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Abstract

In this work, we present two strategies for the numerical modeling of mi-
crocracks and damage within an osteon. A numerical model of a single
osteon under compressive diametral load is developed, including lamellae
organized concentrically around the haversian canal and the presence of la-
cunae. Elastic properties have been estimated from micromechanical models
that consider the mineralized collagen fibrils reinforced with hydroxyapatite
crystals and the dominating orientation of the fibrils in each lamella. Microc-
racks are simulated through the node release technique, enabling propagation
along the lamellae interfaces by application of failure criteria initially con-
ceived for composite materials, in particular the Brewer and Lagacé criterion
for delamination. A second approach is also presented, which is based on
the progressive degradation of the stiffness at the element level as the dam-
age increases. Both strategies are discussed, showing a good agreement with
experimental evidence reported by other authors. It is concluded that in-
terlaminar shear stresses are the main cause of failure of an osteon under
compressive diametral load.
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1. INTRODUCTION

From a structural viewpoint, cortical bone tissue can be considered as
a composite material hierarchically structured at different scales, see e.g.
Cowin (2001); Rho et al. (1998); Taylor et al. (2007). At the nanostructural
level (about 10–102 nm) is formed by type I collagen fibrils, other organic sub-
stances (mainly proteins) and a mineral phase of hydroxyapatite, HA, (Rho
et al., 1998; Ritchie et al., 2005). At the microstructural scale (between
1–103 µm), mineralized collagen fibrils are grouped together within inter-
fibrillar matrix in lamellar structures that are about 3–7 µm thick. These
lamellae are arranged concentrically around the haversian canal, forming the
secondary osteons (see Fig. 1), which are the basic microstructural unit of
the cortical bone tissue and whose diameter ranges from 50 to 500 µm. A
less organized structure with a high mineral content is found in the inter-
stitial matrix filling the space among osteons. The interstitial matrix is in
fact remaining tissue associated with old osteons. The microstructural level
constitutes the working scale of this study, as the analysis is focused on the
mechanical behaviour of a single osteon. There exist other morphological
elements at this microstructural level (Rho et al., 1998; Ritchie et al., 2005):
the haversian canal; the cement line, i.e. the outer osteon boundary of about
1 µm thick (Prendergast and Huiskes, 1996); the lacunae, located mainly
between lamellae and that contain the osteocytes, and the Volkmann canals
that connect transversally the haversian canals. There is also a very fine
network of canaliculi that connect the osteocytes, the so-called synctycium
(Taylor et al., 2007). Some of these morphological elements will not be in-
cluded in the numerical model here presented, since it is deemed that their
relevance in the mechanical behavior at the micro scale is secondary.

There is consensus in the literature (Taylor et al., 2007; Vashishth, 2007;
Yang et al., 2006) regarding the two basic microdamage modes that can be
found in cortical bone tissue: on one hand, the existence of microcracks
(about 50 − 200 µm long) and, on the other hand, the presence of diffuse
damage zones, associated with a lower hierarchical scale, at the collagen fibril
levels. The mechanisms that relate the fracture risk level and the microdam-
age level are not yet well defined, but it is clear the relationship between
the microdamage levels and the reduction of the tissue fracture toughness
(Yang et al., 2006). It is also well known the essential role played by the
microdamage level in activating the remodelling process (Taylor et al., 2007;
Ritchie et al., 2005; Taylor, 2007; Mart́ınez-Reina et al., 2009). Therefore,
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the analysis of these mechanisms is of especial relevance.
In this work, we follow a mechanistic approach (Taylor et al., 2007) to

study bone microdamage. This approach takes into consideration the mi-
crostructural details for a better understanding of the microdamage processes
(Ritchie et al., 2005; Nalla et al., 2003). The numerical models developed in
this work aim at presenting strategies for analyzing the mechanical behaviour
of cortical tissue in presence of microcracks.

The objective of the work is to present two numerical approaches (the
node release technique and the progressive damage approach) to simulate the
experimentally observed behaviour reported by other authors. The aim of
the analysis is to simulate the experimental work carried out by Ascenzi and
Bonucci in single osteons at the microscale (Ascenzi et al., 1973) and other
more recent experimental results reported by Ebacher and Wang (2009);
Ebacher et al. (2012). More precisely, the behaviour of a single osteon under
transverse compressive loading is modelled, i.e. compressive loading in radial
direction of the osteon. Both Ascenzi et al. (1973) and Ebacher et al. (2012)
observed that circumferential microcracks appear in those lamellae whose
fibrils are aligned in the axial direction of the osteon. In Section 2, we give
a brief description of the tests performed by Ascenzi et al. (1973) and the
damage observed by Ascenzi et al. (1973) and Ebacher et al. (2012). In order
to define the numerical model, it is necessary to provide a characterization
of the elastic and strength properties of the tissue at this scale, as detailed in
Sections 3 and 4, respectively. The numerical model analyzed with the finite
element code AbaqusTM (2012) is described in Section 5, along with the two
techniques proposed for modeling the microdamage behavior in Section 6:
a node-release technique (NRT) to simulate advancing microcracks and a
progressive damage approach. Both approaches are compared and correlated
with the experimental evidence in Section 7. The analyses show that the
main cause of failure under compressive diametral load is the existence of
interlaminar shear stresses that lead to lamellae separation.

2. STRENGTH BEHAVIOR OF AN OSTEON UNDER COM-

PRESSIVE RADIAL LOADING

Ascenzi et al. (1973) proposed an experimental setting for studying the
strength behavior of an osteon and its lamellae under compressive radial
loads. The sketch in Fig. 2 shows the simple configuration used, in which a
section of an osteon (30-40 µm thick) is placed on a slide and pressed against
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the side of a coverslip (160 µm thick) using a spatula, thus being subjected
to radial loading.

Ascenzi et al. (1973) gave detailed indications about the experimental
procedure. In a previous work, Ascenzi and Bonucci (1968) also described
the procedure followed to extract microsamples of single osteons from cortical
tissue. The tissue corresponded to the diaphysis of human femurs of different
ages (between 18 and 31 years old) with no apparent skeletal defects. The
number of samples was sixty and the samples were kept wet by hydration
with saline solution. Due to the sample extracting procedure, the osteon
geometry can be assumed to be cylindrical in practice. In fact, Ascenzi et
al. (1973) selected those osteons whose geometry was essentially circular on
a transverse plane.

We will focus on the dominant type of osteon that can be found in the
cortical tissue of long bones, named type I in Ascenzi et al. (1973). Its main
feature is an alternated lamellar arrangement, sketched in Fig. 3: lamellae
with fibrils essentially aligned in the axial direction of the osteon alternated
with lamellae whose fibrils are mainly aligned in the circumferential direc-
tion. Hence, fibrils in one lamella make an angle of nearly 90◦ with the fibrils
in the next. Ascenzi and Bonucci arrived to this conclusion by observing the
osteons under polarized light (Ascenzi et al., 1973), which exhibits an alter-
nate pattern, and the corresponding correlation with electron microscopy. In
this work, a more recent approach to the sublamellar structure of an osteon
will be considered in Section 3.

In addition, Ascenzi et al. (1973) referred that the fibrils of the innermost
and outermost lamellae are essentially oriented in a circumferential direc-
tion. We note in passing that the cement line (1 µm thick) is not considered
in the numerical models of this work because it is expected that this layer
was fully damaged or eliminated during the osteon extraction process. In
their work, these authors also consider another type of osteon (type 2), with
lamellae showing a spiral course fibril arrangement, close to the axial direc-
tion of the osteon (see Fig. 3). Even in this type of osteon, Ascenzi and
Bonucci reported that the fibrils of the innermost and outermost lamellae
are essentially oriented in a circumferential direction.

Experimentally, and for type I osteons (the type analyzed in this work),
it is verified that the application of a compressive radial load leads to the
generation of microcracks in circumferential direction, as described in a com-
prehensive way by Ascenzi et al. (1973). These authors reported the following
experimental evidences:
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- Microcracks are circumferential and they appear mainly in the lamellae
whose fibrils are aligned in the axial direction of the osteon (longitudinal
lamellae). Some of them are located along the interfaces of the lamellae.
In addition, microcracks extend through the whole thickness of the
analyzed section.

- Microcracks begin in the longitudinal lamellae that are near the haver-
sian canal.

- Microcracks appear in the four quadrants and concentrate in circular
sectors located in a region between 20◦ and 50◦ with respect to the
loading direction.

- The lamellae with fibrils essentially arranged in the circumferential di-
rection (transverse lamellae) do not show apparent damage in this pro-
cess.

Fig. 4 shows a portion of a tested osteon before the load application (left)
and under the application of the load that causes the circumferential mi-
crocracks (right). Further analysis with electron microscopy shows that the
microcracks within the longitudinal lamellae advance through the interfib-
rillar substance (that acts as a matrix), indicating that the strength of this
substance is clearly lower than the fibril strength.

Recently, Ebacher et al. (2012) also carried out experimental tests by
compressing a portion of cortical tissue in the radial direction. As will be
commented in Section 7, their results are in full agreement with those ob-
served by Ascenzi et al. (1973).

From all the above experimental observations, it can be inferred that the
matrix failure that appears in the longitudinal lamellae is caused by either a
normal tensile traction that acts in the radial direction, or a shear traction,
or a combination of both. This behavior is analogous to the delamination
processes that can be found in structural fiber-reinforced composite materials
due to the existence of interlaminar stresses. Hence, in the numerical sim-
ulations of this work, we propose the application of failure criteria initially
conceived for the delamination of composite laminates in order to explain
the failure mechanisms of an osteon under this type of load.
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3. ESTIMATION OF ELASTIC PROPERTIES OF LAMELLAE

There is a vast literature regarding the elastic properties of bone (Cowin,
2001), which have been mainly obtained through mechanical tests at the
macroscopic level (Turner and Burr, 1993, e.g.). On the other hand, at the
microscopic level, nanoindentation procedures (Zysset et al., 1999; Rho et
al., 2002; Faingold et al., 2012) and ultrasound techniques (Rho et al., 1993;
Katz et al., 1984), enable the characterization of local elastic constants for
both cortical and trabecular bone tissues. In general, results show that the
elastic behavior is clearly non-isotropic. There are also some approaches
that estimate the elastic constants using hierarchical analytical models that
consider the microstructure and the constituent properties (Cowin, 2001;
Yoon and Cowin, 2008a,b; Reisinger et al., 2010; Mart́ınez-Reina et al., 2011).

Currey (1962) and Bondfield and Li (1967) are among the first researchers
that recognized a lamella as a two-phase composite, being the main con-
stituent the mineralized collagen fibril, plus certain water content. Under this
assumption, the collagen fibril can be regarded as a matrix in which the rein-
forcement crystals of hydroxyapatite (HA) are embedded. These crystals are
arranged in a highly-orientated distribution, and hence the elastic behavior of
the mineralized collagen fibrils can be considered approximately orthotropic.
In the literature, different crystal shapes and dimensions are reported (Rubin
et al., 2003, e.g.), which have allowed the development of micromechanical
models based on analytical approaches. For example, Wagner and Weiner
(1992) and Akiva et al. (1998) apply the Halpin-Tsai equations (often used
in structural composites) to the estimation of the micromechanical elastic
properties as a function of the hydroxyapatite crystal size.

Experimental evidence commented in previous Section 2 shows that the
collagen fibril orientation plays an important role. There are many works
in the literature that address the relevance of the orientation of the collagen
fibrils at the lamellar level. Gebhardt (1906) observed that collagen fibrils
change suddenly their orientation between adjacent lamellae. As did Ascenzi
et al. (1973), a similar hypothesis was suggested by Weiner et al. (1991) and
Wagner and Weiner (1992), differentiating between alternating thick and thin
lamellae arranged concentrically around the haversian canal. In more recent
works, each lamella is considered as a layered arrangement with a different
fibril orientation pattern in each adjacent layer (Giraud-Guille, 1988; Akiva
et al., 1998; Weiner et al., 1999; Wagermaier et al., 2006). Reisinger et al.
(2011) have developed a detailed finite element analysis of a unit cell of the
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microstructure to estimate the elastic properties at the lamellar level. These
authors analyze several orientation patterns and conclude that the model
proposed by Weiner et al. (1999), based on a 5-layered structure in each
individual lamella, is in good agreement with experimental results.

3.1. Elastic properties of the mineralized collagen fibril

In this work, we will follow the approach presented by the authors in
Vercher et al. (2013). At the level of a single mineralized collagen fibril,
a staggered arrangement of platelets is considered, according to the spatial
distribution reported in the literature, e.g. by Rho et al. (1998); Orgel et
al. (2001). A representative volume element (RVE) of a typical staggered
structure of the mineralized fibril has been modelled using finite elements, see
Fig. 5, imposing periodical boundary conditions. This enables the estimation
of the constitutive elastic matrix of a collagen fibril by application of six
independent unit-strain load cases.

The input parameters for the FE model of the fibril structure are taken
from Reisinger et al. (2011). Collagen and HA mineral phases are assumed to
be elastic isotropic with Young’s modulus Ecol = 5 GPa (Cusak and Miller,
1979), Eap = 110.5 GPa (Yao et al., 2007), and Poisson’s ratios νcol = 0.3
and νap = 0.28 (Yao et al., 2007). The resulting constitutive matrix for the
homogenized behaviour of the mineralized fibril corresponds to a monoclinic
material behavior, because there is only a single symmetry plane in the stag-
gered crystal pattern. The platelet dimensions are 132 × 30 × 5 nm, which
are within the ranges reported by Rubin et al. (2003). The assumed volume
fraction is Vf = 0.3 and the RVE dimensions are 4.4d long (being d the pe-
riodic distance of 67 nm), 154 nm width and 32 nm thick (Vercher et al.,
2013). Considering all these data, the 3D homogenized stiffness matrix of
the mineralized collagen fibril Cfib is:

Cfib =

















31.790 7.008 4.115 0 1.066 0
25.050 3.666 0 0.162 0

9.706 0 0.001 0
2.789 0 0.219

symm 2.888 0
7.745

















GPa (1)

The volume fraction of 0.3 can be considered as a representative value of
the total mineral content in both fibril and extrafibrillar matrix (Reisinger et
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al., 2011). For the above constitutive matrix, the cartesian reference system
is the local system (1, 2, 3) shown in Figs. 5 and 6. Therefore, the monoclinic
symmetry plane is the 1-3 plane. The order of the components of the stress
vector associated with (1) is σ = {σ11, σ22, σ33, σ23, σ31, σ12}

T and analogously
for the engineering strain vector ε.

3.2. Elastic properties at the lamellar level

At this stage, we have considered the 5 sublamellae structure proposed
by Weiner et al. (1999). The different mineralized fibril orientation pattern
in each sublamellae is sketched in Fig. 7. In this work, these sublamellae
have been condensed into two types of alternating lamellae: thin and thick
lamellae. This simplified structure is in agreement with Weiner et al. (1991)
and Wagner and Weiner (1992).

Currently, it is accepted that the fibril orientation pattern is an impor-
tant feature because mechanical properties depend on bone structure at the
very small scale (Reisinger et al., 2011). In this work, fibrils orientated cir-
cumferentially around the osteon are defined by the angle ψ1 = 0◦ and fibrils
aligned with the osteon axis by the angle ψ1 = 90◦ (see angle definitions
in Fig. 6). Starting from the thin lamella shown in Fig. 7, the orientation
sequence of the five sublamellae is 0◦, 30◦, 60◦, 90◦ and 120◦, according to
Weiner et al. (1999). There is an additional rotation ψ2 around the fibril axis
(axis 1) of the 4th and 5th sublayers, estimated as ψ2 = 70◦ and 30◦, respec-
tively (Vercher et al., 2013). The thickness Ti for each sublayer is assumed
to be Ti = (0.4, 0.2, 0.2, 1.8, 0.6) µm (Akiva et al., 1998). The grouping of
the sublamellae into thin and thick lamellae yields the thicknesses Tthin = 0.8
µm for the thin lamellae and Tthick = 2.4 µm for the thick lamellae.

To obtain the equivalent elastic properties of each sublamellae, the Lekhnit-
skii transformation for non-isotropic constitutive matrices is applied. The
stiffness matrix given in (1) in the local system (1, 2, 3) is transformed ac-
cording to the rotations ψ1 and ψ2 for each sublamellae into the local carte-
sian system (x, y, z) shown in Fig. 6, which is common for all sublamellae.
Note that the directions (x, y, z) defined at each point are coincident with
directions (θ, z, r), respectively, of the osteon cylindrical system.

Subsequently, the equivalent properties for thin and thick lamellae are
obtained following a rule of mixtures approach. For each elastic property,
denoted generically as D, the equivalent property is calculated as a weighted
average proportional to the sublamellae thickness:
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Dthin =
1

Tthin

(T1D1 + T2D2 + T3D3) (2)

Dthick =
1

Tthick

(T4D4 + T5D5) (3)

As a result, the equivalent stiffness matrices of the thin and thick lamellae
are:

Cthin =

















28.995 8.119 4.003 −0.254 0.699 0.730
25.625 3.779 −0.166 0.335 0.730

9.706 −0.0004 0.001 0.097
2.814 −0.021 −0.014

symm 2.863 0.124
8.855

















GPa (4)

Cthick =

















12.206 5.370 5.532 −0.079 −1.492 −0.388
30.572 6.369 0.251 −1.065 −0.304

18.804 0.270 −3.682 0.363
6.516 −0.056 1.682

symm 4.704 −0.196
4.684

















GPa (5)

These matrices are expressed in the local system (x, y, z) of Fig. 6. The or-
der of the components of the stress vector is σ = {σxx, σyy, σzz, σyz, σzx, σxy}

T.
By identifying the local system (x, y, z) with the directions of the global cylin-
drical system of the osteon, the order of the components of the stress vector is
σ = {σθθ, σzz, σrr, σzr, σrθ, σθz}

T and analogously for the engineering strain
vector ε. It is important to point out that the linear elastic material be-
haviour considered in this work is valid under certain conditions of bone
humidity and calcification (Ascenzi and Bonucci, 1967), as will be further
commented in the following section.

4. ESTIMATION OF STRENGTH PROPERTIES OF LAMEL-

LAE. FAILURE CRITERIA

Since the load condition analyzed in this work (compressive diametral
loading, see Fig. 2) is essentially an in-plane loading state, it is expected
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that the failure is governed by the plane stress state shown in Fig. 7 in
regions where circumferential (or hoop) σθθ, radial σrr or shear σrθ stresses
are high compared to their respective strength limits. Following customary
terminology in structural composite materials, the circumferential stress σθθ

can be considered an intralaminar stress, whereas σrr, σrθ correspond to
interlaminar stresses that cause eventual delamination.

It is also expected that the thick lamellae exhibit a low strength to these
stresses, because the mineralized collagen fibrils are essentially aligned in
the out-of-plane direction (i.e. the osteon z-axis direction, see Fig. 7). For
thick lamellae and for in-plane loads, the interfibrillar matrix is the main
load-bearing material and its relative low strength can lead to matrix micro-
cracking. This is in accordance with the experimental evidences commented
in Section 2 and it is verified numerically in the following sections.

Ascenzi and Bonucci (1967, 1968, 1972) carried out extensive experimen-
tal testing on isolated osteons to characterize the tensile, compressive and
shear properties of an osteon. In this work, we will estimate the strength
properties from their tests on osteons subjected to tensile load in the osteon
z-axis and from shear tests performed by application of a punch centered
on the osteon in the z-axis. From all available data, we have considered the
results for 25-30 year-old donors with a high calcification degree, determined
by microradiography and tested on wet conditions. Osteons with a high cal-
cification degree are stiffer, stronger and with a more linear elastic behaviour
up to rupture than those with low calcification (Ascenzi and Bonucci, 1972).

It is well known that the stiffness and strength properties depend not
only on the calcification degree, but also on the humidity condition and age
(Ascenzi et al., 1973). The change in tensile stiffness and strength in the axial
direction due to humidity is very significant, being larger for dry samples than
for wet samples. The effect of the calcification degree is not so important
although, as expected, it is shown that the stiffness and strength values are
smaller for a low calcification degree. Finally, the influence of age is not so
considerable.

Despite the fracture planes intersected some lacunae in their experimental
tests, it is worth remarking that Ascenzi and Bonucci (1967, 1972) did not
find a clear evidence that may correlate the lacunae density with the tensile
or shear strengths. Note that cortical bone exhibits a considerable inelas-
tic deformation, relaxing stress concentrations and increasing its toughness
(Ebacher et al., 2012). It is often suggested that the strain amplification at
the osteocyte lacunae increases the strain perceived by the osteocytes and the
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subsequent bone remodelling signaling (e.g. Prendergast and Huiskes, 1996;
M.G. Ascenzi et al., 2013).

4.1. Circumferential tensile strength Sθθ,t

Given the microfibril arrangement in the thin lamellae (see Fig. 7), the
circumferential tensile strength of the thin lamellae must be clearly greater
than for thick lamellae, i.e. Sthin

θθ,t > Sthick
θθ,t . As expected, Ascenzi and Bonucci

reported that the maximum stiffness and strength for an osteon loaded in
the axial z-axis is found for type II osteons (following the nomenclature of
Fig. 3). With the exception of the innermost and outermost lamellae, type
II osteons have lamellae oriented mainly in the axial direction of the osteon.
The strength value of this type of osteons loaded in a tensile test was reported
as 120 MPa in Ascenzi and Bonucci (1967) (for a dry condition, this value
increases up to 193 MPa). Therefore, it seems reasonable to assume that
the strength of a sublamella loaded in the fibril direction is about this value.
Hence, the circumferential tensile strength of thin lamellae will be estimated
as Sthin

θθ,t = 120 MPa.
The estimation of the circumferential tensile strength for the thick lamel-

lae is more elusive. From tensile tests carried out in the z-axis for type I
osteons, Fig. 3, we have considered in this work that the onset of the failure
of the weakest lamellae under the tensile test corresponds to a clear depart
from the linear response in a σ-ε diagram. These diagrams are available in
Ascenzi and Bonucci (1967) for type I osteons. Under a tensile test in z-axis
for type I osteons, the first failure will occur for lamellae whose fibrils are
orientated perpendicularly to the loading direction and this will introduce a
loss of linear behaviour in the σ-ε response. This value has been estimated
in an approximated way from Fig. 8, reproduced from Ascenzi and Bonucci
(1967), and is about 50 MPa, that can be assumed to be the strength of a thin
lamella when loaded in the osteon z-direction. We make a further assumption
by considering that this strength is equal to the strength of a thick lamella
when loaded in the circumferential direction and hence Sthick

θθ,t = 50 MPa.

4.2. Radial tensile strength Srr,t

A tensile failure in the radial direction is an interlaminar failure that im-
plies the fracture of the interfibrillar matrix without affecting the mineralized
collagen fibrils. Therefore, the radial tensile strength will be approximately
the same for all sublamellae or their grouping into either thin or thick lamel-
lae. Thus, we can write Sthin

rr,t ≈ Sthick
rr,t and it will simply denoted as Srr,t.
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Since this failure mode is similar to the failure mode of a thick lamella loaded
circumferentially (both modes imply the damaging of the interfibrillar ma-
trix), it is reasonable to assume that Srr,t ≈ Sthick

θθ,t = 50 MPa. When no
better estimates are available, this hypothesis is also usual in the analysis of
delamination of structural composite materials (Brewer and Lagacé, 1988).

4.3. Shear strength Srθ,s

Ascenzi and Bonucci (1972) carried out shear tests by micropunching the
center of osteons in the axial direction. This type of test led to the separation,
almost cylindrical, of a set of inner lamellae with respect the outer. Their
results show that the shear stiffness and strength depend slightly on the type
of osteon (I or II): the shear strength Ss,punch varies between 56 MPa for
type I and 46 MPa for type II. It can be assumed that the shear strength
of a thick lamella in the r-z plane (see reference system in Fig. 7) under the
micropunch test is similar to the shear strength in the plane r-θ of a thin
lamella. Therefore, we will assume that Sthin

rθ,s = 46 MPa.
The shear strength in the plane r-θ for thick lamellae must be clearly

lower than 46 MPa, since this shear mode does not involve the shearing
of mineralized fibrils, which are essentially normal to the plane r-θ. The
shearing failure will involve mainly shearing of the interfibrillar matrix. This
value has been estimated as Sthick

rθ,s ≈ 20 MPa.
It is worth emphasizing that the estimated values given above must be

considered as a first approximation, being the deviations large in practice
due to several factors, such as calcification degree or water content. Another
aspect not considered here is the variation of properties from inner lamellae
to outer lamellae, which has been reported for elastic behaviour, e.g. in
Faingold et al. (2012). The literature on strength properties is scarce and
further research is necessary to have better characterization of the strength
properties of these tissues.

4.4. Intralaminar and interlaminar failure criteria

Two independent failure criteria, intralaminar and interlaminar, will be
considered for the in-plane analysis of an osteon under diametral compressive
load. The intralaminar failure of a lamella requires the individual verification
of the following relationship for each lamella:

σthin
θθ ≥ Sthin

θθ,t (6a)
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σthick
θθ ≥ Sthick

θθ,t , (6b)

which simply checks whether the lamella fails under circumferential tensile
stress or not. Note that circumferential compressive stresses are considered
not to lead to intralamellar failure. For the interlaminar failure, our proposal
is to use the interactive quadratic criterion of Brewer and Lagacé (1988):

(

〈σrr〉

Srr,t

)2

+

(

σrθ

Srθ,s

)2

≥ 1 (7)

The Macaulay bracket operator 〈 〉 in the first term denotes the positive
part and indicates that the radial stress must be included only if σrr > 0, be-
cause compressive radial stresses tend to close any eventual microcrack and
therefore make no contribution to the interlaminar failure criterion. The cri-
terion is interactive in the sense that accounts for the simultaneous contribu-
tion of the radial and shear stresses. In the context of structural composites,
this criterion is used to predict delamination between laminate plies.

5. NUMERICAL MODEL

The aim of the proposed finite element model is to determine the in-
plane stress distribution and predict the location of microcrack initiation
and further propagation. The geometry has been simplified to a half circular
ring, including 17 thin lamellae and thick lamellae, see Fig. 9. The alternating
arrangement of these lamella resembles the type I osteon described by Ascenzi
et al. (1973), see Fig. 3. The first lamella around the haversian canal is a thin
lamella, with a dominant fibril orientation in the circumferential direction
(Ascenzi et al., 1973). Although it is well known that lamellae have thickness
variations, we have assumed that the thin and thick lamellae have a constant
thickness of 0.8 µm and 2.4 µm, respectively, according to the grouping
described in Section 3. The diameter of the haversian canal is 40 µm and
hence the total diameter of the osteon is 148.8 µm. All these dimensions
are in agreement with the secondary osteon dimensions reported in Cowin
(2001). Due to the small thickness of the specimen tested by Ascenzi et al.
(1973), sketched in Fig. 2, a plane stress condition has been assumed, with
unit thickness. The applied pressure p is distributed along a 60◦ circular arc,
being its magnitude increased through the analysis.

A structured mesh has been generated that facilitates the definition of
the lamellae boundaries. Since some contact surface procedures are involved
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in the analysis, a 4-node bilinear element has been used (CPS4 in Abaqus).
To ease the introduction of anisotropic properties and application of failure
criteria, an essential feature of the model is the alignment of the material
axes with the circumferential and radial directions of the osteon reference
system, see Fig. 7. All the resulting stresses are also referred to the axes r
and θ of Fig. 7.

The model also includes the presence of lacunae as ellipses, whose major
and minor axis are 10 µm and 4 µm, respectively. The geometry of the
lacunae is based on the features given by Prendergast and Huiskes (1996),
where the lacunae are described as ellipsoids of dimensions 22µm × 9µm ×
4µm, with a major axis forming about 26◦ with the osteon axis and located
in the boundary between lamellae (Currey, 1962). Therefore, the ellipses
modelled in this work are a section of the 3D ellipsoids, assuming all the
intersected lacunae are located in the same transverse plane.

The spatial distribution of the lacunae is based on the data found in
Cowin (2001), that report an average density in cortical bone of 460 lacunae
per mm2 and an average lacunae area of about 30 to 40 µm2. From these data
and the correlation with some images in the literature, we have included 10
lacunae in the half-model of an osteon shown in Fig. 9. A dedicated routine
has been programmed to modify the structured mesh in order to include the
lacunae. The routine eliminates the elements intersected by the lacunae and
modifies the node location of the neighboring elements so as to match the
lacuna boundary. Note that the material axes of the modified elements are
also defined in accordance to the global circumferential and radial directions.

6. NUMERICAL PROCEDURES AND RESULTS

6.1. Failure initiation

In order to determine the interlaminar failure, the Brewer and Lagacé
criterion (7) has been implemented in Abaqus and applied to the stress evo-
lution resulting from increasing the applied pressure p. Fig. 10 shows a
contour map of the value given by the left hand side of (7). The interlaminar
failure initiates when this value is 1 and the first occurrence takes place in
a thick lamella (indicated by an arrow), about 45◦ with respect the vertical
axis and in the neighborhood of a lacuna that acts as a local stress raiser.
The applied load at this instant is p ≈ 14 MPa. The region where the failure
initiates is in agreement with the experimental evidences commented in Sec-
tion 2. The failure mode is mainly by interlaminar shear, since σrθ reaches
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its strength limit Sthick
rθ,s ≈ 20 MPa, as shown in Fig. 11(c). In Fig. 11(a) it

can be observed that, in the regions of high σrθ, the interlaminar radial stress
σrr is small compared with its strength limit Srr,t = 50 MPa, and therefore
contributes very little to the failure criterion (7). The different shear limits
in thick and thin lamellae and their interaction due to their different stiff-
nesses, tend to concentrate the failure initiation in regions at about 45◦ with
the vertical axis. Note in Fig. 11(c) that the lacuna presence exacerbates
the stress concentration locally, causing the failure initiation. However, this
is not the fundamental cause of failure in these regions, which is ultimately
due to the high level of shear stress.

The numerical model predicts the failure initiation in a thick lamella
and near the boundary between the thick and the successive thin lamellae.
Experimentally some microcracks are found inside the lamellae with fibrils
aligned in the osteon direction (thick lamellae) and not necessarily at the
boundary between lamellae. A plausible explanation of this discrepancy is
that strength properties are not homogeneous inside each lamella, and that
transitions in stiffness and strength between lamellae is not so abrupt as
considered in our numerical model.

The intralaminar failure criterion given in (6) must also be checked.
Fig. 11 (b) shows the contour plot for σθθ and it can be seen that the max-
imum hoop stress is reached at the innermost thin lamella and is slightly
less than 60 MPa. Since the strength limit for this potential failure mode is
Sthin

θθ,t = 120 MPa, no failure is expected in this zone, as reported by Ascenzi
et al. (1973). The hoop stress in the adjacent thick lamella is about 20 MPa,
which is also less than the respective limit Sthick

θθ,t = 50 MPa. Therefore, no
failure is predicted by application of (6).

6.2. Interlaminar failure propagation using the node release technique

After determining the initiation of failure and its location, the propaga-
tion has been carried out using two different techniques: the node release
technique and the progressive damage approach. In the node release tech-
nique (NRT), contact surfaces are defined along the prospective crack propa-
gation direction. This technique is often used to model debonding of surfaces
along a specified direction. It involves the definition of master and slave con-
tact surfaces. This has been accomplished by duplication of nodes along the
interfaces between thick and thin lamellae, where microcracks are expected
to grow. The two surfaces are initially tied and act as a single surface until
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a prescribed failure or fracture criterion is satisfied. When the criterion is
reached, the connection between the surfaces is released.

In combination with the contact procedures available in Abaqus, the same
master and slave surfaces are used to enable the contact between crack faces
after the microcrack growth. This contact exists due to the compressive na-
ture of the applied load. The analysis of the proposed model is computation-
ally expensive, especially because the number of potentially debonding and
contacting surfaces is high (all interfaces between thick and thin lamellae).
An implicit incremental approach has been used for the analysis of propa-
gation, where debonding, contact and loss of stiffness is expected during the
nonlinear analysis.

As explained, the initiation conditions at an interface are determined us-
ing the Brewer and Lagacé criterion (Fig. 10). Initially, only one node is
released at this point. The eventual propagation of the microcrack (equiv-
alent to a surface delamination) is also governed by the Brewer and Lagacé
criterion. The Abaqus command *Debond is used to release the initially
tied nodes as the load increases. In the simulation, initiation points of new
microcracks depend on the previous microcrack evolution.

In order to evaluate the crack propagation condition, an approach based
on energetic considerations, such as the strain energy release rate G should be
considered. However, critical values for the specific energy at fracture Gc are
not available at the interlamellar and intralamellar level. Hence, we resolved
to use a stress-based approach considering the Brewer and Lagacé criterion
at a certain characteristic distance d. The Abaqus command *Debond in-
volves the values of contact pressure CPRESS and contact shear CSHEAR. The
criterion is then evaluated at a distance d ahead the crack tips of the gener-
ated microcracks, thus avoiding the theoretical singularity at the crack tips.
The problem turns out to be the choice of the distance d. We have chosen
a distance d = 1.5 µm ahead the crack tip, which provides reasonable re-
sults. A sensitivity analysis has been carried out regarding this distance, as
commented at the end of this subsection.

In Fig. 12, the variation of CSHEAR for an interface surface is represented
at three instants. The solid black lines represent the value of the shear stress
along an interface between a thick and a thin lamella. The coloured blue-to-
red lines are simply marker scales that quantify the value of the shear stress,
from minimum (blue) to maximum (red) passeing through zero. The three
subfigures represent different states of failure initiation and propagation.

The first plot Fig. 12(a) represents a continuous distribution of the inter-
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face shear before failure initiation (a surface without intersecting lacunae is
represented for simplicity). Once the variable CSHEAR reaches a value close
to the limit strength ±20 MPa, a node is released at this point. Hence, the
interface shear stress drops locally to 0, as shown in Fig. 12(b). Two incipi-
ent cracks along the interface have been formed (each with two crack tips),
one on the left quadrant and the other one on the right quadrant. The shear
stress drops to zero between the crack tips, because the crack faces are free
from shear stresses (it has been assumed that there is no friction between
crack faces). A further increase of the load causes the interface cracks to
propagate, as in Fig. 12(c), where CSHEAR is 0 inside the cracks. Both cracks
have grown along the interface surface. The region where the shear stress is
zero has increased, i.e. the crack faces have become longer since both crack
tips at each crack become apart during the crack growth.

Fig. 13 shows the contour maps for the Brewer and Lagacé where the red
colour has 1.0 as an upper limit value. Values exceeding 1.0 are plotted in
grey and represent the regions in which failure is initiated and propagated
as the load is increased. From left to right and top to bottom, the plot
(a) in Fig. 13 corresponds to the initiation location, in a state similar to
the represented in Fig. 10, p ≈ 14.0 MPa. Next plot (b) shows an advancing
crack on the left quadrant and a new crack just initiated on the right quadrant
when the load has been increased to p ≈ 16.6 MPa. In successive plots, both
cracks grow and other microcracks are initiated and eventually grow up to
a generalized state of failure with several propagated microcracks. For the
last plot (f), p ≈ 20.1 MPa, the innermost thin lamella also starts failing due
to high circumferential stresses. It has been verified that the intralaminar
criterion (6) is not achieved at earlier stages. From Fig. 13, it can be observed
that the numerical analysis here presented is in good agreement with the
experimental behavior observed by Ascenzi et al. (1973).

Fig. 14 plots the applied pressure p versus the displacement of the load
application point located on the vertical radius. The expected loss of stiff-
ness under a compressive load is evidenced by the progressive reduction of the
slope in the diagram. It can be observed that once the microdamage starts
due essentially to the interlaminar shear stresses, the load bearing capacity
of the system is notably reduced. Fig. 14 shows the results of a sensitivity
analysis for three characteristic distances d, showing that qualitative differ-
ences are not large within a reasonable distance d compared to geometric
dimensions.
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6.3. Failure propagation using the progressive damage approach

The previous analysis using NRT leads to the propagation of explicit
microcracks. Despite this is similar to the real behaviour shown in Fig. 4,
this approach is computationally expensive and difficult to generalize to a
representative volume with several osteons or to 3D models.

As an alternative, the failure propagation after initiation has also been
simulated through a progressive damage approach. This approach is based
on a nonlinear FE analysis in which the stiffness properties are reduced at the
element level as the stress state reaches a failure condition (Tay et al., 2008).
This approach has been successfully applied in structural composite materi-
als, such as fiber reinforced laminates (e.g. Chang and Chang, 1987; Hou et
al., 2000; Lapczyk and Hurtado, 2007; Tay et al., 2008). In the progressive
damage approach, it is assumed that the material behavior is elastic-brittle,
in the sense that there is no significative plastic deformation (Lapczyk and
Hurtado, 2007). One important advantage is its relatively simple extension
to 3D models, in contrast to the numerical modelling of explicit cracks using
fracture mechanics, even using the extended finite element method XFEM.
Obviously, the local solution in the vicinity of the damaged zone will not
be as accurate as in a fracture mechanics approach, but the technique cap-
tures the global loss of stiffness and has proven to be very efficient for diffuse
damage and for models with a large number of microcracks, provided the
discretization is sufficiently refined.

The simplest approach to carry out the reduction of the elastic properties
is the direct material property degradation, MPD (Chang and Chang, 1987;
Hou et al., 2000; Tay et al., 2008). This method will be used in this work and
consists in reducing the elastic properties by a fixed factor that can depend
on the mode failure. Although its implementation is simple, it needs an a

priori specification of the reduction factors. It is customary to assume that
the stiffness in certain directions is reduced to 0 (Chang and Chang, 1987;
Hou et al., 2000), although the analysis can lead to excessively conservative
results and numerical difficulties. Tay et al. (2008) suggest that a constant
reduction factor of 0.1 is common practice in the literature due to its simplic-
ity and convergence advantages. Other approaches are based on continuum
damage mechanics (CDM), with a less arbitrary formulation, often based on
thermodynamic principles. In CDM, the damage variable can take a value
in the continuous range [0, 1], and therefore the softening introduced is not
abrupt.
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The MPD procedure used in this work to model the progressive damage
of an osteon has been implemented in Abaqus and it is similar to the im-
plementation of Chang and Chang (1987) for structural composites. Two
field variables (FV1 and FV2) have been defined by means of the user subrou-
tine USDFLD (User Defined Field). The field variables are solution-dependent
variables that enable the assignment of different material properties accord-
ing to their values. Thus, FV1=0 and FV2=0 indicate no failure, FV1=1 and
FV2=0 indicate interlaminar failure and FV1=0 and FV2=1 indicate intralam-
inar failure, see Table 1. For the no failure state the elastic moduli are not
reduced and for the failed state all the elastic moduli are reduced to 5% of
their original values.

The field variables are solution-dependent variables in the sense that they
are functions of the FE solution at the integration points (in our case, func-
tion of the stresses). In the user subroutine USDFLD, the failure criteria (6)
and (7) are evaluated at each increment considering the strength limits de-
fined in Section 4 as input parameters. The values on the left hand side of the
criteria are stored at each increment as state variables (STATEV in Abaqus).
On the other hand, the field variables FV are initialized to 0 when the analysis
starts and only when any state variable STATEV is equal or greater than 1.0,
the corresponding field variable FV is changed to 1 (damaged state). The
field variable FV will remain as 1, even when the local stresses are reduced
significantly, indicating the irreversibility of the damage process.

Fig. 15 shows the sequence of damaged elements according to the Brewer
and Lagacé criterion (7). As explained above, the damage initiation is gov-
erned by interlaminar shear stresses in a thick lamella at about p ≈ 14 MPa.
The damage is mainly located near the stress concentration region next to a
lacuna on the left quadrant. When the load is increased to p ≈ 20.1 MPa,
propagation of damage follows the elements in thick lamellae in a very similar
pattern to the one predicted with the NRT, Fig. 13.

The progressive damage approach easily allows for computing advanced
states of damage. Fig. 16 shows a generalized state of damage for applied
pressures that are higher than the loads considered in Figs. 13 and 15. It can
be observed that damage due to interlaminar stresses tends to concentrate
in the thick lamellae. It is worth noting that damaged zones approximately
match the observed experimental regions, located at about 20◦ and 50◦ with
respect the vertical radius. Eventually, for the highest load, damage is gen-
eralized and extends also across thin lamellae.

As far as the intralaminar criterion (6) is concerned, damaged elements
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are shown in Fig. 17. Tensile circumferential stresses cause damage in the
innermost lamellae, being the first a thin lamellae. The load for the initiation
of this damage is relatively high (about 24 MPa), and therefore this type of
damage is expected to occur only when the interlaminar failure shown in
Fig. 15 is well developed. As a consequence, we can conclude that interlam-
inar shear stresses are the main cause of failure for this type of osteon under
compressive diametral load, causing a separation of thin and thick lamellae.

7. DISCUSSION

In the previous analyses using either NRT or a progressive damage ap-
proach, the global effect of the microdamage process is the loss of stiffness
of the system. In order to show this behaviour, Fig. 18 plots the applied
pressure p versus the displacement of the load application point located on
the vertical radius for both analyses.

Both procedures tend to yield similar behaviour curves in a global sense,
although some differences can be appreciated just after damage initiation
(about p = 14 MPa) due to the different approach used to introduce the de-
fects: interface microcracks versus whole element damage. The reason of this
difference is that the loss of stiffness under compressive load with the micro-
crack approach (NRT) is only in the circumferential direction but not in the
radial direction, because crack face contact is allowed during the analysis.
On the other hand, the reduction of the elastic properties in the progressive
damage approach is applied to all elastic moduli equally, experiencing a loss
of stiffness in all directions. In this sense, we can say that the NRT is more
accurate than the progressive damage approach, but computationally much
more expensive (NRT computation time is about eight times greater than
with progressive damage). Other important disadvantages of the NRT ap-
proach are the difficulties for preprocessing (generation of contact surfaces)
and the intrinsic difficulties for extending the procedure to 3D models or
larger models that contain a representative volume of bone tissue. Given
the similar global response shown in Fig. 18, we consider that the progres-
sive damage approach can be an appealing approach to address this type of
analysis.

The models and procedures here presented reproduce the trend observed
experimentally by Ascenzi et al. (1973). This is confirmed by other recent
experimental evidences reported by Ebacher et al. (2012). These authors
examined the microcracks that appear at the lamellar and sublamellar lev-
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els in human cortical bone samples under compressive tests, see Fig. 19 (a)
and (b). Their samples were analyzed by laser scanning confocal microscopy
(LSCM) and reveal the great importance of the lamellar microstructure for
the damage pattern observed. The damage pattern exhibits an alternate
presence of circumferential microcracks that is related to the lamellar struc-
ture, thus confirming the behaviour observed by Ascenzi et al. (1973) and
the predictions performed by our numerical models. This pattern is in line
with the observations of Ebacher and Wang (2009), by which the stable de-
velopment of multiple lamellar microcracks redistributes the stress around
each haversian canal.

In their studies, Ebacher et al. (2012) state that all cracks start at lower
hierarchical levels of bone and that the observed high density of microcracks
improves the inelastic strain capacity of the lamellae. The role of canaliculi,
widely spread over the lamellar tissue, in the microdamage initiation is also
emphasized. Therefore, a smeared damage approach to model microcracks,
such as the one proposed here, seems to be a convenient way to numerically
simulate the real behaviour.

8. CONCLUSIONS

Two numerical approaches have been proposed for the analysis of failure
at the lamellar level in osteons. The first is based on modelling explicitly
interface microcracks and predicting their propagation using the so-called
node release technique. The second approach follows a progressive degrada-
tion of elastic properties at the element level to simulate the loss of stiffness
of damaged elements. The procedures have been applied to the mechanical
behaviour of tests of an osteon under compressive diametral load, for which
damage patterns are available in the literature. The elastic properties at the
lamellar level have been estimated considering the equivalent elastic proper-
ties of a mineralized collagen fibril and the 5-sublamellar structure described
in Weiner et al. (1999), whereas the strength properties have been inferred
from different mechanical tests performed by Ascenzi and Bonucci on single
osteons. In addition, intralaminar and interlaminar failure criteria have been
implemented to ascertain the failure initiation and propagation under both
mode failures.

From the numerical analyses, the dominant failure mode under compres-
sive diametral load can be attributed to interlaminar shear stresses that
affect the thin and thick lamellae in a different way. As a result, microcracks
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and damage initiate and spread circumferentially along lamellae whose rein-
forcement is essentially aligned with the osteon axis. The obtained damage
patterns correlate well with the experimental images obtained by (Ascenzi
et al., 1973; Ebacher et al., 2012), as regards its alternate character and the
angular and radial location.

Both methodologies show promising strategies for further microdamage
models of cortical tissue and its analysis under a mechanistic approach, espe-
cially the progressive damage approach for its reduced computational cost.
This reduced computational cost becomes crucial when dealing with more
complicated models, such as 3D models that include several osteons, inter-
stitial matrix, different loading conditions, etc. Given that micromechanical
strength properties are generally elusive to determine, numerical models of
this kind can be of interest to simulate experimental tests and hence estimate
strength properties using inverse identification procedures.
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Figure 1: Schematic representation of the main morphological features of the cortical bone
tissue at the microstructural level.
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Figure 2: Radial compressive loading test (Ascenzi et al., 1973)
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Figure 3: Sketch of the laminated structure of osteon types I and II, following Ascenzi et
al. (1973).
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Figure 4: Behavior under compressive load of an osteon type I: left, before the loading;
right, after the loading, showing the generation of microcracks. Reprinted from Ascenzi
et al. (1973) with permission of Elsevier.
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Figure 5: Representative volume element of a typical fibril structure modelled using finite
elements by imposing periodical boundary conditions. The local coordinate system (1, 2, 3)
is associated with the fibril orientation.
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Figure 6: Coordinate system scheme. The local coordinate system (1, 2, 3) is aligned
with each mineralized fibril. The cylindrical coordinate system (r, θ, z) is used as a global
coordinate system and a local auxiliary coordinate system (x, y, z) is defined at any point,
being (x, y, z) coincident with (θ, z, r) respectively. Definition of angles ψ1 and ψ2 that
determine the crystal orientation.
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Figure 7: Model of an osteon with thin and thick lamellae, showing the cylindrical reference
system (r, θ, z) aligned with the osteon axis. Condensation of the 5 sublamellar structure,
with different mineralized fibril orientations, into two equivalent layers: thin and thick
lamellae.
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Figure 8: Stress-strain curves for tensile tests in the z-axis of single osteons. Curve (a)
corresponds to a wet and fully calcified type I osteon, taken from a man of 30. Curve
(b) Same from a man of 80. Note: 1 gr/µm2 ≈ 104 MPa. Reprinted from Ascenzi and
Bonucci (1967) with permission of John Wiley and Sons.
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Figure 9: Finite element model, showing the applied load, the displacement constraints,
the lamellae and the lacunae considered. The mesh is structured, enabling the arrangement
into thin and thick lamellae of constant thickness and the cylindrical orientation of the
material axis for each lamella. The detailed view shows the modification of the structured
mesh to allow for the presence of lacunae.



%&'()*+,-% .% %% &% '% (% )% *% +% ,% -& .& %& && '& (& )& *& +& ,& -' .' %' &' '' (' )' *' +' ,' -( .( %( &( '( (( )( *( +( ,( -) .) %) &) ') () )) *) +) ,) -* .* %* &* '* (* )

Figure 10: Initiation criterion. Application of the failure criterion of Brewer and Lagacé
to determine the initiation of failure, reached at a load of p ≈ 14 MPa.
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Figure 11: Stress fields (a) σrr, (b) σθθ and (c) σrθ for the failure initiation load of
p ≈ 14 MPa, shown in Fig. 10.
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Figure 12: Node release technique. Evolution of shear stress along one of the contact
surfaces (CSHEAR in Abaqus). For the sake of clarity, the surface does not intersect
any lacunae. (a) Stress state before microcrack initiation; (b) microcrack initiation; (c)
microcrack propagation.
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Figure 13: Node release technique. Evolution of the Brewer and Lagacé criterion for six
instants of the microcracks initiation and propagation sequence. The instants correspond
to the following applied pressures: (a) p ≈ 14.0 MPa, (b) p ≈ 16.6 MPa, (c) p ≈ 18.0 MPa,
(d) p ≈ 18.1 MPa, (e) p ≈ 19.1 MPa, (f) p ≈ 20.1 MPa.
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Figure 14: Node release technique. Sensitivity analysis to the characteristic length d used
in the application of the procedure.
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Figure 15: Progressive damage approach. Evolution of damaged elements (shown in yel-
low) by application of the interlaminar failure criterion of Brewer and Lagacé (7) for six
instants of the damage propagation sequence. The instants correspond to the following ap-
plied pressures: (a) p ≈ 14.0 MPa, (b) p ≈ 16.6 MPa, (c) p ≈ 18.0 MPa, (d) p ≈ 18.1 MPa,
(e) p ≈ 19.1 MPa, (f) p ≈ 20.1 MPa.
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Figure 16: Progressive damage approach. Damaged elements (shown in yellow) by ap-
plication of the interlaminar failure criterion of Brewer and Lagacé (7) for two advanced
loading states (left, p ≈ 29.3 MPa; right, p ≈ 31.5 MPa.
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Figure 17: Progressive damage approach. Evolution of damaged elements (shown in yel-
low) by application of the intralaminar failure criterion (6) for two instants of the damage
propagation sequence.
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Figure 18: Comparative evolution of the applied pressure vs. the displacement of the load
application point located on the vertical radius. Results for both techniques: node release
technique and progressive damage approach.
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Figure 19: (a) and (b) Experimental images showing the damage in an osteon resulting
from a radial compressive load, reported in Ascenzi et al. (1973) and Ebacher et al. (2012),
both reprinted with permission of Elsevier. (c) Fields of progressive damaged elements
for an advanced load state. In red, damaged elements according to the interlaminar
failure criterion of Brewer and Lagacé (7); in yellow, damaged elements according to the
intralaminar criterion (6).
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Table 1: Setting of field variables according to the material state.

Material state Stiffness FV1 FV2

No failure 100% 0 0
Interlaminar failure (due to σrr, σrθ) 5% 1 0
Intralaminar failure (due to σθθ) 5% 0 1
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Material state Stiffness FV1 FV2

No failure 100% 0 0
Interlaminar failure (due to σrr, σrθ) 5% 1 0
Intralaminar failure (due to σθθ) 5% 0 1
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