 25] for more information about (DF)-spaces. The following technical lemma is
inspired by [3, Corollary 5].

Lemma 2.2 Let X be a locally convex space with the countable neighbourhood property. Let
(xn)n be a sequence in X such that, for each x′ ∈ X ′ there is k = k(x′) ∈ N such that
supn n

−k|x′(xn)| < +∞. Then there is k0 ∈ N such that supn n
−k0α(xn) < +∞ for each

α ∈ cs(X).

Proof. We proceed by contradiction and suppose that, for each j ∈ N there is αj ∈ cs(X)
such that supn n

−(j+1)αj(xn) = +∞. Since X has the countable neighbourhood property,
there is α ∈ cs(X) and there are λj ≥ 1 such that αj(x) ≤ λjα(x) for each x ∈ X. For j = 1
we select n(1) ∈ N such that α1(xn(1)) > n(1)2λ1. For j = 2, select n(2) ∈ N such that

n(2)−3α2(xn(2)) > λ2 +

n(1)∑
s=1

s α2(xs).
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Observe that our selection implies n(2) > n(1). Proceeding by recurrence, we find a sequence
n(1) < n(2) < ... < n(k) < ... such that αk(xn(k)) > n(k)k+1λk for each k ∈ N. Define v(n) :=

n(k)−k if n = n(k) for some k and v(n) = 0 otherwise. For each k ∈ N and j ≥ k we have
v(n(j))/n(j)−k = n(j)k/n(j)j ≤ 1. Hence, if we set, mk := max{v(n(s))/n(s)−k | 1 ≤ s ≤ k},
we conclude that for each k ∈ N there is mk > 0 such that v(n) ≤ mkn

−k for each n ∈ N.
We show that this implies that the set Cv := {v(n)xn | n ∈ N} is weakly bounded in X.

To see this fix x′ ∈ X ′. By assumption there is k = k(x′) ∈ N such that k = k(x′) ∈ N such
that supn n

−k|x′(xn)| < +∞. Thus

sup
n

v(n)|x′(xn)| ≤ mk sup
n

n−k|x′(xn)| < +∞.

By Mackey’s Theorem [28, Theorem 23.15], Cv is bounded, hence there is M > 0 such that
v(n)α(xn) ≤ M for each n ∈ N. This is a contradiction, since, for each k ∈ N, we have

n(k) < n(k)−kλ−1
k αk(xn(k)) ≤ n(k)−kα(xn(k)) = v(n(k))α(xn(k)).

2

Theorem 2.3 Let X be a sequentially complete locally convex space with the countable neigh-

bourhood property. If a Dirichlet series D =
∑

n an
1

ns
satisfies σc(x

′(D)) < +∞ for all

x′ ∈ X ′, then σc(D) < +∞.

Proof. Assume that D =
∑

n an
1

ns
satisfies σc(x

′(D)) < +∞ for all x′ ∈ X ′. Then

σa(x
′(D)) ≤ σc(x

′(D))+1 < +∞ for all x′ ∈ X ′ (see Proposition 1.2 (v)). Therefore for each

x′ ∈ X ′ there is k = k(x′) such that
∑

n
|x′(an)|

nk < +∞, hence supn n
−k|x′(an)| < +∞. We

apply Lemma 2.2 to find k(0) ∈ N such that supn n
−k(0)α(xn) < +∞ for each α ∈ cs(X).

Thus
∑

n
α(an)

nk(0)+2 < +∞ for each α ∈ cs(X). This implies σc(D) ≤ σa(D) < +∞. 2

Corollary 2.4 If a Dirichlet series D =
∑

n an
1

ns
in a Banach space X satisfies σc(x

′(D)) <

+∞ for all x′ ∈ X ′, then σc(D) < +∞.

It is possible to characterize those Fréchet X that enjoy the property exhibited in Theorem
2.3. A sequence (γn)n ⊂ C is rapidly decreasing if (nkγn)n is bounded for every k ∈ N. We
refer the reader to [36, Definition 3.1] for the precise definition of the topological invariant
(LB∞) of Vogt. It is related to the (DN) type conditions of Vogt; see [36]. By [36, Satz 3.2],
a Fréchet space F satisfies (LB∞) if and only if every continuous linear operator from the
Fréchet space S of rapidly decreasing sequences into F is bounded, i.e. maps a neighbourhood
of S into a bounded set of F . This is written L(S, F ) = LB(S, F ) in the notation of [36].
The space S is usually denoted as s, but we prefer to keep the notation s for the complex
numbers in this article.

Theorem 2.5 A Fréchet space X satisfies condition (LB∞) of Vogt if and only if every

Dirichlet series D =
∑

n an
1

ns
in X such that σc(x

′(D)) < +∞ for all x′ ∈ X ′ must also

satisfy σc(D) < +∞.
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Proof. We set vk(n) := n−k, n, k ∈ N. The dual S′ of the space S of rapidly decreasing
sequences coincides with ∪kℓ∞(vk). Here (µn)n ∈ ℓ∞(vk) if and only if supn vk(n)|µn| < +∞.
As in [4], we define

V := {v = (v(n))n | ∀k ∃µk ∀n v(n) ≤ µkn
−k}.

A sequence (xn)n in X satisfies that (v(n)xn)n is bounded in X for every v ∈ V if and only
if (v(n)xn)n is weakly bounded for every v ∈ V . By [4, Lemma 2.1] this is equivalent to
the fact that for each x′ ∈ X ′ there is k = k(x′) such that (n−kx′(xn))n is bounded, that is
(x′(xn))n ∈ ℓ∞(vk). On account of this fact, it is easy to see that every Dirichlet series D in
X such that σc(x

′(D)) < +∞ for all x′ ∈ X ′ must also satisfy σc(D) < +∞ if and only if for
every sequence (xn)n in X, such that (v(n)xn)n is bounded in X, for every v ∈ V , there is
k ∈ N such that (n−kxn)n is bounded in X.

Let (en)n be the canonical basis of the space S. Mapping continuous linear maps T : S →
X into the sequence (T (en))n we can identify the space L(S,X) of all continuous linear maps
from S into X with the space of all sequences (xn)n in X such that (v(n)xn)n is bounded in X
for every v ∈ V , as well as the space LB(S,X) of all bounded linear maps from S into X with
the space of all sequences (xn)n inX such that there is k ∈ N such that (n−kxn)n is bounded in
X; see [3, Lemma 2]. Accordingly, every Dirichlet series D in X such that σc(x

′(D)) < +∞
for all x′ ∈ X ′ must also satisfy σc(D) < +∞ if and only if L(S,X) = LB(S,X). The
conclusion now follows from Vogt [36, Satz 3.2]. 2

Now we consider the abscissa of uniform (weak) convergence of Dirichlet series D =∑
n an

1

ns
in X. To do this, we proceed as in the seminal work of Bohr [5] and define the

abscissa of boundedness. Recall that D ∈ H([Re s > σc(D)], X) by Proposition 1.3. We
define σb(D) as the infimum of all r such that D defines a bounded holomorphic function
on [Re s > r]. Bohr [6] proved the fundamental result that σb(D) = σu(D) for each scalar
Dirichlet series D. The following result is a direct consequence of the definitions.

Proposition 2.6 Let D =
∑

n an
1

ns
be a Dirichlet series in X.

(i) σb(D) = supx′∈X′ σb(x
′(D)).

(ii) Assume −∞ < σc(D) < +∞. If r > σu(D), then {D(s) | Re s ≥ r} is bounded in X.
In particular, σb(D) ≤ σu(D).

The following result for Banach spaces is due to Defant, Garćıa, Maestre and Pérez-Garćıa
[10]; see also [11, Theorem 2.2]. Its proof in the Banach space case is involved and it requires
a careful analysis of Bohr’s arguments in the scalar case. It is a version of a fundamental
result of Bohr [6] for sets of scalar Dirichlet series instead of a single scalar series. The proof
of the version below for locally convex spaces X is obtained by a reduction argument to
the local Banach spaces. Given a continuous seminorm α ∈ cs(X), we denote by Xα the
Banach space that is the completion of the normed space X/α−1(0), endowed with the norm
α̃(x+ α−1(0)) = α(x), x ∈ X. We write πα : X → Xα for the canonical map.

Theorem 2.7 Let D =
∑

n an
1

ns
be a Dirichlet series in a sequentially complete locally

convex space X. Then the abscissa σu(D) of uniform convergence coincides with the abscissa
σb(D) of boundedness.
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Proof. By Proposition 2.6 (ii), σb(D) ≤ σu(D). If σb(D) = +∞, there is nothing to
prove. Otherwise, take σb(D) < r(0) and select σb(D) < r(1) < r(0). Fix α ∈ cs(X) and

ε > 0. By Proposition 1.3, D(s) =
∑

n an
1

ns
is holomorphic in [Re s > r(1)]. Moreover

{D(s) | Re s > r(1)} is bounded in X. The continuity of πα implies that the abscissa

of convergence of the Dirichlet series πα(D) :=
∑

n πα(an)
1

ns
in Xα is smaller or equal than

σc(X). Therefore πα(D) defines a holomorphic function gα ∈ H([Re s > r(1)], Xα). Moreover,
gα(s) = πα(D(s)) for each s ∈ C with Re s > r(1), hence gα is holomorphic and bounded in
[Re s > r(1)], i.e. gα ∈ H∞([Re s > r(1)], Xα), and σb(πα(D)) ≤ r(1). We apply [11, Theorem

2.2] to conclude that
∑

n πα(an)
1

ns
converges uniformly in Xα on [Re s > r(0)]. Therefore,

given ε > 0 there is N0 ∈ N such that if N > M ≥ N0, then

α̃
( N∑
n=M

πα(an)
1

ns

)
= α

( N∑
n=M

an
1

ns

)
< ε

for each s ∈ C with Re s > r(0). The proof is complete. 2

Corollary 2.8 σu(D) = supx′∈X′ σu(x
′(D)) for every Dirichlet series D =

∑
n an

1

ns
in X.

Proof. By Theorem 2.7, Proposition 2.6 (i) and Bohr’s fundamental theorem for the scalar
case, we have σu(D) = σb(D) = supx′∈X′ σb(x

′(D)) = supx′∈X′ σu(x
′(D)). 2

3 Abscissa of absolute convergence

In this section we compare the abscissas of absolute convergence σa(D) and weak convergence

σw
a (D) for Dirichlet series D =

∑
n an

1

ns
in a sequentially complete locally convex space X.

We start with the following easy example showing that σa(D) ̸= σw
a (D) in general, contrary

to what happens for the abscissas of convergence and uniform convergence.

Example 3.1 Let D =
∑

n
en
ns , where (en)n is the canonical basis of X = ℓp, 1 ≤ p < +∞ or

X = c0. It is easy to see that σa(D) = 1 in all cases, but σw
a (D) = 1/p, 1 ≤ p < +∞, and

σw
a (D) = 0 if X = c0.

For a sequentially complete locally convex space X, the gap for absolute convergence of
Dirichlet series in X is defined by Ga(X) := supD(σa(D) − σw

a (D)), where the supremum
is taken over all the Dirichlet series D with coefficients in X such that σc(D) < +∞. Since
σc(D) = σw

c (D) ≤ σw
a (D) ≤ σa(D) ≤ σc(D) + 1 by Propositions 1.2 (v) and 2.1, we have

0 ≤ Ga(X) ≤ 1 for every space X. If X is finite dimensional, then Ga(X) = 0. If X
contains an isomorphic copy of Y , then Ga(Y ) ≤ Ga(X). Observe that Example 3.1 implies
Ga(ℓp) ≥ 1− 1/p, 1 ≤ p < +∞, and Ga(c0) = 1.

A sequence (xn)n in a sequentially complete locally convex space X is called absolutely
summable if

∑
n α(xn) < +∞ for each α ∈ cs(X). The sequence (xn)n is unconditionally

summable if for every permutation π of N, the series
∑

n xπ(n) converges in X. The sequence
(xn)n is weakly unconditionally convergent if it is unconditionally convergent for the weak
topology σ(X,X ′). This is equivalent to the fact that

∑
n |x′(xn)| < +∞ for each x′ ∈ X ′
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by Riemann’s rearrangement theorem. More information about these concepts can be seen
in [23, Section 14.6], [30] and, for Banach spaces, in [17] and [24].

Proposition 3.2 For every infinite dimensional Banach space X, Ga(X) ≥ 1/2.

Proof. Take 1 > r > 1/2. The sequence (1/nr)n belongs to ℓ2. We apply Dvoretzky-Rogers
Theorem [17, Theorem 1.2] to find an unconditionally summable sequence (an)n in X such
that ||an|| = 1/nr for each n ∈ N. For each x′ ∈ X ′, we have

∑
n |x′(an)| < +∞. The

Dirichlet series D =
∑

n an
1

ns
in X satisfies σw

a (D) ≤ 0, and σa(D) = 1 − r. Therefore

σa(D) − σw
a (D) ≥ 1 − r. This implies Ga(X) ≥ 1 − r for each r > 1/2, and the conclusion

follows. 2

The following lemma will be useful later.

Lemma 3.3 If the sequentially complete locally convex space X satisfies Ga(X) < 1, then
every weakly summable sequence in X is unconditionally summable.

Proof. If Ga(X) < 1, the space X cannot contain a copy of the Banach space c0, since
otherwise 1 = Ga(c0) ≤ Ga(X) ≤ 1, by Example 3.1 for the Banach space c0. This is a
contradiction. The conclusion now follows from a result in [31] that is an extension of a
classical theorem of Bessaga and Pelczyński; see e.g. [24, Theorem 6.4.3]. 2

Let 2 ≤ p < ∞. A Banach space Y is said to have cotype p whenever there is some
constant C > 0 such that for each choice of finitely many vectors x1, . . . , xN ∈ Y we have

( N∑
n=1

∥xn∥p
)1/p

≤ C
(∫ 1

0

∥∥ N∑
n=1

rn(t)xn
∥∥2dt)1/2

,

where rn stands for the nth Rademacher function on [0, 1]. Every Banach space Y has cotype
∞ since maxn ∥xn∥ is always dominated by the Rademacher average of the xn . As usual we
write

Cot(Y ) := inf{2 ≤ p ≤ ∞|Y has cotype p} .

An operator T : X → Y between Banach spaces X and Y is (p, 1)-summing, 1 ≤ p ≤ ∞,
whenever there is a constant c > 0 such that for each choice of finitely many x1, . . . , xn ∈ X we
have that (

∑
i ∥Txi∥p)1/p ≤ c sup∥x∗∥≤1

∑
i |x∗(xi)| . For every infinite dimensional Banach

space Y a fundamental result of Maurey and Pisier [27] (see also [17, Theorem 14.5], [34] and
[35]) shows that Cot(Y ) = inf{2 ≤ p ≤ ∞| IdY is (p, 1)-summing} . The identity IdY of a
Banach space Y is (p, 1)-summing if and only if every weakly summable sequence (xn) in Y
satisfies

∑
n ||xn||p < +∞, i.e. Y has the p-Orlicz property.

Proposition 3.4 If the identity IdX of an infinite dimensional Banach space X is (p, 1)-
summing, 2 ≤ p < +∞, then Ga(X) ≤ 1− (1/p).

Proof. Let D =
∑

n an
1

ns
be a Dirichlet series in X with σc(D) < +∞ and take r ∈ R

with σw
a (D) < r. Then

∑
n

|x′(an)|
nr for each x′ ∈ X ′; i.e.

∑
n

an
nr is weakly unconditionally

8



summable. By assumption,
∑

n
||an||p
nrp < +∞. Take t > r + 1

p′ with 1
p + 1

p′ = 1. We apply
Hölder’s inequality to get∑

n

||an||
nt

≤
(∑

n

||an||p

nrp

)1/p(∑
n

1

n(t−r)p′

)1/p′
< +∞,

because (t− r)p′ > 1. Therefore σa(D) ≤ r+ 1
p′ , hence σa(D)− σw

a (D) ≤ 1
p′ . Since the series

D with σc(D) < +∞ is arbitrary, we conclude Ga(X) ≤ 1
p′ = 1− 1

p . 2

Proposition 3.5 If X is an infinite dimensional Banach space such that Ga(X) < r < 1,
then the identity IdX is (t, 1)-summing for each t > 1/(1− r).

Proof. By Proposition 3.2, 1/2 < r < 1, hence 1/(1 − r) > 2. Let (xn)n be a weakly
unconditionally summable sequence in X. Since Ga(X) < 1, we can apply Lemma 3.3
to conclude that (xn)n is unconditionally summable, in particular (xn)n converges to 0 in
X. Let (||an||)n be a decreasing rearrangement of (||xn||)n. As (xn)n is unconditionally

summable,
∑

n |x′(an)| < +∞ for each x′ ∈ X ′, hence σw
a (D) ≤ 0 for D :=

∑
n an

1

ns
. By

assumption σa(D) < r, thus
∑

n
||an||
nr < +∞. The sequence ( ||an||nr )n is decreasing, hence

limn→∞ n1−r||an|| = 0 by [25, Theorem 3.3.1]. There is M > 0 such that ||an|| ≤ M/n1−r

for each n ∈ N. If t > 1/(1− r), we have
∑

n ||an||t ≤ M t
∑

n 1/n
t(1−r) < +∞. This implies∑

n ||xn||t < +∞, since it is a rearrangement. 2

Theorem 3.6 Let X be an infinite dimensional Banach space with cotype p ≥ 2, then
Ga(X) = 1− 1/Cot(X).

Proof. The inequality Ga(X) ≤ 1 − 1/Cot(X) is a direct consequence of Proposition 3.4.
Suppose that Ga(X) < r < 1−1/Cot(X). By Proposition 3.5, IdX is (t, 1)-summing for each
t > 1/(1 − r), and we can apply Maurey, Pisier’s fundamental result [27] to conclude that
1/(1− r) ≤ Cot(X). This implies 1− 1/Cot(X) ≤ r, a contradiction. 2

Andreas Defant informed the author that Theorem 3.6 had been obtained independently
by A. Pérez and him [12]. Other related results can be seen in [7] and [8].

Remark 3.7 Let X be an infinite dimensional Banach space. As a consequence of Corollary
2.8, we have Ga(X) ≤ sup(σa(D) − σu(D)) =: T (X). Accordingly, the upper estimate in
Theorem 3.6 is a direct consequence of the main, deep Theorem 1 in [10]. Observe that for a
finite dimensional spaceX, Ga(X) = 0, while T (C) = 1/2 by Bohnenblust, Hille Theorem (see
[14]), thus the estimate Ga(X) ≤ T (X) has no consequence for Bohr’s absolute convergence
problem, that requires much deeper techniques [11]. However, in the infinite dimensional case
it clarifies the role of weak unconditionally convergence of series in [10, Theorem 1].

We refer the reader to [1, Chapter 11], [17, Chapter 14] and [24, Chapter 5] for finite
representability and related concepts necessary in our next statement.

Theorem 3.8 Let X be an infinite dimensional Banach space. The following conditions are
equivalent.

(i) Ga(X) = 1.

9



(ii) X does not have finite cotype.

(iii) X contains ℓn∞’s λ-uniformly for some (and then all) λ > 1.

(iv) IdX is not (p, 1)-summing for any 2 ≤ p < +∞.

(v) ℓ∞ is finite representable in X.

Proof. Conditions (ii), (iii) and (iv) are equivalent by [17, Theorem 14.1], and (ii) and (v)
are equivalent by [1, Theorem 11.1.14 (ii)]. Finally, the equivalence of (i) and (ii) follows from
Propositions 3.4 and 3.5, proceeding by contradiction to prove both implications. 2

Remark 3.9 If X is an infinite dimensional Banach space such that ℓ∞ is finite representable
in X, then for each (tn)n ∈ c0 such that tn > 0, n ∈ N, there is an unconditionally summable
sequence (xn)n in X such that ||xn|| = tn for each n ∈ N, by [24, Theorem 5.2.1]. It is then
possible to exhibit a Dirichlet series D in X such that σa(D)−σw

a (D) = 1. Indeed, construct
by induction a sequence (sn)n ∈ c0 with sn > 0, n ∈ N, such that for each k ∈ N there
is n(k) ∈ N such that sn > n−1/k for n ≥ n(k). Now select an unconditionally summable
sequence (an)n in X with ||an|| = sn for each n ∈ N. The Dirichlet series D :=

∑
n

an
ns satisfies

σw
a (D) ≤ 0 and σa(D) ≥ 1.

Theorem 3.10 (a) If X is a nuclear sequentially complete locally convex space, then Ga(X) =
0.

(b) The following conditions are equivalent for a Fréchet space X:

(i) X is nuclear.

(ii) Ga(X) = 0.

(iii) Ga(X) < 1/2.

Proof. The proof of (a) is a consequence of the fact that weakly unconditionally summable
sequences in a nuclear locally convex space are absolutely summable; see e.g. [30, Proposition
4.2.2]. Now only (iii) implies (i) needs a proof in statement (b). Assume that X is a Fréchet
space such that Ga(X) < 1/2. Fix Ga(X) < r < 1/2 and select q ∈]1/(1−r), 2[. Let (xn)n be
a weakly unconditionally summable sequence in X. By Lemma 3.3, (xn)n is unconditionally
summable, hence it converges to 0 in X. Fix α ∈ cs(X). Since (α(xn))n tends to 0, we can
reorder it in a decreasing way. Denote by (α(yn))n the reordered sequence, that depends on
α. Since

∑
n yn is a rearrangement of

∑
n xn (which is weakly unconditionally summable),

we have
∑

n |x′(yn)| < +∞ for each x′ ∈ X ′. Therefore σw
a (

∑
n

yn
ns ) ≤ 0. By assumption

σa(
∑

n
yn
ns ) < r, hence

∑
n

α(yn)
nr < +∞. As (α(yn)/n

r)n is decreasing, we can apply [25,
Theorem 3.3.1] to conclude limn→∞ n1−rα(yn) = 0. There isM > 0 such that α(yn) ≤ Mn1−r

for each n ∈ N, hence
∑

n α(yn)
q ≤ M q

∑
n

1
nq(1−r) < +∞, since q(1 − r) > 1. Consequently∑

n α(xn)
q < +∞, because it is a rearrangement. Since α ∈ cs(X) is arbitrary, we have shown

that there is q ∈]1, 2[ such that every weakly unconditionally summable sequence (xn)n in X
is q-absolutely summable (i.e.

∑
n α(xn)

q < +∞ for each α ∈ cs(X)).
Now the closed graph theorem for Fréchet spaces and standard arguments (see [18], [23,

Theorem 21.2.1], [28, Proposition 28.4] and [30, Section 4.2]) permit us to conclude that for
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each α ∈ cs(X) there is β ∈ cs(X) such that the canonical linking map Xβ → Xα is (q, 1)-
summing. Since 1 < q < 2, and the composite of sufficiently many (q, 1)-summing maps
(1 < q < 2) produces a nuclear map by [26, Corollary 5.7], we conclude that X is nuclear. 2

Example 3.11 (i) As a consequence of Theorems 3.6, Ga(ℓp) = 1/2 if 1 ≤ p ≤ 2 and
Ga(ℓp) = 1 − 1/p if 2 ≤ p ≤ ∞. In fact, in this case the lower estimates are a direct
consequence of Proposition 3.2 and Example 3.1. Compare with [10, Corollary 3].

(ii) If a complete locally convex space X is a projective limit of infinite dimensional Banach
spaces Xγ , γ ∈ Γ, such such that each Xγ is of cotype 2 ≤ p < +∞, then Ga(X) ≤
1− 1/p. This follows from the definitions and Proposition 3.4.

(iii) Let 2 ≤ p < ∞ and let X = ℓp+ be the Fréchet space defined as the intersection of all ℓq
space with q > p. Then Ga(ℓp+) = Ga(ℓp), although ℓp+ is a non-Montel Fréchet space
that contains no Banach space [15].

(iv) Every non-Montel Köthe echelon space λp(A) of order 1 ≤ p < +∞ contains a sectional
subspace isomorphic to ℓp; see [28, Theorem 27.9]. Therefore Ga(λp(A)) = Ga(ℓp) for
every non-Montel Köthe echelon space λp(A).

(v) For every t ∈ [1/2, 1] there are Banach spaces Xt and non-normable Fréchet spaces Yt
such that Ga(Xt) = Ga(Yt) = t.
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MTM2013-43540-P and GVA Prometeo II/2013/013 (Spain).
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