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Abstract: The paper presents the analysis of the energy performance of an air vortex cooling tube under variations of the 
air inlet properties, with three independent experimental tests validated through the energy balance in the device. 

The experimental analysis includes the following variations of the input conditions: First, the effect of the air inlet 
pressure to the vortex tube, focused on the analysis of temperature variations in the output cold stream and in the cooling 
capacity when the cold flow fraction varies. Second, we studied air inlet temperature variations to the vortex tube under 
different cold flow fractions, which is an analysis not found in the literature. And finally, is studied the performance of the 
vortex tube when the insulation is provided or in absence of insulation. 
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1. INTRODUCTION 

 The Vortex effect was first observed by Ranque [1] while 
observing thermal division in a cyclone separator, being his 
design improved by Hilsch [2]. Kassner and Knoernschild 
[3] performed a theoretical study based on the assumption 
that the effect was due to adiabatic expansion, which led to a 
low temperature in the low pressure area near the axis of the 
tube. Subsequently, other researchers have proposed 
different theories to explain the energy separation process, 
some of the most important referenced in chronological 
order are: Webster [4], Fulton [5], Sheper [6], Harnett et al. 
[7], Lay [8,9], Deissler et al. [10], Reynolds [11], Lewellen 
[12], Lindstrom [13], Kurosaka [14], Amitani et al. [15], 
Stephan et al. [16], Arbuzov et al. [17], Gutsol et al. [18], 
Lewis et al. [19], Ahlborn et al. [20], Trofimov [21] and 
Colgate [22]. Notwithstanding these efforts, a theory which 
satisfactorily explains the entire process has not been 
developed yet. Despite the above statement and the low 
energy efficiency of the vortex tube, they are 
commercialized for different applications when 
compactness, reliability and low cost are the main factors 
and when energy efficiency becomes less important. 
Currently, they are used to cool parts of machines, 
dehumidify gas samples, cool electrical panels, liquefy 
natural gas (Fin’ko [23, 24]), cool under adverse conditions 
(Baz et al. [25, 26]), chill laboratory environments in  
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explosive atmospheres (Bruno [27]), in hyperbaric chambers 
(Baz et al. [28]), separate particles (Riu et al. [29]), in 
nuclear magnetic resonance (NMR) (Martin et al. [30]), 
perform rapid PCR (Polymerase Chain Reaction) with real-
time optical detection [31]. Furthermore, vortex tubes 
operate as suction devices (Alhborn et al. [32]) and as 
expanders in transcritical CO2 cycles (Sarkar et al. [33]). 
Recently, Sachin et al. [34] and Orhan et al. [35] studied 
different geometries for the cold end to improve the energy 
performance of the vortex tube. 

 In contrast to the existing experimental analysis of air 
vortex tubes, which mainly focuses on studying their 
performance under variations of the cold flow fraction with 
constant inlet temperature properties, the objective of this 
work is to analyse the incidence of the airflow input 
parameters (inlet pressure and inlet temperature) on its 
energy performance. Specifically, we analyse the outlet 
temperature of the cold stream, the cooling capacity provide 
and the COP reached by the refrigerating device. 
Accordingly, this work pretends to contribute to the 
understanding of the real performance of air vortex tubes. 

2. EXPERIMENTAL TEST BENCH AND ANALYSIS 

 The experimental test bench developed for this work is 
shown in Fig. (1). This experimental set up incorporates an 
EXAIR BP3215 vortex tube (maximum volumetric flow rate 
0,007078 m3/s in standard conditions at 690 kPa of inlet 
pressure). The assembly is thermally isolated from the 
compressed air entrance in the cold and hot outlets.  

 We measure temperature with K-type thermocouples and 
pressure with piezoelectric transducers placed at the inlet and 
hot and cold exits. The uncertainties, calibrated using 



Experimental Evaluation of the Energy Performance of an Air Vortex Tube The Open Mechanical Engineering Journal, 2013, Volume 7    99 

certified references, are of ± 0.5 ºC for the thermocouples 
and of ± 0.1% of the full scale range (0-1000 kPa) for the 
pressure transducers. We measure temperature on the outer 
surface of the tubes, since according to Ahlborn [36], to 
measure the temperature of moving fluids, a device moving 
at the speed of the flow should be used so as to achieve 
thermal equilibrium. 

 We use two mass flow meters, one for the inlet air (Testo 
6441, with precision ± 0,3 % of full scale) and other for the 
hot exit air (Bronkhorst model EL-Flow F112AC, with 
precision ±0.1% full scale). The signals are gathered by an 
AGILENT 34970A data acquisition system. 

3. VORTEX TUBE CHARACTERIZATION 

 The main parameters that characterize the operation of a 
vortex tube are the following: 

3.1. Cold Flow Fraction 

 Cold flow fraction ratio is the ratio between cold flow 
and inlet flow: 

r = mc

min

; 0 ! r ! 1  (1) 

3.2. COP 

 As for any refrigeration plant, COP is the ratio between 
the cooling capacity produced and the power consumption 
required in the installation, as presented by equation (2).  

COP = Q0

PCs

 (2) 

where the cooling capacity is calculated in the same way as 
in the case of a heat exchanger, taking into account the 
energy absorbed to cool the cold stream (3). 

Q0 = mc ! cp ! (Tin " Tc )  (3) 

 Supply of compressed air, in the case of vortex tubes, is 
usually provided by an independent air compressor, making 

it difficult to estimate the power consumption to compute the 
COP if a wattmeter is not available or if the air compressed 
is not used exclusively in the vortex facility. 

 According to Boswell [37], the power required to 
compress air from atmospheric conditions, assuming an 
isentropic process, can be calculated according to expression 
(4), where the subscripts “2” and “1” indicate the compressor 
output and input conditions. 

PCs = !
! "1

#min # R # (T2 " T1 )  (4) 

 Using the relationships inherent in an adiabatic 
compression process (5) and (6),  
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R ! "
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and considering that air is cooled until practically to an 
atmospheric temperature (T1), what means that this is the 
vortex inlet temperature “Tin”, the expression of power 
consumption can be written as detailed by expression (7). 

PCs = min ! cp !(T2 " T1 )  (7) 

 Obtaining “T2” by means of (5), the final expression for 
calculating the COP with experimental data, feasible 
measurable, is shown in equation (8) 
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Fig. (1). Test bench and sensors location. 
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4. EXPERIMENTAL ANALYSIS 

 The works available in literature demonstrate that the 
main magnitudes which affect the energy performance of a 
vortex tube are the inlet pressure (pin) and the flow ratio (r). 
Therefore, we evaluate the energy performance of the vortex 
tube with a series of trials in which the flow ratio varies 
inside the operating range of the device. 

4.1. Experimental Test Range 

 We consider three different experiments to evaluate the 
performance of the vortex tube. First, it was put through 
three different inlet pressure levels, conditions are detailed in 
Table 1. Second, the influence of the inlet air temperature 
was evaluated, varied using a thermostatic water bath (as 
shown in Fig. 1) by using a small heat exchanger placed in 
the input current. The evaluation range of the vortex tube in 
this test is shown in Table 2. Finally, the effect of the 
thermal insulation of the vortex tube was evaluated for 
constant air inlet conditions, as detailed in Table 3. 

4.2. Validation of Experimental Measurements 

 First, to check the validity of the experimental results we 
analyse the energy balance on the vortex tube, it expressed 
by relation (9). In the energy balance the heat transfer to the 
environment is neglected and potential energies are 
considered equal for the input and output currents (true in the 
experimental plant). 

Pin = min ! (hin + Ec,in ) = mc ! (hc + Ec,c ) + mf ! (hf + Ec, f ) = Pout  (9) 

 As it is illustrated by Fig. (2), the experimental tests 
corroborate the energy balance of equation (9). As can be 

observed in Fig. (2), overall energy balance shows a 
deviation of ± 5% between the total power of the device 
input and output. The three cloud of points correspond to the 
three inlet pressure levels (Table 1). The thermodynamic 
properties of the air were evaluated using Refprop routines 
[38] neglecting the moisture of the inlet air, since it 
presented a low moisture ratio. 

4.3. Inlet Pressure Variation Test 

 First, we present the analysis of the experimental 
performance of the vortex tube for the inlet pressure 
variation test (Table 1). 

 In Fig. (3), the measured air outlet temperatures of the 
vortex tube are depicted. The experimental evolutions are 
consistent with previous experimental studies, such as those 
of Promvonge [39] and Saidi [40]. As it can be observed in 
the evolution of the outlet cold flow in Fig. (3), a minimum 
in temperature exists in each test. This minimum in 
temperature is translated to two coincident minimums in the 
power of the cold flow at the vortex outlet, presented in Fig. 
(4). In Fig. (4), we present the total power and the 
contribution due to the product of the mass flow by its 
specific enthalpy. The difference between them is the 
product of the mass flow by the kinetic energy. 

 In Fig. (5), we depict the values of cold mass flow and it 
specific enthalpy for the steady-state corresponding to the 
highest pressure in the test. It can be deduced from Fig. (5) 
that the cause of the minimum in the outlet temperature of 
the cold air and in the output powers is the outlet mass flow 
evolution of the cold flow. 

 

Table 1. Inlet Pressure Variation Test Range 
 

Test Average pin  
[kPa] 

Variation pin  
[%] 

Average Vin  
[m3/h] 

Variation Vin  
[%] 

Average Tin  
[ºC] 

Variation. Tin  
[%] 

Average min  
[kg/h] 

Variation. min  

[%] 

HP 563.35 -0.27 ÷ 0.22 16.35 -5.13 ÷ 3.31 20.08 -2.48 ÷ 3.00 109.45 -4.96 ÷ 3.23 

MP 409.22 -0.76 ÷ 0.76 11.33 -2.97 ÷ 3.41 21.08 -2.60 ÷ 1.20 54.91 -2.48 ÷ 3.68 

LP 256.86 -0.74 ÷ 0.88 6.19 -4.77 ÷ 3.35 21.61 -0.65 ÷ 0.84 18.79 -4.24 ÷ 2.77 

 
Table 2. Inlet Temperature Variation Test Range 
 

Test Average pin 
[kPa] 

Variation pin 
[%] 

Average Vin 
[m3/h] 

Variation Vin 
[%] 

Average Tin 
[ºC] 

Variation. Tin 

[%] 
Average min 

[kg/h] 
Variation. min 

[%] 

HT 572.93 -0.46 ÷ 0.28 16.22 -5.84 ÷ 3.59 38.98 -1.57 ÷ 1.01 103.75 -6.05 ÷ 3.93 

MT 549.15 -0.46 ÷ 0.57 16.02 -6.14 ÷ 2.90 19.33 -0.56 ÷ 0.60 104.8 -6.00 ÷ 2.98 

LT 550.42 -0.63 ÷ 0.73 15.89 -6.17 ÷ 4.22 14.37 -8.87 ÷ 2.67 105.95 -5.21 ÷ 3.85 

 
Table 3. Test Conditions with and without Insulation 
 

Test Average pin 
[kPa] 

Variation pin 
[%] 

Average Vin 
[m3/h] 

Variation Vin 
[%] 

Average Tin 
[ºC] 

Variation. Tin 

[%] 
Average min 

[kg/h] 
Variation. min 

[%] 

WITH 575.06 -7.72 ÷ 10.4 16.12 -5.47 ÷ 11.7 20.98 -1.66 ÷ 1.25 109.96 -11.48 ÷ 20.78 

WITHOUT 577.14 -9.05 ÷ 11.07 16.41 -10.02 ÷ 8.94 21.56 -1.68 ÷ 1.39 112.17 -13.50 ÷ 18.28 
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 On the other side, regarding the energy parameters, we 
present the cooling capacity in Fig. (6) and the COP in Fig. 
(7) for the three inlet pressures to the vortex tube considered. 
They have been represented versus the flow ratio (1). 

 As can be observed in Fig. (7), a maximum in COP exists 
for each inlet pressure level. This is because the existent 
relation between the cooling capacity and the temperature of 
the cold outlet flow (equation 3). Nonetheless, the value of 
the flow ratio ‘r’ corresponding to the minimum temperature 

Fig. (2). Initial check. Overall energy balance in the vortex tube. 

Fig. (3). Air outlet temperatures of the cold and hot streams vs flow ratio for the inlet pressure variation test. 
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of the outlet cold flow does not coincide with the value of 
the flow ratio ‘r’ corresponding to the maximum cooling 
capacity, since a variation of the mass flow exists. 

 Developing equation (3), 

Q0 = mc ! cp ! (Tin " Tc ) = r !min ! cp ! (Tin " Tc )  (10) 

deriving (3) with respect to the flow ratio ‘r’, 

dQ0

dr
= min ! cp ! (Tin " Tc ) " r !min ! cp !

dTc

dr
 (11) 

and equalling to zero, 

 

(Tin ! Tc ) = r " dTc

dr
 (12) 

 Expression (12) establishes the value of the flow ratio ‘r’ 
which maximizes the cooling capacity. From a detailed 
observation of equation (12), it can be said that the value of 
‘r’ which maximizes the cooling capacity differs from the 
value of ‘r’ which minimizes cold exit temperature, since if 

they were the same the value of the differential dTc
dr

 would 

be equal to cero. Accordingly, the value of ‘r’ which 
minimizes the cold exit temperature is lower than the value  
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Fig. (4). Output powers for the pressure test. 
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Fig. (5). Mass flow rate and specific enthalpy of the cold output current vs flow ratio for the maximum pressure value. 
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of ‘r’ which maximizes the cooling capacity. This reasoning 
can be observed on the representation of the cooling capacity 
and cold exit temperature dependence on the flow ratio ‘r’ on 
Figs. (3, 6) respectively. 

 Regarding the COP evolutions presented in Fig. (7), it 
needs to be mentioned that their values are higher than they 
would be in an actual installations, since the cooling capacity 
has been related with an ideal power of the compression 

process, which in this assay is considered to be constant for 
each inlet pressure. 

4.4. Inlet Temperature Variation Test 

 The second experimental analysis which is performed 
with the vortex tube corresponds to the temperature variation 
of the air inlet (Table 2). This analysis has not been found in 
literature, accordingly this section aims to highlight the 
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Fig. (6). Cooling capacity vs flow ratio for the pressure variation test. 
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Fig. (7). COP vs flow ratio for the three inlet pressures. 
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impact of the air inlet temperature on the energy 
performance of the device. 

 First, in Fig. (8), we present the evolution of the cold 
outlet temperature for three different air inlet temperatures 
versus the flow ratio. It can be observed that the cold outlet 
temperature is as lower the air inlet temperature is. The 

above discussed minimum temperature for a given flow ratio 
exists in the experimental evolutions. 

 Regarding the cooling capacity, we present its evolution 
in Fig. (9) for the three inlet temperatures versus the flow 
ratio. A light increase on the cooling capacity with the 
increase of the air inlet temperature to the vortex tube can be 
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Fig. (8). Cold outlet temperature vs flow ratio in the inlet temperature variation test. 
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Fig. (9). Cooling capacity vs flow ratio for the inlet temperature variation test. 
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observed. That is because the difference between the inlet 
temperature and that at the cold outlet is higher when higher 
the air inlet temperature is. 

4.5. Insulation Test 

 Finally, we analyse the effect of the insulation in the 
vortex tube. We evaluate this effect by comparing the energy 
performance of the vortex tube with insulation and with not 
under similar inlet conditions (Table 3). 

 We present the experimental evolution of the cooling 
capacity in Fig. (10) and the COP in Fig. (11). 

 From the analysis of the experimental evolutions, it can 
be affirmed that no appreciable difference exists between the 
results with and without insulation, and the little differences 
can be associated with small deviations of the test 
conditions. 
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Fig. (10). Cooling capacity vs flow ratio with and without insulation. 
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Fig. (11). COP vs flow ratio with and without insulation. 
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5. CONCLUSIONS 

 We present a test bench of an air vortex tube in the 
present work. It allows to modify the inlet conditions of the 
air in order to analyze their influence in the energy 
performance of the device. 

 The paper presents the experimental evaluation of the air 
vortex tube under inlet pressure and temperature variations 
of the inlet air over a wide range of variation of the cold and 
hot flows, i. e., variation of the flow ratio. We validated all 
the experimental results with the overall energy balance in 
the device, obtaining an error below 5%. 

 We observed a minimum in the output temperature of the 
cold flow in the inlet pressure variation test. This minimum 
was already evidenced in previous works, as well as its 
transfer to the COP values, however, this paper analyses the 
causes which produce this minimum. We concluded that it is 
associated with the variation of the mass flow rate of the 
cold output current. Furthermore, we analyse the values of 
the flow ratios at which the minimum in temperature and 
cooling capacity are obtained. 

 We studied experimentally the influence of the inlet 
temperature of the air to the vortex tube, and conclude that 
the outlet temperature of the cold flow is lower as lower the 
inlet temperature is. Additionally, the cooling capacity is 
higher when higher the inlet temperature is, since the 
difference in temperature between the inlet air and the cold 
outlet air is higher. 

 Finally, we evaluated the effect of the insulation of the 
vortex tube for constant inlet conditions, and we concluded 
that the insulation does not modify appreciably the energy 
performance of the device. 

NOMENCLATURE 

COP = Coefficient of performance 

cp = Specific heat at constant pressure, kJ·kg-1·K-1 

Ec = Specific kinetic energy, J·kg-1 

h = Specific enthalpy, J·kg-1 

m = Mass flow rate, kg·s-1 

p = Pressure, kPa 

PC = Compression power consumption, kW 

Q0 = Cooling capacity, kW 

R = Gas constant 

r = Gold flow fraction 

T = Temperature, K 

Greek Symbols 

ΔT = Temperature difference 

γ = Specific heat ratio 

Subscripts 

c = Cold flow 

in = Inlet flow 

h = Hot flow 

out = Outlet Flow 

s = Isentropic process 
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