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Abstract 

Electrospun poly(vinylidene fluoride) (PVDF) fiber mats find applications in an 

increasing number of areas, such as battery separators, filtration and detection 

membranes, due to their excellent properties. However, there are limitations due to the 

hydrophobic nature and low surface energy of PVDF. In this work, oxygen plasma 

treatment has been applied in order to modify the surface wettability of PVDF fiber 

mats and superhydrophilic PVDF electrospun membranes have been obtained. Further, 

plasma treatment does not significantly influences fiber average size (~400 ± 200 nm), 

morphology, electroactive β-phase content (~80-85%) or the degree of crystallinity (Xc 

of 42 ± 2%), allowing to maintain the excellent physical-chemical characteristics of 
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PVDF. Plasma treatment mainly induces surface chemistry modifications, such as the 

introduction of oxygen and release of fluorine atoms that significantly changes polymer 

membrane wettability by a reduction of the contact angle of the polymer fibers and an 

overall decrease of the surface tension of the membranes.  

 

Keywords: Electrospun membranes, electroactive PVDF, oxygen plasma treatment, 

surface modification, surface wettability, oxidation mechanism 

 

1. Introduction  

PVDF is a semi-crystalline polymer with strong piezoelectric properties, high 

mechanical strength, thermal stability, high electric and chemical resistance and good 

processability [1-5]. This polymer has at least four known crystalline phases (α, β, γ and 

δ), being the β phase the one with the largest piezoelectric response [3, 6]. 

PVDF has been used in various fields including tissue engineering, filtration, air 

cleaning, rechargeable batteries and sensors, among others [2, 7, 8]. In particular, 

electrospun PVDF fiber mats have attracted a large interest due to their high surface 

area, small fiber diameters and porous structure [2]. However, the high hydrophobicity, 

poor wettability and low surface energy characteristic of PVDF are major drawbacks for 

several applications [2, 7]. In order to overcome these limitations, surface modification 

by introducing specific functional groups on the surface is often used in order to tailor 

polymer wettability [2, 7, 9]. 

A wide range of surface modification methodologies have been used to modify the 

properties of materials, including surface hydrolysis, chemical grafting, self-assembly 

or plasma treatment [10, 11]. 
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Plasma treatment is one of the most extensively used techniques to modify surface 

properties of polymers [11, 12]. Gas plasma represents a reactive chemical environment 

in which different plasma-surface reactions occur [12]. 

Plasma treatment is typically used for modifying the chemical and physical surface 

properties of polymers without affecting their bulk characteristics [11]. It is thus 

commonly used to tailor surface adhesion and wetting properties by changing the 

surface chemical composition of the polymers [11]. With plasma surface modification 

and deposition it is possible to introduce functional groups, to control surface roughness 

and crosslinking, graft polymerization and thin film coating adhesion [11]. Generally, 

plasma treatment has been used to insert chemically reactive functional groups on 

polymer surface changing the surface chemical composition and to promote covalent 

immobilization of different components onto the polymer surface [2, 11]. A careful 

selection of plasma source types, time and gas are the key issues. In this sense, plasma 

treatments by oxygen, ammonia or air could generate carboxyl or amine groups on 

polymer surfaces [11]. The application of oxygen plasma on different polymer 

substrates has generated promising results on promoting cell growth owing to the 

incorporation of hydrophilic and oxygen functional groups [13]. 

Plasma treatment has been used to promote surface modifications on PVDF [7, 13-19]. 

Duca et al. [20] investigated the surface modifications of PVDF under RF Argon (Ar) 

plasma, and the results showed an improvement of the PVDF surface wettability under 

plasma exposure. The surface of PVDF can be also modified by Ar, He (helium) and O2 

(oxygen) plasma, however, oxygen plasma was not effective in decreasing the contact 

angle of PVDF sheet surface [15]. Plasma-induced free radical polymerization was used 

to modify PVDF membranes prepared by solvent casting [18] to support neural cell 

culture. 
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To the best of our knowledge, few studies exist on PVDF electrospun fiber surface 

modification by plasma in order to improve hydrophilicity. Furthermore, it has been 

demonstrated that Ar plasma-induced grafting of acrylic acid significantly improved the 

wetting behavior of electrospun PVDF nanofiber membranes [2]. 

This work reports the modification of electrospun PVDF fibers wettability by oxygen 

plasma to improve hydrophilicity of the polymeric membranes. The influence of 

different parameters such as treatment time (s), O2 flow rate (mL min-1) and the 

power (W) were studied. Furthermore, the influence of plasma treatment on fiber 

morphology, degree of crystallinity and polymer phase were evaluated, as these are also 

relevant for the different application of this electroactive material. 

 

2. Experimental Section  

2.1.  Materials 

Poly(vinylidene fluoride) (PVDF) with reference Solef 1010 was acquired from Solvay. 

Analytical grade N,N-Dimethyl Formamide (DMF) was purchased from Merck. 

 

2.2.  Electrospinning 

PVDF electrospun fibers were processed according to the previously reported method of 

Ribeiro et. al. [21]. Briefly, a 20% (w/w) solution of PVDF in DMF was prepared under 

magnetic stirring at room temperature until complete dissolution of the polymer. Then, 

the polymer solution was placed in a plastic syringe (10 mL) fitted with a steel needle 

with inner diameter of 0.5 mm. The electrospinning procedure was conducted at 20 kV 

with a high voltage power supply from Glassman (model PS/FC30P04) with a solution 

feed rate of 1 mL h-1 applied with the help of a syringe pump (from Syringepump). The 

electrospun fibers were collected in an aluminum plate. 
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2.3.  Surface modification 

Surface treatment was conducted in a plasma chamber (Plasma-Electronic PICCOLO) 

equipped with 13.56 MHz radio frequency plasma generator. Plasma treatments were 

performed under different conditions with the plasma power varying between 120 to 

600 W, the flow rate varying from 20 to 100 mL min-1and from 60 to 900 s under a total 

pressure of 20 Pa.  

 

2.4.  Characterization  

Fiber morphology was analyzed using a scanning electron microscopy (SEM, Quanta 

650, from FEI) with an accelerating voltage of 5 kV. The samples were previously 

coated with a thin gold layer using a sputter coating (Polaron, model SC502). 

Infrared measurements (FTIR) were performed at room temperature in a Bruker alpha 

apparatus in ATR mode from 4000 to 400 cm-1. FTIR spectra were collected after 

24 scans with a resolution of 4 cm-1. Differential scanning calorimetry measurements 

(DSC) were performed in a Mettler Toledo 823e apparatus using a heating rate of 

10 ºC min-1 under nitrogen purge. Wettability of the samples was determined by 

measuring the contact angle of distilled water at room temperature, using an OCA15 

Dataphysics contact angle analyzer. Six measurements were carried out for each sample 

at different places. The porosity of the PVDF fiber mats was measured by liquid 

displacement method using a pycnometer. The weight of the pycnometer filled with 

ethanol, was measured and labeled as W1; the PVDF fibers, whose weight was Ws, were 

immersed in ethanol. After the sample was saturated by ethanol, additional ethanol was 

added to complete the volume of the pycnometer. Then, the pycnometer was weighted 

and labeled as W2; the sample filled with ethanol was then taken out of the pycnometer 
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[22]. The residual weight of the ethanol and the pycnometer was labeled W3. The 

porosity of the membrane was calculated according to equation 1: 

  (1) 

 

 

The mean porosity of each membrane was obtained as the average of the values 

determined in three samples. Absolute ethanol (Merck), as a non-solvent of PVDF, was 

used as a displacement liquid since it can penetrate among the fibers not inducing 

shrinking or swelling in the fiber mat [23]. 

X-ray photoelectron spectroscopy (XPS) was performed using a Kratos AXIS Ultra 

HSA, with VISION software for data acquisition and CASAXPS software for data 

analysis in order to evaluate the surface elemental composition and atomic 

concentration of the samples. The analysis was carried out with a monochromatic Al Kα 

X-ray source (1486.7 eV), operating at 15 kV (90 W), in FAT mode (Fixed Analyser 

Transmission), with a pass energy of 40 eV for regions ROI and 80 eV for survey. Data 

acquisition was performed with a pressure lower than 1×10-6 Pa, and it was used a 

charge neutralization system. The effect of the electric charge was corrected by the 

reference of the carbon peak (284.6 eV). All binding energies (BEs) were referenced to 

the C1s hydrocarbon peak at 286.4 eV. Spectra were analyzed using the XPSPEAK 

software (version 4.1). Curve fitting of the high resolution spectra used 30% 

Gaussian/70% Lorentzian mixed line shapes for each component. 

 

3. Results and Discussion 

3.1.  Effect of plasma treatment on PVDF fiber morphology 

Pristine PVDF electrospun fibers were electrospun into a highly porous non-woven 

mesh with interconnected pores and smooth fiber surface: no beads were observed in 
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the fiber mats (Figure 1a). PVDF membrane porosity was estimated using the 

pycnometer method and an overall membrane porosity of 79 ± 4 % was obtained. 

The effect of the different plasma treatments on PVDF fiber morphology was assessed 

by SEM. The influence of plasma power was investigated by keeping constant a rich 

oxygen atmosphere of 120 mL min-1 during 120 s. The SEM pictures of Figure 1 show 

the effect of the applied plasma power on the size of the electrospun fibrils, as well as a 

histogram of the fiber diameter. 

The fiber roughness increased with increasing plasma power (Figure 1). Small “bumps” 

appeared on the fibrils surface leading to some eventual fiber joining, especially for the 

highest plasma power (Figure 1) which probably is related to surface polymer melting 

due to the high energy supplied by the plasma source. In spite of the mentioned, fiber 

surface effects the overall appearance of fiber meshes are similar to that of the pristine 

ones. Furthermore, no complete fiber melting was detected after plasma treatments, the 

membranes showing still open spaces between fibers. 

The effect of plasma exposure time and oxygen flow rate for a fixed plasma power was 

also characterized and the variations in fiber morphology are similar to the ones 

observed after plasma power variation. The influence of different plasma parameters on 

fiber mean diameter was determined (Figure 2). Pristine polymer mats present a mean 

fiber diameter of ~400 ± 200 nm both before and after plasma treatment (Figure 2), 

indicating that the plasma treatment induce physical-chemical variations on the fiber 

surface, without variations of the bulk properties. 
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3.2.  Surface chemical characterization and phase content 

In order to evaluate the influence of plasma treatment in the chemical surface of PVDF 

and on the electroactive β phase content, FTIR-ATR of non-treated and plasma treated 

polymer fiber mats were measured (Figure 3). 

PVDF chemical structure is composed by the repetition unit -CH2-CF2- along the 

polymer chain and the characteristic vibrational modes can be used to identify the 

presence of different polymorphs [6]. Figure 3 shows the infrared spectra of the pristine 

sample and the plasma treated ones after different applied powers. The results are 

representative of the FTIR spectra obtained for the samples prepared with different O2 

flow rates and different exposure time to plasma treatment. Neither modes are totally 

suppressed nor do new ones appear due to the change of the plasma processing 

parameters, compared to the pristine fiber mats. The characteristic absorption modes for 

the α-phase (855, 795 and 766 cm−1) and the β-phase (840 cm−1) are detected (Figure 3) 

and no traces of the γ-phase (776, 812, 833 - 838 and 1234 cm−1 modes) appears [6, 21]. 

The electrospinning method favors the formation of PVDF fibers crystallized in the 

electroactive β-phase [6, 21], due to the fact of being a low temperature solvent casting 

process. Moreover, the use of higher electric fields during processing contribute to 

dipole alignment and consequently to electrical poling of the PVDF fibers [24], leading 

to high responsive piezoelectric fibers. The quantification of the β-phase content of the 

electrospun samples can be performed from the FTIR spectra applying (equation 2) and 

following the procedure explained in [6, 21]: 

 
(2) 

where F(β) represents the β-phase content, Kα and Kβ the absorption coefficient for each 

phase and Aα and Aβ the absorbance at 766 and 840 cm-1, respectively. The absorption 
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coefficient value is 7.7 × 104 cm2 mol-1 and 6.1 × 104 cm2 mol-1 for Kβ and Kα, 

respectively [25]. 

It was observed that increasing the applied plasma power leads to a decrease of the 

electroactive β-phase (Figure 3b) while the O2 flow rate and plasma treatment time have 

no significant effect on the β-phase content present in the samples (Figure 3c and 3d). 

The decrease of the β-phase content with the increase of the applied plasma power can 

be related to local sample temperature increase during surface plasma treatment, leading 

to β to α-phase transformation [26]. This phase transformation has been reported to take 

place at temperatures above 70 ºC in PVDF and has been related to the increase of 

cooperative segmental motions within the crystalline fraction [27]. It is to notice, 

nevertheless, that this decrease of ~20% of the β-phase content does not represent a 

significant reduction of the electroactive performance of the material. Gomes et al. [28] 

reported that the piezoelectric coefficient is proportional to the amount of oriented 

dipoles, and therefore the number of β-phase present in PVDF films influence the 

piezoelectric response of the material. Typically, the decrease of the β-phase content 

promoted by plasma treatment is equivalent to a reduction of ~20% in the piezoelectric 

coefficient, from 34 down to 28 pC N-1. 

 

3.3.  Thermal characterization 

Differential scanning calorimetry (DSC) measurements were performed in order to 

detect possible modifications in thermal stability and melting behavior. DSC data reveal 

that all plasma treated fiber mats showed a similar trend, regardless the plasma 

treatment condition, with a broader melting transition (Figure 4) than in the non-treated 

samples.  
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FTIR results probe the coexistence of both α and β-crystalline phases among the 

sample, which suggests that the broad melting peak corresponds to the melting of both 

phases, which is clearly observed for the sample with higher amount of α-phase (sample 

treated at 480 W plasma power, Figure 3b). Nevertheless, these kind of results have to 

be considered with care since DSC heating curves recorded at low heating rates can 

present more than one endotherm due to the recrystallization taking place during the 

scan itself after first melting and also a distribution of crystal sizes could produce the 

same effect [29]. The degree of crystallinity (Xc) of the samples was determined from 

the DSC thermograms using equation 3 [21]: 

                                                   (3) 

 

where ΔH is the melting enthalpy of the sample; ΔHα and ΔHβ are the melting enthalpies 

of a 100 % crystalline sample in the α and β phase and the x and y the amount of the α 

and β phase present in the sample, respectively. In this study, the value of 93.07 J g-1 

and 103.4 J g-1 were used for ΔHα and ΔHβ, respectively [21]. 

Comparing pristine electrospun samples with plasma modified ones, no significant 

changes were detected in the degree of crystallinity, independently of the plasma 

treatment conditions and a crystalline fraction of 42 ± 2% was obtained for all samples, 

in accordance to other studies with electrospun mats [21, 30]. 

 

3.4.  Surface wettability 

Figure 5 shows the variation of the contact angle of the plasma modified PVDF fibers as 

a function of different applied plasma power. The surface water contact angle of the 

non-modified fibers is 134 ± 6º being in agreement with the strong hydrophobicity of 
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PVDF materials [2]. Changes in water contact angle were observed when the applied 

plasma power is applied. In particular, for plasma powers above 360 W, the surface 

contact angle cannot be measured as the water drop is rapidly absorbed by the 

membrane, indicating a superhydrophilic behavior (Figure 5a). 

The influence of oxygen plasma treatment and oxygen flow rate on the surface 

wettability of PVDF fibers are also studied (results not shown). Treatment times 

between 60 and 900 s and flow rates between 40 and 200 mL min-1 at a plasma power 

≥360 W leaded to PVDF membranes with superhydrophilic behavior, and the water 

drop when in contact with PVDF surface almost immediately absorbed by the 

membrane. 

In order to obtain the optimal values for improving the hydrophilicity of the PVDF 

membranes at an applied power of 360 W (minimum power applied that improves 

hydrophilicity of electrospun PVDF membranes), the treatment time and oxygen flow 

rate parameters were studied. The results allowed to conclude that for treatment times 

and oxygen flow rate below 120 s (Figure 5b) and 60 mL min-1, respectively, the plasma 

did not induce the hydrophilicity of the PVDF membranes. The optimal values to obtain 

hydrophilic membranes are summarized in Table 1. 

The literature data show that oxygen plasma treatment reduces contact angle up to 20º, 

depending on the plasma conditions [7, 13, 15]. In the present case, the fact of obtaining 

hydrophilic membranes is associated to the variation of the contact angle of the polymer 

and the capillarity of the membranes. Reduction of the polymer fiber contact angles, as 

observed in the polymer films [7, 13, 15] lead to an associated variation of the surface 

tension of the membrane, leading thus to a penetration of the water drop in the 

membrane and the consequent hydrophilic behavior. 
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3.5.  Chemical composition of electrospun PVDF fibers surface  

Plasma treatment typically leads to degradation of the polymer surface. The degradation 

process is accompanied by cleavage of molecular chains and by the formation of free 

radicals that activate the surface and double bonds that will react forming new oxygen 

structures [31].  

In order to obtain quantitative information about the elemental composition of the non-

modified and modified PVDF membranes, XPS analysis was performed. Figure 6 

shows the XPS results of PVDF surface elemental compositions at different applied 

plasma powers. Carbon, fluorine and oxygen were detected in the samples (Figure 6). 

The atomic surface composition for the PVDF surfaces was evaluated from C1s, F1s 

and O1s scanning spectra. Figure 6b shows typical C1s spectra for the non-modified 

and modified PVDF fibers with oxygen plasma. Deconvolution of Figure 6b was 

performed to show the individual components of the C1s peak (Supplementary 

information, Figure A1). It is observed that the PVDF fibers showed two main C1s 

peaks at 291.4 eV assigned (Supplementary information, Table A1) to CF2 groups and 

at 286.4 eV due to CH2 component. Plasma treated fibers also show a peak with bending 

energy of about 285.0 eV attributed do C-C group (Figure 6b). The F1s peak at 688 eV 

is assigned to C-F bond. Plasma treated fibers shows an O1s peak at 533 eV assigned to 

C-O bond (Figure 6c). These changes indicates that oxygen plasma exposure promotes 

defluorination and oxidation reactions by the incorporation of oxygen onto the polymer 

fiber surface. Table 2 summarizes the XPS analysis for the F/C and O/C atom ratios for 

non-modified and treated PVDF fiber membranes. Though, surface of non-modified 

PVDF fibers is composed of carbon (51.3 %), and fluorine atoms (48.3%).  
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The presence of a quite small oxygen amount (0.35 %) may arise from the exposure of 

the PVDF fibers to the air or due to solvent contaminants [19]. Nevertheless, modified 

polymer fibers reflected clear alterations in its surface elemental compositions. The 

signal corresponding to F being higher on the non-modified fibers than in plasma 

modified fibers plasma treatment leads to a substantial decrease on fluorine content and 

an increases in oxygen content as a result of the presence of carboxyl groups in the 

surface of the fibers generated by the O2 plasma treatment [32]. The oxygen to carbon 

ratio (O/C) increases from 0.007 to approximately 0.1 while fluorine to carbon ratio 

(F/C) decreases from 0.54 to approximately 0.21. Results indicate the success of the 

plasma activation in the surface of PVDF fibers.  

It is reported that oxygen plasma surface modification enriches the surface with oxygen 

species [33]. The surface modifications of PVDF fibers after the plasma treatment, 

leading to an overall increase of membrane hydrophilicity, are explained by the 

cleavage of C-F and C-H hydrophobic groups followed by the formation of C=O, OH 

and COOH hydrophilic groups on PVDF fibers surface during the interaction between 

the plasma and the samples. Plasma environments have neutral species, energetic ions, 

photons and electrons that interact with the polymer causing chemical and physical 

modifications in the polymer surface and not on the polymer bulk properties. 

Particularly, the electrons present in plasma have sufficiently high kinetic energy to 

break the covalent bonds, inducing chemical reactions that will change the polarity of 

the surface [34]. Fluorinated polymers like PVDF are known to be resistant to oxygen 

species attack that difficult the abstraction of fluorine atoms. However, the results 
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showed that oxygen atoms are detected in PVDF fibers, indicating that some oxidation 

reactions occurs in the PVDF fibers after oxygen plasma treatment [15, 35]. This can be 

explained by the possible recombination of fluorine with carbon radicals. It is known 

that the stability of the gas product is an important factor in the modification process 

than bond energy [15]. Figure 7 demonstrates the possible modifications that occur on 

PVDF surface by oxygen plasma treatment. During the plasma treatment radicals are 

formed primarily by the scission of carbon-hydrogen bond (C-H), due to the strength of 

the C-H (410 kJ mol-1) bond when compared to the C-F bond (460 kJ mol-1), into the 

polymer surface which can react with the atmospheric oxygen after plasma treatment 

forming hydroperoxides. These compounds can thermally decompose producing 

secondary radicals that subsequently are able to react with the air exposure. As it is 

possible to observe in Figure 6 and Table 3, the fluorine content decreases when the 

plasma modification occurs. In this sense, the step 1 present in Figure 7 occurs 

predominantly originating newly formed C-O and C=O groups. The later was not 

observed in the XPS results indicating that, if formed, it would be a residual product 

[35]. 

 

4. Conclusions 

Oxygen plasma treatment has been applied in order to modify the wettability of PVDF 

membranes. It was observed that plasma treatment does not produce significant 

variation in average diameter, being ~400 ± 200 nm thus being independent of plasma 

processing parameters. However, an increase in plasma power increases fiber roughness 

and small bumps appear on fiber surface leading to some eventual fiber joining without 

change membrane overall porosity. Increase plasma power leads to a decrease of the 

electroactive β-phase from ~85 to 70% ,O2 flow rate and plasma treatment time having 
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no influence on β-phase content of the polymer fiber mats. Also no significant changes 

were detected on degree of crystallinity, independently of the plasma treatment 

conditions, being ~ 42 ± 2%. 

The plasma treatment showed to be effective to change polymer membrane wettability 

turning the neat hydrophobic membranes into superhydrophilic ones. This effect is 

attributed to the introduction of oxygen compounds and a decrease of fluorine content 

onto the polymer fibers surface and a mechanism is proposed. This fact leads to a 

reduction of the contact angle of the polymer fibers and an overall decrease of the 

surface tension of the membranes, which in turn improves capillarity and water 

absorption of the membrane. PVDF superhydrophilic surfaces can be achieved applying 

a plasma power bellow 360 W for a treatment time of 120 s and a flow rate of 

120 mL min-1.  
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Figures and Figure Captions 

 

 

Figure 1. SEM images of electrospun PVDF fibers: a) without treatment and treated 

with O2 plasma as a function of the applied power: b) 240 W, c) 360 W and d) 480 W 

for 120 s using a constant O2 flow rate of 120 mL min-1. 



 

 

 

 

Figure 2. Influence of different plasma treatment parameters in PVDF average fiber 

diameter: a) plasma power (t=120 s; O2 flow rate of 120 mL min-1); b) O2 flow rate 

(t=120 s and power of 480 W) and c) time (power of 480 W; O2 flow rate of 120 mL 

min-1).  
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Figure 3. a) FTIR-ATR spectra of non-modified and plasma modified fiber at different 

plasma power applied for 120 s at a O2 flow rate of 120 mL min-1; b) and d) variation of 

β-phase content with the applied plasma power, c) O2 flow rate and d) treatment time. 



 

 

 

 

Figure 4. DSC curves for the electrospun PVDF non-modified and oxygen plasma 

modified fibers at a plasma power applied of 480 W for 120 s and a O2 flow rate of 

120 mL min-1. 



    

 - 5 - 

 

 

  

 

Figure 5. Influence of the (a) oxygen plasma power in the contact angle of PVDF fiber 

membranes with a treatment time of 120 s and an O2 flow rate of 120 mL min-1 and b) 

influence of the treatment time at an applied plasma power of 360 W and O2 flow rate of 

120 mL min-1. The bars in the graph are the standard deviation of the contact angle 

distribution. 



 

 

 

 

Figure 6. XPS results of non-modified PVDF fibers and oxygen plasma treated fibers 

for 120 s with an O2 flow rate of 120 mL min-1: a) XPS scans b) C1s scan spectra, c) 

F1s spectra and d) O1s spectra. 
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Figure 7. Schematic representation of O2 plasma treatment on electrospun PVDF fibers. 

Plasma introduces free radicals which can react with oxygen. 
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Tables and table caption 

 

Table 1. Optimal values of plasma parameters in order to obtain hydrophilic 

membranes. 

Plasma parameter Optimal value 

Treatment time (s) 120 

Flow rate (mL min-1) 120 

Power (W) 360 

 

 

Table 2. Surface chemical composition of pristine PVDF fibers and O2 plasma treated 

fibers at different applied plasma powers. 

 Elemental composition (%)  

Surface C O F O/C F/C 

Pristine fibers 51.30 0.35 48.30 0.01 0.94 

Plasma treated fibers      

240 W 56.70 5.20 38.10 0.09 0.67 

360 W 53.60 5.80 40.60 0.11 0.76 

480 W 52.80 6.80 40.40 0.13 0.77 
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Influence of plasma treatment parameters on PVDF electrospun fiber 

mats wettability  
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Figure A1. C1s scan spectra of (a) untreated fibers and (b) O2 flow of 120 mL min-1, 

treatment time of 120 s and a power of 480 W. 

 

 

Table A1. C 1s, F 1s and O 1s components of non-modified electrospun PVDF fibers 

and oxygen plasma modified fibers [7]. 

Peak Binding energy (eV) Chemical function 

C 1s 285 C-C 

C 1s 286 C-H 

C 1s 291 C-F 

O 1s 533 C-O 

F 1s 688 C-F 

 


