

Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

Integration of “JSONForms” with the

OpenAPI Specification

Trabajo Fin de Grado

Grado en Ingeniería Informática

Autor: Héctor Fornes Gabaldón

Tutor: Francisco Daniel Muñoz Escoí

Curso 2015-2016

Integration of “JSONForms” with the OpenAPI Specification

2

3

Abstract
The goal of this thesis is the integration of JSONForms with the OpenAPI Specification to

automatically create web UIs that communicate with REST services.

JSONForms is an AngularJS framework which allows describing web form-based UIs in a

declarative way (using JSON and JSON Schema) rather than coding them manually with

HTML.

This project adds to JSONForms the capability to communicate with the backend, automatically

deriving all the needed widgets from an OpenAPI definition.

Keywords : JSONForms, OpenAPI Specification, backend.

Resumen
El objetivo de este Trabajo de Fin de Grado es la integración de JSONForms con la OpenAPI

Specification, para crear automáticamente interfaces de usuario web capaces de comunicarse

con servicios REST.

JSONForms es una librería para AngularJS que permite describir interfaces de usuario web

basadas en formularios de forma declarativa (utilizando JSON y JSON Schema), en lugar de

programándolas manualmente con HTML.

Este proyecto añade a JSONForms la capacidad de comunicarse con un servidor, derivando de

forma automática todos los “widgets” necesarios a partir de una definición OpenAPI.

Palabras clave : JSONForms, OpenAPI Specification, servidor.

Integration of “JSONForms” with the OpenAPI Specification

4

5

Table of contents

1. Introduction ... 9

2. General concepts .. 13

3. Related work .. 15

3.1. Specification formats for REST APIs ... 195

3.2. Declarative form-based UIs generators .. 195

3.3. UI generators based on an OpenAPI definition ... 196

4. Applicability .. 17

5. Requirements ... 19

5.1. Elicitation .. 19

5.2. Analysis ... 31

6. Design .. 33

6.1. Architecture .. 33

6.2. Technologies ... 33

6.3. Design patterns ... 34

7. Implementation ... 37

7.1. From the OpenAPI definition to the application model .. 37

7.2. From the application model to the JSONForms schemas .. 43

8. Acquired competences ..47

9. Conclusions ... 49

Integration of “JSONForms” with the OpenAPI Specification

6

7

Table of figures

Figure 1: Use case diagram .. 29

Figure 2: “Sidebar” mockup ... 30

Figure 3: “Single-action” mockup .. 30

Figure 4: “Views” mockup .. 31

Figure 5: Model class diagram ..32

Figure 6: Extended model class diagram ..32

Figure 7: System architecture ..33

Figure 8: Dependency Injection ... 35

Figure 9: Model class diagram .. 37

Figure 10: Resulting model .. 43

Figure 11: Query and response sections .. 43

Figure 12: Model of operation “get - /pet/{petId}” .. 44

Integration of “JSONForms” with the OpenAPI Specification

8

9

1. Introduction

There exist different theories about the origin of the language, but they all agree on one

thing: the emergence of language was a revolution for the humanity. Communication

allowed the creation of increasingly complex societies, and was an ideal tool for the

thought and the knowledge transmission. With the emergence of the agriculture and

the first commercial exchanges, oral language started to show some limitations. It was

necessary to gather some information, structure and store it so that it was possible to

access it again. That’s how writing was invented.

Since then, many improvements have appeared, such as the invention of the ink, the

paper or the printing. But it has been in the last 100 years when our way of treating and

processing the information has radically changed. Computers, mobile devices and the

Internet have led to the Information Age [1], in which virtually everything is digitalized

and open to everybody.

One of the examples of this digitization, and getting closer to the topic of this thesis, are

forms. A form is simply a document in which a user must introduce some data in a

structured way. They first appeared in the 19th century to simplify the task of drafting

legal documents or gathering technical data in the factories [2]. And if before all of

them were in paper, now it’s the digital format which predominates. Applications for

booking hotel rooms or others of business administration, just to say some, virtually all

the applications need forms.

However, programming forms is not that easy, as it entails certain difficulties:

 There exist relations and dependencies among different fields.

 Some of the introduced data needs validation.

 They are subject to continuous changes in their structure and design.

In order to solve these and other problems, some libraries and frameworks have been

appearing over the years, easing and speeding the process of creating form-based user

interfaces.

This is the case of JSONForms [3], an AngularJS framework developed by

EclipseSource München, the enterprise where I have spent my internship for the last

semester. JSONForms allows the creation of web forms by defining them in a

declarative way, using JSON and JSON Schema. Basically, the web developer includes

the JSONForms directive in the HTML code, and supplies it with 3 schemas:

 The Data Schema, which represents the model of the form. This model is a

definition of the different fields of the form: name, type, format, possible values,

etc.

 The UI Schema, which describes the UI of the form, i.e. the layout structure and

the position of the different fields.

Integration of “JSONForms” with the OpenAPI Specification

10

 The actual data object, which contains the information with which the form will

be filled.

From these schemas, JSONForms is capable of generating the needed HTML code and

actually rendering a fully functional and nice-looking web form. JSONForms also has

other interesting features as data-binding, input validation and rule-based visibility. It

can also be extended with custom widgets and styles.

Until now, we have analysed how the Information Age has changed the process of

information gathering, focusing our attention in web forms. However, it has also

brought a revolution to many other aspects, like information storage and sharing.

When Internet was invented [4], it only consisted of a couple of computers located in

different universities and sharing pieces of scientific researches. But now it contains

billions of web pages, and it’s used by millions of users daily. This incredible growth has

been possible due to many reasons. One of them has special interest for this thesis: the

global adoption of common standards and protocols defining the functioning of the

Internet. This allowed the connection of different kinds of machines, as well as the

exchange of all types of data. Some examples of these protocols are IP, TCP, DNS,

HTTP, etc.

Another example, and introducing one of the main topics of this thesis, is REST [5].

REST has become the software architectural style of the World Wide Web, overcoming

other approaches like SOAP or RPC. This is due to many reasons: it was designed to

work with HTTP seamlessly, it makes web services simpler to design and more scalable,

etc. Web servers need application programming interfaces to the different resources

and services they offer. In RESTful services [6], these APIs basically consist in a set of

HTTP requests and their associated responses.

However, RESTful APIs used to be described in heterogeneous ways, which

complicated their understanding by potential consumers and incremented the amount

of implementation logic needed to interact with different services. In order to solve

these problems and standardize the process of defining RESTful APIs, some proposals

emerged. The most popular one is the “OpenAPI Specification” [7].

So now that JSONForms and the OpenAPI Specification have been introduced and put

into context, it’s time to state the purpose of this thesis: build a web application that,

given the OpenAPI definition of a web service, automatically creates a web UI which

allows a user to interact with the resources of that service and to understand its

different capabilities. JSONForms is used to create those UIs. From now on, we will

refer to this application as “jsonforms-swagger”. The idea behind it and its main

requirements were conceived at EclipseSource München.

In this thesis we describe the whole process of building jsonforms-swagger, as well as

we discuss the different challenges and problems experienced during that process. The

specific sections in which the rest of this document is structured are:

 General concepts: overview of the main ideas and the basic notions analysed in

this thesis.

11

 Related work: list of other RESTful APIs definition approaches and other

declarative form-based UIs generators. Brief description of the most interesting

ones.

 Applicability: possible uses and benefits of jsonforms-swagger

 Requirements: description of the process from the conceptual idea of the

application to the formal model of all its functional and non-functional

requirements.

 Design: discussion of the chosen system architecture and technologies, as well

as the list of used design patterns

 Implementation: analysis of the different implementation tasks, together with

their problems and challenges.

 Acquired competences: description of the knowledge and competences acquired

during the development of jsonforms-swagger.

 Conclusions: short review of the main topics covered in the previous sections,

objectives achieved and what can be done in the future.

Integration of “JSONForms” with the OpenAPI Specification

12

13

2. General concepts

This section discusses the general concepts that will be useful for the project. They

should be fully understood before reading on.

Angular

Angular [8] is a development platform for building mobile and desktop web

applications. It includes features like two-way data binding, dependency injection and

dynamic templates.

Typescript

Typescript [9] is a superset of Javascript based on the concepts of Object Oriented

Programming. Its main feature is the introduction of types. It gets compiled to

Javascript by the build tool.

JSON Schema

JSON Schema [10] is a JSON based format for defining the structure of JSON data.

JSON Schema provides a contract for what JSON data is required for a given

application and how to interact with it. JSON Schema is intended to define validation,

documentation, hyperlink navigation, and interaction control of JSON data.

JSONForms

JSONForms [3] is a web framework based on Angular that generates fully functional

web forms from JSON definitions. Some of its extra features are conditional rendering

based on rules and data validation.

REST

REST [5] stands for Representational State Transfer. It’s an architectural pattern

widely used in the web, as it establishes a lightweight connection (generally based on

HTTP) between the server and the clients.

OpenAPI Specification / Swagger

The OpenAPI Specification [7] is an emerging standard that describes REST APIs. Its

goal is to allow both humans and machines to understand web services without needing

access to its source code.

Integration of “JSONForms” with the OpenAPI Specification

14

15

3. Related work

3.1. Specification formats for REST APIs

There exist other specification formats for defining REST APIs apart from the OpenAPI

Specification. They all share a similar idea and structure, but differ in some syntax

details and in their level of adoption.

The most popular alternative to the OpenAPI Specification is RAML (RESTful API

Modeling Language) [11]. Its definitions are written in YAML, a more human-readable

language that extends JSON. This format makes it easier to represent the hierarchy of

the operations and to reuse some parts of the code. It also has some interesting tooling:

automatic documentation generator, online editor, code generator for Java and HTTP,

etc. However, the OpenAPI Specification has even more support and tooling, because it

was the format chosen by the Linux Foundation.

Other alternative is API Blueprint [12]. Its main difference is that it uses Markdown as

its specification language, which makes it easier to learn and to understand. However,

its level of adoption is low, so it lacks a lot of tooling and more community support.

3.2. Declarative form-based UIs generators

JSONForms is not the only solution trying to simplify the process of coding forms.

There exist more frameworks that use declarative languages for defining the model and

the layout of the forms.

The first solution to be analysed is EMF Forms [13], also developed by EclipseSource.

JSONForms principles and features are based on EMF Forms. But while EMF Forms is

designed for building desktop UIs, JSONForms is basically an adaptation for the web.

The main difference between them is the language used to describe the model. As its

name suggests, EMF Forms uses Ecore (the metamodel of Eclipse Modeling

Framework) instead of JSON. The level of adoption, tooling and support of EMF Forms

is much higher, as JSONForms is a relatively new project and a derivation from the first

one.

In the field of web development, and with a very similar approach and name, there is

JSON Form [14]. In this case, it’s a general Javascript client-side library, unlike

JSONForms which is specific for Angular. Other difference is that JSON Form defines

the model and the layout of the form in the same schema, while JSONForms uses two

separated schemas. JSON Form has more available widgets, like for example submit

buttons. A downside is that it’s more difficult to extend and customize, as JSONForms

was designed specifically with this purpose in mind.

Integration of “JSONForms” with the OpenAPI Specification

16

3.3. UIs generators based on an OpenAPI definition

The most similar solution to jsonforms-swagger is Swagger UI [15]. It’s a project from

the same developers which created the OpenAPI Specification. It has the same main

functionality than jsonforms-swagger: automatically generate a UI which represents an

OpenAPI definition and is capable of communicating with its associated REST service.

Part of the UI decisions of jsonforms-swagger are based on the style of the UIs

generated by Swagger UI. For example, the idea of using a sandbox for showing and

hiding the details of a specific entity type.

However, jsonforms-swagger introduces some additional features:

 It supports the customization of the generated UI, allowing the user to choose

which operations to show and how to group them. Swagger UI just includes all

the operations listed in the OpenAPI definition, what can be a problem for really

big definitions with hundreds of operations.

 Besides that, jsonforms-swagger includes a sidebar for better organizing the UI,

letting more available space for the interaction with the generated forms.

17

4. Applicability

This section provides a list of the possible uses and the main benefits offered by

jsonforms-swagger.

The main feature of jsonforms-swagger is that it provides a visual representation of the

OpenAPI definition of a RESTful service. In this way, a potential consumer of that

service can understand what it offers and how to use it much more easily than reading a

JSON file.

Jsonforms-swagger also allows the interaction with the different endpoints and

resources of a backend, through its defined operations. Thanks to this functionality, a

user can consume the services offered by the backend in a simple way. And this can be

also useful for the backend maintainer. He can test the consistency of the actual

implementation of the backend with its OpenAPI definition, which might not be up-to-

date.

Another feature of jsonforms-swagger is that it generates a UI based on an OpenAPI

definition automatically, and then it allows to customize this UI. This implies some

benefits for web developers. A developer can choose which operations to show and how

to group them, and then include the generated UI in his web site. Also, as the UI is

automatically generated and it’s totally functional, the developer saves a lot of

implementation time and effort.

Integration of “JSONForms” with the OpenAPI Specification

18

19

5. Requirements

5.1. Elicitation

In the first stages of the development process, I had some meetings with my supervisor

in EclipseSource München in which we discussed the purpose and the requirements of

the application using scenarios, use cases and mockups.

Scenarios

After discussing some possible usage scenarios of the application, we agreed on having

two different actors:

 User: simply uses the application to interact with a backend through a form.

 Developer: wants to generate a custom form-based UI capable to interact with

an OpenAPI backend.

In order to give form to the idea of the application, we used as a basis the “Swagger UI”

demo (http://petstore.swagger.io/). It basically consists in a client which interacts with

a simulated pet store backend. The next scenarios are based on the same “pet store”

example too, and they illustrate how the actors described previously would use the

application:

Scenario name changePetName

Participating actor

instances

John: User

Flow of events 1. John is using a jsonforms-swagger instance that interacts

with a pet store backend. He wants to change the name of a

pet with a known id.

2. He finds the pet with that id, and its information is

received from the backend and shown in a form.

3. He changes the name of the pet and the information is

stored back to the backend.

http://petstore.swagger.io/

Integration of “JSONForms” with the OpenAPI Specification

20

Scenario name generateViewForUpdatingPets

Participating

actor instances

Bob: Developer

Flow of events 1. Bob is developing a web application which needs to

communicate with the backend of a pet store.

2. He introduces the API url of that backend in jsonforms-

swagger, and some actions and their respective forms are

automatically generated.

3. He wants to add an action for updating pets which has not

been automatically generated. So he enters the name of the

action and selects the corresponding API operation.

4. He gets a form UI capable of updating pets, and ready to be

used by his web application users.

It’s worth to say that these scenarios were not only used conceptually, but they have

been actually implemented in jsonforms-swagger.

21

Use cases

The next use cases are an abstraction of the previous scenarios examples. Each of them

describe a class of similar scenarios:

Use case name CreateEntity

Participating

actors

Initiated by User

Flow of events 1. The User selects a “create” action within an entity type.

2. jsonforms-swagger presents to the User a form with all

needed fields to create an entity.

3. The User completes the form and clicks on “Create”.

4. jsonforms-swagger sends the information to the

backend and notifies the User if the operation has been

successful or not.

Integration of “JSONForms” with the OpenAPI Specification

22

Use case

name

UpdateEntity

Participating

actors

Initiated by User

Flow of

events

1. The User selects an “update” action within an entity type.

Alternatively, the User performs the “FindEntity” use case

2. jsonforms-swagger presents to the User a form with all

needed fields to update an entity. If the User performed

the “FindEntity” use case, the form will already contain

the information of the found entity.

3. The User completes / changes the required / desired fields of

the form and clicks on “Update”.

4. jsonforms-swagger sends the information to the

backend and notifies the User if the operation has been

successful or not.

23

Use case

name

DeleteEntity

Participating

actors

Initiated by User

Flow of

events

1. The User selects a “delete” action within an entity type.

Alternatively, the User performs the “FindEntity” use case

2. jsonforms-swagger presents to the User a form with all

needed fields to delete an entity. If the User performed

the “FindEntity” use case, the form will already contain

the information of the found entity.

3. The User completes the required fields of the form and clicks on

“Delete”.

4. jsonforms-swagger sends the information to the

backend and notifies the User if the operation has been

successful or not.

Integration of “JSONForms” with the OpenAPI Specification

24

Use case

name

FindEntity

Participating

actors

Initiated by User

Flow of

events

1. The User selects a “find” action within an entity type.

2. jsonforms-swagger presents to the User a form with all

needed fields to find an entity.

3. The User completes the required fields of the form and clicks on

“Find”.

4. jsonforms-swagger sends the information to the

backend and presents another form with the

information of the found entity. If more than one

entities have been found, jsonforms-swagger presents

them in a table, so the user can select one of them.

Use case

name

CreateProject

Participating

actors

Initiated by Developer

Flow of

events

1. The Developer clicks on the button “Create Project” and inserts

a name and the API url.

2. jsonforms-swagger creates a project with the inserted

name. jsonforms-swagger also gets an API specification

from the inserted url and generates some entity types,

actions and operations based on it.

25

Use case name EditProject

Participating

actors

Initiated by Developer

Flow of events 1. The Developer selects a project among the existing projects.

2. jsonforms-swagger present to the Developer the

different entity types of the selected project, and a

button to export it.

Use case name AddEntityType

Participating

actors

Initiated by Developer

Flow of events 1. The Developer performs the “EditProject” use case. He clicks

on the button “Add Entity Type” and inserts a name.

2. jsonforms-swagger adds an entity type with the

inserted name to the project.

Integration of “JSONForms” with the OpenAPI Specification

26

Use case

name

EditEntityType

Participating

actors

Initiated by Developer

Flow of events 1. The Developer performs the “EditProject” use case. He selects

an entity type.

2. jsonforms-swagger presents to the Developer the

different actions and the properties of the selected

entity type, and a button to add new actions.

3. The Developer changes the desired properties.

4. jsonforms-swagger saves the changes and

acknowledges the Developer.

Use case name AddAction

Participating

actors

Initiated by Developer

Flow of events 1. The Developer performs the “EditEntityType” use case. He

clicks on the button “Add Action” and inserts a name.

2. jsonforms-swagger adds an action with the inserted

name to the selected entity type.

27

Use case

name

EditAction

Participating

actors

Initiated by Developer

Flow of events 1. The Developer performs the “EditEntityType” use case. He

selects an action within the selected entity type.

2. jsonforms-swagger presents to the Developer the

different operations and the properties of the selected

action, and a button to add new operations.

3. The Developer changes the desired properties.

4. jsonforms-swagger saves the changes and

acknowledges the Developer.

Use case

name

AddOperation

Participating

actors

Initiated by Developer

Flow of

events

1. The Developer performs the “EditAction” use case. He clicks on

the button “Add Operation” and selects one from the list.

Alternatively, he can drag&drop an operation to the selected

action container.

2. jsonforms-swagger adds the operation to the selected

action.

Integration of “JSONForms” with the OpenAPI Specification

28

Use case name EditOperation

Participating

actors

Initiated by Developer

Flow of events 1. The Developer performs the “EditAction” use case. He selects

an operation within the selected action.

2. jsonforms-swagger presents to the Developer the

different the properties of the selected operation.

3. The Developer changes the desired properties.

4. jsonforms-swagger saves the changes and

acknowledges the Developer.

Use case name ExportProject

Participating

actors

Initiated by Developer

Flow of events 1. The Developer performs the “EditProject” use case. He clicks

on the button “Export Project”.

2. jsonforms-swagger generates the information to

reproduce the shown forms, so it can be embedded in

an existing application.

29

The next use case diagram includes all previous use cases and presents a whole picture

of the system:

Figure 1: Use case diagram

Mockups

In order to validate if my view of the system was the same than my supervisor’s view of

the system, I created some mockups representing the functionality of the application. I

created different alternatives with different UI structures. Then I showed them to my

supervisors, and I made some measurements while they were testing the different

mockups. These tests helped to identify omissions and misunderstandings in the

requirements list, as well as to choose between the different UI alternatives.

Here are the different alternatives with their respective mockups:

Integration of “JSONForms” with the OpenAPI Specification

30

 “Sidebar” alternative. The user can navigate between actions using the sidebar

on the left. Actions are grouped in dropdowns, and the selected action is

highlighted.

Figure 2: “Sidebar” mockup

 “Single-action” alternative. It’s similar to the “sidebar” alternative, because it

also contains a sidebar on the left. However, the main difference is that it mixes

all actions in a single one by adding more buttons to the response section on the

bottom. The user gets the whole picture of the application in a single view, but it

can be more confusing.

Figure 3: “Single-action” mockup

31

 “Views” alternative. Instead of using a sidebar, this alternative uses different

fullscreen views and offers a breadcrumb to navigate between them. There is

more space for showing the forms, but navigation can be harder.

Figure 4: “Views” mockup

After analysing the tests results and the feedback of the different supervisors, we agreed

on implementing the “sidebar” alternative, which turned out to be more usable and less

confusing than the other two.

5.2. Analysis

The version 2.0 of the OpenAPI Specification can be found at

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md. It

describes all the different fields that an OpenAPI definition must or can contain.

Jsonforms-swagger uses a minified model of the specification, which only contains the

fields which are relevant for the application and the integration with JSON Forms.

These fields are:

 API: is the root class, and contains all the needed information about a specific

OpenAPI definition: the host and the basePath on which the API is served, its

title, a description, etc. It also keeps reference of all the operations listed in a

specific OpenAPI definition, and provides methods for searching them by type,

path or tag.

 Operation: describes an HTTP operation (GET, PUT, POST, DELETE) on a

specific path. It is also composed by the list of parameters needed to perform

the operation, and by the possible responses result of its execution.

 Parameter: there exist different types of parameters (path, query, header, body,

form), and each of them needs to be sent in a different way.

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

Integration of “JSONForms” with the OpenAPI Specification

32

 APIResponse: describes what and how will respond the server. There can be

correct responses (code 200) or error responses (code 400, 500, etc.).

Here is the class diagram representation of the model:

Figure 5: Model class diagram

However, it’s a requirement of jsonforms-swagger to support the customization of the

generated UI, allowing to choose which operations to show and how to group them. For

this purpose, the previous model needs to be extended with some extra classes:

 EntityType: groups actions which operate over a similar type of entity. For

example, an entity type called “Pet” would contain actions to create, find or

delete pets.

 Action: groups operations of the same type. For example, an action called “Find

pet” could contain a “GET” operation called “getPetById”, and another “GET”

operation called “getPetByStatus”.

Here is the class diagram representation of the extended model:

Figure 6: Extended model class diagram

33

6. Design

6.1. Architecture

The architecture of jsonforms-swagger is mostly inherited from the standard Angular 2

architecture. It follows the conventions for components, services and modules.

Basically, the application is composed of a set of modules, all of them directly related to

a section of the UI. Each of those modules is a folder which contains a service

(optionally), a component, an HTML template and a css file (optionally), plus any other

needed model classes.

Additionally, there is the “core” module, which contains the extra services and

connectors that are used by other components.

Figure 7: System architecture

This architecture is very effective, as it encapsulates all the functionality of a section of

the UI in a single module, and the only public entry of the module is in the service.

Also, thanks to the Angular 2 View Encapsulation, we also don’t have to worry about

polluting the global css namespace. Each css class only affects its associated module.

The communication between modules is achieved via services, with a combination of

two design patterns: Dependency Injection and Observables (we will elaborate on this

later).

6.2. Technologies

Frontend

We had little room to choose the frontend technology, as JSONForms is only supported

on AngularJS. Yet we realised that some of the concepts used by AngularJS were

getting outdated, and made the overall development experience more complicated.

At the same time Angular 2 got released, which brought a lot of changes and added

many interesting features. This also meant AngularJS would receive less updates and

Integration of “JSONForms” with the OpenAPI Specification

34

support in the future, as the team in charge of it was directing its attention towards

Angular 2.

Considering all this, we decided that figuring out how to use JSONForms with Angular

2 was worth the effort. For this we used the “upgrade” package, which provided a way

to integrate AngularJS and Angular 2 on the same application.

We chose Typescript as the language, as it aligns very well to the vision of making the

applications modular and extensible. It’s also the recommended language by Angular 2

developers.

Backend

Initially we didn’t use a custom backend for our application, as it wasn’t a priority. We

decided to use Heroku for deployment and a very simple NodeJS server with no custom

functionality.

As the project advanced, we realised that a custom backend was needed for the

following functionalities:

 Authentication of users

 Storage of projects per user, including project title, url and the extra

information for actions and entity types.

For these simple tasks, we chose the Firebase technology. It provides a simple API that

covers user Authentication, real-time database and many other features, enough to

cover our requirements. It also deploys the app automatically on its own servers,

basically removing the need of using Heroku.

6.3. Design patterns

We used a set of design patterns that allowed us to increase the code quality of our

application. The most relevant ones are: Dependency Injection and Observables.

Dependency Injection

This pattern allows us to pass services to components, without requiring the

components to find or build them. The services are kept in a global store that can be

accessed by any component.

To access a service, the component invokes another entity (the injector), which is

responsible of finding the service instance in the store and returning it.

35

Figure 8: Dependency Injection

The key takeaway of this pattern is that it achieves a decoupling of the main entities of

the application (components) and the services used by them. This increases the

maintainability and the extensibility of the code.

Observables

We used observables for implementing the communication between services and

components.

Basically there is an Observer entity that creates subscriptions to any Observable entity.

A subscription is a function that gets invoked when the observed value changes.

This pattern is very useful for reacting to changes on the backend or on different

components instantly and reflecting those changes on the UI.

We used the RxJS [16] library.

Integration of “JSONForms” with the OpenAPI Specification

36

37

7. Implementation

The code base of jsonforms-swagger can be found at

https://github.com/eclipsesource/jsonforms-swagger. The whole application has been

coded by my mate Francisco Rubin Capalbo and me. Here is a link to all my

contributions: https://github.com/eclipsesource/jsonforms-

swagger/commits?author=hecforga.

As a web application, we had to handle many different implementation topics: UI

design, communication with the server, navigation, authorization, validation, etc.

However, in this section I’m going to focus my attention in how we implemented the

transformation of an OpenAPI definition into the different schemas needed by

JSONForms, which is more in line with the purpose of this thesis.

This transformation can be divided in two different stages: from the OpenAPI

definition to the application model, and from the application model to the JSONForms

schemas.

7.1. From the OpenAPI definition to the application model

If we go back to the “requirements analysis” section, we can recall that jsonforms-

swagger uses a model to represent some relevant information from an OpenAPI

definition. Here is the class diagram of the model again:

Figure 9: Model class diagram

In order to generate this model, jsonforms-swagger requires a url pointing to the JSON

file of an OpenAPI definition. Most of the information of the model can be extracted in

a straightforward way from that JSON file, whose structure must follow the version 2.0

https://github.com/eclipsesource/jsonforms-swagger
https://github.com/eclipsesource/jsonforms-swagger/commits?author=hecforga
https://github.com/eclipsesource/jsonforms-swagger/commits?author=hecforga

Integration of “JSONForms” with the OpenAPI Specification

38

of the OpenAPI Specification (https://github.com/OAI/OpenAPI-

Specification/blob/master/versions/2.0.md). It would normally contain more

information than jsonforms-swagger needs, but using a library like “lodash” we can

simply pick the desired properties. For example, this could be the pseudo-code for

generating an “API” object:

let jsonAPI = getJSONFromUrl('http://petstore.swagger.io/v2/swagger.json');

let api = _.pick(jsonAPI, ['info', 'host', 'basePath']);

The process to generate “Operation”, “Parameter” and “APIResponse” objects is very

similar.

However, we can also recall from the “requirements analysis” section that this model

needs to be extended with some extra information to support the customization of the

generated UI. The OpenAPI Specification contains no information about “entity types”

or “actions”, so the generation process of these objects is more complicated. We are

going to reproduce this process with an example.

The following OpenAPI definition describes the API of a pet store server (only the

relevant fields for this example are shown):

{

 "info": {

 "description": "This is a sample server Petstore server.",

 "title": "Swagger Petstore"

 },

 "host": "petstore.swagger.io",

 "basePath": "/v2",

 "paths": {

 "/pet": {

 "post": {

 "tags": [

 "pet"

],

 "summary": "Add a new pet to the store",

 "description": "",

 "operationId": "addPet",

 "parameters": [

 {

 "in": "body",

 "name": "body",

 "required": true,

 "schema": {

 "$ref": "#/definitions/Pet"

 }

 }

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

39

],

 "responses": {

 "405": {

 "description": "Invalid input"

 }

 }

 }

 },

 "/pet/{petId}": {

 "get": {

 "tags": [

 "pet"

],

 "summary": "Find pet by ID",

 "description": "Returns a single pet",

 "operationId": "getPetById",

 "parameters": [

 {

 "name": "petId",

 "in": "path",

 "required": true,

 "type": "integer",

 }

],

 "responses": {

 "200": {

 "description": "successful operation",

 "schema": {

 "$ref": "#/definitions/Pet"

 }

 },

 "400": {

 "description": "Invalid ID supplied"

 },

 "404": {

 "description": "Pet not found"

 }

 }

 }

 }

 },

 "definitions": {

Integration of “JSONForms” with the OpenAPI Specification

40

 "Pet": {

 "type": "object",

 "required": [

 "name"

],

 "properties": {

 "id": {

 "type": "integer"

 },

 "name": {

 "type": "string"

 },

 "status": {

 "type": "string",

 "enum": [

 "available",

 "pending",

 "sold"

]

 }

 }

 }

 }

}

This schema contains the API information, two operations and a definition. Operations

can be identified by type and path. So the two operations of this schema can be

identified as “post - /pet” and “get - /pet/{petId}”. A definition describes a data

structure that can be referenced and reused from other parts of the schema. In this

case, the two operations have a reference to the definition “Pet”. The operation “post -

/pet” uses it as a parameter, and “get - /pet/{petId}” uses it as a response.

We need a method to make these computations programmatically:

computeDefinitionsUsages(jsonAPI:{}):{} {

 let definitionsUsages:{} = {};

 _.forEach(jsonAPI['paths'], (jsonPath:{}, path:string) => {

 _.forEach(jsonPath, (jsonOperation:{}, operationType:string) => {

 _.forEach(jsonOperation['parameters'], (jsonParameter:{}) => {

 if (jsonParameter['schema'] && jsonParameter['schema']['$ref']) {

 let definitionRef:string =

jsonParameter['schema']['$ref'].substring(('#/definitions/').length);

 if (!definitionsUsages[definitionRef]) {

 definitionsUsages[definitionRef] = {consumes: [], produces:

[]};

 }

41

 definitionsUsages[definitionRef]['consumes'].push({path: path,

type: operationType});

 }

 });

 _.forEach(jsonOperation['responses'], (jsonResponse:{}) => {

 let definitionRef:string;

 if (jsonResponse['schema']) {

 if (jsonResponse['schema']['$ref']) {

 definitionRef = jsonResponse['schema']['$ref'];

 } else if (jsonResponse['schema']['items'] &&

jsonResponse['schema']['items']['$ref']) {

 definitionRef = jsonResponse['schema']['items']['$ref'];

 }

 }

 if (definitionRef) {

 definitionRef =

definitionRef.substring(('#/definitions/').length);

 if (!definitionsUsages[definitionRef]) {

 definitionsUsages[definitionRef] = {consumes: [], produces:

[]};

 }

 definitionsUsages[definitionRef]['produces'].push({path: path, type:

operationType});

 }

 });

 });

 });

 return definitionsUsages;

}

This method, applied to the example schema, returns the following object:

{

 "Pet": {

 "consumes": [

 {

 "path": "/pet",

 "type": "post"

 }

],

 "produces": [

 {

 "path": "/pet/{petId}",

 "type": "get"

 }

]

 }

}

Integration of “JSONForms” with the OpenAPI Specification

42

From this object (called “definitionUsages”) we can generate the “entity types” and the

“actions” and add them to the model (called “api”). This is done in the following

method:

generateEntityTypesFromDefinitionsUsages(api:API, definitionsUsages:{}) {

 _.forEach(definitionsUsages, (definitionUsage:{}, definitionName:string) => {

 let entityType:EntityType = new EntityType();

 entityType.name = definitionName;

 let findAction:Action = new Action();

 findAction.name = 'Find ' + definitionName;

 _.forEach(definitionUsage['produces'], (operationPathAndType:{}) => {

 if (operationPathAndType['type'] == 'get') {

 let getOperation =

api.getOperationByPathAndType(operationPathAndType['path'],

operationPathAndType['type']);

 findAction.operations.push(getOperation);

 }

 });

 if (findAction.operations.length > 0) {

 entityType.actions.push(findAction);

 }

 let createAction:Action = new Action();

 createAction.name = 'Create ' + definitionName;

 _.forEach(definitionUsage['consumes'], (operationPathAndType:{}) => {

 if (operationPathAndType['type'] == 'post') {

 let postOperation =

api.getOperationByPathAndType(operationPathAndType['path'],

operationPathAndType['type']);

 createAction.operations.push(postOperation);

 }

 });

 if (createAction.operations.length > 0) {

 entityType.actions.push(createAction);

 }

 api.entityTypes.push(entityType);

 });

}

This method creates an “EntityType” object for each “definition usage”. Then, it checks

if there are any “get” operations in the “produces” array. If so, it creates a “find” action

and adds to it all those “get” operations. The same process is applied to the “consumes”

array, adding all its “post” operations to a “create” action.

After applying all this process to the example schema, this would be the result:

43

Figure 10: Resulting model

7.2. From the application model to the JSONForms schemas

Until now, we have seen how the model used by jsonforms-swagger is generated from

an OpenAPI definition. Now we will focus in how the schemas needed by JSONForms

are generated from this model. Jsonforms-swagger uses JSONForms to create the

forms of the query and response sections. Basically, the form in the query section

allows to input the parameters of the selected operation, while the form in the response

section shows the result of the performed operation. We can see these forms in the next

mockup:

Figure 11: Query and response sections

Integration of “JSONForms” with the OpenAPI Specification

44

If we go back to the “Introduction” section, we can recall that JSONForms requires 3

schemas: the Data Schema, which is extracted from the model; the UI Schema, which is

generated from the Data Schema, and the actual data provided by the user and/or the

server.

Considering the “get - “/pet/{petId}” operation of the previous OpenAPI definition

example, we need to extract two Data Schemas: one for the form in the query section,

and another for the form in the response section. The model of this operation would

look like this:

Figure 12: Model of operation “get – /pet/{petId}”

More specifically, the Data Schema for the query section form is generated from the

parameters, while the Data Schema for the response section form is extracted from the

response with code “200”. JSONForms Data Schemas and OpenAPI definitions are all

JSON Schemas (the definition of JSON Schema can be found in the “General concepts”

section), so the generation process is fairly simple. These would be the resulting Data

Schemas of this example:

Query Data Schema Response Data Schema

{
 "type": "object",
 "properties": {
 "petId": {
 "type": "integer"
 }
 },
 "required": [
 "petId"
]
}

{
 "type": "object",
 "properties": {
 "id": {
 "type": "integer"
 },
 "name": {
 "type": "string"
 },
 "status": {
 "type": "string",
 "enum": [
 "available",
 "pending",
 "sold"

45

]
 }
 },
 "required": [
 "name"
]
}

From these Data Schemas, we can generate the UI Schemas of the forms of the query

and the response sections. JSONForms UI Schemas define the layout of a form.

Jsonforms-swagger takes the simplest approach for generating these UI Schemas, just

including all the form controls in a “VerticalLayout”. The resulting UI Schemas would

look like this:

Query UI Schema Response UI Schema

{
 "type": "object",
 "properties": {
 "petId": {
 "type": "integer"
 }
 },
 "required": [
 "petId"
]
}

{
 "type": "object",
 "properties": {
 "id": {
 "type": "integer"
 },
 "name": {
 "type": "string"
 },
 "status": {
 "type": "string",
 "enum": [
 "available",
 "pending",
 "sold"
]
 }
 },
 "required": [
 "name"
]
}

After all these transformations, we have finally computed all the needed schemas for

JSONForms to create and render the forms of the query and the response sections. To

provide a clearer explanation, we have analysed all these processes using a very simple

example, but they are also valid for more complex OpenAPI definitions.

Integration of “JSONForms” with the OpenAPI Specification

46

47

8. Acquired competences

In this section I will list the main competences I acquired during the development of

jsonforms-swagger.

The area in which I have gained more knowledge is web development. I had very little

experience in web development before I started to work in this project. I only knew the

basics of HTML and Javascript. Now, I feel that my skills with those programming

languages have improved a lot. Especially, I have learnt more about frontend

development, and Angular 2 in particular. However, I have also learnt something about

other aspects of web development such as: backend development, UI design, system

configuration, dependencies management, continuous integration, etc.

As the topic of this thesis suggests, I have also gained knowledge in REST services, the

HTTP protocol and client/server architectures in general.

JSONForms and the OpenAPI Specification use JSON structures and JSON Schema, so

my skills in modeling data with JSON have improved a lot too.

As a result of the way of work in EclipseSource München, I have become familiar with

agile software processes. Jsonforms-swagger was developed in an iterative way,

adapting the requirements and planning the next implementation tasks in continuous

meetings with my supervisors (every two or three weeks). In these meetings I also

learnt how to gather requirements from a client and communicate with my work

colleagues, as well as prioritizing and estimating the costs of the different tasks.

Finally, thanks to this project I have been introduced to the Open Source Software

(OSS) world, as JSONForms and the OpenAPI Specification are both OSS projects.

More specifically, I have learnt how to collaborate in OSS projects using GitHub:

submitting issues, opening pull requests, solving conflicts between different branches,

etc.

Integration of “JSONForms” with the OpenAPI Specification

48

49

9. Conclusions

After all the development process described in this document, jsonforms-swagger is

now in a functional and stable state. It’s able to create a web UI which allows a user to

communicate with a REST service, given its OpenAPI definition. So, its main objective

has been successfully achieved. A demo of the application can be found under this link:

https://jsonforms-swagger.firebaseapp.com/.

Besides this main objective, some extra functionalities have been implemented:

search/filtering of operations, different methods of authentication, users management

system, etc.

The final product covers almost all the requirements analyzed previously. The only use

case that still needs to be implemented is “ExportProject”. At this moment, jsonforms-

swagger doesn’t allow a user to download the code of the generated web UI, so that he

could include that UI in his web page in a simple way. However, this feature can be

added in the future.

Besides this unmet use case, there exist other possible lines of work for the future. For

example, extending JSONForms with more custom widgets which could be useful for

jsonforms-swagger. The first that comes to my mind is a button able to perform HTTP

operations with the data contained in the form. Also, OAuth 2.0 could be added as a

possible way of authentication.

https://jsonforms-swagger.firebaseapp.com/

Integration of “JSONForms” with the OpenAPI Specification

50

51

Bibliography

[1] M. Castells, The Information Age, Volumes 1-3: Economy, Society and Culture,

Malden (Mass.): Wiley-Blackwell, 2000.

[2] C. Babbage, "On the Economy of Machinery and Manufactures," Charles Knight,

1832, p. 114.

[3] "JSONForms," [Online]. Available: http://github.eclipsesource.com/jsonforms/.

[Accessed 15 September 2016].

[4] J. Abbate, Inventing the Internet, Cambridge (Mass.): MIT Press, 1999.

[5] R. Fielding, "Architectural Styles and the Design of Network-based Software

Architectures," Ph.D. Thesis, University of California, Irvine, USA, 2000.

[6] L. Richardson and S. Ruby, RESTful Web Services, Sebastopol, CA, USA: O'Reilly

Media Inc., 2007.

[7] "Specification | Open API Initiative," [Online]. Available:

https://openapis.org/specification. [Accessed 15 September 2016].

[8] "One framework. - Angular 2," [Online]. Available: https://angular.io/. [Accessed

15 September 2016].

[9] "TypeScript - JavaScript that scales.," [Online]. Available:

https://www.typescriptlang.org/. [Accessed 15 September 2016].

[10] "JSON Schema and Hyper-Schema," [Online]. Available: http://json-schema.org/.

[Accessed 15 September 2016].

[11] "RAML," [Online]. Available: http://raml.org/. [Accessed 15 September 2016].

[12] "API Blueprint," [Online]. Available: https://apiblueprint.org/. [Accessed 15

September 2016].

[13] "EMF Forms," [Online]. Available:

http://www.eclipse.org/ecp/emfforms/index.html. [Accessed 15 September 2016].

[14] "joshfire/jsonform," [Online]. Available: https://github.com/joshfire/jsonform.

[Accessed 15 September 2016].

[15] "Swagger UI - Swagger," [Online]. Available: http://swagger.io/swagger-ui/.

[Accessed 15 September 2016].

Integration of “JSONForms” with the OpenAPI Specification

52

[16] "RxJS API Document," [Online]. Available: http://reactivex.io/rxjs/. [Accessed 15

September 2016].

