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ABSTRACT 

New European policies established in the Blueprint (EC, 2012) propose the 

use of water accounting for the allocation and reservation of water resources. 

This course correction contrasts with the calculation of water balances that has 

been used since the last century in Spain for this purpose. According to the 

European Commission (EC, 2015) the difference between the two approaches is 

the inclusion of the economic component. This argument is indisputable, but it 

would also add that both "asset accounts" and the physical supply and use tables 

require a type of information that had not been considered until now. In view of 

this new challenge, the use of hydrological and water resources management 

models is essential. 

This thesis aims to implement a methodology for the transition between 

water balances and water accounting considering the special characteristics of 

the Mediterranean basin (with a high degree of regulation and the use of 

unconventional resources). In the same line, it raises the need for the definition 

of an indicator to assess the performance of a water resources system taking 

into consideration the origin of the water resources as a measure of the degree 

of stress suffered by the systems. 

This thesis is presented by publications and seeks to address the 

methodologies and indicators used to date in the planning and management of 

water resources. First, the state of the art is analyzed in the first publication of 

the thesis, as detailed in Annex 1. The second publication, analyzes the key 

elements for formulating water balances that will determine, to a large extent, 

results obtained, as detailed in Annex 2. The third publication, in Annex 3, tries 

to explain how in those basins where the use of water resources is close, or even 

higher, to their availability, the use of balances based solely on variables such as 

rainfall and temperature are not sufficient. And due to the high regulation of 

water resources they should also include the results of water management 

models. This approach contrasts with the proposals made by the countries of 

northern Europe focused mainly on hydrological models. 

In order to address the water accounting approach a pilot case located in the 

Andalusian Mediterranean basins was analysed. This work is presented in the 

fourth publication, reproduced in Annex 4. This initial analysis has served to 
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highlight the need to develop a complementary software that allows unify the 

results of hydrological and water management models for calculating water 

accounts. The development of this software, which has been called 

AQUACCOUNTS, and its application to a general case with all the detail required 

in water resources planning has been published in the fifth article presented in 

Annex 5, taking the Júcar River Basin as a case study. From these results, a 

classification of water exploitation systems was carried out according to their 

degree of stress. These results were compared with the ones in Annex 2 which 

proposes the use of the indicator of exploitable water resources and which has 

been obtained with the traditional water balances approach. 

Finally, Annex 6 includes the last publication of this thesis focused on the 

effects of climate change in the Po River Basin (Italy) by using water accounting. 

This work has served to identify those key elements within the simulation models 

and opens the door to improve them within the approach proposed by the SEEA-

W. 

This thesis aims to collaborate with those responsible for European policies 

in water resource planning for the application of those methodologies and tools 

appropriate to each territory. 
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RESUM 

Les noves polítiques europees establides en el Blueprint (EC, 2012) proposen 

l'ús de la comptabilitat de l'aigua per a l'assignació i reserva dels recursos hídrics. 

Esta correcció del rumb (o canvi de paradigma) contrasta amb el càlcul de 

balanços que s'ha utilitzat des del segle passat a Espanya per a aquesta finalitat. 

Segons la Comissió Europea (EC, 2015) la diferència entre ambdós plantejaments 

es troba en la inclusió de la component econòmica. Este argument és 

indiscutible, però caldria afegir a més que tant les "asset accounts" com les 

taules físiques d'ús i subministrament requerixen un tipus d'informació que fins 

ara no s'havia considerat. A la vista d'este nou repte, l'ús dels models hidrològics 

i de gestió dels recursos hídrics es fa imprescindible. 

Amb esta tesi es pretén dur a terme una metodologia que permeta la 

transició entre els balanços hídrics i els comptes de l'aigua tenint en compte les 

especials característiques de les conques mediterrànies (amb un elevat grau de 

regulació i l'ús de recursos no convencionals). En esta mateixa línia es planteja la 

definició d'un indicador que tracte de discutir el comportament conjunt d'un 

sistema de recursos hídrics i que tinga en consideració l'origen dels recursos 

empleats com a mesura del grau d'estrés dels sistemes. 

Esta tesi es presenta per compendi de publicacions i tracta d'abordar les 

metodologies i indicadors utilitzats fins a la data en la planificació i gestió dels 

recursos hídrics. En primer lloc s'analitza l'estat de l'art que constituïx la primera 

publicació de la tesi, tal com es detalla en l'Annex 1. La segona publicació, 

analitza els elements clau per a la formulació de balanços que determinaran, en 

gran manera, els resultats obtinguts, tal com es detalla en l'Annex 2. La tercera 

publicació, en l'Annex 3, tracta d'explicar com en les conques on l'aprofitament 

dels recursos és pròxim o inclús superior a la seua disponibilitat, l'ús dels 

balanços basats únicament en variables com la precipitació i la temperatura no 

són suficients, sinó que a causa de l'alta regulació dels recursos ha de recórrer-

se a més als models de gestió. Este plantejament contrasta amb les propostes 

plantejades pels països del nord d’Europa centrats principalment en el models 

hidrològics. 

Per a abordar el tema s'ha partit d'un cas pilot localitzat en les conques 

mediterrànies andaluses. Este treball es presenta en la quarta publicació, que es 
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reproduïx en l'Annex 4. A partir d'aquest anàlisi inicial, es va veure la necessitat 

de desenrotllar una ferramenta complementaria que permetera unificar tant la 

informació de partida com els resultats dels models hidrològics i de gestió per al 

càlcul de la comptabilitat de l'aigua. El desenrotllament d'esta ferramenta, que 

ha sigut denominat AQUACCOUNTS, i la seua aplicació a un cas general amb tot 

el detall requerit en planificació s'ha publicat en el quint article que es presenta 

en l'Annex 5, sent la Demarcació Hidrogràfica del Xúquer el cas d'estudi. A partir 

dels resultats obtinguts s'ha dut a terme una classificació dels sistemes 

d'explotació segons el seu grau de desenrotllament comparant-se amb els 

resultats obtinguts en l'Annex 2 que proposa l'ús de l'indicador de recursos 

explotables i que s'ha obtingut amb les metodologies tradicionals de balanços. 

 Finalment, l'Annex 6 arreplega l'última publicació d'esta tesi en què 

s'analitzen els efectes del canvi climàtic en la conca del riu Po (Itàlia) per mitjà 

de l'ús de la comptabilitat de l'aigua. Este treball ha servit per a identificar aquells 

elements clau dins dels models de simulació i obri les portes a una millora dels 

mateixos dins de l'enfocament plantejat pel SEEA-W.  

Esta tesi pretén col·laborar amb els responsables de les polítiques europees 

en matèria de planificació per a l'aplicació d'aquelles metodologies i ferramentes 

més adequades a cada territori. 
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RESUMEN 

Las nuevas políticas europeas establecidas en el Blueprint (EC, 2012) 

proponen el uso de la contabilidad del agua para la asignación y reserva de los 

recursos. Esta corrección del rumbo (cambio de paradigma) contrasta con el 

cálculo de balances que se ha venido utilizando desde el siglo pasado en España 

para dicho fin. Según la Comisión Europea (EC, 2015) la diferencia entre ambos 

planteamientos se halla en la inclusión de la componente económica. Este 

argumento es indiscutible, pero habría que añadir además que tanto las “asset 

accounts” como las tablas físicas de uso y suministro requieren un tipo de 

información que hasta ahora no se había considerado. A la vista de este nuevo 

reto, el uso de los modelos hidrológicos y de gestión de los recursos hídricos se 

hace imprescindible. 

Con esta tesis se pretende llevar a cabo una metodología que permita la 

transición entre los balances hídricos y las cuentas del agua teniendo en cuenta 

las especiales características de las cuencas mediterráneas (con un elevado 

grado de regulación y el uso de recursos no convencionales). En esta misma línea 

se plantea la definición de un indicador que trate de discutir el comportamiento 

conjunto de un sistema de recursos hídricos y que tenga en consideración el 

origen de los recursos empleados como medida del grado de estrés de los 

sistemas. 

Esta tesis se presenta por compendio de publicaciones y trata de abordar las 

metodologías e indicadores utilizados hasta la fecha en la planificación y gestión 

de los recursos hídricos. En primer lugar se analiza el estado del arte que 

constituye la primera publicación de la tesis, tal y como se detalla en el Anexo 1. 

La segunda publicación, analiza los elementos clave para la formulación de 

balances que determinarán, en gran medida, los resultados obtenidos, tal y 

como se detalla en el Anexo 2. La tercera publicación, en el Anexo 3, trata de 

explicar cómo en las cuencas donde el aprovechamiento de los recursos es 

cercano o incluso superior a su disponibilidad, el uso de los balances basados 

únicamente en variables como la precipitación y la temperatura no son 

suficientes, sino que debido a la alta regulación de los recursos debe recurrirse 

además a los modelos de gestión. Este planteamiento contrasta con las 

propuestas planteadas por los países del norte de Europa centrados 

principalmente en los modelos hidrológicos. 
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Para abordar el tema se ha partido de un caso piloto localizado en las cuencas 

mediterráneas andaluzas. Este trabajo se presenta en la cuarta publicación, que 

se reproduce en el Anexo 4. A partir de este análisis inicial, se vio la necesidad 

de desarrollar un software complementario que permitiese unificar tanto la 

información de partida como los resultados de los modelos hidrológicos y de 

gestión para el cálculo de la contabilidad del agua. El desarrollo de este software, 

que ha sido denominado AQUACCOUNTS, y su aplicación a un caso general con 

todo el detalle requerido en planificación se ha publicado en el quinto artículo 

que se presenta en el Anexo 5, siendo la Demarcación Hidrográfica del Júcar el 

caso de estudio. A partir de los resultados obtenidos se ha llevado a cabo una 

clasificación de los sistemas de explotación según su grado de desarrollo 

comparándose con los resultados obtenidos en el Anexo 2 que propone el uso 

del indicador de recursos explotables y que se ha obtenido con las metodologías 

tradicionales de balances. 

Por último, el Anexo 6 recoge la última publicación de esta tesis en la que se 

analizan los efectos del cambio climático en la cuenca del río Po (Italia) mediante 

el uso de la contabilidad del agua. Este trabajo ha servido para identificar 

aquellos elementos clave dentro de los modelos de simulación y abre las puertas 

a una mejora de los mismos dentro del enfoque planteado por el SEEA-W. 

Esta tesis pretende colaborar con los responsables de las políticas europeas 

en materia de planificación para la aplicación de aquellas metodologías y 

herramientas más adecuadas a cada territorio. 
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1. INTRODUCTION 

1.1 RESEARCH MOTIVATION 

Water is vital for the life of all who inhabit our planet representing an 

essential resource from a biological, environmental, social and economic point 

of view. What makes water so valuable is its random nature and its irregular 

distribution in space and time. This hydrological variability explains why river 

flows are recorded when they are not required or where they are not necessary. 

The spatial irregularity of water resources forces the need to develop expensive 

transportation and distribution networks such as channels and pipes and on the 

other hand, river flows are spread unevenly across the year. Further, in some 

regions water resources vary year-on-year, consequently, the alternation of wet 

periods and dry periods requires the building of costly hyper-annual regulation 

works. 

Water scarcity regions know a lot about this and Spain is a clear example. 

While in countries with a direct dependence on rainwater to supply water 

demands a reduction in precipitation during some weeks can originate a 

drought, in others like in Spain, droughts can prolong for years. This reason 

explains the ancient tradition of hydraulic works in Spain (Estrela and Vargas, 

2012) that can be understood by the following milestones: 

 Spain is the fifth country in the world in terms of its number of large 

dams, just behind China, the USA, India and Japan (INE, 2008). 

 Tibi reservoir, which is located in Alicante and was built between 1579 

and 1594, is the most ancient reservoir in Europe still in operation today, 

just behind romans reservoirs (iAgua, 2015). 

 Ebro River Basin Authority (RBA), the entity in charge of the water 

resources planning and management of the district, was created in 

1926. 

 The period 1991–1995 has gone down in history as the worst drought 

period in recent times in Spain. Consequently, since then drought 

management was incorporated in the water resources planning issues 

instead of being considered as an emergency (Estrela, 2006). 
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One of the main objectives in the XXI century is associated with the 

sustainable use of water ensuring that water supplies are guaranteed for all 

users in terms of quantity and quality. But which is the amount of water available 

for the different uses in a river basin?  To date, the methodology used in water 

resources planning and management is focused on water balances. At first 

glance, the calculation of water balances seems simple as it involves comparing 

water resources with water requirements. In practise, it is more complex due to 

several reasons such as insufficient and poor quality of data. 

In order to reach the sustainable use of water, the main objectives of the 

European Union (EU) Water Framework Directive (WFD) (EP, 2000) included the 

achievement of the ‘‘good status” for all water bodies, the approval of the water 

management plans based on river basins, promoting the application of pricing 

policies and public participation. The transposition of the WFD into Spanish 

regulation was done through the Spanish Guideline of Water Planning (IPH 

referred to its Spanish acronym) (MAGRAMA, 2008) which was used for the River 

Basin Management Plans (RBMP) drafting. One of the major challenges faced in 

the RBMP was the water balance setting taking into account the existing water 

rights and the compliance of the environmental requirements. Despite the high 

regulation of water resources demand supplies are not always guaranteed due 

to the random nature of river flows. In this sense, the IPH determines if water 

supplies are considered satisfied by employing a reliability criterion which varies 

according to the type of use (urban, industrial or agrarian). This fact represents 

another practical consequence of water balances for the purpose of water 

allocation and reservations, in such a way as new water allocations in the river 

basin will depend on the availability of water resources. 

Faced with the difficulty of achieving the “good status” for all water bodies in 

2015, the Blueprint to safeguard Europe’s water resources (EC, 2012) symbolizes 

another turn of the screw towards the improvement of water resources in terms 

of quantity and quality. In order to involve other sectors such as fishing, 

renewable energy production or transport, and to measure the influence of each 

water user to the overall economy the Blueprint proposes the use of water 

accounting as a tool for improving water management. But, what is the 

difference between the previous water balance and the new proposed water 

accounting approach? According to the guidance (EC, 2015) water balance is 

defined as “the numerical calculation of the inputs to, outputs from, and changes 

in the volume of water in the various components of the hydrological cycle, 
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within a specified hydrological unit and during a specified time unit, occurring 

both naturally and as a result of the human induced water abstractions and 

returns”. By contrast, water accounting “integrates physical and economic 

information related to water consumption and use, to achieve equitable and 

transparent water governance for all water users and a sustainable water 

balance between water availability, demand and supply”. A priori both 

approaches seem similar since both methodologies are based on a water balance 

approach (Molden and Sakthivadivel, 1999) but with a different format and 

water accounting also considers economic information.  

There are several water accounting frameworks developed around the world 

and the United Nations Statistics Division (UNSD) proposes the System of 

Environmental Economic Accounting for Water (SEEA-W) (UNDS, 2012). The 

main interest of the SEEA-W framework is to provide a standard methodology 

allowing policymakers to compare results between different periods and 

territories. But building water accounts is a complex task. As noted by Dimova et 

al. (2014) although the simplicity of SEEA-W concepts, its implementation 

involves collecting a huge variety of data. Due to this handicap, simulation 

models are required in order to estimate the different components of the water 

cycle. Moreover, Tilmant et al. (2015) point out that there is no standard process 

to develop water accounts, nor any agreement on how to present them. 

When faced with this new paradigm, it is required to adapt the requirements 

of European policies into a more standardized methodology to avoid 

preconditions that may determine the results. Despite the willingness to adapt 

the current approach to the new requirements of European policies, the 

principle of subsidiarity should be borne in mind, since there is not any one-size-

fits-all solution (EC, 2012). In this way, each Member State could apply the 

measures and approaches that best fit with its territory (Berbel and Gutiérrez-

Martín, 2013). 

To do this, this thesis proposes the use of Decision Support Systems (DSS) 

which represent a powerful tool, providing more analytical and well-informed 

decisions (Andreu et al., 2006). For the purposes of this thesis it has been 

required the use of several modules of a DSS: hydrologic models, water 

allocation models and hydroeconomic models. 
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1.2 CASE STUDY 

The Jucar River Basin District (RBD) has been selected as the case study of this 

thesis. As noted by Ferrer (2012) Jucar RBD is affected by water scarcity, 

repeated drought episodes and overexploitation, as many other river basin 

districts in Mediterranean region. An overview of the case study is presented 

considering the following aspects: territorial area, geographical and climatic 

features, water resources, water uses and water infrastructures. 

1.2.1 JUCAR RBD TERRITORIAL AREA 

The Jucar RBD (43,000 km2) is located in the eastern part of the Iberian 

Peninsula in Spain and it is formed by the aggregation of several river basins that 

flow into the Mediterranean Sea. It extends from the mouth of the Cenia River, 

including its basin in the north, and the mouth of the Segura River, in the south. 

It includes territories from 4 regions: Aragon, Catalonia, Castilla La Mancha and 

Valencia. The three main rivers in the existing Jucar RBD are Jucar River, Turia 

River and Mijares River. 

 

Fig. 1.1: Location of the Jucar RBD in the Iberian Peninsula 
(Source: Annex 5) 

The Jucar RBD comprises 9 water exploitation systems (see figure 1.1) which 

are described below: 

The Cenia-Maestrazgo Water Resources System (1,875 km2) is located in the 

north of the province of Castellon, its altitude ranges from 1000 m until the level 
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of the Mediterranean Sea. It includes the entire river basins of Cenia, Valviquera, 

Servol, Barranco de Agua Oliva, Cervera, Alcalá and San Miguel rivers and coastal 

sub-basins. 

The Mijares-Plana Castellon Water Resources System (5,466 km2) comprises 

Mijares, Seco, Veo and Belcaire rivers, and nearby coastal sub-basins. 

The Palancia-Los Valles Water Resources System (1,159 km2) comprises 

Palancia river basin as a whole and coastal sub-basins, being in an area located 

between 1,550 m and the Mediterranean Sea. 

The Turia Water Resources System (6,913 km2) comprises Turia River as a 

whole, as well as the gorges of Carraixet and Poyo, and nearby coastal sub-

basins. 

The Jucar Water Resources System (22,378 km2) includes the own Jucar river 

basin as a whole, also including the area and services served by the Jucar-Turia 

Channel and including coastal sub-basins between the Gola de El Saler and the 

limit of the municipalities of Cullera and Tavernes de Valldigna. This system 

includes the endorheic basin of Pozohondo. 

The Serpis Water Resources System (990 km2) includes the entire river basin 

of the Serpis, Jaraco and Beniopa rivers and coastal sub-basins. The highest peak 

is reached in the birth of Vallaseta River, at 1,462 m. 

The Marina Alta Water Resources System (839 km2), in the north of the 

province of Alicante, includes the entire river basin of Girona and Gorgos rivers 

and coastal sub-basins between the northern boundary of the municipality of 

Oliva and the left bank of Algar River. 

The Marina Baja Water Resources System (583 km2), is situated in the 

province of Alicante, between 1,100 m and the Mediterranean Sea; it includes 

the entire river basins of Algar and Amadorio rivers and coastal sub-basins  

between Algar River and the southern boundary of Villajoyosa municipality. 

Finally, the Vinalopó-Alacantí Water Resources System (2,786 km2) is located 

in the southern part of the province of Alicante, and comprises the entire river 

basins of Monnegre, Rambla de Rambuchar and Vinalopó, including coastal sub-
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basins between the northern boundary of El Campello municipality and the 

boundary of Segura River Basin. 

1.2.2 GEOGRAPHICAL AND CLIMATICAL FEATURES 

Physiographically, in the Jucar RBD two major areas are distinguished: an 

inland mountainous area and a coastal littoral zone. The highest peak, 

Peñarroya, is located in the Iberian System, with an altitude of 2,024 m; other 

high geographical dimensions are Javalambre (2,020 m), Caimodorro (1,921 m) 

and Peñagolosa (1,813 m). Between the coastal plains highlights Oropesa-

Torreblanca, Castellon and Sagunto, Valencia-La Ribera, Favara-Gandía-Denia. 

The Jucar RBD’s climate is a typical Mediterranean climate with warm 

summers and mild winters. The maximum temperatures are recorded during the 

months of July and August, coinciding with the dry season. The average annual 

temperatures range between 14 and 16.5°C. The annual average rainfall is about 

500 mm, there is nevertheless a great spatial variability with values of 300 mm 

in the southern regions, while in other areas precipitation reaches values greater 

than 750 mm. Also, during the months of October and November precipitation 

events of great intensity and short duration may occur, commonly known as 

"cold front". 

1.2.3 WATER RESOURCES 

304 surface water bodies within river category have been defined in the area 

of the Jucar RBD. This water bodies can be classified according to their nature in 

natural, heavily modified or artificial. Moreover, in the field of the Jucar RBD, 19 

surface water bodies within lake category, 11 of them have been defined as 

natural and 8 as heavily modified, as can be observed in figure 1.2:    
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Fig. 1.2: Surface water bodies (river and lakes category) in the Jucar RBD 
(Source: self-made) 

In the territory of Jucar RBD, 90 groundwater bodies (GWB) and 26 

impervious water bodies or local aquifers have been defined, as we observe in 

figure 1.3). 

 

Fig. 1.3: Groundwater bodies in the Jucar RBD 
(Source: self-made) 
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The riverbeds located in the principal fluvial network have marked 

Mediterranean streamflows regime. This is characterized by dry periods in 

summer and the growth of water flows in autumn. The rainfall in the basin 

generates an average annual streamflows of 3111 hm3. The spatial and temporal 

irregularity of rainfall is accentuated in the case of streamflows. This fact is the 

reason why the territory of Jucar RBD is subjected to significant periods of 

droughts, as those produce in the years 1994-1995 or 2004-2008. Moreover, 

water resources in Mijares, Turia and Jucar rivers are characterized by a marked 

reduction in the recorded streamflows during the 1980-2009 period (Pérez 

Martín et al., 213). Table 1.1 shows the average total streamflows in naturalized 

regimes for the period 1980/81-2011/12. 

Water Exploitation System 
Average of total natural 
streamflows (hm3/year) 

1980/81-2011/12 

Cenia-Maestrazgo 143 

Mijares-Plana de Castellón 326 

Palancia-Los Valles 63 

Turia 472 

Jucar 1.605 

Serpis 200 

Marina Alta 164 

Marina Baja 68 

Vinalopó-Alacantí 69 

Total Jucar RBD 3.111 

Table 1.1: Summary of the total natural streamflows in the Jucar RBD (Source: Jucar RBA) 
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Fig. 1.4: Total natural streamflows time series of the Jucar RBD (Source: Jucar RBA) 

Unconventional resources represent new sources of resources used in recent 

decades, such as the desalination of seawater or brackish water, and the reuse 

of treated wastewater (Ferrer, 2012). The incorporation of these new resources 

has led to the resolution of specific problems of water availability in some cases 

and, generally, has also increased the efficiency in the use of water resources, 

increasing the level of reliability. Direct reuse of treated wastewater is highly 

relevant from a quantitative point of view in the territory of Jucar RBD. It should 

be noted that only the direct reuse of wastewater near the coastline really 

represents an increase in the resources availability, hence water resources are 

available to be used that may otherwise not be profitable. The treated 

wastewaters in the innermost areas of Jucar RBD discharge into rivers forming 

natural contributions to the resources available to downstream users. 

1.2.4 WATER DEMANDS 

According to municipal registers, the permanent population in the area of 

Jucar RBD is over 5 million inhabitants (year 2009), being the population density 

about 119 inhabitants/km2, higher than the Spanish average (89 

inhabitants/km2). Analysing the population distribution by water exploitation 

system, the Turia system is the most populated due to the location of the 

metropolitan area of Valencia, followed by Jucar system where the cities of 

Albacete, Cuenca and the regions of La Ribera Alta and La Ribera Baja are 
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located; Vinalopo-Alacanti system, where the main cities are Alicante and Elche; 

Mijares-Plana de Castellón, with Castellón and Villarreal cities. 

The total water demand in the Jucar RBD, is about 3230 hm3/year, whereof 

79% corresponds to agrarian sector and 17% is used to meet urban demands. 

The Jucar system presents the higher water demand, as we observe in table 1.2. 

The spatial distribution of water requirements is presented in figures 1.5, 1.6 and 

1.7. 

It is important to highlight that the total water demand in the district is 

slightly higher than the total natural streamflows obtained for the period 

1980/81-2011/12 and presented in table 1.1. 

Water 
Exploitation 

System 

Urban 
demand 

(hm3) 

Agrarian 
demand 

(hm3) 

Industrial 
demand 

(hm3) 

Recreational 
demand 

(hm3) 

Total 
demand 

(hm3) 

Cenia-
Maestrazgo 

18 84 1 < 1 103 

Mijares-Plana 
de Castellón 

55 232 13 1 301 

Palancia-Los 
Valles 

14 74 7 < 1 95 

Turia 145 459 31 2 637 

Jucar 140 1414 56 1 1611 

Serpis 31 82 5 < 1 118 

Marina Alta 30 54 < 1 1 85 

Marina Baja 26 34 < 1 2 62 

Vinalopó-
Alacantí 

93 106 18 2 219 

Total JRBD 552 2539 131 9 3231 

Table 1.2: Summary of the water demands in the Jucar RBD (Source: Jucar RBA) 
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Fig. 1.5: Agrarian requirements in the Jucar RBD (Source: self-made) 

 

Fig. 1.6: Urban requirements in the Jucar RBD (Source: self-made) 
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Fig. 1.7: Industrial requirements in the Jucar RBD (Source: self-made) 

Figure 1.8 shows the main irrigated crops in the Jucar RBD. It highlights the 

importance of citrus growing, representing almost half of the irrigated area. The 

second largest group are the cereals for grain (wheat and barley) with 12% of the 

irrigated area; and the third largest group are the crops of maize and sorghum, 

with the 6% of the irrigated area. It should be noted that, the area dedicated to 

cereal represents about the 22% (including cereals for grain, maize and rice). 

 

Fig. 1.8: Irrigated area distribution in the Jucar RBD 
(Source: Jucar RBA) 
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1.2.5 WATER INFRASTRUCTURES 

Regulation of surface water in Jucar RBD is performed by more than 17 large 

reservoirs with a total capacity of 3300 hm3. The main reservoirs for basins are: 

 In Jucar system: Alarcon (1112 hm3), Contreras (874 hm3), Tous 

(maximum capacity of 340 hm3) and Cortes (116 hm3), along with 

Forata (37 hm3) in the Magro and Bellus (69.2 hm3) in the Albaida 

River, both tributaries of the Jucar River. 

 In Turia system: Benageber (228 hm3), Loriguilla (71 hm3), Arquillo 

de San Blas (22 hm3) and Buseo (7.2 hm3). 

 In Mijares system: Arenos (maximum capacity 130 hm3), Sichar (49.2 

hm3) and Maria Cristina (19.7 hm3). 

 In Marina Baja system: Amadorio (16 hm3) and Guadalest (13 hm3). 

 In Serpis system: Beniarrés (29.5 hm3) 

 In Cenia system: Ulldecona (11 hm3) 

 In Palancia system: El Regajo (6.6 hm3). 

Figure 1.9 shows the geographic location of the main reservoirs in Jucar RBD. 

 

Fig. 1.9: Main reservoir in the Jucar RBD 
(Source: self-made) 

The main canals in the Jucar RBD are shown in figure 1.10 and table 1.3: 
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Fig. 1.10: Main canals in the Jucar RBD 
(Source: self-made) 

Name Length (km) 

Canal Campo del Turia 72.9 

Canal Jucar-Turia 58.2 

Acequia Real del Jucar 55.3 

Canal Rabasa-Amadorio 48 

Canal de Forata 39.4 

Real Acequia de Moncada 32.7 

Canal Manises-Sagunto 29.5 

Canal Bajo del Algar 27.6 

Acequia de Escalona 17.1 

Canal Cota 100 16.7 

Acequia de Carcagente 10.1 

Canal Cota 220 9.2 

Acequia de Sueca 5.5 

Acequia de Cuatro Pueblos 4.9 

Acequia de Cullera 4.8 

Acequia Real de Antella 1.4 

Table 1.3: Summary of the main canals in the Jucar RBD 

For more information about the Jucar RBD, consult the web page of the Jucar 

RBA (www.chj.es). 
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1.3 OBJECTIVES 

The main goal of this thesis is to develop a conceptual framework, which 

includes methodology and tools, in order to build water balances for stressed 

river basins. Using the System of Environmental-Economic Accounting for Water, 

this work also claims to introduce the definition of water exploitation indexes 

that describe the state of a river basin. 

 The above general objectives might be subdivided in a series of more specific 

purposes, which are the following: 

 Review of the state of the art of water scarcity and drought indexes 

in water resources planning and management. 

 Development of a tool capable to build water accounts from 

hydrological and water management models. 

 Acquisition of the economic costs of water. 

 Application and verification of the proposed methodology to a 

stressed river basin. 

 Classification of river basins according to their degree of water 

stress. 

1.4 STRUCTURE OF THE THESIS 

This thesis is structured in four sections and six annexes. The first section 

involves the introduction and it includes the research motivation, a brief 

description of the case study and the main objectives. The list and a brief 

summary of each of the publications, which are part of this research, is 

presented in section two. The third section contains the results obtained during 

this research, the discussion about the significance of the findings in comparison 

with other similar works and the possible improvements in the methodology. 

Finally, section four includes the concluding remarks and the future research 

lines. 

On the other hand, each of the six annexes corresponds to the research 

papers described in section two. 
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2. PUBLICATIONS 

This thesis is a compendium of research papers, including four scientific 

papers published in peer review journals indexed in the Journal Citation Report 

(JCR) and two participations in international conference published in Conference 

Proceedings. They are the following: 

 Pedro-Monzonís, M., Solera, A., Ferrer, J., Andreu, J. and Estrela, T., 

2016. Water accounting in stressed river basins based on water 

resources management models. Sci Total Environ 565, 181-190 

doi:10.1016/j.scitotenv.2016.04.161 

 Pedro-Monzonís, M., Jiménez-Fernández, J., Solera, A., and Jiménez-

Gavilán, P., 2016. The use of AQUATOOL DSS applied to the System 

of Environmental-Economic Accounting for Water (SEEAW) J. Hydrol 

533, 1-14, doi:10.1016/j.jhydrol.2015.11.034 

 Pedro-Monzonís, M., Solera, A., Ferrer, J., Estrela, T. and Paredes-

Arquiola, J., 2015. A review of water scarcity and drought indexes in 

water resources planning and management, J. Hydrol. 527, 482-493, 

doi:10.1016/j.jhydrol.2015.05.003 

 Pedro-Monzonís, M., Ferrer, J., Solera, A., Estrela, T. and Paredes-

Arquiola, J., 2015. Key issues for determining the exploitable water 

resources in a Mediterranean river basin, Sci Total Environ, 503-504, 

319-328, doi:10.1016/j.scitotenv.2014.07.042. 

 Pedro-Monzonís, M., Ferrer, J., Solera, A., Estrela, T., Paredes-

Arquiola, J., 2014. Water Accounts And Water Stress Indexes In The 

European Context Of Water Planning: The Jucar River Basin. 16th 

Conference on Water Distribution System Analysis, WDSA 2014. In 

Procedia Engineering 89, 1470-1477 doi: 

10.1016/j.proeng.2014.11.431 

 Pedro-Monzonís, M., Del Longo, M., Solera, A., Pecora, S., Andreu, 

J., in press. Water accounting in the Po River Basin applied to climate 

change scenarios. 2nd International Conference on Efficient and 

http://dx.doi.org/10.1016/j.scitotenv.2016.04.161
http://dx.doi.org/10.1016/j.jhydrol.2015.11.034
https://aplicat.upv.es/senia-app/index.jsf
https://aplicat.upv.es/senia-app/index.jsf
http://dx.doi.org/10.1016/j.jhydrol.2015.05.003
http://dx.doi.org/10.1016/j.scitotenv.2014.07.042
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Sustainable Water System Management towards Worth Living 

Development, 2EWaS 2016. 

A brief description of the contents and the relation with the achievement of 

the research objectives defined is presented in the following subsections. 

2.1 A REVIEW OF WATER SCARCITY AND DROUGHT INDEXES 
IN WATER RESOURCES PLANNING AND MANAGEMENT 

This research paper, which corresponds with Annex 1, aims to review the 

state of the art related with the central themes of this work that are water 

scarcity and drought indexes in water resources planning and management.  

To date, a huge amount of water indexes related to different approaches, 

such as weather forecasting, water productivity or drought management have 

been defined by scientists and researchers. In most cases, these indexes are used 

as a threshold to determine the features of a region or to trigger an action. A 

priori, there is not a single index suitable for all cases. In this sense, it is required 

to use different indexes in accordance with the proposed objectives.  

In this publication several indexes have been classified according to their use. 

In this way, indexes are organized in three categories that are: 

 Drought and water scarcity indexes. These indexes serve to identify and 

classify the types of droughts. They are also used for the 

implementation of anticipation measures. An example of the 

application of measures to reduce drought impacts is the case of the 

National Drought Indicator System in Spain. 

 Indicators derived from water accounting. They characterize the 

pressures on water resources, allowing a general description of the river 

basin and paying attention to the impact of each water user to the total 

monetary value of water resources in a territory (Tilmant et al., 2015). 

 Performance indexes. Traditionally, these indexes are used to assess the 

capacity of a water resources system to meet its demands. They are also 

used for purposes of resource allocation along with simulation models 

in order to evaluate the status of the water resources system in different 

scenarios. 
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Whatever the case may be, the combined use of these indexes supports the 

decision-making process.  

2.2 KEY ISSUES FOR DETERMINING THE EXPLOITABLE WATER 
RESOURCES IN A MEDITERRANEAN RIVER BASIN 

This publication, which corresponds with Annex 2, tries to describe the key 

issues for establishing the methodology for calculating the Exploitable Water 

Resources (EWR) in a Mediterranean river basin, as an indicator of water 

availability. As noted by (UNDS, 2012), this indicator depends on the 

management and infrastructure development of the territory, and it is not 

possible to obtain it as a result from water accounting approaches. 

This work is in line with the traditional approaches used in Spain for water 

resources planning and management. Its obtainment is supported by two key 

pillars which are water balances and the use of a reliability criterion for assessing 

the compliance with water supplies. The EWR is calculated as the maximum 

demand that can be satisfied in compliance with certain levels of supplies. 

Different possible combinations between the origin of streamflow time series, 

the reliability criteria and the length of the simulation period have been taken 

into consideration. Predictably, the findings show a wide dispersion, being 

necessary that decision-makers resolve the methodology required to determine 

the EWR in a river basin. 

2.3 WATER ACCOUNTS AND WATER STRESS INDEXES IN THE 
EUROPEAN CONTEXT OF WATER PLANNING: THE JUCAR 
RIVER BASIN 

This publication, which can be found in Annex 3, emphasises the need to 

consider jointly the use of hydrological models and water allocation models to 

apply water accounting approaches.  

In this sense, the purposes of hydrological models are to quantify the 

hydrological cycle, estimating variables such as precipitation, actual 

evapotranspiration, surface and groundwater runoff, soil moisture, and aquifer 

recharge, among others. Conversely, water resource management models are 

used to assess the behaviour of a water exploitation system for given scenarios. 
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They include all the necessary elements for describing the water management, 

such as reservoirs, hydraulic connections, aquifers, demand centres, 

unconventional resources, environmental requirements or operating rules, 

among others. 

In order to reinforce this idea, several drought indexes were applied by using 

precipitation data and the volumes of water stored in reservoirs obtained as a 

result of a water allocation model, respectively. The findings demonstrate that 

the single analysis of precipitation is not enough in stressed river basins as 

Mediterranean ones. 

2.4 THE USE OF AQUATOOL DSS APPLIED TO THE SYSTEM OF 
ENVIRONMENTAL-ECONOMIC ACCOUNTING FOR 
WATER (SEEA-W) 

This publication, which corresponds with Annex 4, is a pilot case for the 

acquisition of water accounts and the calculation of several indicators derived 

from their results. The accounting approach considered is the System of 

Environmental-Economic Accounting for Water (SEEA-W). It is focused on 

physical supply and use tables as well as on asset accounts, leaving aside the 

monetary terms. 

This work has provided the basis for the development of a tool capable to 

build water accounts by using hydrological and water management models, as 

proposed in the objectives of this thesis. In order to have all the necessary 

information required by the SEEA-W, it was required the building of a 

hydrological model with EVALHID module (Paredes-Arquiola et al., 2012) from 

AQUATOOL DSS (Andreu et al., 1996). 

The case study is the Velez River Basin, located in the Mediterranean 

Andalusian River Basin District, in Málaga. As first contact, the approach is 

applied to a small river basin in order to validate the results easily. In this case, 

the size of this river basin is inversely proportional to their pressures and their 

water management issues. The existence of a great number of economic 

activities in the Vélez River Basin is explained by the geographic, 

geomorphologic, climatic and socio-cultural context of this area. Agriculture 

constitutes the main economic activity together with urban settlements along 
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the basin and the coast and to guarantee these demands the basin is highly 

regulated. Therefore, this area of study is an excellent example of highly 

pressured basin with lots of hydrological information to analyse aspects of water 

management. 

2.5 WATER ACCOUNTING IN STRESSED RIVER BASINS BASED 
ON WATER RESOURCES MANAGEMENT MODELS 

This research paper, which corresponds with Annex 5, serves to close this 

thesis. This work has allowed the fulfilment of the objectives proposed in this 

thesis. Among them are the development of AQUACCOUNTS module within the 

AQUATOOL DSS (Andreu et al., 1996), the acquisition of the economic cost of 

water services and the application and verification of the proposed methodology 

to a stressed river basin such as Jucar RBD. 

Moreover, despite these findings have not been published, this research has 

allowed the acquisition of a classification of river basins according to their degree 

of water stress based on the results of water accounting. 

2.6 WATER ACCOUNTING IN THE PO RIVER BASIN APPLIED 
TO CLIMATE CHANGE SCENARIOS 

This publication, which can be found in Annex 6, aims to analyse the impact 

of climate change in the Po River Basin (North of Italy) using the SEEA-W within 

current water accounting approaches.  

The methodology employed consists on a modelling chain with four consecutive 

stages: 1) a module for the climate which is composed by the following elements in 

cascade: RCP 4.5 scenario, global climate model, regional climate model and bias 

correction; 2) a rainfall-runoff model (TOPKAPI)(Liu and Todini, 2002) which uses the 

output variables of the climate module; 3) a water resources management model 

(RIBASIM) (Delft Hydraulics, 2006) for simulating the behaviour of the system during 

varying hydrologic conditions, and 4) the building of the required databases to 

organize the information and to obtain the asset accounts. 
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This work represents a first step in the development of water accounts, 

highlighting the necessity of new improvements in the chain model in order to 

consider all the information required by the approach such as the changes in the 

volumes of reservoirs and lakes, the evaporation and the supply to groundwater 

demands, among others.  
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3. RESULTS AND DISCUSSION 

This section summarises the main findings of this thesis, which are included 

in the Annexes. These results derive from water resources systems analysis, 

which is understood as the analytical study of the water resources in a river basin 

in order to improve decision-making processes and identify the best alternatives 

from other possible ones. It includes all the necessary elements required to 

describe a river basin, including water resources, infrastructures, water demands 

and environmental requirements, among others. 

As water resources systems become complex due to the high number of 

infrastructures and water requirements, the use of water resources models is 

required in order to identify the system’s performance.  

 Hydrological models enable us to obtain the river basin water 

resources in a natural regime, describing the water cycle. These 

models estimate variables such as precipitation, actual 

evapotranspiration, soil moisture among others. Some examples are 

SIMPA (Estrela and Quintas, 1996), EVALHID (Paredes-Arquiola et al., 

2012) and PATRICAL (Pérez-Martín et al., 2014) models, which were 

used in this thesis. 

 Water balance models enable us to obtain water allocations over a 

period of time, allowing the simulation of management possibilities 

for complex large-scale water resources systems. They include both 

the natural and the anthropogenic elements that constitute the 

water resources system and may require the results obtained with a 

hydrological model as an input. They include the main features of 

the system such as rivers and aquifers, reservoirs and canals, existing 

uses represented by the demand centres, the use of returns and 

other unconventional resources, and environmental constraints or 

operating rules. SIMGES model (Andreu et al., 1996) is an example of 

water allocation model, which was used in this thesis. 

 Hydroeconomic models attempt to represent regional scale 

hydrologic, engineering, environmental and economic issues of 

water resources systems (Harou et al., 2009). 

The approaches used in water resources systems analysis have changed in 

the past decade. It is required to add water accounting approaches to the 
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traditional water balance methods. According to EC (2015) water balance is 

defined as “the numerical calculation accounting for the inputs to, outputs from 

and changes in the volume of water in the various components of the 

hydrological cycle, within a specified hydrological unit and during a specified 

time unit”. EC (2015) also describes water accounting as an approach that 

“integrates physical and economic information related to water consumption 

and use, to achieve equitable and transparent water governance for all water 

users and a sustainable water balance between water availability, demand and 

supply”.  

3.1 TRADITIONAL WATER BALANCES 

As mentioned before, water balances are essential tools in water planning as 

they explain the situation of the river basin in general terms. Whatever the type 

of water balance used, either at river basin scale or at water exploitation system 

scale, in both cases the main difficulty lies in estimating the available resources. 

Examples are the different methodologies used so far for their preparation and 

compiled in the documents: Tres casos de planificación hidrológica (MMA, 

2000a), Libro blanco del agua en España (White Paper on Water in Spain) (MMA, 

2000b) and Estudio del impacto del cambio climático en los recursos hídricos 

(MAGRAMA, 2012). In all of them, water balance models were based on 

optimization techniques. 

This estimation depends directly on the baseline scenario considered and the 

index used to define the state of the water exploitation system (see figure 3.1). 

The elements that define the scenario are: (1) the topology of the scheme, (2) 

the quantification of the water resources, (3) the criteria used for determining 

the availability of water resources and (4) the reliability criterion used to define 

the state of the system. 
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Fig. 3.1: Scheme of the approaches to define water balances 

With regard to the topology of the scheme, the baseline scenario may 

represent the current complexity of the system with different levels of detail, a 

simplified version with demand elements in each of the nodes, or demands 

elements located in specific areas. At this stage, environmental requirements 

may be also considered.  

Regarding the quantification of water resources, the most common 

approaches use time series of naturalized streamflows or streamflows time 

series obtained from models. The latter can be rainfall-runoff models, models 

focused on climate change estimations or statistical ones. Another important 

factor to consider is the definition of the initial condition in reservoirs and 

aquifers, which will largely influence the resource estimations.  

The available resources are assimilated as the maximum demand that can be 

served to satisfy the system’s requirements. In this sense, the scheme can 

include a single demand at the end of the water exploitation system or several 

demands spread in the scheme. The results also vary depending on the system 

management, in other words, if the operating rules and concessional aspects are 

taken into account (by using a simulation model), or if an optimized system is 

used (by using optimization models). 
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Finally, regarding the reliability criterion, this has changed according to the 

different Spanish Guidelines of Water Planning. The current criterion 

(MAGRAMA, 2008) establishes that for objects of water resource allocation and 

reservation, urban requirements are satisfied if the deficit in one month is not 

superior to 10% of the corresponding monthly demand and if in 10 consecutive 

years, the sum of deficits is less than 8% of the annual demand. Equivalently, 

agrarian requirements are satisfied when the deficit in one year is not superior 

to 50% of the corresponding demand; for two consecutive years, the sum of 

deficit is not superior to 75% of the annual demand; and in ten consecutive years, 

the sum of deficit is not superior to 100% of the annual demand. 

In the case of the three aforementioned examples of water balances, each of 

them is characterized by: 

 Tres casos de planificación hidrológica (MMA, 2000a). This approach 

uses time series of naturalized streamflows and uses as a reliability 

criterion based on the annual deficit in 1, 2 and 10 consecutive years. 

Regarding urban requirements, the deficits are limited to 10, 16 and 

30% respectively. In the case of agrarian supplies the limit of these 

deficits are 50, 75 and 100%. It uses an optimization model, which 

increases demands on specific points of the scheme. 

 Libro blanco del agua en España (MMA, 2000b). It employs both 

naturalized streamflows time series and time series from SIMPA model 

(Estrela and Quintas, 1996). As a reliability criterion it requires a 

reliability of 100% for urban supplies and the maximum annual deficit in 

1, 2 and 10 consecutive years limited to 50, 75 and 100%. Moreover, it 

uses a simplified optimization model of the river basin, which includes a 

demand element in each node of the scheme to be increased from 

upstream to downstream. 

 Estudio del impacto del cambio climático en los recursos hídricos 

(MAGRAMA, 2012). It uses streamflows times series obtained by 

rainfall-runoff models and estimations of climate change streamflows. 

It employs a simplified optimization model of the basin in which a single 

demand located at the end of the system is increased. And it uses the 

same reliability criterion considered in the document Libro blanco del 

agua en España (MMA, 2000b). 
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3.2 WATER ACCOUNTING 

In accordance with the scope of water resources protection established by 

the WFD and due to the difficulty of achieving the “good status” of all water 

bodies required by 2015, the Blueprint to safeguard Europe's water resources 

(EC, 2012) aims to solve the obstacles that hinder the protection of European 

water resources. The Blueprint is based on extensive public consultations in 

which citizens, stakeholders, Member States and other institutions have 

participated. Among its objectives are (i) improving the application of current EU 

water policy, (ii) further integration of water policy objectives with other policies 

and (iii) improving important aspects of the WFD related to water efficiency. 

Regarding this latter, water accounts are proposed as the tool to achieve the 

target of water efficiency. Water accounting is a methodology that presents 

information on water resources linking environmental and economic issues of 

water supply and use (Vardon et al., 2007). As noted by Godfrey and Chalmers 

(2012), it covers a wide range of formats for reporting water information, being 

the System of Environmental-Economic Accounting for Water (SEEA-W) (UNDS, 

2012) the most commonly used. 

SEEA-W framework includes the inland water resource system, which is 

comprised by surface water, groundwater and soil water. In relation to the 

economy, it is represented by abstractions, imports, exports and returns of the 

most relevant economic agents. SEEA-W tables are presented in flow accounts 

or asset accounts. Flow accounts represent the water flows in physical units 

within the economy and between environment and the economy, and asset 

accounts measure stocks at the beginning and the end of an accounting period. 

The classification of industrial economic activities used in SEEA-W is the 

International Standard Industrial Classification of All Economic Activities (ISIC) 

(UN, 2008). The major disadvantage in the application of SEEA-W approach is the 

obtainment of the economic information required, as this information is 

traditionally presented at administrative scale and in natural years, not in 

hydrological years. On the other hand, it requires such amount of information 

that makes difficult its application.  

The proposed methodology is described in figure 3.2 as a modelling chain 

composed of three stages: (1) a rainfall-runoff model, (2) a water balance model 

and (3) an economic balance. A detailed description of the methodology can be 

found in Annex 5. So, in this way, the conjunctive use of the rainfall-runoff model 
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and the water balance model enables us to obtain the asset accounts and, the 

results of the water balance model are used to calculate the physical supply and 

use table. Moreover, the estimation of the water service costs, being understood 

as all services which provide abstraction, storage, treatment and distribution of 

water and the wastewater collection and treatment facilities (WATECO, 2002) is 

done through an economic balance. 

 

Fig. 3.2: Scheme of the approach to obtain SEEA-W tables by using different types of 
models related to water resources management (Modified from Annex 5) 

The following sub-sections describe the application of water resources 

management models to obtain the exploitable water resources, asset accounts, 

the physical supply and use tables, the water services costs and the acquisition 

of indexes derived from water accounting. 
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3.3 EXPLOITATION INDEXES BASED ON BOTH APPROACHES 

3.3.1 EXPLOITABLE WATER RESOURCES 

The indicator of exploitable water resources (EWR) describes water 

availability in a river basin. As noted by UNDS (2012), EWR is defined as “the part 

of the water resources considered to be available for development under 

specific technical, economic and environmental conditions”. This indicator is not 

derived from water accounts and its calculation is proposed in Annex 2 as “the 

maximum demand that can be served by the system satisfying the officially 

established reliabilities and the environmental requirements”.  

The acquisition of the EWR in Jucar river basin was conducted with a specific 

simulation model of the water exploitation system developed with SIMGES 

module. Jucar RBA used this model during the drafting of the Jucar RBMP (BOE, 

2016) in order to assess water resources allocation and reservation. The figure 

below shows the details and complexity of the water exploitation system itself. 

 

Fig. 3.3: Scheme of the Jucar Water Exploitation System with SIMGES (Source: Jucar RBA) 

The estimation of the EWR is influenced by three aspects: 

- The origin of the streamflows time series. Two sources of data were 

considered: on the one hand the EWR were obtained by using 
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naturalized streamflows and, on the other hand, the streamflows time 

series came from a stochastic generation model.  

- The reliability criterion to consider satisfied the supply to all water users. 

Two criteria were taken into account: the IPH reliability criterion 

(MAGRAMA, 2008) and the efficiency indicators defined by (Martin-

Carrasco and Garrote, 2007).  

- The length of the simulation period. During the latter 30 years, Jucar 

River Basin has registered an important reduction in its natural 

streamflows (Pérez-Martín et al., 2013) with the consequent reduction 

in water availability. For this reason, two possible results were obtained 

depending on if the simulation period was 1980-2009 or it was 1940-

2009.  

The reference scenario corresponds to the time horizon 2009, which includes 

environmental requirements, considered in the previous Jucar RBMP (BOE, 

2014). This model takes into account the main infrastructures and demands of 

the Jucar water exploitation system, which differ from the total requirements of 

Jucar River Basin detailed in table 1.2. The total supplies in the reference 

scenario amount to 1103 hm3/year. In order to assess how much the supply 

could increase, five groups of new water users were incorporated to the original 

model showed in figure 3.3. The location of these water users was made taking 

into consideration the strategic points in the river basin as it is detailed in Annex 

2. An iterative process, executes the simulation model analysing the possibility 

of increasing these new demands. The final result is achieved when the 

maximum demand is obtained while fulfilling the required reliability criteria. 

The table below shows the additional volume that the system is capable to 

supply by satisfying the established reliability criteria. In the case of the synthetic 

series, the figures in table 3.1 are the average values obtained after simulating 

100 files of streamflow time series for the period 1980-2009 and 100 files for the 

period 1940-2009. Given these results, we can make some appreciations: 

- When using the IPH reliability criterion (MAGRAMA, 2008), the 

maximum availability of water resources is registered in the lower 

stretch of Jucar River in Huerto Mulet gauging station.  However, when 

using the efficiency indicators (Martín-Carrasco and Garrote, 2007) as 

the reliability criterion, the maximum availability of water resources is 

registered in the Cabriel River headwater (see figure 8 from Annex 2). 
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- The results obtained using synthetic time series show that the series 

generated by stochastic processes (autoregressive moving average 

(ARMA) model) do not maintain all the statistical resemblance with 

historical time series in natural regime that would be desirable. In this 

regard, and particularly for the period 1940-2009, it should be taken into 

account that the ARMA model is not able to generate a drought as long 

as the droughts registered. In practice, this prevents the appropriate 

conservation of drought properties that are measured according to the 

criteria based on the worst supplies. 

  Historical data Synthetic series 

  1940/41-2008/09 1980/81-2008/09 1940/41-2008/09 1980/81-2008/09 

C
ri

te
ri

o
n

 

IPH 2008 57,42 19,34 216,52 25,38 

Efficiency 
indicators 

451,20 93,73 623,01 184,64 

Table 3.1: Additional EWR (hm3/year) obtained for the considered scenarios 

As showed in figure 8 from Annex 2, eight radial graphs represent each of the 

eight scenarios considered. Each of these charts has 10 axes representing the 

demand elements included in the simulation model and in which the additional 

EWR obtained is shown. The results obtained with the simulation of the historical 

streamflow time series and the IPH criterion (MAGRAMA, 2008) show that the 

system is capable of delivering the same volume of water resources in the middle 

and upper basin area and, this resource increases in the lower section. Using the 

efficiency criterion (Martín-Carrasco and Garrote, 2007) it is found that the 

maximum additional water resource availability is given for a seasonal demand 

located at the headwaters of the Cabriel River (AD Contreras). With respect to 

the synthetic streamflow time series, the charts show the average value and a 

band representing the confidence interval of the standard deviation. In many 

cases the value achieved by the latter is even higher than the average value, in 

which case the term average minus standard deviation is not represented. 

The following Box-Whisker plots present the results obtained in the 

simulations with synthetic streamflow time series. In the case of the 1980-2009 

period, the median value of the additional exploitable water resources is zero 

for both reliability criteria. Moreover, in the case of efficiency criteria for many 

of the locations the third quartile is also zero, showing a strong asymmetry (see 

figure 3.4 and figure 3.5). The results observed for the 1940-2009 period are 
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quite different. Figure 3.6 and figure 3.7 show that the maximum additional EWR 

is located in the lower stretch when considering IPH criterion (MAGRAMA, 2008) 

or it is located in the headwater when considering the efficiency indicators 

(Martín-Carrasco and Garrote, 2007). 

 

Fig. 3.4: Box-Whisker plot for the assessment of the EWR (hm3/year) by using synthetic 
time series, IPH criterion and 1980/81-2008/09 simulation period 

 

Fig. 3.5: Box-Whisker plot for the assessment of the EWR (hm3/year) by using synthetic 
time series, IPH criterion and 1940/41-2008/09 simulation period 

0

20

40

60

80

100

120

140

160

180

200

AD Alarcón UD Alarcón AD Contreras UD Contreras AD Molinar UD Molinar AD Tous UD Tous AD Huerto
Mulet

UD Huerto
Mulet

EW
R

 (
h

m
3 /

ye
ar

)

Synthetic series (1980-2008) + IPH 2008 criterion 

0

50

100

150

200

250

300

350

400

450

500

AD Alarcón UD Alarcón AD Contreras UD Contreras AD Molinar UD Molinar AD Tous UD Tous AD Huerto
Mulet

UD Huerto
Mulet

EW
R

 (
h

m
3 /

ye
ar

)

Synthetic series (1940-2008) + IPH 2008 criterion 



3. Results and discussion 

33 

 

Fig. 3.6: Box-Whisker plot for the assessment of the EWR (hm3/year) by using synthetic 
time series, efficiency criterion and 1980/81-2008/09 simulation period 

 

Fig. 3.7: Box-Whisker plot for the assessment of the EWR (hm3/year) by using synthetic 
time series, efficiency criterion and 1940/41-2008/09 simulation period 
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reservoirs, the incorporation of new measures for reuse or sharing resources 

with other systems, would require a new resource assessment and the 

acquisition of different values of the water resource availability. 

3.3.2 ASSET ACCOUNTS, PHYSICAL AND USE TABLES AND WATER 
SERVICES COSTS 

In order to obtain SEEA-W tables, a water balance model of the case study 

was developed using SIMGES module from AQUATOOL DSS. This model includes 

all the necessary information linked with water resources, water requirements 

and infrastructures. It incorporates 28 artificial reservoirs and 18 lakes, 20 

hydropower stations, 210 water users and 116 groundwater bodies. An in-depth 

description of the water balance model is included in Annex 5. Figure 3.8 shows 

the scheme of the SIMGES simulation model of the Jucar RBD, in which the detail 

and complexity of the system are identified. 
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Fig. 3.8: Scheme of the water balance model of the Jucar RBD  

The historical records of stored volumes in the main reservoirs of the district 

have been compared with the results of the water balance model for the latter 

ten years using 1980/81-2011/12 as the simulation period. As it is shown in the 

figures below, the management proposed is similar to that of recent years. It 

must be stressed that the initial volumes simulated in the main reservoirs of 

Jucar and Turia water exploitation systems differ from the historical ones. This is 

because the lack of resemblance between past and current water user’s 

requirements.  
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Fig. 3.9: Results from the calibration of the water balance model in the main reservoirs of 

the district 
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The table below presents the reliability criterion expressed in deficit terms, 

as required by IPH (MAGRAMA, 2008), for the main water users in the district. 

As it can be observed, the main water users have their supplies guaranteed.  

  Maximum deficit (%) 

Name 
Annual 

demand 
(hm3) 

Monthly Annual 
2 consecutive 

years 
10 consecutive 

years 

Mijares traditional irrigation 64 - 24 36 75 

Mijares mixed irrigation 95 - 1 2 4 

Turia traditional irrigation 251 - 11 15 19 

Turia mixed irrigation 74 - 0 0 0 

Jucar traditional irrigation 599 - 9 9 9 

Jucar mixed irrigation 436 - 0 0 0 

Rest  of the district 1036 - - - - 

TOTAL Agrarian Demand 2555 - - - - 

Albacete 14 0 - - 0 

Sagunto 11 0 - - 0 

Valencia 147 0 - - 8 

Table 3.2: Reliability criterion (MAGRAMA, 2008) for user requirements in Jucar RBD 

Asset accounts and physical and use tables 

As it is described in Annex 4 and Annex 5, water asset accounts measures the 

reserves on surface water, groundwater and soil water in the river basin at the 

beginning and at the end of the accounting period and register the changes in 

volumes that occur during that period of time due to natural processes and 

human activities. Similarly, matrix of flows presents the exchanges of water 

between water resources, making available all the information on the origin and 

destination of flows in the territory. This latter assists in identifying the 

contribution of groundwater to the surface flows as well as the recharge of 

aquifers by surface runoff. In both tables, the source information of each cell 

may come from rainfall-runoff models and/or water balance models, as it has 

been described in Annex 4. Moreover, there are some values in both tables 

which are difficult to quantify because two possible reasons. The first reason is 

the fact that aggregated models do not differentiate between precipitation into 

artificial reservoirs, lakes or rivers (Vicente et al., 2016). The other reason is 
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because there are flows between water resources in the environment that are 

unlikely or physically impossible to monitor; this is the case of precipitation into 

groundwater and outflows to the sea from soil water or from artificial reservoirs. 

On the other hand, the physical use table is split into two sections: the first 

section refers to flows from the environment to the economy (like abstractions) 

and the second section refers to flows within the economy (like water received 

from other economic units). Additionally, the physical supply table is also 

branched into two other sections: the first one describes the flows of water 

within the economy (like the supply of water to other economic units) and the 

second one describes flows from the economy to the environment (like returns 

of water into the environment). In this case, in contrast to asset accounts, each 

cell in physical use and supply tables derives from the water balance model. 

Despite the fact that SEEA-W approach is the most widely used water 

accounting system, some aspects should be better defined. One of them is the 

temporal and spatial aggregation. Results presented in Annex 5 are referred to 

an average year, considering the results obtained from October 1980 to 

September 2012. On the other hand, Annex 4 considers the asset accounts and 

physical and use tables obtained during the months of May 1995 and January 

1996. In accordance of the objectives pursued, both options are appropriately 

addressed. As noted by Vicente et al. (2016), the minimum required period 

should be an entire hydrological year or using inter-annual average values in 

those areas with significant inter-annual variability. Regarding the spatial 

aggregation, in the case of Jucar RBD, its high spatial variability can justify the 

disaggregation of asset accounts and physical and use tables, which have been 

obtained for the entire district into individual water exploitation system tables. 

Compared to the traditional water balances described in Annex 2, which have 

been used for water allocation and reservation in Spain, both asset accounts and 

physical and use tables present a higher degree of detail and complexity. That 

means that there are several elements that distort the final objective, which is 

to manage the available water resources in a just manner between all water 

users. In this sense, the question is if it is really required to know the volume of 

water stored as soil water in order to assign a new concession or to decide the 

annual investments in regenerated water or desalination. Even more when then 

main variables involved, which are precipitation and temperature, cannot be 
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planned by managers. However, it is pertinent to take them into account to close 

the balance of the hydrological cycle. 

 Another very important matter is the organisation of industrial economic 

activities used in SEEA-W, which is the International Standard Industrial 

Classification of All Economic Activities (ISIC) (UN, 2008). In connection with this 

issue, the way in which results have been presented in Annex 5 differ from the 

ones displayed in Annex 4. In this latter the economic uses were presented 

according to the river basin main economic sectors, which are urban, farming, 

cattle raising and recreational. By contrast, in Annex 5 physical supply and use 

table are organised according to the ISIC. This change was due to the fact that it 

is necessary to have a standard classification for international comparisons 

between river basins. The question is if this classification is effectively useful for 

water resource planning and management or if this system was chosen for 

economic reasons. As an example, the economic importance of hydropower 

generation (ISIC division 35) is indisputable. But it might be more appropriate 

not to include non-consumptive uses in this balance. Similarly, in the case of 

rainfed agriculture, this latter can be decisive in economic terms in a region, 

contributing meaningfully to the GDP of the country (Borrego-Marín et al., 2015) 

but, as noted in the paragraph before, precipitation and temperature cannot be 

planned by water managers. 

From the point of view of water planning, in order to do water accounting 

suitable for water resources allocation and reservation, it should take into 

account the environmental requirements (EC, 2015) and the possibility that 

deficits occur in the supplies. In the case of Spain, the IPH criterion (MAGRAMA, 

2008) establishes when user’s requirements are satisfied depending on monthly 

and annual deficits. 

Water services costs 

Other results proposed by the SEEA-W approach are the hybrid and economic 

accounts which pretend to describe in monetary terms the supply and use of 

water related products. As noted by (UNDS, 2012), these tables try to identify: 

a) Costs associated with their production;  

b) Income generated by their production;  
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c) Investment in water related infrastructure and the maintenance costs; 

and  

d) Fees paid by the users for water related services, as well as the subsidies 

received. 

The greatest challenge posed by hybrid accounts is that the required 

information is often not available; being the reason why a straightforward 

approach based on average costs for all water services is proposed in this thesis. 

This proposal aims to make use of the results achieved during the assessment of 

cost recovery of water services, as required by WFD (EP, 2000). The components 

of the full water services cost are composed by environmental, resource and 

financial costs (WATECO, 2002) (see figure 3.10).  

 

Fig. 3.10: Different types of costs considered in WFD (Source: Rogers et al. (1997)) 

As reported by figure 3.10, environmental costs are defined as the price to 

be paid for deteriorating the water bodies status. On the other hand, considering 

the resource costs remains a major challenge, being out of our reach. Lastly, the 

assessment of the financial cost rests on data from public administrations 

budgets for each water service. This methodology is discussed in detail in Annex 

5. 

For the Jucar RBD, the average cost of water services comes from Annex 9 of 

the Jucar RBMP (BOE, 2016) as can be seen in table 3.3. These costs rely on the 

origin of water resources (surface water, groundwater, reused water, 

desalinated water or water transfers) and on the costs of adapting water 

resources to their uses (agrarian, urban or industrial use). The prices for water 

transfers are published in (BOE, 2012) and (MCT, 2016). 
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Administrative costs

Capital & operation and
maintenance costs

(External)
Resource costs

Financial costs
(incl. Internalized

environmental and 
resource costs)
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Servicios 
del agua 

Uso del agua 

Volum
en de 
agua 

servid
a 

(hm3) 

Coste 
financi

ero 
total 

(M€/añ
o) 

Coste 
ambien
tal CAE 

* 
(M€/añ

o) 

Costes 
Totale

s 
(M€/a

ño) 

Ingres
os por 
tarifas 

y 
cánon
es del 
agua 

(M€/a
ño) 

Índice de 
Recupera
ción de 
costes 
totales 

(%) 

Índice de 
Recupera
ción de 
costes 

financiero
s (%) 

Coste 
financi
ero en 
€/m3 

Ingres
os en 
€/m3 

Servicios 
de agua 

superficial 
en alta 

Urbano 
240.1

0 
2.7 1 3.7 1.2 32% 45% 0.01 0 

Agricultura/ganadería 
1457.

90 
11.6 4.4 16.1 5.2 32% 45% 0.01 0 

Industria/energía 0.00 0 0 0 0 sd sd sd sd 

Servicios 
de agua 

subterráne
a en alta 

Urbano 
242.9

0 
60.3 0 60.3 60.3 100% 100% 0.25 0.25 

Agricultura/ganadería 0.00 0 0 0 0 sd sd sd sd 

Industria/energía 0.00 0 0 0 0 sd sd sd sd 

Distribució
n de agua 
para riego 

en baja 

Agricultura 
1462.

30 
190.6 1.9 192.5 123.1 64% 65% 0.13 0.08 

Abastecimi
ento 

Urbano 

Hogares 
181.9

0 
247.7 0 247.7 228.7 92% 92% 1.36 1.26 

Agricultura/ganadería 0.00 0 0 0 0 sd sd sd sd 

Industria/energía 49.80 72.4 0 72.4 66.9 92% 92% 1.46 1.34 

Autoservici
os 

Doméstico 0.00 0 0 0 0 sd sd sd sd 

Agricultura/ganadería 
1095.

60 
270.5 50 320.5 270.5 84% 100% 0.25 0.25 

Industria/energía 
136.8

0 
17.9 6.2 24.2 17.9 74% 100% 0.13 0.13 

Reutilizació
n 

Urbano (riego de 
jardines) 

0.00 0 0 0 0 sd sd sd sd 

Agricultura/ganadería 77.30 17.5 0 17.5 0 0% 0% 0.23 0 

Industria (golf)/energía 0.50 0.1 0 0.1 0 0% 0% 0.23 0 

Desalación(
2) 

Abastecimiento urbano 2.60 18.9 0 18.9 0 0% 0% 7.23 0 

Agricultura/ganadería 0.00 0 0 0 0 sd sd sd sd 

Industria/energía 0.90 6.7 0 6.7 0 0% 0% 7.28 0 

Recogida y 
depuración 

fuera de 
redes 

públicas 

Hogares 0.00 sd   sd 0 sd sd sd sd 

Agricultura/ganadería/ac
uicultura 

0.00 sd   sd 0 sd sd sd sd 

Industria/energía 0.00 sd   sd 0 sd sd sd sd 

Recogida y 
depuración 

en redes 
públicas 

Abastecimiento urbano 
361.0

0 
199.7 22.5 222.1 166.5 75% 83% 0.55 0.46 

Industria/energía 
105.6

0 
58.4 6.6 65 48.7 75% 83% 0.55 0.46 

TOTALES 
3254.

6 
1174.9 92.6 1267.6 989 78% 84% 0.36 0.3 

Table 3.3: Summary of cost recovery analysis for water uses and services in Jucar RBD for 

the period 2004-2013 (constant 2012 prices) (Source: BOE (2016)) 

For the urban use the average cost of water is estimated in 1.38 €/m3, 1.61 

€/m3, 2.02 €/m3 and 7.27 €/m3 depending whether the origin of water resources 
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is surface water, groundwater, water transferred from other territories or 

desalinated water, respectively. In the case of industrial water the average costs 

are 0.18 €/m3, 1.45 €/m3 and 7.44 €/m3 by employing groundwater, surface 

water, or desalinated water, respectively. The average cost of collection and 

treatment of used water is 0.61 €/m3 for both urban and industrial uses. On the 

other hand, agrarian supplies are estimated in 0.14 €/m3 for surface water, 

0.23€/m3 for reused water, 0.24 €/m3 for water transferred from other 

territories and 0.29€/m3 for groundwater supplies.  

Based on these amounts and on the results obtained with the water balance 

model, the total average water services costs in Jucar RBD amounts to 1634 

million € per year at constant 2012 prices, using 1980/81-2011/12 as the 

reference period for the determination of these figures. This value is fairly higher 

than the 1.268 € per year at constant 2012 prices observed in table 3.3. On the 

one hand, differences are due to the incidences of hydrological variables. The 

groundwater component obtained from simulation models is slightly higher than 

the observed during the period 2004-2013 and, the same goes for the volumes 

of reused water. On the other hand, water service costs obtained from 

simulation also includes the costs derived from transfers from other territories 

which are not included in table 3.3. 

From users’ point of view, knowing the water services costs can be relevant 

since in them is reflected the expenses born by governments. On the other hand, 

assessing the benefits of water services is still pending. 

3.3.3 THE INDICATOR OF ECOLOGICAL STRESS FOR RIVERS 

The indicator of ecological stress for rivers (ESIr) is obtained at monthly level 

as described in Eq. 1. This index is usually presented in a cumulative distribution 

function during the analysed period. EEA (2013) indicates that values of ESIr 

between 0-15% represent a destructive ecological stress for rivers; between 15-

25% symbolize an unsustainable ecological stress; between 25-50% represent an 

excessive ecological stress; between 50-65% represent a risky ecological stress; 

between 65-90% denote a warning ecological stress and finally, ESIr values 

between 90-100% show the inexistence of problems in the river.  

𝐸𝑆𝐼𝑟 =
𝑜𝑢𝑡𝑓𝑙𝑜𝑤

𝑜𝑢𝑡𝑓𝑙𝑜𝑤+𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠−𝑟𝑒𝑡𝑢𝑟𝑛𝑠
  (1) 
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An example of the application of ESIr can be found at Annex 4. In this pilot 

case the Mediterranean River Basin District Management Plan (BOE, 2012b) 

considers the implementation of several environmental flows based on habitat 

modelling assessment and on hydrological criteria. One of them is defined in the 

Low Vélez Guaro River downstream the confluence of left margin tributaries. 

Furthermore, the application of recommended flows for the saturation of the 

alluvial aquifer in the left margin tributaries is also conducted. These flows are 

destined to recharge the aquifer and they will be used to supply the water 

requirements near the coast. The latter are more restrictive that the 

environmental ones particularly during the driest months. As a result, the 

likelihood of having a non-sustainable ecological stress is around 25%, in this 

way, the likelihood of inexistence problems in the river is 3%, displaying the high 

stress suffered by the system.  

3.3.4 THE WATER EXPLOITATION INDEX 

The Water Exploitation Index (WEI) (EEA, 2005) was defined by the European 

Environmental Agency (EEA) with the goal of assessing the degree of stress 

suffered in a river basin. This index is obtained as the percentage of mean annual 

total demand for freshwater with respect to the long-term mean annual 

freshwater resources. As noted by CIRCABC (2012), values of WEI in a river basin 

between 0% and 20% show a situation of no stress; values between 21% and 

40% indicate water stress; and values upper than 40% represent extreme water 

stressed river basins. Some examples of the acquisition of WEI can be found at 

Annex 4 and Annex 5. In the pilot case, the WEI was obtained for the period 

1980/81-2006/07, and it amounted to 74%, showing a high degree of water 

stress in the river basin. In the Jucar RBD the values of WEI vary between 242% 

and 74% depending on whether or not the hydropower abstractions are 

considered for its calculation. In this regard, EUROSTAT (2016) confirms that the 

water used for hydropower generation is excluded from water abstractions for 

the obtainment of WEI.  

The limitations of this index are remarked in EUROSTAT (2016) and detailed 

in Annex 1. They include: 

a) Freshwater abstraction does not take into account the amount of water 

that returns to the environment after being abstracted, and 
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b) Seasonal changing conditions are disregarded when calculating the 

index. 

3.3.5 THE WATER CONSUMPTION INDEX 

Equivalently to the WEI, the (UNDS, 2012) defined the Water Consumption 

Index (WCI) as the ratio between water consumption and total renewable water 

resources. This indicator considers the returns into the environment for other 

uses downstream, so that WEI highlights the water abstractions and WCI is 

targeted towards the water consumptions. In the pilot case, the WCI amounts to 

40%. Similarly, in the Jucar RBD the value of WCI amounts to 56%, softening in 

both cases the degree of stress in the basin. 

There is another index called Water Exploitation Index Plus (WEI+) (CIRCABC, 

2012) which was not applied to the case study and shares similarities with the 

WCI. The main feature of this index is that WEI+ is applied at monthly level. In all 

cases, the strengths and weaknesses of these indexes are described in Annex 1. 

3.4 USES OF WATER EXPLOITATION INDEXES 

Given the broad range of indexes and tools currently available in order to 

analyse water resources system, a first step can be its classification in order to 

identify the main features and to apply the most adequate approach. Taking as 

the starting point the results obtained in previous sub-sections, this classification 

aims to explain their main features, deficiencies, limitations and 

recommendations. 

Using the results obtained in Libro blanco del agua en España (MMA, 2000b) 

for all Spanish RBD which is described in section 3.1, the following figure aims to 

represent, for each RBD in Spain, the relationship between the total volume of 

supplied demands and the origin of the water resources. This chart represents 

an example of the variety of river basins in Spain, and it aims to explain their 

main features using the similarities with the WEI which is described before. The 

x-axis contains the ratio between total demand and natural streamflows and the 

y-axis indicates the possible sources of water resource. Thus, the Jucar RBD, is 

represented on the right of the graphic, as its total demands represent 

approximately 70% its natural streamflows. The proportion of regulated water 

resources is about 50% of the natural streamflows. Similarly, about 85% of the 
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resources come from regulation and pumping wells (conventional resources). 

The rest of the resources is associated with reuse, desalination and transfers 

from other river basins (non-conventional or generated resources). 

 

Fig. 3.11: Total demand versus generated resources for the different river basin districts in 
Spain. (Results derived from MMA (2000b)) 

In the light of the previous chart, water resources systems can be classified 

according to their position on the horizontal axis. Thus, systems positioned on 

the left of the chart are characterized by a low degree of utilization of their 

resources; this may be the case of systems located in humid regions. As the ratio 

between demands and streamflows moves to the right, systems also rise on the 

vertical axis, indicating that the resource is scarce and using non-conventional 

resources is required, with associated costs. River basin districts considered in 

MMA (2000) can be grouped into four areas: 

 Green area. Supplies are based on water resources regulated in 

reservoirs. This group includes the ancient “Confederación Hidrográfica 

del Norte” and “Galicia Costa”. As it is observed, surface regulation is 

slightly higher than consumptive requirements, indicating the relevance 

of hydropower in these districts. 

 Yellow zone. Demands are supplied with conventional resources, 

understood as water resources regulated in reservoirs and pumping of 
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groundwater. “Cuencas Internas de Cataluña” and Douro, Targus, 

Guadiana and Guadalquivir RBD are included in this group. Hydropower 

represents a crucial non-consumptive use in these RDB.  

 Orange area. Other sources of resources are needed, such as reused 

water or desalination. This group includes “Cuencas del Sur” and Jucar 

and Ebro RBD. 

 Red zone. This zone distinguishes systems with demands even higher 

than the natural resource available. This group includes Segura RBD. 

Currently these observations are obsolete since this aggregation has been 

made from the data extracted from MMA (2000). By updating these data, the 

results will be different, since there has been a reduction in streamflows during 

the last 30 years (Pérez-Martín et al., 2013), along with the increasing use of 

reused water and desalination. 

Continuing the last idea, an equivalent classification of the water exploitation 

systems in Jucar RBD is proposed based on the results of water accounting. This 

organisation aims to identify the main features and the degree of exploitation 

for each of the nine water exploitation systems, linking the total volume of water 

abstractions and the origin of the water resources. The x-axis contains the WEI 

which is obtained as the mean annual total abstractions divided by the Total 

Natural Renewable Water Resources (TNRWR). This latter corresponds to the 

maximum theoretical amount of water available on an average year in a long 

reference period. In other words, TNRWR represents the average annual river 

flows and groundwater recharge generated from endogenous precipitation, as 

it is not considered the existence of any river runoff and groundwater transfers 

between river basins. On the other hand, the y-axis indicates the origin of the 

water resource used for satisfying the water requirements in relative terms: 

1) Total abstractions of freshwater. It takes into consideration the 

abstractions from surface water divided by TNRWR and, on the other 

hand, it considers the volume of abstractions from groundwater divided 

by TNRWR: 

a. Abstractions from surface water divided by TNRWR 

b. Abstraction from groundwater divided by TNRWR 

2) Other economic units. It takes into account the volume of water 

generated by direct use of wastewater treatment, desalination and 

water transfers from other river basin districts: 
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a. Reused water divided by TNRWR 

b. Desalination divided by TNRWR 

c. Transfers from other river basin districts divided by TNRWR 

The figure below represents the WEI obtained by water exploitation system. 

As it is shown, the highest intense exploitation is made in Vinalopó-Alacantí, with 

a WEI near to 200%, and the least exploitation is done in Cenia-Maestrazgo and 

Mijares-Plana de Castellón, with a WEI near to 60%. This contrasts with the WEI 

obtained for the whole Jucar RBD, which amounts to 74%, masking the reality in 

the river basin districts that conform the district. 

 

Fig. 3.12: Contribution of the origin of resources to the WEI by Water Exploitation System 
in Jucar RBD 

Moreover, the figure shows the contribution of the origin of water used to 

satisfy the water requirements, expressed in terms of surface, groundwater, 

reused water, desalination and external transfers. In all cases, the contribution 

of groundwater resources is remarkable. In the case of Vinalopó-Alacantí system, 

the surface contribution is negligible; by contrast, the groundwater component 

is the most important, followed by reused water and transfers from other 

territories. 

Another way to present these results is to organise the water exploitation 

systems according to their WEI, as observed in figure 3.13. As noted before, 
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values of WEI less than 20% represent no stressed river basins, values of WEI 

between 21 and 40% indicate stressed river basins and values of WEI higher than 

40% represent extreme water stressed river basins according to CIRCABC (2012). 

A new term has been added to the previous classification, this is the condition of 

unsustainable water stress in a river basin, defined for values of WEI higher than 

100%. In the case of Jucar RBD, the large majority of its water exploitation 

systems are in an extreme water stressed condition, being the Vinalopó-Alacantí 

system in an unsustainable water stress situation. Moreover, as observed in 

figure 3.13, the systems located in the right of the chart are characterised by 

having water demands higher than their natural water availability, being 

required the use of reused water or water transfers in order to guarantee the 

supplies. 

 

Fig. 3.13: Classification of Water Exploitation Systems according to their WEI 
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4. CONCLUSIONS 

4.1 SUMMARY 

The objective of this thesis was to analyse the methodologies and tools to 

build water balances in stressed river basins, trying to develop a conceptual 

framework in order to apply the System of Environmental-Economic Accounting 

for Water. This study included: 

 A review of the different objectives and criteria used in water 

planning in relation to the development of water balances and status 

indicators for water exploitation systems. 

 A review of the state of art of the central themes of this work such 

as water balances and water scarcity and drought indexes in water 

resources planning and management. 

 Taking as a case study the Jucar River Basin, several estimations of 

the water resources availability were obtained depending on the 

origin of the series of streamflows, the length of the simulation 

period and the reliability criteria used to consider water 

requirements satisfied. 

 A first approach for the development of asset accounts and physical 

supply and use tables was done for a pilot case study in the Vélez 

River Basin located in the Mediterranean Andalusian River Basin 

District. 

 An acquisition tool called AQUACCOUNTS, was developed and 

integrated into AQUATOOL DSS in order to build SEEA-W tables. This 

tool links the main variables of the rainfall-runoff model with the 

results of the water balance model, enabling also the obtainment of 

the economic costs of water services. 

 The application of the proposed approach to the Jucar River Basin 

District. 

 A proposal of water exploitation indexes based on water accounting 

in order to assess the degree of stress suffered in the river basin. 
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4.2 CONCLUDING REMARKS 

The continuous development in water resources planning and management 

requires the analysis and study of environmental and water resources policies 

on an integral approach, taking into account social and economic requirements. 

With regard to the review of water scarcity and drought indexes in water 

resources planning and management, it has been demonstrated that there is not 

a single index applicable for all fields of study. The recompilation and 

classification of indexes proposed aims to be helpful in order to select the most 

appropriate index, according to the river basin particularities and the objectives 

of the study. In any case, the joined use of these indexes can help in the process 

of making better decisions. 

As far as the indicator of exploitable water resources is concerned, it has been 

proved that, the availability of water resources depends on several factors such 

as the hydrology, the current infrastructure (rivers and canals) and the situation 

of the water users. For this reason, it would be hazardous to provide a unique 

value of the EWR in Jucar water exploitation system. Moreover, note that any 

changes in the management of water resources would require a new assessment 

of the EWR and the obtainment of different results. 

Regarding the application of the SEEA-W approach, this research has shown 

the detailed degree of knowledge about the temporal and spatial evolution of 

the different components of the hydrological cycle and the flows between them. 

In this sense, from the water planning and management point of view, the 

incorporation of all this information is questionable due to the fact that there 

are some variables such as precipitation or evapotranspiration which distort the 

main uses in the river basins. In spite of this fact, this investigation has 

demonstrated the adequacy of hydrological and water allocation models for 

building asset accounts and physical supply and use tables. There is a need to 

clarify that the methodology proposed does not complete all existing issues and 

there are still some improvements required for the complete application of the 

SEEA-W approach. 

Finally, it is required that policymakers make an agreement about the 

approach to determine water availability, either through water balances or 

water accounting. These methodological decisions refer: 
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 To the spatial and temporal aggregation of the tables. There are 

different possibilities such as considering monthly or annual values. 

These latter also could be referred to an average year, a drought year 

or a wet year. 

 To the consideration of environmental flows. Despite environmental 

requirements are not explicitly considered in the tables proposed by 

the SEEA-W, they must be included in the approach through their 

inclusion in the water management models. 

 To the reliability criterion. In spite of not being considered in the 

water accounting approach, water resources allocation and 

reservation requires the use of reliability criterion in order to 

describe if supplies are guaranteed or not.  

It is noteworthy that, the Spanish Statement of Water Planning (MAGRAMA, 

2008) contains a huge part of these methodological decisions, with normative 

status in order to guarantee consistency and comparability of the results. 

4.3 FUTURE RESEARCH LINES 

The thesis aims to contribute improving water resources planning and 

management, particularly with regard to stressed river basins with heavily 

regulated water resources. The work undertaken within this thesis brings 

attention to the need for future research in the following lines: 

 In order to generalize the work done to any other river basin it is 

required a prior research to enrich the application of the approach 

proposed. 

 It has also been found that there is a great difficulty in understanding 

the indexes by the general or not specialised public in analysis 

techniques. It would be interesting to make a proposal of initiatives 

in order to facilitate the transfer of such information to the general 

society. 

 Improvement of the assessment of water services costs, by the use 

of marginal values in order to integrate them in SEEA-W tables. 

 The incorporation of environmental and economic criteria for 

improving water allocation and reservation. 

 A deep analysis and the inclusion of climate change scenarios in 

order to assess the impacts and measures required to mitigate it. 
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 Improvement of AQUACCOUNTS module, and the application to 

other river basins. 

These aspects should enable the EU to make decisions on water in order to 

achieve economic, social and environmental objectives through an appropriate 

planning and management of water resources. 
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ANNEX 1. A REVIEW OF WATER 
SCARCITY AND DROUGHT INDEXES IN 
WATER RESOURCES PLANNING AND 
MANAGEMENT1 

 

Abstract 

Water represents an essential element for the life of all who inhabit our 

planet. But the random nature of this resource, which is manifested by the 

alternation of wet periods and dry periods, makes it even more precious. 

Whatever the approach (water planning, water management, drought, 

economy), in order to maximise the profit produced by the allocation of water it 

is necessary an understanding of the relationships between physical variables as 

precipitation, temperatures, streamflows, reservoir volumes, piezometric levels, 

water demands and infrastructures management. This paper attends to provide 

a review of fundamental water scarcity and drought indexes that enables to 

assess the status of a water exploitation system. With the aim of a better water 

management and governance under water scarcity conditions., this paper also 

presents a classification of indexes to help decision makers and stakeholders to 

select the most appropriate indexes, taking as the starting point the objectives 

of the analysis and the river basin features. 

Keywords 

Water planning, water management, water exploitation system, water 

scarcity indexes, drought indexes 

                                                           

1  Pedro-Monzonís, M., Solera, A., Ferrer, J., Estrela, T. and Paredes-

Arquiola, J., 2015. A review of water scarcity and drought indexes in water resources planning 

and management, J. Hydrol. 527, 482-493, doi:10.1016/j.jhydrol.2015.05.003 
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A1.1. INTRODUCTION 

Water represents an essential element for the life of all who inhabit our 

planet. But the random nature of this resource, which is manifested by the 

alternation of wet periods and dry periods, makes it even more precious. Despite 

the social, economic and environmental significance that represents the lack of 

this resource, there is no unanimity concerning on the definition of concepts 

related to water scarcity, drought or water shortage in the literature (EU, 2012). 

As noted by Quiring (2009), this is a complex phenomenon that is difficult to 

accurately describe because its definition is both spatially variant and context 

dependent. 

In general terms, water scarcity covers all aspects related to restricted water 

availability. According to EU (2007) water scarcity is defined as a situation where 

insufficient water resources are available to satisfy long-term average 

requirements and similarly, Van Loon and Van Lanen (2013) considered that 

water scarcity represents the overexploitation of water resources when demand 

for water is higher than water availability. Aridity, by contrast, is a climatic 

feature consisting of low ratio between precipitation and potential 

evapotranspiration (Tsakiris and Vangelis, 2005), representing a permanent 

phenomenon. 

In the same way, the term drought has been defined in different ways. There 

are two main types of drought definitions: conceptual and operational. On the 

one hand, conceptual definitions are formulated in general terms to describe the 

concept of drought. According to this type of definition, as noted by Estrela and 

Vargas (2012), drought is a natural hazard that results from a deficiency of 

precipitation from expected or normal, which can in turn translate into 

insufficient amounts of water to meet the water needs of ecosystems and/or 

human activities. Whereas EU (2007) considers drought as a relevant temporary 

decrease of the average water availability. On the other hand, operational 

definitions are used to identify the beginning, end and severity of droughts. In 

this sense, there is no single operational definition of drought that can be used 

in all contexts. This is the reason why policy makers and resources planners use 

drought index thresholds to determine the accurate moment to implement 

preventive measures (Quiring, 2009). 
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According to the definition of drought as a natural hazard, there are different 

categories of droughts depending on the reference variable considered. In this 

study, we distinguish between three types of droughts:  

i. Meteorological drought is defined as a continued shortage of 

precipitation. This is the drought that raises the other types of drought 

and usually tends to affect large areas. The origin of the lack of 

precipitation is associated with the global behaviour of the ocean-

atmosphere system, where both natural and human factors, such as 

deforestation or the increase in greenhouse gases, have strongly 

influenced.  

ii. Agricultural drought may be defined as a moisture deficit in the root 

zone to meet the needs of a crop, affecting the crop development and 

declining crop yields.  

iii. Hydrological drought is defined as a period of low flows in watercourses, 

lakes and groundwater levels below normal. It is related to a period with 

a decrease in surface and groundwater water resources availability for 

established water uses of a given water resources system (Mishra and 

Singh, 2010).  

As a consequence of the natural phenomenon, the terms operational drought 

(Sánchez-Quispe et al., 2001) and socio-economical drought (Mishra and Singh, 

2010) are also used in the literature. Even though these terms do not represent 

a natural hazard, they can cause water shortage, understood as the deficit of 

water supply to meet social and environmental demands which are caused by 

intense drought episodes, an inappropriate use of water resources or man-made 

changes (Tsakiris et al., 2013). Operational drought refers to a period with 

anomalous supply failures (no satisfaction of water uses) in a developed water 

exploitation system. The causes include: the lack of water resources 

(hydrological drought), the excess of demand, or an inadequate design and 

management of the water exploitation system and its operating rules. Socio-

economic drought is associated with the condition of water scarcity on people 

and the economic activity causing socio-economic, social and environmental 

impacts. In recent decades there has been an increase in the number of episodes 

of socio-economic drought that has led in many cases to significant economic 

losses, which are a consequence of the increasing pressure on water resources 

exerted by human activities. As noted by Tsakiris et al. (2013), it is estimated that 

the cost of drought in Europe during the last 30 years is 100 billion Euros. Figure 
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1 explains the relationship between these types of drought and the duration of 

the event. 

 

Figure 1. Relation between different types and duration of drought events (modified from 
Villalobos (2007)) 

Whatever the approach (water planning, water management, drought 

management, economy), society expects that policymakers and stakeholders 

maximise the profit produced by the allocation of water. In this sense, the use of 

indexes is highly relevant for decision-making processes (Lama, 2011). Before 

continuing, it is required to distinguish between indexes and indicators, and their 

use in water policies. Indexes represent an aggrupation of variables or indicators 

which are weighted in order to take into consideration social preferences. They 

are used for the development of water policies and reflect social requirements. 

Whereas indicators are obtained as an aggrupation of variables and expect to 

communicate information about the water resources system. They are based on 

the knowledge and scientific judgment. So, when displaying environmental 

information, the level of its detail would be in inverse proportion of the number 

of users (Vardon et al., 2012). Researchers handle a mass of information, this 
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information is aggregated so managers and analysts use indicators and finally, 

indexes are used by decision-makers and wider public (see Figure 2).  

 

Figure 2. Aggregation of information in water resources planning and management 

To date, scientists and researchers have defined a huge quantity of water 

indicators related to different approaches, such as water productivity, 

ecosystem services, weather forecasting, or drought management, as an 

example, Lloyd-Hughes (2014) noted that more than one hundred indexes have 

been proposed for use only in drought monitoring.  

The target of this paper is to present a review of water indicators related to 

water planning and management. In order to do this, in section 2, we present a 

review on drought and water scarcity indexes along with indicators derived from 

water accounting (section 3) and performance indexes (section 4). In section 5, 

we propose a recompilation and classification of water related indexes in order 

to organise them according to the context of use, the key issue represented and 

the river basin features, which may be useful during the decision making process. 

Finally, conclusions and recommendations are presented. 

A1.2. DROUGHT AND SCARCITY INDEXES 

The severity of droughts is represented by drought indexes, which have been 

developed to detect, monitor and assess drought events (Estrela and Vargas, 

2012). Several drought indexes have been defined in last decades. The most 

commonly variable employed in their definition is precipitation in combination 

with other variables such as temperature, soil moisture, etc. The most frequently 

drought indexes are the Palmer Drought Severity Index (PDSI) (Palmer, 1965), 

rainfall deciles (Gibbs and Maher, 1967), Crop Moisture Index (CMI) (Palmer, 
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1968), Surface Water Supply Index (SWSI) (Shafer and Dezman, 1982); 

Standardized Precipitation Index (SPI) (McKee et al., 1993) or the 

Reconnaissance Drought Index (RDI) (Tsakiris and Vangelis, 2005). An extended 

state-of-the-art review on drought concepts has been provided by Mishra and 

Singh (2010). 

To assess water scarcity, the most commonly approaches are the water 

resource vulnerability index (Raskin et al., 1997), water stress index (Falkenmark 

et al., 1989), International Water Management Institute (IWMI) indicator 

(Seckler et al., 1998), critical ratio (Alcamo et al., 2000) and the water poverty 

index (Sullivan, 2002). An extended state-of-the-art review on water scarcity has 

been provided by Rijsberman (2006). 

The use of water scarcity and drought indexes is not addressed only to 

describe or characterize the situation of a river basin, but they may also be 

applied in order to mitigate long-term drought risk. An example of the 

application of measures to reduce drought impacts is the case of the National 

Drought Indicator System in Spain which is described below.  

A1.2.1. STATUS INDEX FROM THE NATIONAL DROUGHT INDICATOR SYSTEM 
IN SPAIN 

Spain, as a Mediterranean country, has always presented water scarcity 

problems related with prolonged drought episodes. This country represents an 

example of an ancient tradition in water planning, where water resources are 

heavily regulated, being the fifth country in the world with the highest number 

of large dams (Instituto Nacional de Estadística, 2008). During decades, drought 

management in Spain was carried out as an emergency situation, being 

necessary the application of several Royal Decrees to mitigate the negative 

impacts. Due to the need of anticipation in the application of mitigation 

measures, it was essential to develop a system of indicators to warn when the 

measures have to be taken and what kind of measures were the most 

appropriate given the current level of risk, in other words, depending on the 

severity of the situation existing at any given moment. 

This system of indicators consists of spatially distributed control points in the 

area of the river basin and collects information about reservoir storages, 

groundwater piezometric levels, streamflows, reservoir inflows and 
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precipitation (MMA, 2007). Each River Basin Authority has adopted a calculation 

method for the definition of the drought indicator. According to these criteria, 

these indexes take values between 0 and 1, low values corresponds to drought 

conditions and values between 0.5 and 1 indicate the absence of problems 

related with drought. By weighting the index value in each zone we obtain an 

overall index value. These indexes allow us to classify the water exploitation 

systems into four hydrological states: normal, pre-alert, alert and emergency 

(see table 1). Haro et al (2014) discussed the validity of the application of this 

approach in any kind of system. They showed how this methodology fails at 

determining the drought status of within-year regulated systems, being thus 

necessary to adopt a different approach depending on the system’s operation. 

Figure 3 shows the basin drought status for the water exploitation systems in 

late June 2014. 

 

Figure 3. Basin Status Index in June 2014 (www.magrama.es) 

As mentioned above, one of the main functions of the National Drought 

Indicator System (MMA, 2007) is the application of measures to reduce the 

impact of droughts based on the state of the indicators. Three types of measures 

are considered:  
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i. Strategic measures. They represent the medium and long term answer. 

They often require substantial investments such as construction of new 

reservoirs, desalination, reuse systems, etc.  

ii. Tactic measures. They represent the short term response. They would 

be measures to promote voluntary savings for both supply and 

irrigation, or, accelerate the development of planned infrastructure.  

iii. Emergency measures. They respond to unexpected circumstances. They 

are measures such as the construction of new emergency wells, the 

establishment of supply restrictions or prohibition of uses, among 

others.  

The following table shows the relationship between the hydrological state of 

the system and the type of measure to be applied: 

Status Index Basin Drought Status Objective Type of Measures 

0.50 - 1 Normal Planning 
Strategic 

0.30 – 0.50 Pre-alert Control-Information 

0.15 – 0.30 Alert Conservation Tactic 

0 – 0.15 Emergency Restriction Emergency 

Table 1. Relationship between the hydrological state of the system and type of measures 
to be applied 

A1.3. INDICATORS DERIVED FROM WATER ACCOUNTING 

Water accounting is an approach focused on the presentation of information 

relating to the water resources in the environment and the economic aspects of 

water supply and use (Vardon et al., 2007). Among its goals is to achieve a 

sustainable water balance and an equitable and transparent water governance 

for all water users (www.wateraccounting.org). As noted by Molden and 

Sakthivadivel (1999), their methodology is based on a water balance approach 

where, based on conservation of mass, the sum of inflows must equal the sum 

of outflows plus any change in storage. Water accounting covers a range of 

methods of reporting water information (Godfrey and Chalmers, 2012). Some 

examples of water accounting systems are the System of Environmental-

Economic Accounting for Water (SEEAW) (UN, 2012) and the Water Footprint 

Accounting (Hoekstra, 2003). 
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A1.3.1. THE SYSTEM OF ENVIRONMENTAL-ECONOMIC ACCOUNTING FOR 
WATER 

The SEEAW has been developed by the United Nations Statistics Division 

(UNSD) in conjunction with the London Group on Environmental Accounting 

(UN, 2012). Its main objective has been standardizing concepts related to water 

accounting, providing a conceptual framework for organising economic and 

hydrological information. In this sense, water accounting generally, and 

particularly the SEEAW, expects to become a useful tool for helping the decision-

making process on issues of allocating water resources and improving water 

efficiency among others. In this sense, the SEEAW constitutes a structured 

database from which researchers may obtain many water-related indicators 

(UN, 2012). Each of these tables allows us to obtain the indicators of internal 

renewable water resources, external renewable water resources, total natural 

renewable water resources and total actual renewable water resources. 

As noted by UN (2012), it is also possible to link the list of indicators proposed 

in the second World Water Development Report (UN, 2006) and the SEEAW. The 

cited indicators are  the index of non-sustainable water use, the relative water 

stress index, the water reuse index, the total actual renewable water resources 

(TARWR) volume, the surface water as a percentage of TARWR and the 

groundwater development (groundwater as a percentage of TARWR). Margat 

(1996) proposed several indicators that could be obtained from the water 

accounts and expected to cover essential aspects of water availability and use. 

These indicators are: validity of hydrological basis, density of internal resource, 

concentration index of the resource, regularity index of the resource, 

independence of the reference territory, freedom of action index,  resource per 

capita, exploitation index, consumption index, water resource wearing and 

water sanitation and purification index.  

A1.3.2. WATER EXPLOITATION INDEX 

Water Exploitation Index (WEI) (EEA, 2005) is obtained as the percentage of 

mean annual total demand for freshwater with respect to the long-term mean 

annual freshwater resources and shows to which extent the total water demand 

puts pressure on water resources. The way to build the WEI indicator is by using 

data from SEEAW Tables 3.1, 6.1 and 6.2 (EEA, 2013). Values of WEI in a river 

basin between 0 and 20% show a situation of no stress; values between 21 and 
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40 % indicate water stress; and values upper than 40% represent extreme water 

stressed river basins (see Figure 4).  

 

Figure 4. Water exploitation index in European Union (Source of data: 
http://www.eea.europa.eu/data-and-maps/figures/water-exploitation-index-2014-

towards) 

Despite being the index employed by the EU, there are different key issues 

that jeopardise the use of this index. One of them is seasonality. As it is based on 

annual averages it is not able to display a scarcity event at monthly scale.  There 

may be situations in which having the same annual average of resources and 

demand, the pressure on the resources may be completely different due to the 

irregularity of resources (EEA, 2013). It is useful to analyse monthly ratios and 

suggest an aggregation method to describe the water stress situation in the river 

basin. On the other hand, the uncertainty in the assessment of demands and 

water resources values may result in incorrect values of the indicator. 

http://www.eea.europa.eu/data-and-maps/figures/water-exploitation-index-2014-towards
http://www.eea.europa.eu/data-and-maps/figures/water-exploitation-index-2014-towards
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In order to solve the limitations presented by the WEI, a modified water 

exploitation index called WEI+ has been defined (CIRCABC, 2012). The index 

focuses on the assessment of net consumption and it is defined at monthly level 

as follows: 

𝑊𝐸𝐼+ =
(𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠−𝑟𝑒𝑡𝑢𝑟𝑛𝑠)

𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝑤𝑎𝑡𝑒𝑟 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠
  (Eq. (1)) 

 Where abstractions mean the volume of water intaken for a determined use 

(agrarian, urban, industrial) and returns refer to the volume of water which 

comes back to the environment after being used. There are two ways of 

addressing the renewable water resources (RWR): (1) by employing the 

hydrological balance equation, using precipitation (P), external inflows (ExIn), 

actual evapotranspiration (Eta) and change in natural storages (∆S); or (2) by 

naturalisation of streamflows, using the outflows and the change in storage of 

artificial reservoirs (∆Sart). 

𝑅𝑊𝑅 = 𝐸𝑥𝐼𝑛 + 𝑃 − 𝐸𝑡𝑎 − ∆𝑆   (Eq. (2)) 

𝑅𝑊𝑅 = 𝑂𝑢𝑡𝑓𝑙𝑜𝑤 + (𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 − 𝑟𝑒𝑡𝑢𝑟𝑛𝑠) − ∆𝑆𝑎𝑟𝑡   (Eq. 

(3)) 

Considering all these difficulties, several indicators have been considered for 

the presentation of water accounts (EEA, 2013). Firstly, the WEI has been 

normalised to reflect the entirety of resources before abstraction takes place. 

The nWEI is computed monthly and at sub-basin scale as follow: 

𝑛𝑊𝐸𝐼 =
𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑜𝑢𝑡𝑓𝑙𝑜𝑤+𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠−𝑟𝑒𝑡𝑢𝑟𝑛𝑠
   (Eq. (4)) 

Whilst environmental requirements are not explicitly considered in SEEAW 

tables, the ecological needs represent an important issue, in this sense, a 

potential indicator of ecological stress for rivers (ESIr) has been defined similarly 

to the nWEI: 

𝐸𝑆𝐼𝑟 =
𝑜𝑢𝑡𝑓𝑙𝑜𝑤

𝑜𝑢𝑡𝑓𝑙𝑜𝑤+𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠−𝑟𝑒𝑡𝑢𝑟𝑛𝑠
   (Eq. (5)) 

This indicator presents two problems: the first is that the denominator tends 

to zero if outflows are scarce; and the second problem is considering the final 
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balance when actually there may be water bodies impacted with local 

withdrawals (EEA, 2013). 

The third indicator represents a consumption index (WEI+c) and it is 

computed as follows: 

𝑊𝐸𝐼+𝑐  =
(𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠−𝑟𝑒𝑡𝑢𝑟𝑛𝑠)

𝑜𝑢𝑡𝑓𝑙𝑜𝑤+𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠−𝑟𝑒𝑡𝑢𝑟𝑛𝑠
   (Eq. (6)) 

Since nWEI, ESIr and WEI+c are defined at monthly level, it is required some 

aggregation before their presentation. The EEA (2013) has proposed a percentile 

distribution to aggregate the indexes during the considered period. According to 

this report, mapping the indexes at 50% suggests structural water availability 

issues; by contrast, the 90 % indexes show there may be a recurrent water supply 

problem.   

A1.3.3. WATER FOOTPRINT AND VIRTUAL WATER 

The Water Footprint approach was introduced by Hoekstra (2003) because 

of the need for an indicator based in freshwater use. It is defined as the total 

volume of freshwater that is used to produce the goods and services consumed 

by an individual or community (Hoekstra and Chapagain, 2008). The water 

footprint allows for the differentiation of the consumed water according to its 

origin, distinguishing between blue water footprint, green water footprint and 

grey water footprint. The blue water footprint represents the consumption of 

liquid water available en rivers, lakes, wetlands and aquifers; the green water 

footprint refers to the use of rainwater stored in the soil as soil moisture which 

is available to plants; and the grey water footprint is defined as the volume of 

freshwater needed to assimilate the load of pollutants based on existing ambient 

water quality standards (Hoekstra, 2009).  

Closely linked to the concept of water footprint is the virtual water (Allan, 

1998), understood as the volume of water used in the production of a 

commodity, good or service. It refers to the idea that when a country imports 

one kilogram of a product (no matter the good or service) implicitly, this country 

also imports the amount of water used to produce it. Both concepts (virtual 

water and water footprint) are interesting in water scarcity countries because 

their assessment could inform the decision makers about the possibility of 
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producing those goods most suited to local environmental conditions (Aldaya et 

al., 2010). 

When producing the water accounting in a country, there are several terms 

which are not considered (Hoekstra, 2012); they do not differentiate between 

water uses for domestic consumption, for producing export products or water 

uses outside the country to support national consumptions. A scheme to obtain 

the national water footprint accounting is described below. The water footprint 

in a nation has two terms: the internal water footprint (the amount of water 

resources used to produce the goods and services that are consumed by national 

population) and the external water footprint. The first one is obtained as the 

difference between the uses of water within the nation minus the virtual water 

imported from other countries. In the same way, the external water footprint 

(the amount of water resources used in other nations to produce goods and 

services that are consumed by national population) is obtained as the virtual 

water imported into the nation minus the amount of virtual water exported to 

the other nations. This separation of components allows for evaluating the 

dependency ratio of water resources in a country (WD) defined as the external 

water footprint (WFE) divided between the national water footprint (WF) 

(Rodríguez et al., 2008). 

𝑊𝐷 (%) =  
𝑊𝐹𝐸

𝑊𝐹
· 100  (Eq. (7)) 

As water footprint is composed by the set of goods and services consumed 

by an individual or community, it can be calculated at different levels of 

consumer activity (Fulton et al., 2014). So, if researchers want to use water 

footprint accounting as an indicator of water resources management, the best 

territorial unit is the river basin (Pellicer et al., 2013), even though, as noted by 

Zeng et al. (2012), water footprint assessment studies at river basin level are rare 

in the literature largely due to the lack of statistical data at this level.  

The approach of water footprint has been used in the definition of the water 

scarcity index (Zeng et al., 2014). This index has been used to describe the 

severity of water scarcity in the form of a water scarcity meter to allow an easy 

interpretation. It has two components: the blue water scarcity index (Iblue) and 

the Grey water scarcity index (Igrey). Iblue is defined as the ratio of the water 

withdrawal to freshwater resources and, Igrey is defined as the ratio of grey water 
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footprint to freshwater resources. A review on the indicator of water footprint 

for European countries has been done be Vanham and Bidoglio (2013). 

A1.4. PERFORMANCE INDEXES 

As noted by Hashimoto et al. (1982) the operational status of a water 

resources system can be described as either satisfactory or unsatisfactory. The 

level of a system performance was described, in Hashimoto et al (1982) research, 

from three different points of view: (1) how often the system fails (reliability), 

(2) how quickly the system returns to a satisfactory state once a failure has 

occurred (resiliency), and (3) how significant the likely consequences of failure 

may be (vulnerability). 

Derived from the adoption of the aforementioned concepts, in this sub-

section, several indicators are presented which describe the possible 

performance of a water resources system. 

A1.4.1. SUSTAINABILITY INDEX 

To quantify the sustainability of water resources systems, Loucks (1997) 

proposed the sustainability index (SI), with the aim of facilitating the evaluation 

and comparison of water management policies. This index is based on reliability 

(Rel), resilence (Res) and vulnerability (Vul) concepts. For the ith water user the 

index proposed by Loucks (1997) was: 

𝑆𝐼𝑖 =  𝑅𝑒𝑙𝑖 ∗ 𝑅𝑒𝑠𝑖 ∗ (1 − 𝑉𝑢𝑙𝑖)  (Eq. (8)) 

Sandoval-Solis et al. (2011) proposes a variation of Loucks’ SI considering a 

geometric average of M performance criteria (Cmi) for the ith water user: 

𝑆𝐼𝑖 =  [∏ 𝐶𝑚
𝑖𝑀

𝑚=1 ]
1

𝑀⁄
   (Eq. (9)) 

For instance, if the performance criteria are C1i= Reli, C2i= Resi and C3i= Vuli, 

the SI for the ith water use is: 

𝑆𝐼𝑖 =  [𝑅𝑒𝑙𝑖 ∗ 𝑅𝑒𝑠𝑖 ∗ (1 − 𝑉𝑢𝑙𝑖)]
1

3⁄
   (Eq. (10)) 
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The main advantage of this index is that it allows the inclusion of other criteria 

according to the necessities of each territory and the use of geometric average 

to scale the values of SI. 

A1.4.2. EFFICIENCY INDICATORS 

Martin-Carrasco et al. (2013) suggests four water indexes to evaluate water 

scarcity at a river basin scale. The use of the efficiency indicators requires 

grouping the demands across several classes depending on their respective use 

of water. For each demand category, model results are analysed through the 

Demand-Reliability curve. Based on this curve, it is possible the determination of 

the four water indexes: 

i. Demand Satisfaction Index (IS), which evaluates the system’s capacity to 

supply its demands 

ii. Demand Reliability Index (IR), that quantifies the reliability of the system 

to satisfy demands 

iii. Sustainability Index (IU), which evaluates the natural resources available 

for development in the system 

iv. Management Potential Index (IM), which quantifies the proportion of 

the demand with unacceptable reliability that is close to the acceptable 

level. 

In systems affected by water scarcity problems, the indicators can also 

diagnose its causes, and anticipate possible solutions.  

A1.4.3. WATER ALLOCATION INDEX 

Milano et al. (2013) use a water allocation index (WAI) in order to assess the 

capacity of water resources to meet current and future water demands. This 

index is obtained by means of the quotient between water supply and water 

demand (%) for each year of a given period. By employing this index different 

water demand satisfaction classes have been defined for environmental flow 

requirements and the domestic sector and for the agricultural sector. Table 2 

shows a classification of water demand satisfaction classes based on the WAI for 

environmental flow requirements and the domestic sector and for the 

agricultural sector. 
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 Very low Poor Moderate High Very high 

(1) 0 < WAI < 
50% 

50 < WAI < 
85% 

85% < WAI < 
95% 

95% < WAI < 
97.5% 

WAI > 97.5% 

(2) WAI < 25% 25% < WAI < 
45% 

45% < WAI < 
55% 

55% < WAI < 
75% 

95% < WAI ≤ 
97.5% 

Table 2. Water demand satisfaction classes based on the water allocation index for (1) 
environmental flow requirements and the domestic sector and for (2) the agricultural 

sector (Milano et al., 2013) 

A1.4.4. THE RELIABILITY CRITERION ESTABLISHED IN THE SPANISH 
GUIDELINES OF WATER PLANNING 

The criterion established in the Spanish Guidelines of Water Planning (BOE, 

2008) is a simple binary criteria (complies/does not comply). It indicates that for 

the purposes of resource allocation and reservation, urban demand is 

considered satisfied when the deficit in one month does not exceed 10% of the 

corresponding monthly demand and when in 10 consecutive years, the sum of 

deficits is less than 8% of the annual demand. Similarly, agrarian demand is 

considered satisfied when the deficit in one year does not exceed 50% of the 

corresponding demand; for two consecutive years, the sum of deficit does not 

exceed 75% of annual demand; and in ten consecutive years, the sum of deficit 

does not exceed 100% of the annual demand. 

A1.4.5. PERFORMANCE WEIGHTED INDEX (IPOC) 

The Performance Weighted Index (IPOC, in Spanish) was used in the National 

Hydrological Plan (MMA, 2001). This index evaluates the global performance of 

a water resources system by the average of the ratio between the deficit in one, 

two and ten consecutives years, and the acceptable deficit during the same 

periods for each considered demand. If there is no fault in the system IPOC is 1 

and, if there is a failure in one or several demands IPOC will be greater than 1. 

This index attempts to be more flexible than the reliability criterion 

established in the Spanish Guidelines of Water Planning (BOE, 2008), which 

considers that the systems fail if there is one demand that contravenes the 

criterion. Moreover, in order to consider the relevance of each demand or group 

of demands, these deficits are weighted to avoid that a failure in a non-relevant 

demand for the exploitation system involves the failure of the global system. 
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A1.4.6. EXPLOITABLE WATER RESOURCES 

In order to quantify water availability, AQUASTAT (FAO’s global water 

information system) suggests the use of the indicator of exploitable water 

resources. This indicator is defined as the part of the water resources considered 

to be available for development under specific technical, economic and 

environmental conditions but, despite its significance, there is disagreement in 

regard to the best process for calculating exploitable water resources (UNSD, 

2012). 

Pedro-Monzonís et al. (2015) have determined the key issues for determining 

this indicator in a Mediterranean river basin. In that work, the exploitable water 

resources have been obtained as the maximum demand that can be served in a 

water exploitation system while complying with the reliability criteria 

established by law. Once the hypothesis about the obtaining of natural 

streamflows and the reliability criteria for considering the supply to be satisfied 

is selected, the steps used to obtain this indicator are as follows: (a) select the 

possible places in the system where new water allocations could be required and 

their type of use (urban or agrarian); (b) analyse the possibility of increasing each 

single demand while considering the other demands as zero, and execute the 

simulation model. The final result is achieved when the maximum demand is 

obtained while fulfilling the required reliability criteria. 

A1.5. CLASSIFICATION OF WATER RELATED INDEXES IN WATER 
RESOURCES PLANNING AND MANAGEMENT 

As seen, in the literature there is a huge amount of indicators and indexes 

related to water. Each of them has been defined under different assumptions or 

conditions, so, its applicability may be adequate or not in all areas of study. The 

classification of water scarcity and drought indexes proposed below attempts to 

organise them according to the context of use, the key issue represented (aridity, 

water scarcity or drought), the type of drought analysed and the utility. In this 

sense, the context of use distinguishes between natural use, water resources 

planning and water allocation, and management. This distinction is done to 

discern on whether the considered variables to define these indexes are 

influenced by the management of the river basin or they are independent of 

human activities.  
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Firstly, Table 3 groups water scarcity and drought indexes in the context of 

natural water use due to the fact that, a priori, human activities do not have 

influence in variables as precipitation, temperature or potential 

evapotranspiration. Frequently, these indexes are used to determine drought 

periods, aiming to identify drought properties, such as intensity, duration and 

magnitude. Moreover, as a universal definition of drought suitable in all 

circumstances does not exist, most of these indexes are also used as an 

operational definition of drought, providing information about levels of severity. 

In this sense, Quiring (2009) indicates that the most commonly indexes used for 

monitoring drought and determine the operational drought definition 

(thresholds) are PDSI, precipitation and streamflows. 

Index or Indicator 
Key 

issue 
Type of 
drought 

Utility 

Percent of Normal (PN) D M 

It is calculated by dividing actual 
precipitation by normal (or mean) 

precipitation (based on 30 years of data). 
It can be calculated for any time scale 

(day, month, year). 

Palmer Drought 
Severity Index (PDSI; 

Palmer, 1965) 
D A 

PDSI is suitable for agricultural impacts, 
but it is sensitive to temperature, 

precipitation and the initial conditions of 
soil moisture. 

Rainfall deciles (Gibbs 
and Maher, 1967) 

D M 

Rainfall deciles compare monthly data of 
precipitation with the cumulative 

distribution over a long-term 
precipitation record. They show the 

likelihood of registered precipitation in a 
given month (i) is less than a given 

volume of precipitation (X). 

Crop Moisture Index 
(CMI; Palmer, 1968) 

D A 

CMI was developed to evaluate short-
term moisture conditions related to 
agricultural droughts. It shows good 
results during warm seasons, but it 

requires weekly records of temperature 
and precipitation. 

Standardized 
Precipitation Index 
(SPI; McKee et al., 

1993) 

D M 

The versatility in the aggregation period 
allows to observe seasonal, intermediate 

and long-term drought. But the index 
spatial aggregation covers up the 

significant differences between recorded 
rainfall in headwaters and lower basins. 
Also the probability distribution or the 

length of precipitation records affects the 
SPI values. 
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Reconnaisance 
Drought Index (RDI; 

Tsakiris and Vangelis, 
2005) 

A-D A 

RDI is based on the ratio between two 
aggregated quantities of precipitation 
and potential evapotranspiration. It is 

physically based, and it can be calculated 
for any period of time. This index has also 
been used for detecting possible climate 
changes of a geographical area (Tigkas et 

al., 2013) 

Standardized 
Precipitation 

Evapotranspiration 
Index (SPEI; Vicente-
Serrano et al., 2010) 

A-D A 
SPEI is based on a water balance. SPEI is 
similar to the SPI, but it includes the role 

of temperature. 

Table 3. Classification of water scarcity and drought indexes in the context of natural 
water use. [In Key issue column, A means aridity, S means scarcity, D means drought; In 

Type of drought column, M means meteorological drought, A means agricultural drought, 
H means hydrological drought, O means operational drought and S means socio-

economical drought] 

Secondly, Table 4 groups water indexes related to variables which may be 

affected by the use of water infrastructures or traditionally used in water 

planning for water allocation. In the case of indicators derived from water 

accounting, they show a current description of the river basin and allow the 

decision makers and stakeholders to make comparisons between the use and 

pressures of water resources in different regions. But, in the case of performance 

indexes, as water resources planning consists of the analytical study of the water 

resources to identify and solve the river basin problems in the long term, it is 

difficult to untie these indexes and the human activities. In other words, new 

measures are proposed aiming to improve the status of the water resources 

system, reflected by these kind of indexes. 

Index or Indicator 
Key 

issue 
Type of 
drought 

Utility 

Normalized 
Difference 

Vegetation Index 
(NDVI; Rouse, 

1974) 

S-D A 

NDVI quantifies the water status of the 
vegetation through the spectral response of the 

vegetation cover. NDVI requires precipitation 
and temperatures data. The leaf water content 
is obtained from satellite remote sensing data. 

Surface Water 
Supply Index 

(SWSI; Shafer and 
Dezman, 1982) 

D H 
SWSI requires snowpack, streamflow, 

precipitation and reservoir storage. 

Water Stress 
Index (Falkenmark 

et al., 1989) 
S S 

Countries may be classified according to the 
renewable water resources per capita per year. 

It is easily understood and data are generally 
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available. In contrast, average values may hide 
scarcity problems at smaller scales, it does not 
take into consideration the infrastructures that 
modify the water availability or the variations in 

demands among the different countries. 

Water Resource 
Vulnerability 

Index (Raskin et 
al., 1997) 

S S 

It considers scarcity as the total annual 
withdrawals as a percent of available water 

resources. It is focused on the assessment of 
use for being more objective than demand. 

Sustainability 
Index (SI; Loucks, 
1997; Sandoval-
Solis et al., 2011) 

S S 

SI was created to quantify the sustainability of 
water resources systems, with the aim of 

facilitating the evaluation and comparison of 
water management policies. It is defined as a 
geometric average of M performance criteria. 

International 
Water 

Management 
Institute (IWMI) 

indicator (Seckler 
et al., 1998) 

A S 

Represents the relation between primarily 
water supply (taking into account the existing 

water infrastructure) and the water use 
(evapotranspiration). Countries may be divided 

in physically water scarce (which will not be 
able to meet their future demands) or 

economically water scarce (should invest in 
infrastructures to make available their 

renewable resources). The disadvantage is that 
it is inaccessible to the wider public. 

Virtual Water 
(Allan, 1998) 

S S 
This concept indicates that the total volume of 

water used for a unit of production should 
comprise offsite water use. 

Critically ratio 
(Alcamo et al., 

2000) 
S S 

It considers scarcity as the ratio of water 
withdrawals for human use to total renewable 
water resources. Among its limitations are the 
difficulty of distinguishing the amount of water 

that could be available for human use 
considering evapotranspiration, return flows, 

environmental requirements, or the possibility 
of the society to adapt to water scarcity. 

Performance 
Weighted Index 

(IPOC; MMA 
2001) 

D O 

The IPOC evaluates the global performance of a 
water resources system by the average of the 
ratio between the deficit in one, two and ten 
consecutives years, and the acceptable deficit 
during the same periods for each considered 

demand. 

Water Poverty 
Index (Sullivan, 

2002) 
S S 

Represents a weighted average of its five 
dimensions: access to water; water quantity, 

quality and variability; water uses; water 
management capacity; and environmental 

aspects. The input data are huge and expert 
judgments are required. 
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Water footprint 
(Hoekstra 2003, 

2012) 
S S 

It is defined as the total volume used to 
produce goods and services. It can be divided 
into three types: blue water footprint, green 

water footprint and grey water footprint. 

Water 
Exploitation Index 
(WEI) (EEA, 2005) 

S S 

WEI is obtained as the percentage of mean 
annual total demand for freshwater with 

respect to the long-term mean annual 
freshwater resources. There are different key 

issues that jeopardise the use of this index, such 
as seasonality or the uncertainty in the 

assessment of demands and water resources. 

Spanish 
Guidelines of 

Water Planning 
(BOE, 2008) 

D O 

It has been defined for the purposes of resource 
allocation and reservation. It represents a 
reliability criteria, considering that urban 

demands are satisfied depending on the deficit 
in one month and in 10 consecutive years. 
Agrarian demands are considered satisfied 
depending on the deficit in one year, two 

consecutive years, and in ten consecutive years. 

Dependency ratio 
(WD; Rodríguez et 

al., 2008) 
S S 

Derived from water footprint. WD is defined as 
the external water footprint divided between 

the national water footprint and allows for 
evaluating the dependency ratio of water 

resources in a country. 

Water 
Exploitation Index 

Plus (WEI+; 
CIRCABC, 2012) 

S O 

WEI+ has been developed to solve the 
limitations presented by the WEI. The index 

focuses on the assessment of net consumption 
and it is defined at monthly level. 

Normalised Water 
Exploitation Index 
(nWEI; CIRCABC, 

2012) 

S S 

WEI has been normalised to reflect the entirety 
of resources before abstraction takes place. The 
nWEI is computed at monthly and at sub-basin 

scale. 

Water 
Consumption 
Index (WEI+c; 

CIRCABC, 2012) 

S S 
WEI+c represents a consumption index and it is 

related to ESIr. 

Ecological Stress 
Indicators for 
Rivers (ESIr; 

CIRCABC, 2012) 

S H-S 

Whilst environmental requirements are not 
explicitly considered in SEEAW tables, the 

ecological needs represent an important issue. 
This indicator present two problems: the first is 
that the denominator tends to zero if outflows 

are scarce; and the second problem is 
considering the final balance when actually 

there may be water bodies impacted with local 
withdrawals. 

Efficiency 
indicators 

S O 
Four water indexes are defined to evaluate 

water scarcity at a river basin scale. In systems 
affected by water scarcity problems, the 
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(Martín-Carrasco 
et al., 2013) 

indexes can also diagnose its causes, and to 
anticipate possible solutions. 

Water Allocation 
Index (WAI; 

Milano et al., 
2013) 

S-D O 

This index represents a reliability criteria, it is 
obtained by means of the quotient between 
water supply and water demand (%) for each 

year of a given period. 

Water Scarcity 
Index (Zeng et al., 

2014) 
S S 

The Water Scarcity Index links water quantity 
with water use and water pollution by human 

activities. It is defined as the sum of blue water 
scarcity index and the grey water scarcity index. 
It is similar to the critically ratio (Alcamo et al., 

2000). 

Exploitable Water 
Resources (Pedro-

Monzonís et al., 
2015) 

S O 

This indicator is defined as the part of the water 
resources considered to be available for 
development under specific technical, 

economical and environmental conditions. It is 
obtained as the maximum demand that can be 

served in a water exploitation system while 
complying with the reliability criteria 

established by law. It requires the use of 
simulation models and depends on how the 

natural streamflows are obtained, the reliability 
criteria, and the places in the system where 

new water allocations are likely to be required. 

Table 4. Classification of water stress indexes in the context of water resources planning 
and water allocation. [In Key issue column, A means aridity, S means scarcity, D means 

drought; In Type of drought column, M means meteorological drought, A means 
agricultural drought, H means hydrological drought, O means operational drought and S 

means socio-economical drought] 

Finally, Table 5 shows the indexes related to the management stage. As 

expected, to solve water scarcity problems policymakers resort to water 

resource management, using the implementation of preventive measures in 

order to reduce the effects of droughts (Estrela and Vargas, 2012; Van Loon and 

Van Lanen, 2013). In this case too, these indexes are also used as an operational 

definition of drought, helping drought planners to decide when to start 

implementing drought measures. The importance of these indexes is crucial due 

to the fact that the application of specific measures are conditioned by the 

immediacy or the legal and administrative procedures (Ferrer and Pedro-

Monzonís, 2014), and they need a clear identification of their application timing. 

As seen, the amount of this kind of indexes in the literature is lower than 

previous groups, possibly due to the fact that this index represent a practical 

activity more than a research activity. 
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Index or Indicator 
Key 

issue 
Type of 
drought 

Utility 

Standardized 
Reserves Index (SRI; 

Villalobos, 2007) 
D O 

SRI shows the state of reserves in the 
exploitation system, checking the beginning 

and end of an operational drought. 

Status Index from 
the National 

Drought Indicator 
System in Spain 

(PES; MMA, 2007) 

D O 

The Status Index consists of spatially 
distributed control points in the area of the 
river basin and collects information about 

reservoir storages, groundwater piezometric 
levels, streamflows, reservoir inflows and 

precipitation. There is a relationship between 
the hydrological state of the system and the 

type of measure to be applied. 

Table 5. Classification of water stress indexes related to the management stage. [In Key 
issue column, A means aridity, S means scarcity, D means drought; In Type of drought 

column, M means meteorological drought, A means agricultural drought, H means 
hydrological drought, O means operational drought and S means socio-economical 

drought] 

Some impressions derived from the previous tables are described below: 

i. Not always the classification between key issue and type of drought is 

easy or possible, and in some cases it could have more than one 

solution. The NDVI can be an example: it seems to represent clearly an 

agricultural drought (A) and, in fact, this is accurate when we refer to 

rainfed agriculture. But in irrigated agriculture, which depends on rivers 

or streamflows, it can represent a hydrological drought (H) or an 

operational drought (O) when surface water comes from artificial 

reservoirs. 

ii. We can find in the literature many indexes related to the context of 

natural water use, which, in many cases, are used to identify the 

magnitude of drought periods. Sometimes, their usability during water 

resources management processes is limited. This may be due to the fact 

that these indexes require the definition of a threshold to identify the 

kind of measures to be applied according to the level of risk. 

iii. There are few indexes related to the management stage. The reason 

may be that this is a relatively new approach which has been carried out 

since the last decade, and the availability of data from reservoir and 

piezometric levels is not vast enough to carry out a deep investigation. 

However, there are many indexes related to the water planning in the 

long term, which, in most cases, use simulation models to address the 

lack of data. 
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iv. We have also seen that, in some cases it is difficult to distinguish the key 

issue between aridity and scarcity. Especially in the case of water 

management systems, where demand is established by human beings 

and it could change according to decisions which sometimes are 

included in the analysis. 

v. In connection with the different types of drought, the distinction 

between operational and socio-economic drought may be difficult. 

Especially, when operational decision such as water allocation during 

drought periods may originate socio-economic effects. 

A1.6. CONCLUSIONS 

In this paper, several water indexes have been summarized. Some of them 

have served to identify the types of drought (meteorological, agricultural, 

hydrological, operational or socio-economic), while others allow us to 

characterize the pressures on the water resources, to justify the allocation of 

new demands, or the volumes used to produce goods and services among 

others.  This vast amount of indexes and indicators demands collecting 

information related to a huge variety of disciplines, representing a complex 

issue, and moreover, when there is no unanimity about basic terms as water 

scarcity and drought.  

A priori, there is not a unique indicator suitable for all areas of study. In this 

sense, there is a clear need for using different indexes according to the proposed 

objectives. To do this, knowing the limitations of these indexes is crucial. That is 

why this paper presents a review of water scarcity and drought indexes related 

to water planning and management, with the aim of analysing whether they are 

appropriate for the climate of the region or for the objectives of the study. For 

this purpose, the different approaches to analyse the status of a river basin have 

also been reviewed. For example, in recent years, drought episodes have 

required the implementation of anticipation measures which have influenced 

the new policies for water resources management (short term) and planning 

(long term). According to this target, it is noteworthy that a key feature of 

drought management plans is the use of water drought indexes to establish a 

link between the current river basin status and the measures to be taken. On the 

other hand, indicators derived from water accounting allow a general 

description of the river basin, with an emphasis on water economics and the 

benefit of natural water and managed water. If our goal is the purposes of 
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resource allocation it may be desirable the use of simulation models to obtain 

performance indexes which evaluates the status of the water resources system.  

This recompilation and classification of indexes aims to be useful to select the 

most appropriate index, taking as the starting point the objectives of the analysis 

and the river basin features (a natural system or an altered system due to their 

water management). In any case, the combined use of all of these indicators may 

help in the decision-making process. 

Acknowledgements 

The authors wish to thank the Spanish Ministry of Economy and Competitiveness 

for its financial support through NUTEGES project (CGL2012-34978). We also 

value the support provided by the European Community’s Seventh Framework 

Program in financing the projects DROUGHT-R&SPI (FP7-ENV-2011, 282769), 

ENHANCE (FP7-ENV-2012, 308438), WAMCD (EC-DG Environment No. 

07.0329/2013/671291/SUB/ENV.C.1) and LIFE ALBUFERA (LIFE12 

ENV/ES/000685). 

References 

Alcamo, J., Henrichs, T., Rösch, T., 2000. World water in 2025 - Global modeling 

and scenario analysis for the world commission on water for the 21st century. In: 

Report A0002, Center for Environmental Systems Research, University of Kassel, 

Kurt Wolters Strasse 3, 34109 Kassel, Germany. 

Aldaya, M.M., Martínez-Santos, P., Llamas M.R., 2010. Incorporating the Water 

Footprint and Virtual Water into Policy: Reflections from the Mancha Occidental 

Region, Spain. Water Resour Manage (2010) 24:941–958, DOI 10.1007/s11269-

009-9480-8 

Allan, J.A., 1998. Virtual water: a strategic resource, global solutions to regional 

deficits. Groundwater, 36 (4), 545–546 

Boletín Oficial del Estado, BOE, 2008. Instrucción de Planificación Hidrológica. 

Ministerio de Medio Ambiente, y Medio Rural y Marino.- 15340 - ORDEN 

ARM/2656/2008, de 10 de septiembre. Boletín Oficial del Estado 229, 38472-

38582.  

tel:2013%2F671291


Assessment of water exploitation indexes based on water accounting 

84 

CIRCABC, 2012. ‘Informal meeting of Water and Marine Directors of the 

European Union, Candidate and EFTA Countries. Copenhagen, 4-5 June 2012. 

Synthesis’, Communication and Information Resource Centre for Administrations, 

Businesses and Citizens (https://circabc.europa.eu/sd/d/b5d535f4-0df2-4b7b-

aa39-

a71483ab8fd4/Synthesis_Water_and_Marine_Directors_Copenhagen.docx) 

(accessed 07.10.2014) 

Estrela, T. and Vargas, E., 2012. Drought Management Plans in the European 

Union. The case of Spain. Water Resour Manage, 26, pp. 1537-1553. 

EU, 2007. Addressing the Challenge of Water Scarcity and Droughts in the 

European Union, Communication from the Commission to the European 

Parliament and the Council, Eur. Comm., DG Environ., Brussels, 2007. 

EU, 2012. Report on the Review of the European Water Scarcity and Droughts 

Policy, Communication from the Commission to the European Parliament and the 

Council, The Eur. Econ. and Soc. Comm. and the Comm. of the Reg., DG Environ., 

Brussels, 2012. 

European Environment Agency, EEA, 2005. The European environment – state 

and outlook 2005. European Environmental Agency, 2005, Copenhagen. 

European Environment Agency, EEA, 2013. Results and lessons from 

implementing the Water Assets Accounts in the EEA area. From concept to 

production. EEA Technical report No 7/2013, European Environment Agency. 

Falkenmark, M., Lundqvist, J., Widstrand, C., 1989. Macro-scale water scarcity 

requires micro-scale approaches. Nat. Res. Forum 13, 258–267. 

Ferrer, J. and Pedro-Monzonís, M., 2014. De la planificación a la gestión y 

explotación: Sustitución de recursos en el ámbito de la Demarcación Hidrográfica 

del Júcar. Aplicaciones de Sistemas Soporte a la Decisión en Planificación y 

Gestión Integradas de Cuencas Hidrográficas (ed. Solera A. et al.), pp. 295-304, 

Ed. Marcombo, Barcelona. 

Fulton, J., Cooley, H., Gleick, P.H., 2014. Water Footprint Outcomes and Policy 

Relevance Change with Scale Considered: Evidence from California. Water Resour 

Manage 28(11): 3637-3649. DOI 10.1007/s11269-014-0692-1. 

https://circabc.europa.eu/sd/d/b5d535f4-0df2-4b7b-aa39-a71483ab8fd4/Synthesis_Water_and_Marine_Directors_Copenhagen.docx
https://circabc.europa.eu/sd/d/b5d535f4-0df2-4b7b-aa39-a71483ab8fd4/Synthesis_Water_and_Marine_Directors_Copenhagen.docx
https://circabc.europa.eu/sd/d/b5d535f4-0df2-4b7b-aa39-a71483ab8fd4/Synthesis_Water_and_Marine_Directors_Copenhagen.docx


Annex 1 

85 

Gibbs W.J. and Maher J.V., 1967. Rainfall Deciles as Drought Indicators. Bureau 

of Meteorology Bull. 48. Commonwealth of Australia, Melbourne, Australia. 

Godfrey, J.M. and Chalmers, K., 2012. Water Accounting, International 

Approaches to Policy and Decision-making. Edward Elgar Publishing Limited. 

2012, Cheltenham, UK – Northampton, MA, USA. 

Haro, D., Solera, A., Paredes-Arquiola, J., Andreu, A., 2014. Methodology for 

Drought Risk Assessment in With-year Regulated Reservoir Systems. Application 

to the Orbigo River System (Spain). Water Resour Manage 28:3801-3814. DOI 

10.1007/s11269-014-0710-3 

Hashimoto, T., Stedinger, J.R., Loucks, D.P., 1982. Reliability, resiliency, and 

vulnerability criteria for water resource system performance evaluation. Water 

Resour. Res.,  18 (1), 14–20. 

Hoekstra, A.Y. (Ed.), 2013. Virtual Water Trade: Proceedings of the International 

Expert Meeting on Virtual Water Trade. Value of Water Research Report Series 

No. 12, UNESCOIHE, Delft, The Netherlands. February 2003.  

(www.waterfootprint.org/Reports/Report12.pdf) (accessed 24.09.2014). 

Hoekstra, A.Y. and Chapagain, A.K., 2008. Globalization of Water: Sharing the 

Planet’s Freshwater Resources. Blackwell Publishing, 2008 Oxford, UK. 

Hoekstra, A.Y., 2009. Human appropriation of natural capital: a comparison of 

ecological footprint and water footprint analysis. Ecological Economics 68, 1963–

1974. 

Hoekstra, A.Y., 2012. Water Footprint Accounting. In: Godfrey, J.M., Chalmers, 

K., editors. Water Accounting. International Approaches to Policy and Decision-

making. Edward Elgar Publishing Limited. Cheltenham, UK – Northampton, MA, 

USA; pp. 58-75. 

Instituto Nacional de Estadística, 2008. Cifras INE, Estadísticas e Indicadores del 

Agua. Boletín Informativo del Instituto Nacional de Estadística, 2008. 

Lama, B., 2011. Metodología de evaluación e identificación de políticas de 

adaptación al cambio climático en la gestión de recursos hídricos. Doctoral thesis. 

http://onlinelibrary.wiley.com/doi/10.1002/wrcr.v18.1/issuetoc
http://www.waterfootprint.org/Reports/Report12.pdf


Assessment of water exploitation indexes based on water accounting 

86 

Department of Civil Engineering, Higher Technical School of Civil Engineering 

(ETSICCP), Technical University of Madrid (UPM). 

Loucks, D.P., 1997. Quantifying trends in system sustainability. Hydrol. Sci. J., 

42(4), 513-530 

Lloyd-Hughes, B., 2014. The impracticality of a universal drought definition. 

Theor Appl Climatol (2014) 117:607–611, DOI 10.1007/s00704-013-1025-7 

Margat, J., 1996. Les ressources en eau. Conception, évaluation, cartographie, 

comptabilité, Editions BRGM, Orléans 1996, FAO, Vol. 28.  

Martín-Carrasco, F., Garrote, L., Iglesias, A., Mediero, L., 2013. Diagnosing 

Causes of Water Scarcity in Complex Water Resources Systems and Identifying 

Risk Management Actions. Water Resour Manage 27:1693-1705 DOI 

10.1007/s11269-012-0081-6 

McKee, T.B., Doesken, N.J., Kleist, J., 1993. The Relationship of Drought 

Frequency and Duration to Time Scales, Paper Presented at 8th Conference on 

Applied Climatology. American Meteorological Society, 1993 Anaheim, CA. 

Milano, M., Ruelland, D., Dezetter, A., Fabre, J., Ardoin-Bardin, S., Servat, E., 

2013. Modeling the current and future capacity of water resources to meet water 

demands in the Ebro basin. J. Hydrol. 500; 114-126 

http://dx.doi.org/10.1016/j.jhydrol.2013.07.010 

Ministerio de Medio Ambiente, MMA, 2001. Ley 10/2001, de 5 de julio, del Plan 

Hidrológico Nacional. Madrid. Ministerio de Medio Ambiente. 

Ministerio de Medio Ambiente, MMA, 2007. Orden MAM/698/2007, de 21 de 

marzo, por la que se aprueban los planes especiales de actuación en situaciones 

de alerta y eventual sequía en los ámbitos de los planes hidrológicos de cuencas 

intercomunitarias. 

Mishra AK and Singh VP. A review of drought concepts. J. Hydrol. 391, 2010, pp. 

202-216. 

http://dx.doi.org/10.1016/j.jhydrol.2013.07.010
http://hispagua.cedex.es/documentacion.php?c=detalle&pg=0&localizacion=Legislaci%F3n%20Estatal&id=1059
http://hispagua.cedex.es/documentacion.php?c=detalle&pg=0&localizacion=Legislaci%F3n%20Estatal&id=1059


Annex 1 

87 

Molden, D. and Sakthivadivel, R., 1999. Water Accounting to Assess Use and 

Productivity of Water, International Journal of Water Resources Development, 

15:1-2, 55-71, DOI: 10.1080/07900629948934 

Palmer, W.C., 1965. Meteorologic Drought. US Department of Commerce, 

Weather Bureau, Research Paper No. 45, p. 58.  

Palmer, W.C., 1968. Keeping track of crop moisture conditions, nationwide: the 

new crop moisture index. Weatherwise, 21, 156–161. 

Pedro-Monzonís, M., Ferrer, J., Solera, A., Estrela, T., Paredes-Arquiola, J., 2015. 

Key issues for determining the exploitable water resources in a Mediterranean 

river basin. Sci Total Environ 503-504: 319-

328. http://dx.doi.org/10.1016/j.scitotenv.2014.07.042 

Pellicer-Martinez, F., Perni, A., Martínez-Paz, J.M., 2013. La Huella Hídrica Total 

de una Cuenca: el caso de la Demarcación Hidrográfica del Segura. VIII Congreso 

Ibérico sobre Gestión Planificación del Agua. 

Quiring, S.M., 2009. Developing Objective Operational Definitions for Monitoring 

Drought. J. Amer. Meteor. Soc., 48: 1217-1229. DOI: 10.1175/2009JAMC2088.1 

Raskin, P., Gleick, P., Kirshen, P., Pontius, G., Strzepek, K., 1997. Water Futures: 

Assessment of Long-range Patterns and Prospects. Stockholm Environment 

Institute, Stockholm, Sweden. 

Rijsberman, F.R., 2006. Water scarcity: Fact or fiction? Agricultural Water 

Management 80; 5-22 

Rodríguez, R., Garrido, A., Llamas, M.R., Varela, C., 2008. La huella hidrológica 

de la agricultura española. Papeles de Agua Virtual No 2. Fundación Marcelino 

Botín. Santander. 

Rouse, J.W., 1974. Monitoring the vernal advancement of retrogradation of 

natural vegetation. NASA/GSFC, Type III, Final Report, 1974 Greenbelt, MD, pp. 

371. 

Sánchez-Quispe, S.T., Andreu, J., Solera, A., 2001. Gestión de recursos hídricos 

con decisiones basadas en estimación del riesgo. Departamento de Ingeniería 

http://dx.doi.org/10.1016/j.scitotenv.2014.07.042


Assessment of water exploitation indexes based on water accounting 

88 

Hidráulica y Medio Ambiente. Escuela Técnica Superior de Ingenieros de 

Caminos, Canales y Puertos. Editorial Universidad Politècnica de València. 

Sandoval-Solis, S., McKinney, D., Loucks, D., 2011. Sustainability Index for Water 

Resources Planning and Management. J. Water Resour. Plann. Manage., 137(5), 

381–390. 

Seckler, D., Amarasinghe, U., Molden, D., DeSilva, R., Randolph, B., 1998. World 

Water Demand and Supply, 1990–2025: Scenarios and issues. Research Report 

19. International Water Management Institute, Colombo, Sri Lanka 1998. 

Shafer, B.A. and Dezman, L.E., 1982. Development of a Surface Water Supply 

Index (SWSI) to Assess the Severity of Drought Conditions in Snowpack Runoff 

Areas. In: Preprints, Western Snow Conf., Reno, NV, Colorado State University, 

pp. 164–175. 

Sullivan, C.A., 2002. Calculating a water poverty index. World Dev. 30, 1195–

1210. 

Tigkas, D., Vangelis, H., Tsakiris, G., 2013. The RDI as a composite climatic 

index.European Water 41: 17-22. 

Tsakiris, G. and Vangelis, H., 2005. Establishing a Drought Index incorporating 

evapotranspiration. European Water 9/10:3–11 

Tsakiris, G., Nalbantis, I., Vangelis, H., Verbeiren, B., Huysmans, M., Tychon, B., 

Jacquemin, I., Canters, F., Vanderhaegen, S., Engelen, G., Poelmans, L., De Becker, 

P., Batelaan, O., 2013. A System-based Paradigm of Dorught Analysis for 

Operational Management. Water Resour Mange 27: 5281-5297 DOI 

10.1007/s11269-013-0471-4 

United Nations, UN, 2006. World Water Development Report 2: Water a Shared 

Responsibility (United Nations publications, Sales No. E.06.II.A.4)  

United Nations, UN, 2012. System of Environmental-Economic Accounting for 

Water. United Nations, Department of Economic and Social Affairs, Statistics 

Division, (United Nations publication, Sales No. E.11.XVII.12) New York. 



Annex 1 

89 

Vanham, D. and Bidoglio, G., 2013. A review on the indicator water footprint for 

the EU28. Ecol. Indic. 26; 61-75, http://dx.doi.org/10.1016/j.ecolind.2012.10.021 

Van Loon, A.F. and Van Lanen, H.A.J., 2013. Making the distinction between 

water scarcity and drought using an observation-modeling framework, Water 

Resour. Res., (49), doi:10.1002/wrcr.20147. 

Vardon, M., Lenzen, M., Peevor, S., Creaser, M., 2007. Water accounting in 

Australia. Ecological Economics 61: 650-659. DOI: 

10.1016/j.ecolecon.2006.07.033 

Vardon, M., Martinez-Lagunes, R., Gan, H., Nagy, M., 2012. The System of 

Environmental-Economic Accounting for Water: development, implementation 

and use. In: Godfrey JM, Chalmers K, editors. Water Accounting. International 

Approaches to Policy and Decision-making. Edward Elgar Publishing Limited. 

Cheltenham, UK – Northampton, MA, USA; pp.32-57. 

Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010. A Multi-scalar 

drought index sensitive to global warming: the standardized precipitation 

evapotranspiration index – SPEI. J. Climate, 23, 1696-1718. doi: 

10.1175/2009JCLI2909. 

Villalobos, A.A., 2007. Análisis y seguimiento de distintos tipos de sequía en la 

cuenca del río Júcar. Tesis Doctoral. ETS Ingenieros de Caminos, Canales y 

Puertos. Universidad Politècnica de València.  

Zeng, Z., Liu, J., Koeneman, P.H., Zarate, E., Hoekstra, A.Y., 2012. Assessing water 

footprint at river basin level: a case study for the Heihe River Basin in northwest 

China. Hydrol. Earth Syst. Sci., 16: 2771-2781. doi:10.5194/hess-16-2771-2012 

Zeng, Z., Liu, J., Savanije, H., 2013. A simple approach to assess water scarcity 

integrating water quantity and quality. Ecol. Indic. 34; 441-449 

http://dx.doi.org/10.1175/2009JCLI2909
http://dx.doi.org/10.1175/2009JCLI2909




Annex 2 

91 

ANNEX 2. KEY ISSUES FOR 
DETERMINING THE EXPLOITABLE WATER 
RESOURCES IN A MEDITERRANEAN RIVER 
BASIN2 

 

Abstract 

One of the major difficulties in water planning is to determine the water 

availability in a water resource system in order to distribute water sustainably. 

In this paper, we analyse the key issues for determining the exploitable water 

resources as an indicator of water availability in a Mediterranean river basin. 

Historically, these territories are characterised by heavily regulated water 

resources and the extensive use of unconventional resources (desalination and 

wastewater reuse); hence, emulating the hydrological cycle is not enough. This 

analysis considers the Jucar River Basin as a case study. We have analysed the 

different possible combinations between the streamflow time series, the length 

of the simulation period and the reliability criteria. As expected, the results show 

a wide dispersion, proving the great influence of the reliability criteria used for 

the quantification and localization of the exploitable water resources in the 

system. Therefore, it is considered risky to provide a single value to represent 

the water availability in the Jucar water resources system. In this sense, it is 

necessary that policymakers and stakeholders make a decision about the 

methodology used to determine the exploitable water resources in a river basin. 

                                                           

2  Pedro-Monzonís, M., Ferrer, J., Solera, A., Estrela, T. and Paredes-

Arquiola, J., 2015. Key issues for determining the exploitable water resources in a 

Mediterranean river basin, Sci Total Environ, 503-504, 319-328, 

doi:10.1016/j.scitotenv.2014.07.042. 

http://dx.doi.org/10.1016/j.scitotenv.2014.07.042
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A2.1. INTRODUCTION 

The importance of water to society is broadly recognized. As noted in the 

Blueprint to safeguard Europe’s water resources (EC, 2012), we need to know 

how much water is available in order to distribute it sustainably. One of the 

major difficulties lies in computing water resources, as they depend on several 

factors, some of which are difficult to quantify. Water resources are presented 

in random order in the sense that they cannot be fully explained by a reduced 

number of physical causal factors (Marco, 1993). To assess these resources, 

water accounts, as defined by United Nations, have become a very powerful tool 

for improving water management as they provide a method of organizing and 

presenting information relating to the physical volumes of water in the 

environment, the water supply and the economy (Vardon et al., 2007). The main 

purpose of the System of Environmental-Economic Accounting for Water 

(SEEAW) (UNSD, 2012) is to provide a standard approach and therefore the 

possibility to compare results among different areas (Evaluación de Recursos 

Naturales, 2013). 

Many studies have used the concept of water availability in different senses: 

the European Environmental Agency (EEA) (2009) considers precipitation, river 

flows and the storage of water in snow and glaciers as a measure of the 

availability of freshwater resources, while other authors (Lorenzo-Lacruz et al., 

2010; Pérez-Blanco and Gómez, submitted for publication) have estimated water 

availability by employing drought indexes. Furthermore, Lange et al. (2007) and 

Sun et al. (2002, 2005, 2006) consider that regional water resource availability 

can be well described by water yield, defined as the difference between received 

precipitation and evapotranspiration, and representing the maximum water 

availability for natural ecosystems and human society (Lu et al., 2013). 

However, not all natural resources can – or should – be considered as supplies 

that can be used to meet water demand (MMA, 2000). It is noteworthy that 

some external constraints (environmental, socio-economic or geopolitical) exist 

in the system itself that limit potential water use. There are also other technical 
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restrictions that limit the use of resources. In this sense, the available resource 

is defined as a resource that depends on the characteristics of natural resources, 

external constraints and technical limitations (MMA, 2000). In other words, the 

concept of water availability is related to the ability of a country to mobilize 

water (UNSD, 2012). This concept is important because knowing the available 

resources of a basin will aid the planner to place a value on its growth potential 

in the exploitation of the system. In the same way, AQUASTAT (FAO’s global 

water information system) has suggested the use of an indicator of exploitable 

water resources to quantify water availability. This indicator is defined as the 

part of the water resources considered to be available for development under 

specific technical, economic and environmental conditions (UNSD, 2012). Unlike 

natural resources, whose meaning is widely accepted, there is disagreement as 

regards the best process for calculating exploitable water resources (MMA, 

2000; UNSD, 2012). This concept is extremely important in Mediterranean 

countries where precipitation is scarce, evapotranspiration is intense and there 

is marked seasonality of the rainfall, often causing drought periods during 

summer (Delgado et al., 2010).  

The aim of this paper is to design a scheme of conditions for determining the 

exploitable water resources in a Mediterranean basin. Historically, 

Mediterranean countries have suffered important drought periods that have 

caused severe impacts. Water scarcity and the frequent drought periods explain, 

in part, the ancient building tradition of hydraulic works (Estrela and Vargas, 

2012). These territories are characterised by heavily regulated water resources 

and the extensive use of unconventional resources, such as desalination and 

wastewater reuse (Vargas-Amelín and Pindado, 2013), which is the main reason 

why emulating the hydrological cycle is not enough. This approach is completed 

by the analysis of the Jucar River Basin (Spain), which, as in other many 

Mediterranean basins, is currently water-stressed. To achieve this goal, the study 

draws on the SIMGES simulation model of water resources (Andreu et al., 1996) 

from the Decision Support System (DSS) AQUATOOL. As expected, the results are 

very different, proving the need for a standardized methodology to determine 

the exploitable water resources in a basin.  

A2.2. MATERIALS AND METHODS 

Water resources systems analysis comprises all of the necessary elements 

needed to describe a river basin. These elements represent the natural resources 
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system, the socio-economic system and the administrative and institutional 

system (Loucks and van Beek, 2005) and include factors such as water resources, 

water demands, infrastructures, environmental requirements, reservoir 

operating rules, etc. In this sense, water resources management can be 

performed in different ways, among which the use of simulation models is the 

most reliable method. Simulation models provide information that can help 

improve water resources system management and planning processes (Sulis and 

Sechi, 2013). An extended state-of-the-art review on simulation and 

optimization modelling approaches has been provided by Rani and Moreira 

(2010). Moreover, as noted by Chavez-Jimenez et al. (2013), a system is the unit 

through which the exploitation of water resources may be modelled as a set of 

dynamically related elements that perform an activity to meet the objective of 

satisfying demand.  

Therefore, to assess the water availability in a water resources system, it is 

necessary to use simulation models (see figure 1). The results obtained with the 

simulation models can be grouped in a water balance that represents an 

accounting of the inflow, outflow and storage of water during the simulation 

period. One such result is the time-dependent water supply. Once the time series 

of water supplies has been determined, it can be compared with the water 

demand in order to obtain the system’s reliability. The indicator of exploitable 

water resources is linked to the reliability criteria. Therefore, if water managers 

accept a less severe level of reliability, it will be possible to address a larger 

demand than if the level were more severe. Once the reliability criteria have 

been selected, the exploitable water resources are obtained as the maximum 

demand that can be served. 

 

Figure 1. General scheme to obtain the exploitable water resources in a river basin 
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A2.2.1. WATER RESOURCES SYSTEMS ANALYSIS AND WATER RESOURCES 
MANAGEMENT MODELS 

Water resources systems analysis consists of the analytical study of the water 

resources in a river basin in order to help decision makers to identify and choose 

one alternative from other possible ones. Quantitative and holistic knowledge of 

basin hydrology becomes essential as water management needs become 

increasingly complex (Masih et al., 2009). Molle et al. (2004) concluded that as 

water demands increase and more water is allocated to different uses, the 

management of water resources becomes increasingly complex due to a large 

number of interacting factors. The greater the complexity of the system is, the 

greater the need for a water resource management model in order to identify 

the system’s water availability.  

The planning and management of a water resources system may be 

simulated using SIMGES, a management simulation model in the generalized 

tool AQUATOOL (Andreu et al., 1996). AQUATOOL is a user-friendly DSS widely 

employed in Spanish water basins, as well as in other countries (e.g., Chile, Italy, 

Morocco, etc.). This DSS allows the definition of monthly conjunctive-use 

management models at the basin scale, and, as noted by Pulido-Velazquez et al. 

(2011), permits the simulation of management alternatives for complex large-

scale systems over long time horizons. The SIMGES model can simulate the water 

resources system, on a monthly time scale, by a simple flow balance in a flow 

network in order to find a flow solution compatible with the defined constraints. 

Moreover, the SIMGES model allows us to define operating rules to reproduce 

source-demand interactions that can help improve integrated river basin 

management. 

A2.2.2. COMPONENTS OF A WATER RESOURCES SYSTEM 

Simulation models are simplified mathematical representations of water 

allocations over a period of time under given boundary conditions. Thus, in order 

to define the main elements to be included, we must distinguish between 

natural elements in the river basin and anthropogenic elements that produce 

alterations in river flows. 
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A2.2.2.1. Natural elements 

Among natural elements we consider rivers, natural streamflows and 

aquifers, as well as their interactions. Natural streamflows represent the flows 

of a particular area of the basin corresponding to its drain point and are the most 

important elements for river basin management, as they represent the flows 

that are to be managed (Solera et al., 2010a). The random nature of streamflows 

requires a hypothesis to be established regarding the best way to obtain 

streamflow data. In this sense, it is common to use time series of naturalized 

streamflows, which are characterized by a number of statistical properties such 

as bias, seasonality and spatial and temporal correlation. Other options are to 

use time series obtained with a rainfall-runoff model or resorting to the use of 

stochastic models. In water planning, the usual practice is to analyse the 

system’s operation over a long period of time under different hydrological 

conditions. However, because planning is performed for future needs, historical 

streamflow data will not be repeated, so it is justifiable to use statistical models 

for the generation of future scenarios of varying lengths (Solera et al., 2010b).  

To estimate water availability, it is necessary to accept a hypothesis about 

how these natural streamflows will be presented, which will largely determine 

the results and conclusions. This paper proposes a twofold approach: a first 

analysis using a time series of naturalized streamflows and a second analysis 

employing synthetic streamflows. In the second case, a large number of 

stochastic time series equivalents to the naturalized ones are obtained with a 

stochastic generation model and then used as an input to the deterministic 

simulation model. In this way, it will be possible to evaluate the statistical 

properties of the considered options (Loucks and van Beek, 2005). The 

generation method employed in this study is the multivariate ARMA model (Box 

and Jenkins, 1976).  

A2.2.2.2 Infrastructures 

We consider infrastructures as all of the elements that allow water managers 

to operate or control the flow of water in the river basin. The most important 

elements are reservoirs, pumping wells and channels. As all models produce 

simplified representations of real-world systems (Sulis and Sechi, 2013), they 

must include the system’s main features, such as rivers, reservoirs, aquifers, 

existing uses represented by the demand centres, hydraulic connections, the 
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possibility of using returns and other unconventional resources, and the 

consideration or not of environmental constraints or operating rules. 

To analyse water availability, a very important aspect to consider is the 

capacity to mobilize resources in the system. Therefore, we need to consider the 

existing level of technology at each moment in order to distinguish between 

conventional and unconventional resources. We define as conventional 

resources the amount of water regulated in reservoirs and groundwater 

pumping. Unconventional resources often include resources from direct reuse 

and desalination, but on account of being associated with the existing 

technology, these resources are a dynamic concept that varies with time. 

Moreover, the use of the returns of previous supplies represents a double use of 

water resources. This fact is essential in Mediterranean countries, where the 

majority of the available resources are used for irrigation, resulting in large 

volumes of returns. Equally important is the management of the operating 

system, defined as a set of operating rules for the water infrastructure system, 

representing another of the key aspects in the water availability. In this way, 

optimal water resource management can increase the availability of the system, 

while a deficient management inevitably reduces it. 

A2.2.2.3 Demands 

The purpose of water resources management is to satisfy a set of water uses. 

We can distinguish among several types of uses, each of which requires a certain 

amount of water at a certain time and place (Solera et al., 2010a). These uses 

may refer to environmental requirements, agricultural and urban demands, and 

hydroelectric and recreational uses. 

Because streamflows are scattered throughout the basin, the water 

availability will vary depending on where water is needed. As noted by Bangash 

et al. (2012) water is typically allocated according to historical, institutional, 

political, legal, and social traditions and conditions. Likewise, if an allocation of 

water is assigned in a part of the basin, this allocation will modify the water 

availability in the rest of the basin. Furthermore, due to the seasonal variability 

of water resources and the limited capacity of system regulation, the allocation 

will vary if the demands are concentrated in different seasons. 

Despite the regulation of the water resources system, we cannot be 

confident that all demands have satisfied their supply because it depends on the 



Assessment of water exploitation indexes based on water accounting 

98 

random nature of streamflows. Reliability measures the frequency or probability 

of success of the system by simply counting the number of days that the system 

was in a “satisfactory state” compared to the total simulation length (Asefa et 

al., 2014; Hashimoto et al., 1982); this method is traditionally used to judge 

whether the adoption of long-term corrective actions is necessary. Thus, having 

high levels of reliability means having less water resource availability and vice 

versa.  

Two reliability criteria have been selected in order to assess the availability 

of water resources. The first criterion is the one established in the Spanish 

Statement of Water Planning (IPH, 2008), and the second is the efficiency 

indicators defined by Martín-Carrasco and Garrote (2007). The IPH (2008) 

indicates that for the purposes of resource allocation and reservation, urban 

demand is considered satisfied when the deficit in one month does not exceed 

10% of the corresponding monthly demand and when in 10 consecutive years, 

the sum of deficits is less than 8% of the annual demand. Similarly, for the 

purposes of resource allocation and reservation, agrarian demand is considered 

satisfied when the deficit in one year does not exceed 50% of the corresponding 

demand; for two consecutive years, the sum of deficit does not exceed 75% of 

annual demand; and in ten consecutive years, the sum of deficit does not exceed 

100% of the annual demand. On the other hand, the efficiency indicators used 

are (1) the demand-satisfaction index (I1), which evaluates the capability of the 

system to meet demand and (2) the demand-reliability index (I2), which assesses 

the reliability of the system to satisfy demand. The use of the efficiency 

indicators requires grouping the demands across several classes depending on 

their respective use of water. As noted in Chavez-Jimenez et al. (2013), the 

behaviour of the system is characterized according to the indicators I1 and I2. 

According to the values of I1 and I2, we can determine the intensity of the 

problems that can occur in the system (see Figure 2). More detailed information 

about the use of these indicators can be found in Martín-Carrasco and Garrote 

(2007). 
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Figure 2. Demand-reliability curve (DR curve) (left) and diagnosis of severity of water 
scarcity problems according to indicator values I1 and I2 (right) (Chavez-Jimenez et al., 

2013). 

A2.2.3. CALCULATION PROCESS FOR DETERMINING THE EXPLOITABLE 
WATER RESOURCES 

To measure water availability, the indicator of exploitable water resources 

will be used, which is determined as the maximum demand that can be served 

in a water exploitation system while complying with the reliability criteria 

established by law.  

The steps used to obtain this indicator are as follows: (1) select a hypothesis 

about how to obtain the natural streamflows in the simulation model; (2) select 

the reliability criteria that allow us to consider the supply to be satisfied; (3) 

select all possible places in the system where new water allocations are likely to 

be required, apart from the existing demand centres; (4) define the type of use 

in these new places (urban use requires a uniform year-round supply, and 

agrarian use concentrates its supply during the harvest months) with a demand 

element in the simulation model; (5) using an iterative process, analyse the 

possibility of increasing a single demand in each step while considering the other 

demands as zero, execute the simulation model, and check if the adopted 

reliability criteria are met at each step; and (6) the final result is achieved when 

the maximum demand is obtained while fulfilling the required reliability criteria. 

As explained in step (5) (see figure 3), the exploitable water resources are 

determined through an iterative process in which the model SIMGES is run with 

different water demand values, and the reliability criterion is analysed to 

compare the supply and demands. The monthly values for each demand are 
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obtained by multiplying a definite temporal pattern (different for urban and 

agricultural demands) by a changing value (X). In the first iteration, X has to be a 

very high figure. If the reliability criterion is met when SIMGES is run, we accept 

the demand quantity as the exploitable water resources. However, if the 

reliability criterion is not met, a new demand is obtained using the bisection 

method until the highest demand that meets the reliability criterion is found, 

accepting an absolute error (E) of 0.05 hm3/month. In the case study, the initial 

value for X was 200 hm3/month, and 14 iterations were required to calculate the 

exploitable water resources of the system. 

The results depend on the geographical area in which the demands are to be 

increased, either at the head of the system, in the middle section or at the mouth 

area, because any alteration of the system will affect the uses located 

downstream of such an alteration. Similarly, the timing of the use will also 

influence these results because it will be dictated by the type of use for which 

the resource is intended.  

 

Figure 3. Iterative process 

A2.3. CASE STUDY: THE JUCAR RIVER BASIN 

A2.3.1. CHARACTERIZATION OF THE STUDY AREA 

The Jucar River Basin is located in the eastern part of the Iberian Peninsula in 

Spain (see figure 4). This basin is the main principal water exploitation system of 

the 9 in the Jucar River Basin District, thus giving it its name. The Jucar River has 
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a length of 497.5 km, traversing the provinces of Teruel, Cuenca, Albacete and 

Valencia, with its mouth at the Mediterranean Sea. Additionally, this water 

exploitation system includes the area and services provided by the Jucar-Turia 

Channel and the littoral sub-basins between the Albufera Lake and a location 

approximately 10 kilometres south from the mouth of the river. It is the most 

extensive system (22,261 km2) and provides the greatest amount of water 

resources in the Jucar River Basin Agency. A brief description of the study area 

and key issues is presented below; details can be found in Ferrer et al. (2012). 

 

Figure 4. Location of the Jucar River Basin in the Iberian Peninsula 

Physically, the Jucar River basin is described as an interior mountainous zone, 

with spots at high altitude and a coastal zone composed of plains. This means 

that 25% of the basin is at elevations over 1,000 m, while the remaining area is 

below this level (27% corresponds to plains below the Central plateau and 48% 

to plains on the Central plateau). Precipitation exhibits a high spatial variability 

(450 mm/year in the low basin and 630 mm/year in the north of the basin). The 

average precipitation is 510 mm/year, and the average temperature is 13.6°C. 

The average natural water resources reach 1,279 hm3/year, representing the top 

limit of the renewable resources of the basin. The total population that depends 
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on the Jucar River Basin presents a water demand of 127 hm3/year, and the 

water demand for irrigated agriculture reaches 990 hm3/year. The supply to 

urban areas comes mainly from wells and springs, but the Albacete, Sagunto and 

Valencia metropolitan areas use surface water. More details can be found in 

MAGRAMA (2013). 

As shown in figure 5, comparing the total streamflows with the water 

demand for urban and agrarian use during an average hydrological year, we 

observe that consumptive uses and water resources are not synchronized in 

time. Water demands are concentrated in harvest months, while natural 

resources are slightly higher during winter and lower in summer. It is noteworthy 

that natural resources do not reduce dramatically in summer months because 

the Jucar River Basin is characterized by a strong interaction between surface 

water and groundwater. Because of this, the River Basin Authorities in charge of 

water management carry out a conjunctive use of surface and groundwater 

resources (Estrela et al., 2012). In recent decades, the environment has been an 

increasingly important issue. Therefore, sewage and wastewater treatment 

plants have been built and are in operation, including direct wastewater reuse 

after intensive treatment, increasing the water availability.  

 

Figure 5. Total streamflows vs. water demands during an average hydrological year 
(1980/2008) for the Jucar River Basin. Source of data: Jucar River Basin Authority 

Using the values of total natural resources (1,279 hm3/year) and total water 

demands (1,117 hm3/year) in the Jucar Water Resources System for the 

1980/81-2008/09 period, a first indicator of the water balance in the system can 
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be derived as the ratio between both values, resulting in a value of 0.87. This 

ratio represents a first approximation of the water exploitation index (WEI) as 

the ratio of total freshwater abstraction to total renewable resources. The closer 

this value is to 1, the greater the degree of exploitation of resources is indicated. 

This first indicator is not sufficient because it does not take into account agrarian 

returns, reuse from sewage treatment stations, or any transfers that may occur 

in the system. Nevertheless, it reflects the high degree of exploitation suffered 

by this system. 

The Jucar water resources system is characterized by a marked reduction in 

the recorded streamflows during the 1980-2009 period (Pérez-Martín et al., 

2013). Figure 6 depicts the system’s total natural streamflow time series, 

obtained by naturalization of streamflows and used in the SIMGES simulation 

model employed by the Water Planning Office of the Jucar River Basin Agency. 

As the figure shows, there has been a significant reduction in natural 

streamflows throughout the past 30 years, clearly showing the existence of two 

periods, in which the difference between their averaged streamflows is close to 

500 hm3 per year. This fact confirms the need to differentiate among the analysis 

periods 1940-2009, 1940-1979 and 1980-2009.  

 

Figure 6. Total natural streamflow time series of the Jucar simulation model. Source of 
data: Jucar River Basin Authority 
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A2.3.2. SIMULATION MODEL FOR THE CASE STUDY 

The first step is the construction of the simulation model for the Jucar water 

resources system for the current scenario. This model reflects the complex 

interaction among all elements in the Jucar water resources system and includes 

environmental requirements in order to obtain the exploitable water resources, 

taking into consideration the environmental objectives of the basin. To consider 

the current administrative concessions and operational constraints, this study 

draws on the SIMGES system simulation model of water resources (Andreu et 

al., 1996) from the DSS AQUATOOL. 

Due to the special characteristics of the natural streamflows in the system, 

as described above, we must analyse the behaviour of the system depending on 

whether the simulation period covers a short period (1980-2009) or long one 

(1940-2009). For this reason, two multivariate ARMA stochastic models (Box and 

Jenkins, 1976) were calibrated using the historical data series. These models 

allow the generation of multiple stochastic streamflow scenarios with the same 

length as the historical ones. Thereby, we consider four types of streamflow time 

series: the naturalized streamflows during the period 1980/2008; the stochastic 

streamflow scenarios generated using the 1980/2008 stochastic model; the 

naturalized streamflows during the period 1940/2008; and the stochastic 

streamflow scenarios generated using the 1940/2008 stochastic model. 

Based on geographical location, the exploitable water resources have been 

calculated at singular points in the Jucar water resources system. Figure 7 shows 

the scheme used to estimate the exploitable water resources, in which the detail 

and complexity of the system are identified. We have added to the original 

model five groups of demands scattered throughout the scheme, representing 

the strategic sites for system management. These sites correspond to the 

following: 

- Alarcon Reservoir, located in Jucar River headwaters 

- Contreras Reservoir, located in Cabriel River headwaters, tributary of 

Jucar River 

- Molinar Reservoir. Despite not being a regulation reservoir, by locating 

a group of demands in this area we intend to determine the exploitable 

water resources in the middle reaches of the Jucar River before the 

incorporation of the Cabriel River. 
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- Tous Reservoir, located in the middle stretch of the Jucar River. 

- The Huerto Mulet gauging station. This point has been selected in order 

to determine the water resources availability in the lower reaches of the 

river. 

 

Figure 7. Jucar water resource system model used to estimate the exploitable water 
resources 

From the point of view of the temporal distribution of water resources 

availability, each set of demands is composed of two elements, representing a 

hypothetical agricultural supply (DA) and an urban supply (DU), considering a 

single 20% return for agricultural use. Agricultural demands are a lower priority 

than the current priorities of mixed irrigation, and urban priority coincides with 

the priorities of the initial urban demands. 

Two reliability criteria have been selected in order to assess the water 

availability; these include the criteria established in the Spanish Statement of 

Water Planning (IPH, 2008) along with the efficiency indicators defined by 

Martín-Carrasco and Garrote (2007); therefore, we have analysed 8 different 

possible combinations of the streamflow time series, the length of the simulation 

period and reliability criteria. 

A2.4. RESULTS 

The simulation model has been used to determine the water balance in the 

reference scenario. Table 1 shows the balance of the flows into and out of the 
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system in the same referenced period (1980-2008). In this balance, we can 

perceive the different concepts employed in the model, such as resources, 

demands, supplies, return flows and outflows represented by average values. 

WATER BALANCE OF THE JUCAR WATER RESOURCES SYSTEM 
(average annual values in hm3) 

Series 1980/81-2008/09 

RESOURCES 
Inflows  1279.20   

TOTAL RESOURCES    1279.20 

DEMANDS  

Agrarian 989.93   

Urban 107.45   

Industrial 20.00   

TOTAL DEMANDS    1117.39 

SUPPLIES 

Surface water 704.20   

Groundwater 399.40   

 TOTAL SUPPLIES     1103.59 

TOTAL DEFICITS    13.79 

OUTFLOWS 

Evaporation from reservoirs  81.76   

Consumption and leaks  867.39   

Outflows into the sea 158.24   

Outflows into Albufera wetland 108.52   

Transfers to Vinalopo River Basin 70.86   

TOTAL OUTFLOWS    1286.77 

VOLUME 
VARIATION 

Reservoir volume variation  -41.39   

Aquifer volume variation 33.83   

TOTAL VOLUME VARIATION    -7.56 

Table 1. Simplified water balance for the Jucar water resources system in the reference 
scenario 

At this point, it would be more appropriate to refer to the results as the 

additional exploitable water resources because they represent the maximum 

demand on the system that could be supplied over the current demands, which 

meets the current reliability criteria required in Spanish River Basin Agencies 

(IPH, 2008). 

Considering the geographical demand and the uncertainty of input data, a 

large disparity in the results can be observed. Figure 8 shows eight radial graphs 

representing the eight considered scenarios. Each of these graphs has 10 axes 

representing the new demands included in the simulation model and the 

calculated value of the additional exploitable water resources. The results 
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generally show a greater availability of water resources for the long series due 

to the greater amount of natural resources. Moreover, the criterion used by the 

IPH (2008) is more demanding than the efficiency criteria because in all cases, 

the proceeds are greater. In addition, with the IPH 2008 criterion (IPH, 2008), the 

system is capable of delivering the same volume of resources in the middle and 

upper part of the basin, and this value increases in the lower reaches of the basin 

due to the high degree of exploitation in the system; however, when considering 

the efficiency criterion (Martín-Carrasco et al., 2007), the maximum resources 

are devoted to seasonal demand located at the headwaters of the Cabriel River 

(DA Contreras), where there are no existing demands. 

With respect to the stochastic series, the figure shows the average value of 

the exploitable water resources and a band representing the confidence interval 

for the standard deviation. Thus, the water availability is affected by the 

reliability criteria and the length of the simulation period, as occurs with the 

results obtained from the historical data series calculated by naturalized 

streamflows. In the stochastic scenarios analysed for the short period, the results 

show a higher dispersion, and the standard deviation term is higher than the 

average value of the exploitable water resources. These charts allow the 

variability in the different simulated scenarios to be visualized, improving over 

the initial conclusions by adding a probabilistic component that considers the 

dispersion of exploitable water resources, as associated with a confidence 

interval. 
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Figure 8. Location of additional exploitable water resources (hm3/year) obtained for the 
considered scenarios. In the case of the stochastic streamflow time series, the figure 

shows the average of exploitable water resources and a band representing the confidence 
interval for the standard deviation [Average - Std Dev, Average + Std Dev] [UD means 

Urban Demand; AD means Agrarian Demand]. 

0

20

40

60

80
AD Alarcón

UD Alarcón

AD Contreras

UD Contreras

AD Molinar

UD Molinar

AD Tous

UD Tous

AD Huerto Mulet

UD Huerto Mulet

C) Synthetic series (1980-2008) + IPH 2008 criterion  

Average + Std Dev Average  annual EWR Average - Std Dev

0

100

200

300

400
AD Alarcón

UD Alarcón

AD Contreras

UD Contreras

AD Molinar

UD Molinar

AD Tous

UD Tous

AD Huerto Mulet

UD Huerto Mulet

D) Synthetic series (1940-2008) + IPH 2008 criterion 

Average + Std Dev Average  annual EWR Average - Std Dev

0

50

100

150

200
AD Alarcón

UD Alarcón

AD Contreras

UD Contreras

AD Molinar

UD Molinar

AD Tous

UD Tous

AD Huerto Mulet

UD Huerto Mulet

G) Synthetic series (1980-2008) + Efficiency criterion 

Average + Std Dev Average  annual EWR

0

200

400

600

800
AD Alarcón

UD Alarcón

AD Contreras

UD Contreras

AD Molinar

UD Molinar

AD Tous

UD Tous

AD Huerto Mulet

UD Huerto Mulet

H) Synthetic series (1940-2008) + Efficiency criterion 

Average + Std Dev Average  annual EWR Average - Std Dev

0

5

10

15

20
AD Alarcón

UD Alarcón

AD Contreras

UD Contreras

AD Molinar

UD Molinar

AD Tous

UD Tous

AD Huerto Mulet

UD Huerto Mulet

A) Historical data (1980-2008) + IPH 2008 criterion

Annual EWR

0

20

40

60
AD Alarcón

UD Alarcón

AD Contreras

UD Contreras

AD Molinar

UD Molinar

AD Tous

UD Tous

AD Huerto Mulet

UD Huerto Mulet

B) Historical data (1940-2008) + IPH 2008 criterion 

Annual EWR

0

20

40

60

80

100
AD Alarcón

UD Alarcón

AD Contreras

UD Contreras

AD Molinar

UD Molinar

AD Tous

UD Tous

AD Huerto Mulet

UD Huerto Mulet

E) Historical data (1980-2008) + Efficiency criterion 

Annual EWR

0

100

200

300

400

500
AD Alarcón

UD Alarcón

AD Contreras

UD Contreras

AD Molinar

UD Molinar

AD Tous

UD Tous

AD Huerto Mulet

UD Huerto Mulet

F) Historical data (1940-2008) + Efficiency criterion 

Annual EWR



Annex 2 

109 

A2.5. DISCUSSION 

Water availability has often been used in a broad context. As stated 

previously, this concept can be used in different senses: as precipitation, river 

flows and storage of water in snow and glaciers (EEA, 2009); by employing 

drought indexes (Lorenzo-Lacruz et al., 2010; Pérez-Blanco and Gómez, 

submitted for publication); or as water yield (Lange et al., 2007; Sun et al., 2002, 

2005, 2006). Furthermore, water accounts have been developed in several 

countries (Evaluación de Recursos Naturales, 2013; Lange et al., 2007; Masih et 

al., 2009; van Dijk et al., 2014), and although each country has presented its 

account differently, there is a general agreement on the structure and scope of 

water accounting (Vardon et al., 2007).  

The aim of this paper is to design a scheme for determining the exploitable 

water resources in a Mediterranean river basin, as an indicator of water 

availability. Knowing the water availability in a basin will aid planners in 

quantifying the growth potential in the exploitation of the system. Currently, 

new water policies are premised on the use of DSS (Bathrellos et al., 2012). DSS 

is a computer tool developed to help in the process of making decisions. Such 

methods are essential for the purpose of providing integration, sharing visions 

for conflict resolution and implementing sensitivity analysis and risk assessment 

(Andreu et al., 1996). Because this indicator is obtained as the maximum demand 

that can be satisfied in the water resources system using the current inflows 

(conventional and un-conventional water resources, transfers, etc.), it is 

necessary to use a model to improve the calculation and yield good decisions.  

As we have seen, there are several aspects to take into consideration. First, a 

water balance based on average values is not enough because it masks shortage 

situations due to the variability in the timing of resource inputs to the system. 

Therefore, it is necessary to seek a management simulation that considers the 

temporal variability and limitations in infrastructures and regulation. In such an 

analysis, a monthly step time is usually sufficient because it adequately reflects 

the seasonal variability of rainfall and demands. Moreover, reliability criteria can 

be classified into two types by the way they get the fault. In the first group, the 

reliability is calculated using the average results obtained for a given period, and 

in the second group, the reliability is determined by the worst drought event. 

Therefore, reliability criteria compliance is highly relevant for the system 

because it can serve as a reference to decide whether a new allocation can be 
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improved or an investment is necessary. In addition, in analysing the way we 

obtain natural streamflows for the simulation model, we must seriously consider 

the use of synthetic streamflows. This analysis has a long tradition of use in 

hydrology for temporal and spatial streamflow simulation, having been widely 

used as a tool for evaluating water resources systems under uncertain 

streamflow conditions (Rajagopalan et al., 2010), adding a probabilistic 

component to the analysis. 

Thus, the calculation of the exploitable water resources for each combination 

of the three determinants considered for this case study (equiprobable natural 

resource estimations, length of the simulation period and reliability criteria used 

to consider the supply satisfied) requires iterative runs of the simulation model 

until obtaining the maximum allocation at the selected site that meets the 

selected reliability criteria by employing the natural streamflow time series 

considered. 

Considering that we have generated 200 stochastic streamflow time series, 

we have identified 5 points of interest to determine the exploitable water 

resources in the river basin, and results are calculated using two reliability 

criteria, this yields a total of 57,000 determinations of the exploitable water 

resources, as shown in table 2. To make this calculation feasible, we have used a 

computation algorithm programmed using spreadsheet macros, which 

sequentially runs the simulation management model. Even with a fully 

automated process, the whole process required a computation time of 480 

hours, although this time has been reduced by employing 3 computers. 

Scenario Type of series Reliability 
criteria 

Period 
Length 

Number of 
simulations 

A Historical IPH 2008 29 years 140 

B Historical IPH 2008 69 years 140 

E Historical Efficiency 29 years 140 

F Historical Efficiency 69 years 140 

C 100 stochastic series IPH 2008 29 years 14,000 

D 100 stochastic series IPH 2008 69 years 14,000 

G 100 stochastic series Efficiency 29 years 14,000 

H 100 stochastic series Efficiency 69 years 14,000 

Table 2. Number of SIMGES model runs 
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This assessment has been partially analysed in recent years, yielding a 

significant disparity in the results due to the difference in their approaches. 

Some examples include the distinct methodologies employed and compiled in 

document Three examples on water planning (MIMAM, 2000), the White Paper 

on Water in Spain (MMA, 2000) and the work carried out by the Centre for Public 

Works Studies and Experimentation (CEDEX) (2012). Additionally, water 

accounts have been applied in the Jucar River Basin District. Andreu et al. (2012) 

reported an application of General Purpose Water Accounting (Water 

Accounting Standards Board, 2009) to the Jucar Water Resources System. 

Furthermore, the Halt-Jucar-Des project has provided an opportunity to test the 

feasibility of applying SEEAW for determining water accounts in the Jucar River 

Basin District (Evaluación de Recursos Naturales, 2013). 

The White Paper on Water in Spain (MMA, 2000) obtained a first 

approximation of the exploitable water resources for all River Basin Districts in 

Spain, under specific conditions, indicating the portion of the water resources 

that could be exploitable in natural conditions from within the amount of water 

resources that could be usable by building reservoirs. An interesting result 

obtained from this study was the fact that, in the case of the Jucar River Basin 

District, the volume of manageable resources without reservoirs, channels or 

pumping wells represents over the 34% of natural streamflows, the biggest 

percentage in the Iberian Peninsula, due to the existence of aquifers 

hydraulically connected with rivers in the basin. Furthermore, the use of dams 

to regulate water resources enables the exploitation of over 75% of streamflows. 

The involvement of each of the key issues analysed in this paper explains the 

observed differences in the results of previous works related to this case study 

(CEDEX, 2012; MIMAM, 2000; MMA, 2000) due to the distinct approaches such 

as the use of optimization models (compared with the simulation model used 

here), the different locations of the available resources or the use of a reliability 

criterion based on the worst drought event. Accordingly, the key issues proposed 

here summarize all of these possibilities. 

A2.6. CONCLUSIONS 

In this paper we have analysed the key issues for determining the exploitable 

water resources, as an indicator of water availability, in a Mediterranean basin 

where emulating the hydrological cycle in the territory is insufficient. The Jucar 
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River Basin has been selected as case study and a calculation process has been 

carried out, from the general scheme presented, considering different criteria 

such as the origin of the streamflow time series, the length of the simulation 

period and the reliability criteria used to consider the demands satisfied. In view 

of the analyses performed, although some degree of uncertainty is always 

present, the results obtained show great variability. In many cases, this water 

resource availability is determined by hydrology, the infrastructure or the 

location of the current demands. It would be risky to provide a single value 

representing the exploitable water resources in the Jucar water resources 

system because, as it has been shown, the results depend crucially on the 

calculation methodology. Any changes in operating regulations of reservoirs and 

aquifers, the incorporation of new measures of wastewater reuse or resource 

sharing with other systems would require a new resource assessment and, 

consequently, yield different values of the exploitable water resources.  

New water policies in the European Union are demanding more standardized 

management of water resources. Even so, the obtained results do not 

correspond exactly to those recommended by SEEAW (UNSD, 2012). Overall, a 

preliminary analysis of the key issues is important in the calculation of the 

exploitable water resources because as shown here, these preconditions will 

largely determine the results. In this sense, even the Blueprint to safeguard 

Europe’s resources (EC, 2012) recognises that the aquatic environments differ 

greatly across the EU and therefore does not propose a one-size-fits-all solution, 

in line with the principle of subsidiarity. It is necessary that policymakers and 

stakeholders make a decision about the methodology used to determine the 

water availability in a river basin. It is noteworthy that, in Spain, a large part of 

these methodological decisions (reliability criteria, natural streamflows time 

series, simulation models, etc.) are included in the Spanish Statement of Water 

Planning (IPH, 2008) with normative status guaranteeing consistency and 

comparability of the results. 
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ANNEX 3. WATER ACCOUNTS AND 
WATER STRESS INDEXES IN THE EUROPEAN 
CONTEXT: THE JUCAR RIVER BASIN3 

 

Abstract 

Currently, water accounts are one of the next steps to be implemented in 

European River Basin Management Plans. One of the major handicaps lies on 

computing water resources availability as it depends on several factors, some of 

which are difficult to quantify. Building water accounts is a complex task, mainly 

due to the lack of common European definitions and procedures for calculating 

water availability. For their development, when data is not systematically 

measured, simulation models and estimations are necessary. The main idea of 

this paper is to obtain a general scheme to quantify water availability in a river 

basin and apply it in the European context of water planning. The Jucar River 

Basin, located in the eastern part of the Iberian Peninsula in Spain, has been 

taken as a study case. Overall, as the European Union consists of countries with 

different hydrology, emulating the hydrological cycle may not always be enough. 

Consequently, a possible procedure would be to incorporate all the elements 

necessary for determining water accounts within the hydrological models, or 

within water resources management models, or an intermediate solution.  

Keywords 

Jucar River Basin; water availability; drought indexes; exploitable water 

resources 

                                                           
3 Pedro-Monzonís, M., Ferrer, J., Solera, A., Estrela, T., Paredes-Arquiola, J., 2014. Water 

Accounts And Water Stress Indexes In The European Context Of Water Planning: The Jucar 

River Basin. 16th Conference on Water Distribution System Analysis, WDSA 2014. In Procedia 

Engineering 89, 1470-1477 doi: 10.1016/j.proeng.2014.11.431 
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A3.1. INTRODUCTION 

Currently, water accounts are one of the next steps to be implemented in the 

River Basin Management Plans in Spain [1]. In order to assess water resources, 

water accounts, defined by United Nations, have become a very powerful tool 

for improving water management, as they provide a method of organizing and 

presenting information relating to the physical volumes of water in the 

environment, water supply and economy [2]. The main interest of the System of 

Environmental-Economic Accounting for Water (SEEAW) [3] is to provide a 

standard approach and therefore the possibility to compare results between 

different areas [4]. In this sense, several indicators derived from the water 

accounts cover many critical aspects of water management under an Integrated 

Water Resource Management (IWRM) [3]. One of these water indicators is water 

resource availability. 

Water availability has been often used in a broad context, when actually one 

of the major difficulties in water planning is determining the water availability in 

a basin with the aim of distributing it sustainably [5]. Many studies have used 

this concept in different senses: the European Environmental Agency (EEA) [6] 

considers precipitation, river flows and water storage in snow and glaciers as a 

measure of the availability of freshwater resources. While other authors have 

estimated the water availability by employing drought indexes [7] or the 

indicator of exploitable water resources [8]. Furthermore, Lange et al. [9] and 

Sun et al. [10] consider that regional water resource availability can be well 

described by water yield, defined as the difference between received 

precipitation and evapotranspiration, and Alcamo et al. [11] have developed the 

WaterGAP model to compute both water availability and water use on the river 

basin scale. 

This concept is extremely important in Mediterranean countries. Historically, 

Spain, has suffered important drought periods that have caused severe impacts. 

Water scarcity and the frequent drought periods explain, in part, the ancient 

building tradition of hydraulic works in Spain [12].  

The aim of this paper is to obtain a general scheme to assess water availability 

in a river basin, taking as study case the Jucar River Basin (Spain) whereas other 

Mediterranean basins it is currently water-stressed. In this sense, water accounts 

have been applied in the Jucar River Basin District in recent years. Andreu et al. 
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[13] reported an application of General Purpose Water Accounting [14] to the 

Jucar Water Resources System and also the Halt-Jucar-Des project [4] has 

provide an opportunity to test and check the feasibility of applying the SEEAW 

[3] to produce water accounts. From the above it follows that there is no 

unanimity in the methodology to determine water availability. It is necessary 

that policymakers and stakeholders make a decision about the methodology to 

determine water availability in order to include it in the policy review on water 

scarcity and droughts that is currently being carried out to be integrated into the 

“Blueprint to safeguard Europe’s water resources” [5]. 

The remainder of this paper is structured as follows. Section 2 lists the 

materials and methods used to describe water availability. This is followed by 

the case study in Section 3 where the methodology described is used. And finally, 

sections 4 discuss results and conclusions for future directions. 

A3.2. MATERIALS AND METHODS 

The main challenge in water accounting is related to the collection of the 

required data [1]. The hydrological cycle describes the movement of water in the 

Earth. The United Nations Statistics Division (UNDS) [3] describes it as a 

succession of stages: owing to solar radiation and gravity, water keeps moving 

from land to oceans into the atmosphere in the form of vapour and, in turn, falls 

back onto the land and oceans and other bodies of water in the form of 

precipitation. In this way, the importance of hydrological cycle lies on knowing 

how much water is available but, due to the difficulty of gauging the components 

of the hydrological cycle, the use of simulation models has become an essential 

tool extensively employed in last decades. 

Generally, we can distinguish between two types of simulation models. The 

first ones are hydrological models which their main process constitutes on 

describing the hydrological cycle. As noted by Estrela et al. [15] these models 

estimate variables such as precipitation, snow, actual evapotranspiration, soil 

moisture, surface and groundwater runoff, aquifer recharge, volume storage in 

soils, etc. An example of this kind of model is Patrical Decision Support System 

(DSS) [16], which allows constructing hydrological cycle spatially distributed 

models, with monthly time step simulation; and it has been applied in different 

studies for the River Basin Management Plan in the Jucar River Basin District. 
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In the second group, we find the water resource management models, which 

may require the results obtained with a hydrological model as an input. This kind 

of model is used to assess the system behaviour for given scenarios. Their 

topology must include the main system features, such as rivers, reservoirs, 

aquifers, existing uses represented by the demand centres, hydraulic 

connections, the possibility of using returns and other unconventional resources, 

environmental constraints or operating rules [17]. An extended state-of-the-art 

review on simulation modelling approaches is given by Rani and Moreira [18]. 

We can notice that hydrological cycle simulation models enable us to assess 

the renewable water resources in a river basin. And water resources 

management models help us to know its water availability in each month of the 

simulation period, as they consider the existing technologies in place for 

abstraction, treatment and distribution of water [3] and their operating rules. In 

this sense, Patrical DSS will help us to analyse the influence of precipitation in 

the Jucar River Basin by applying several indexes such as the percent of normal 

precipitation and the standard precipitation index (SPI) [19]. Moreover, the 

monitoring of water resources in dam reservoirs will allow us to analyse the 

impacts of operational droughts in the water resources system.  

A3.3. CASE STUDY: THE JUCAR RIVER BASIN 

A3.3.1. DESCRIPTION OF THE BASIN 

The Jucar River Basin is located in the eastern part of the Iberian Peninsula in 

Spain (see figure 1). This basin is the main, of the 9 principal water exploitation 

systems in the Jucar River Basin District, thus giving it its name. The Jucar River 

has a length of 497.5 km, traversing the provinces of Teruel, Cuenca, Albacete 

and Valencia, having its mouth at the Mediterranean Sea. It is the most extensive 

system (22,261 km2) and with more water resources of the Jucar River Basin 

Agency.  
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Fig. 1. Location of the Jucar River Basin in Iberian Peninsula. 

Physically, the Jucar River Basin is described as an interior mountainous zone, 

with spots at high altitude and a coastal zone composed by plains. The average 

precipitation is 510 mm/year, and the average temperature is 13.6ºC. Average 

natural resources reach 1,279 hm3/year that represent the top limit of the 

renewable resources of the basin.  The total population depending on the Jucar 

River Basin represents a water demand of 127 hm3/year and the water demand 

for irrigated agriculture reaches 990 hm3/year. The supply to urban areas comes 

mainly from wells and springs, however Albacete, Sagunto and Valencia 

metropolitan areas use surface water. It is noteworthy that water demands are 

concentrated in harvest months; however, natural resources are slightly higher 

during the winter and go down in summer. Using the values of total natural 

resources and total water demands for the 1980/81-2008/09 period, a first 

indicator of the water stress in the system is deduced by the ratio between both 

values, resulting in a value of 87%. This ratio represents a first approximation to 

the water exploitation index (WEI) at the river basin level and it considers that a 

region is characterized as being under water stress, if the WEI exceeds 20%, and 

under severe water stress if it exceeds 40%. This first indicator is not sufficient, 

since it does not take into account agrarian returns, neither reuse of sewage 

treatment stations, nor any transfers that may occur in the system. Still, it 

reflects the high degree of exploitation suffered by this system. 
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A3.3.2. RESULTS 

The most commonly employed variable for characterizing drought and 

consequently water availability is precipitation. The figure 2 shows the annual 

precipitation in Jucar water resources system for the period 1940-2009 obtained 

with Patrical DSS. As we can see, there has been a slight reduction in 

precipitation in the last 30 years. We can also see the indicator of percent of 

normal precipitation (PNP), considered as normal precipitation the annual 

average precipitation (over 510 mm/year). The main advantage of this index is 

that it is easily understood by the general public, and it recognizes droughts in 

preparatory phase before than other indexes. Among its disadvantages it is also 

noteworthy that this index considers a Gaussian distribution of rainfall, and 

another limitation arises when analyzing large regions in cohabiting both arid 

and wet lands. 

From time series of monthly precipitation we have obtained the SPI [19]. It is 

considered that the system is in drought situation when the SPI value is less than 

or equal to -1, and the drought period is finished when SPI is positive again. 

According to Fernández [20], droughts can be classified according to this index: 

during a soft drought, SPI is in the range [0; -0,99], during a moderate drought, 

SPI is in the range [-1; -1,49], during a severe drought, SPI is in the range [-1,5; -

1,99] and an extreme drought occurs if SPI is less or equal -2. The SPI has been 

calculated by adjusting the precipitation time series to a normal probability 

distribution. 

 

Fig. 2. Annual precipitation in Jucar water resources system for the period 1940-2008. 
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Figure 3 shows the evolution of the SPI over 3, 12, and 48 month intervals 

from 1940 to 2008. Specifying an aggregation period in defining drought is 

related to several basic characteristics of drought, as frequency and duration 

[21]. As the aggregation period is longer, the number of drought events is 

smaller, but these events are of longer duration. The figure shows that the longer 

period where the SPI is continuously negative over 48-month intervals is 

1980/81-1986/87, whereas the SPI values for the same period indicates the 

existence of a moderate drought, while SPI over 3 month intervals indicates that 

the drought was extreme. The reason is that 3-month SPI is adequate for drought 

seasonal or short-term, 12-month SPI allows us to evaluate an intermediate 

drought, and 24, 36 or 48-month SPI is employed for long-term drought [21]. 

Moreover, the period 2004/05-2007/08 has been, so far, the most important 

period of drought that occurred in the Jucar River Basin. This circumstance is not 

directly visible in the figure, although a sequence of negative SPI is observed in 

this period. One aspect to be considered is the index spatial aggregation, as 

significant differences between recorded rainfall in headwaters and lower basins 

are common. A more detailed analysis would consider a regionalization that 

would help to characterize the spatial variability of rainfall in the river basin [21]. 
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Fig. 3. Evolution of the 3-, 12- and 48-month SPI in the Jucar River Basin from 1940 to 2008. 

SPI methodology can be applied to other sources of water in a water 

resources system as soil moisture, streamflows and storages in reservoirs [19]. 

The above indicators (PNP, SPI) do not consider the amount of current demands 

in the system. However, an indicator of operational drought itself takes into 

account the system needs, since it is based on data that are themselves 

influenced by the use made of water. A reduction of inputs results in a decrease 

in stored volumes, reaching more frequently the state of severe or extreme 

drought. A first indicator of operational drought index is the standard reserves 

index (SRI) [21]. This index shows the state of reserves in the system and helps 

explaining why in highly regulated systems, such as Jucar water resources 

system, in which occurs extreme drought conditions, they manifest less 

frequently but with a longer duration. The following chart shows the SRI in the 

Jucar water resources system in the main reservoirs (Alarcón, Contreras and 

Tous) for the period 1994/95-2008/09 once Tous reservoir became operational. 

It is possible to check the beginning and end of the drought periods as well as 

the severity levels reached according to SPI classification. As an example, the 

drought in the system during the period 2004/05-2007/08 was the more intense 

drought registered in the basin in the recorded history. But, comparing SPI and 

SRI results for the period 1999/00-2002/03, the charts show the existence of a 

severe meteorological drought but instead, the operational drought had no 

incidence in the system at all. 
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Fig. 4. Evolution of the 1-24 month SRI in the Jucar River Basin from 1995 to 2008 

A3.4. DISCUSSION AND CONCLUSIONS 

Worldwide studies have shown that the Mediterranean region is one of the 

most vulnerable areas to water crisis [22]. In this paper, several indexes have 

been applied in the Jucar River Basin to characterize meteorological (PNP, SPI) 

and operational droughts (SRI) and test their influence in water availability. 

Figures 3 and 4 have demonstrated that precipitation, despite being the most 

commonly employed variable for characterizing droughts, may not be enough. 

While in countries lacking water storages infrastructures, directly dependant on 

rainfall to supply water demands, a decrease in rainfall during some months or 

weeks can become a drought, in others, droughts can extend for years producing 

major impacts [12]. It is noteworthy that the European Union (EU) consists of 

countries with different physical characteristics, different hydrology, based on 

different productive sectors and differences both in infrastructure and demands. 

Not surprisingly, in the most vulnerable areas to water scarcity, it is common the 

use of non-conventional water resources. A clear example is the use of 

wastewater resources by the Member States shown in figure 5a. It is found that 

in countries like Spain or Italy wastewater resources are no longer seen as non-

conventional resources due to its high level of implementation.  

-2

-1

0

1

2

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

SR
I

1-month SRI

-2

-1

0

1

2

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

SR
I

24-months SRI



Assessment of water exploitation indexes based on water accounting 

128 

In view of these differences we have designed a general scheme for analysing 

water availability and consequently water accounts that should include the 

casuistry to justify the point of view of the EU. In figure 5b the process to obtain 

water availability begins with climate data, where rainfall and 

evapotranspiration are the main processes. This calculation continues trying to 

emulate the entire hydrological cycle, in which both, the estimation of the 

natural resources of the basin and its uses to characterize it are involved. Once 

the uses are known, it is possible to distinguish between natural uses and 

economic uses, and depending on the relationship of the latter and natural 

resources the WEI is obtained. Until now, that would be proposed from the EU, 

however, in countries like Spain, this approach is not enough. 

Once renewable resources have been estimated, they are broken down 

between the surface runoff and groundwater. Moreover, demands can be 

quantified from economic uses. Depending on the characteristics of each river 

basin, these demands are only supplied with natural resources, or in most cases, 

it is necessary the operation of certain regulatory infrastructures and pumping 

wells that allow to use these resources when demands require it. Thus, it is no 

longer sufficient to consider only natural resources but it would be more 

appropriate to refer to these as conventional resources. Furthermore, these 

conventional resources could be not sufficient to serve the demands of the 

system; in this case we should refer to the use of non-conventional resources 

(wastewater reuse, desalination, transfers) which will guarantee the supplies. 

These two terms have been grouped by the term "generated resources" that can 

vary depending on the horizon scenario analysed. 

(a) (b) 

 
Fig. 5. (a) Wastewater reuse in European Union [23]; (b) Proposal for a general scheme for 

the study of water availability. 



Annex 3 

129 

Finally, water availability can be described by the use of the indicator of 

exploitable water resources, defined as the part of the water resources 

considered to be available for development under specific technical, economic 

and environmental conditions [3] and obtained as the maximum demand that 

can be served by the system satisfying the officially established guarantees and 

the environmental requirements [8]. To do this, emulating the hydrological cycle 

is not enough, and it is essential to use water resource management models. In 

this sense, it is necessary that EU water policies define the methodology to 

determine this indicator since different aspects relating to the scenario 

definition must be taken into consideration such as the topology, the 

quantification of the natural resources and the reliability criteria to know 

whether the demands are satisfied ([8], [17]). 

These two approaches represent the two extremes in the casuistry of 

analyzing problems within the context of water resources. We can find cases 

involving both problems and even cases where the situation analyzed is in an 

intermediate state between both. A good procedure would be to incorporate all 

the elements and variables necessary for the exercise of building water accounts 

within hydrological models or within management models; or a mixed 

intermediate solution [4]. This approach needs an objective criterion for the 

selection or classification of water resources systems in either band of the 

problem that is outlined in the figure 8. In this situation, the first step may be to 

conduct a preliminary classification of the regions that comprise the EU in order 

to apply different methodologies that are appropriate to the physical and 

socioeconomic characteristics of each Member State. It is crucial that 

policymakers and stakeholders make a decision about the methodology to 

determine water availability in order to include it in the policy review on water 

scarcity and droughts that is currently being carried out to be integrated into the 

“Blueprint to safeguard Europe’s water resources” [5]. It is noteworthy that, in 

Spain, a large part of these methodological decisions are included in the Spanish 

Statement of Water Planning [24] with normative status guaranteeing 

consistency and comparability of the results. 
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ANNEX 4. THE USE OF AQUATOOL DSS 
APPLIED TO THE SYSTEM OF 
ENVIRONMENTAL-ECONOMIC 
ACCOUNTING FOR WATER (SEEAW)4 

 

Abstract 

Currently, water accounts are one of the next steps to be implemented in 

European River Basin Management Plans. Building water accounts is a complex 

task, mainly due to the lack of common European definitions and procedures. 

For their development, when data is not systematically measured, simulation 

models and estimations are necessary. The main idea of this paper is to present 

a new approach which enables the combined use of hydrological models and 

water resources models developed with AQUATOOL Decision Support System 

(DSS) to fill in the physical water supply and use tables and the asset accounts 

presented in the System of Economic and Environmental Accounts for Water 

(SEEAW). The case study is the Vélez River Basin, located in the southern part of 

the Iberian Peninsula in Spain. In addition to obtaining the physical water supply 

and use tables and the asset accounts in this river basin, we present here the 

indicators as a result thereof. These indicators cover many critical aspects of 

water management, showing a general description of the river basin and 

allowing decision-makers to characterize the pressures on water resources. As a 

general conclusion, the union of AQUATOOL DSS and SEEAW will provide more 

complete information to decision-makers and enables to introduce these 

methodological decisions in order to guarantee consistency and comparability 

of the results between different river basins. 

                                                           

4  Pedro-Monzonís, M., Jiménez-Fernández, J., Solera, A., and Jiménez-

Gavilán, P., 2016. The use of AQUATOOL DSS applied to the System of Environmental-

Economic Accounting for Water (SEEAW) J. Hydrol 533, 1-14, 

doi:10.1016/j.jhydrol.2015.11.034 

http://dx.doi.org/10.1016/j.jhydrol.2015.11.034
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A4.1. INTRODUCTION 

One of the main challenges in the XXI century is related with the sustainable 

use of water. This is due to the fact that water is an essential element for the life 

of all who inhabit our planet. In many cases, the absence of a rational water use 

is due to the lack of economic valuation of water resources. To improve this 

situation, first, the EU Water Framework Directive (WFD) (EP, 2000) established 

a framework for the Community action in the field of water policy. Its main 

objectives included expanding the scope of water protection to all waters in 

order to achieve their “good status”, a water management based on river basins, 

the implementation of pricing policies and the promotion of public participation, 

among others. The Member States were required to implement the WFD by the 

river basin management plans, which had to include a description of the river 

basin, an inventory of water resources and demands, a register of protected 

areas, the regime of environmental flows, the water exploitation systems and 

their water balances, an inventory of pressures, the environmental targets, cost 

recovery, the programme of measures and the public participation. The 

Blueprint to safeguard Europe’s water resources (EC, 2012) represents another 

turn of the screw towards an improvement in terms of quality and quantity of 

water resources. The Water Blueprint presents a three-tier strategic approach 

by improving the implementation of current European Union (EU) water policy; 

jointly analysing water policy objectives with the economic growth of other 

economic sectors such as agriculture, fisheries, renewable energy or transport; 

and improving significant aspects of the WFD related to water efficiency. To this 

end, water accounts are presented as a tool to achieve the objective of water 

efficiency. One of the targets of water accounting is, in addition to comparing 

results between different territories, to measure the contribution of each water 

user to the overall economic value of water resources in order to identify real 

potential water savings (Ward and Pulido-Velázquez, 2008; Dumont et al., 2013; 

Tilmant et al., 2015). 

Currently, water accounts are one of the next steps to be implemented in the 

River Basin Management Plans (Hunink, 2014). In order to assess water 
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resources, water accounts, defined by United Nations Statistics Division (UNSD), 

have become a very powerful tool for improving water management, as they 

provide a method of organizing and presenting information relating to the 

physical volumes of water in the environment, water supply and economy 

(Vardon et al., 2007).  As noted by Molden and Sakthivadivel (1999), their 

methodology is based on a water balance approach where, based on 

conservation of mass, the sum of inflows must equal the sum of outflows plus 

any change in storage. The System of Environmental-Economic Accounting for 

Water (SEEAW) (UNSD, 2012) is displayed as a tool for water allocation which 

enables the building of water balances in a river basin. The main concern of the 

SEEAW is to provide a standard approach which allows policymakers to compare 

results between different territories and periods. But one of the weaknesses of 

this approach is that environmental requirements are not explicitly considered 

and, it is worth noting that the introduction of environmental flows may affect 

the existing uses in the basin. As observed, building water accounts is a complex 

task, mainly due to the lack of common European definitions and procedures 

and the difficulty of the collection of the required data. As noted by Tilmant et 

al. (2015), although the SEEAW is increasingly adopted, there is no unified 

procedure to establish water accounts, nor there is an agreement on how water 

accounts must be presented. Dimova et al. (2014) also indicate that although the 

SEEAW concepts are relatively simple, its implementation requires collecting a 

variety of data from numerous actors and stakeholders. Due to the difficulty of 

gauging the components of the hydrological cycle, the use of simulation models 

has become an essential tool extensively employed in last decades. 

This research is framed within the Water Accounting in a Multi-Catchment 

District (WAMCD) project, financed by the European Union. Its main goal is the 

development of water accounts in the Mediterranean Andalusian River Basin 

District, in Spain. To achieve this goal, the study draws on several modules from 

AQUATOOL Decision Support System (AQUATOOL DSS) (Andreu et al., 1996), 

which enables the building of a water cycle simulation model and a water 

resources management model in order to create a database to assist the building 

of the physical water supply and use tables and the asset accounts presented in 

the SEEAW. 
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A4.2. MATERIALS AND METHODS 

Water resources systems analysis comprises all the necessary elements to 

describe a river basin (Pedro-Monzonís et al., 2015a). It consists of the analytical 

study of the water resources in a river basin in order to help decision makers to 

identify and choose one alternative from other possible ones. Water planning 

and the Integrated Water Resources Management (IWRM) represent the best 

way to achieve this goal. 

A4.2.1. SYSTEM OF ENVIRONMENTAL-ECONOMIC ACCOUNTING FOR WATER 
(SEEAW) 

The SEEAW has been developed by the UNSD in conjunction with the London 

Group on Environmental Accounting (UNDS, 2012). Its main objective has been 

standardizing concepts related to water accounting, providing a conceptual 

framework for organising economic and hydrological information. In this sense, 

water accounts generally, and particularly the SEEAW, expect to become a useful 

tool for helping on the decision-making process on issues of allocating water 

resources and improving water efficiency. 

SEEAW framework considers the flows between the environment and the 

economy. The inland water resource system is comprised by surface water, 

groundwater and soil water; in relation to the economy, it is represented by 

abstractions, imports, exports and returns of the most relevant economic agents 

(households, the industry involved in the collection, treatment and discharge of 

sewage, the industry involved in the collection, treatment and supply of water 

to households, industries and the rest of the world and other industries which 

use water in their production process). SEEAW tables related to water resources 

are organised in flow accounts or asset accounts according to whether they 

represent the water flows in physical units within the economy and between 

environment and the economy, or they measure stocks at the beginning and the 

end of the accounting period. This is further discussed in section 2.3. The 

classification of industrial economic activities traditionally used in SEEAW is the 

International Standard Industrial Classification of All Economic Activities (ISIC) 

(UN, 2008), although the economic uses could be classified according to the river 

basin main economic sectors.  
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A4.2.2. AQUATOOL DECISION SUPPORT SYSTEM SHELL 

AQUATOOL (Andreu et al., 1996) is a user-friendly DSS widely employed by 

Spanish River Basin Authorities, as well as in other countries (e.g., Chile, Italy, 

Morocco, among others). This DSS consists of several modules allowing the 

analysis of different approaches in water resources systems. A brief description 

of the modules used in this research is presented below. 

A4.2.2.1 EVALHID module 

EVALHID (Paredes-Arquiola et al., 2012) is a module for the development of 

rainfall-runoff models in complex basins and which evaluates the amount of 

water resources produced. The module consists of several types of models that 

can be chosen depending on the available data, the complexity of the basin and 

the user’s experience in the development and calibration of hydrological models. 

All available models are aggregated with semidistributed application at sub-

basin scale. 

The HBV model (Hydrologiska Byråns Vattenbalans-avdelning) (Bergström 

and Forsman, 1973) has been used in the case study. It consists of eight 

parameters and three state variables. The general processes of the version used 

of HBV model are illustrated in the figure below. This includes a module that 

processes the data of precipitation as rainfall or snow based on the temperature 

in each time step. Rainfall and melting snow are processed into the soil moisture 

form where the effective precipitation contributing to runoff is evaluated. The 

remainder of precipitation contributes to moisture on the ground, which in turn 

may evaporate if the content of water present within the ground is large enough. 

The main output of the model is total runoff in the drainage point of the basin, 

which consists of three components: direct runoff, interflow (fast discharge plus 

slow discharge) and baseflow (see figure 1). Additional information related with 

the HBV model can be found in Götzinger and Bárdossy (2007). 
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Figure 1. Schematic flow and storage of HBV model 

Broadly, the necessary data for each sub-basin are the corresponding area, 

precipitation (P) and potential evapotranspiration (PET) time series data. The 

two latter ones have been obtained by using the database of Spain02 (Herrera 

et al, 2012), which is formed by a rough grating of 20 km2, covering the surface 

of Spain. This database provide the time series data of maximum and minimum 

air temperatures and precipitation, both with daily and monthly scale 

aggregation, for the period 1950-2008. As noted by Vangelis et al. (2013), since 

precipitation and air temperature data are the only readily available data, PET 

was obtained by the Hargreaves method (Hargreaves and Samani, 1985). 

A4.2.2.2 SIMGES module 

The SIMGES module (Andreu et al., 1996) can simulate the water resources 

system, on a monthly time scale, by a simple flow balance in a flow network in 

order to find a flow solution compatible with the defined constraints. It considers 

the aquifers and the relations between river and aquifer, the returns to the 

surface system and the infiltration to the groundwater, the evaporation and 



Annex 4 

139 

infiltration loses from reservoirs, the energy production from hydropower 

stations, the definition of environmental flows as well as different water use 

priorities. Moreover, the SIMGES module allows us to define operating rules to 

reproduce source-demand interactions that can help improving integrated river 

basin management. 

A4.2.3. COMBINED USE OF AQUATOOL DSS AND SEEAW 

To construct SEEAW tables, we have used a rainfall-runoff model which has 

been built with EVALHID module. The results are the time series of real 

evapotranspiration, soil storage, and infiltration, among others. So, once we 

select the corresponding hydrological year or period of years, we are capable of 

building SEEAW tables. In order to include the human actions during the planning 

and management of the water exploitation system, we have used EVALHID 

results in combination with SIMGES module. The time series of streamflows 

obtained with EVALHID have been introduced in a SIMGES model, and we obtain 

results related to water allocation such as water transfers, evaporation in 

reservoirs, reserves or outflows to the sea, among others, that can be managed 

by technicians. A scheme of this approach is shown in figure 2. 

 

Figure 2. Process to obtain SEEAW tables by using EVALHID and SIMGES tools (Source: EC 
(2015)) 

We have developed an acquisition tool consisting of a database linked with 

SIMGES and EVALHID models, which enables the building of water asset 
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accounts, matrix of flows between water resources and physical water supply 

and use tables at monthly scale in any month of the simulated period (1950/51-

2006/07). Both programs work on a database and their results can also be 

dumped into the SEEAW database. All data and results are linked with their 

correspondent element and every element is linked with the type of elements 

they represent in the system. Note that each element may have several results, 

e. g. some of the results of a reservoir are volume, evaporation, and filtrations. 

In order to obtain the accumulated results in the required format of SEEAW 

tables, it has been necessary the building of several database queries which are 

linked with several spreadsheets where the tables are finally built.  

Water asset accounts (see table 1) measures stocks at the beginning and at 

the end of the accounting period and record the changes in stocks that occur 

during that period due to natural causes (precipitation, evapotranspiration) and 

human activities (abstractions, returns). On the other hand, matrix of flows (see 

table 2) describes exchanges of water between water resources, providing 

information on the origin and destination of flows in the territory. It assists in 

identifying the contribution of groundwater to the surface flow as well as the 

recharge of aquifers by surface runoff. In both tables, the source information of 

each cell may come from EVALHID and/or SIMGES models. 

      EA.131. Surface water 

EA. 132 
Ground 
water 

EA. 
133 
Soil 

water 

Total 

      

EA. 1311 
Artificial 

reservoirs 

EA. 
1312 
Lakes 

EA. 
1313 
Rivers 

EA. 1314 
Snow, ice 

and 
glaciers 

1. Opening stocks               

  Increases in stocks               

  2. Returns               

  3. Precipitation               

  4. Inflows             

   4.a. From upstream territories             

    
4.b. From other resources in 
the territory               

  Decreases in stocks               

  5. Abstraction               

  
6. Evapotranspiration/actual 
evapotranspiration               

  7. Outflows             
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7.a. To downstream 
territories             

   7.b. To the sea               

    
7.c. To other resources in the 
territory               

  8. Other changes in volume            

9. Closing stocks               

Table 1. Water asset accounts (hm3) [Blue cells with an horizontal pattern style indicate 
these data come from SIMGES model, green cells with a vertical pattern style indicate 

these data come from EVALHID model, pink cells with a grid pattern style indicate these 
data come from EVALHID and SIMGES models. Orange cells with sloped pattern style 
indicate these data come from the matrix of flows between water resources table.] 

  EA.131. Surface water 

EA. 132 
Ground 
water 

EA. 
133 
Soil 

water 

Outflows 
to other 

resources 
in the 

territory 
  

EA. 1311 
Artificial 

reservoirs 

EA. 
1312 
Lakes 

EA. 
1313 
Rivers 

EA. 
1314 
Snow, 
ice and 
glaciers 

EA. 1311 Artificial reservoirs               

EA. 1312 Lakes               

EA. 1313 Rivers               

EA. 1314 Snow, ice and glaciers               

EA. 132 Groundwater               

EA. 133 Soil water               

Inflows from other resources in the 
territory               

Table 2. Matrix of flows between water resources (hm3) [Blue cells with an horizontal 
pattern style indicate these data come from SIMGES model, green cells with a vertical 

pattern style indicate these data come from EVALHID model, pink cells with a grid pattern 
style indicate these data come from EVALHID and SIMGES models. Orange cells with 
sloped pattern style indicate these results are used in water asset accounts table.] 

The physical use table is divided into two parts: the first part describes flows 

from the environment to the economy (such as water abstraction) and the 

second part describes flows within the economy (such as water received from 

other economic units). Likewise, the physical supply table is also divided into two 

parts: the first part describes the flows of water within the economy (such as the 

supply of water to other economic units) and the second part describes flows 

from the economy to the environment (such as returns of water into the 

environment). These are the classification of the economic water uses in these 

tables: urban, farming, cattle raising, recreational and rest of the world. This 

classification differs from the ISIC (UN, 2008) and is adapted to the main 
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economic features of the river basin, where agrarian and touristic uses are the 

principal ones. Note that each cell in physical use and supply tables comes from 

SIMGES model. 

A4.3. CASE STUDY: THE VÉLEZ RIVER BASIN 

A4.3.1. CHARACTERIZATION OF THE STUDY AREA 

The Vélez River Basin is located in the southern part of the Iberian Peninsula 

in Spain (see figure 3). This river basin is managed by the Mediterranean 

Andalusian Basin’ River Basin District (MAB RBD) which includes up to 16 

subsystems (or exploitation systems). The Vélez River is included in the sub-

system II.1 and it has a length of 68 km, traversing the province of Malaga. Its 

main tributaries are Benamargosa, Guaro, Alcaucín, Bermuza, Almanchares and 

Rubite rivers. The climate is subtropical Mediterranean with an average 

precipitation of 630 mm/year, and an average temperature of 16ºC. There is a 

progressive transition to a maritime Mediterranean climate as we move up to 

the peaks further north (García-Aróstegui et al, 2007). The hydrological regime 

is determined by the artificial reservoir of La Viñuela, which was completed in 

the mid-nineties of the last century. This system includes La Viñuela reservoir 

(with a capacity of 173 hm3) and eight diversion dams to transfer the surplus 

flows of the basin to the reservoir. These reserves are assigned to the supply of 

agrarian and urban demands. In the final part of the Vélez River Basin is located 

the Río Vélez-060.026 groundwater body (Río Vélez GWB in figure 3). This GWB 

is comprised of a single detrital aquifer made up of Quaternary deltaic and 

alluvial sediments with an average thickness of 30 m which reaches maximums 

of approximately 60 m in the central part—confluence of the Vélez and 

Benamargosa rivers—and in the deltaic sector (Benavente et al, 2005). The 

hydrogeological behaviour of Río Vélez GWB is conditioned by La Viñuela 

Reservoir and the diversion dams, since they affect the recharge of the aquifer, 

and reduce considerably the vertical aquifer thickness (6 m), at 4 km from the 

coast, dividing the aquifer into a fluvial sector upstream and a coastal (deltaic) 

sector downstream (Benavente et al, 2005). When an important period of 

groundwater exploitation occurs, this latter feature can be advantageous, from 

a hydrogeological point of view, as it inhibits the saltwater wedge from intruding 

inland (Lentini et al, 2009). 
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Figure 3. Location of the Vélez River Basin in the Iberian Peninsula 

A4.3.2. MODELLING THE VÉLEZ RIVER BASIN BY USING AQUATOOL DSS 

The first step for modelling the Vélez River Basin is the obtention of the 

streamflow data series from the rainfall-runoff model. The election of the 

calibration points has been determined by the availability and length of records 

in gauging stations and reservoirs. It was performed in 6 points of the Vélez 

system: La Viñuela Reservoir, EA 0015 La Viñuela, EA 0016 Los González, EA 0017 

Pasasda Granadillos, EA 0018 Hoya del Bujo and EA 0047 Salto del Negro. Each 

of these gauging stations is located in the tributaries of the Vélez River. With 

regard to the time period used for calibration, we have reserved the first two 

hydrological years as warm-up period to minimize the effect of initial moisture 

conditions, and the last three available years are used for validation. 

Furthermore, the calibration period finishes in 1992 when several transfers 

started operation in the basin, so the alteration of gauging stations became 

obvious. A Visual Basic adaptation to the SCE-UA algorithm (Duan et al., 1992) 

has been used to import the results from EVALHID streamflows to compare with 

the series of observed inputs and evaluate an objective function that represents 

a numerical measure of the difference between the simulated response of the 
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model and the response observed in the basin.  The degree of adjustment 

between the observed values and the simulated ones is measured by a graphic 

display and the use of objective functions whose minimization is the foundation 

of techniques of automatic calibration parameters. The objective function used 

is the average of the following functions: Nash-Sutcliffe index, Nash Neperian 

logarithm, Pearson correlation coefficient and Average of the symmetry of the 

adjustment between average simulation and average observation.  

Once the streamflow data series have been obtained, the next step is to 

introduce them in the water resources management simulation model with all 

the required data related to reservoirs, water demands, operation rules and 

environmental requirements. The latter are included as minimum flows and they 

are based on habitat modelling assessment, hydrological criteria and expert 

recommendations for the saturation of the alluvial aquifer. Figure 4 shows the 

scheme of the simulation model that has been built for the current scenario with 

SIMGES module. This model reflects the complex interaction among all elements 

in the system.  

 

Figure 4. Scheme of the simulation model of Vélez River Basin [UDA means farming 
demand; UDU means urban demand; UDR means recreational demand and UDG means 

cattle raising demand] 
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A4.4. RESULTS 

A4.4.1. RESULTS FROM EVALHID MODULE 

EVALHID results have allowed us, on the one hand, to obtain the streamflow 

data series which will be used in the SIMGES model and, on the other hand, to 

fill in the SEEAW tables that information related to the components of the 

hydrological cycle which cannot be physically measured. The latter include actual 

evapotranspiration (ET), soil storage, infiltration to aquifers (Inf), discharge from 

soil to surface waters (Groundwater runoff) and discharge from aquifers to 

surface waters (Surface runoff). Figure 5 shows the average value of the main 

components of the water cycle in the average year of the period 1980/81-

2006/07. As it is shown, Vélez River Basin presents warm winters and hot, dry 

summers; PET increases during harvest months, just when P is lower. Therefore, 

ET will depend on the availability of water in the basin. Table 3 shows the main 

statistics for each streamflow element which will be used in the simulation 

model. 

 

Figure 5. Representation of inputs and outputs of the EVALHID model for the Vélez River 
Basin (period 1980/81-2006/07) 
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La Viñuela Streamflow 

Statistic Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep TOTAL 

Average 0.9 4.1 6.6 5.8 3.6 3.0 1.6 0.9 0.2 0.0 0.0 0.0 26.7 

Standard deviation (SD) 2.0 5.0 9.0 9.3 4.9 3.6 2.3 1.4 0.3 0.1 0.0 0.1 23.0 

Coeficient of Variation (%) 2.3 1.2 1.4 1.6 1.4 1.2 1.4 1.6 1.5 1.4 1.4 3.9 0.9 

Bias 3.0 1.1 2.0 2.2 1.8 1.6 3.3 2.2 1.9 1.8 1.6 5.0 1.1 

Median 0.0 1.5 2.5 1.9 1.8 1.8 0.8 0.3 0.1 0.0 0.0 0.0 22.2 

Salia Streamflow 

Statistic Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep TOTAL 

Average 0.0 0.3 1.1 1.5 1.3 0.9 0.6 0.4 0.1 0.0 0.0 0.0 6.3 

Standard deviation (SD) 0.1 0.4 2.1 3.2 2.0 1.0 1.0 0.7 0.2 0.0 0.0 0.0 8.0 

Coeficient of Variation (%) 2.4 1.3 1.9 2.1 1.6 1.1 1.5 1.7 1.6 1.5 1.5 2.1 1.3 

Bias 3.9 1.7 2.4 3.5 2.2 1.7 3.6 2.9 2.6 2.5 2.5 4.1 1.7 

Median 0.0 0.1 0.2 0.2 0.3 0.7 0.4 0.1 0.0 0.0 0.0 0.0 2.6 

Bermuza Streamflow 

Statistic Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep TOTAL 

Average 0.4 0.8 0.9 0.9 0.7 0.6 0.5 0.4 0.2 0.1 0.1 0.1 5.7 

Standard deviation (SD) 0.4 0.8 0.9 1.0 0.6 0.4 0.4 0.3 0.1 0.1 0.0 0.1 3.3 

Coeficient of Variation (%) 1.0 0.9 1.0 1.2 0.9 0.7 0.7 0.8 0.6 0.6 0.6 1.2 0.6 

Bias 1.1 1.0 1.6 1.9 1.3 0.5 1.3 1.9 0.7 0.7 1.2 2.4 1.0 

Median 0.2 0.5 0.5 0.6 0.5 0.6 0.5 0.3 0.2 0.1 0.1 0.1 4.1 

Almanchares Streamflow 

Statistic Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep TOTAL 

Average 0.0 0.2 0.4 0.6 0.4 0.3 0.2 0.1 0.1 0.0 0.0 0.0 2.4 

Standard deviation (SD) 0.1 0.3 0.7 0.8 0.6 0.3 0.2 0.2 0.1 0.0 0.0 0.0 2.5 

Coeficient of Variation (%) 2.1 1.4 1.6 1.5 1.3 0.9 1.0 1.1 1.1 1.1 1.1 1.1 1.0 

Bias 3.7 1.6 2.0 2.4 1.6 1.0 2.1 2.2 2.1 2.1 2.1 1.9 1.3 

Median 0.0 0.1 0.1 0.2 0.1 0.3 0.2 0.1 0.0 0.0 0.0 0.0 1.2 

Rubite Streamflow 

Statistic Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep TOTAL 

Average 0.2 0.7 1.3 1.4 0.9 0.7 0.5 0.3 0.0 0.0 0.0 0.0 6.2 

Standard deviation (SD) 0.2 1.0 2.2 2.5 1.2 0.7 0.6 0.5 0.0 0.0 0.0 0.0 5.8 

Coeficient of Variation (%) 1.5 1.4 1.6 1.7 1.3 1.0 1.2 1.6 1.1 1.1 1.1 2.5 0.9 

Bias 2.4 2.3 2.3 2.7 2.2 1.0 1.9 2.5 1.2 1.5 1.6 3.5 1.3 

Median 0.0 0.4 0.4 0.4 0.5 0.3 0.3 0.1 0.0 0.0 0.0 0.0 3.2 

Benamargosa Streamflow 

Statistic Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep TOTAL 

Average 0.5 2.2 5.7 6.7 5.0 4.1 2.7 1.7 0.6 0.3 0.1 0.1 29.8 

Standard deviation (SD) 0.8 3.1 10.1 11.7 7.3 4.6 3.6 2.7 0.8 0.4 0.2 0.2 35.3 

Coeficient of Variation (%) 1.7 1.4 1.8 1.7 1.5 1.1 1.3 1.5 1.3 1.3 1.3 1.6 1.2 

Bias 2.6 2.8 2.4 2.6 2.3 2.1 3.2 3.0 2.9 3.0 2.9 3.2 1.5 

Median 0.1 1.0 1.5 1.9 2.1 3.3 1.7 0.9 0.4 0.2 0.1 0.1 13.1 

Guaro Final Stretch Streamflow 

Statistic Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep TOTAL 

Average 0.1 0.5 1.2 1.4 1.0 0.8 0.5 0.3 0.1 0.1 0.0 0.0 6.2 
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Standard deviation (SD) 0.2 0.8 2.3 2.6 1.6 0.9 0.7 0.5 0.2 0.1 0.0 0.0 7.5 

Coeficient of Variation (%) 1.9 1.7 1.9 1.8 1.5 1.1 1.3 1.5 1.3 1.3 1.3 1.9 1.2 

Bias 3.3 3.2 2.6 2.8 2.4 1.7 2.8 2.8 2.4 2.5 2.5 3.9 1.5 

Median 0.0 0.2 0.2 0.5 0.4 0.6 0.3 0.2 0.1 0.0 0.0 0.0 2.6 

Table 3. Main statistics of the streamflow data series included in SIMGES model (hm3) 

The streamflows obtained from EVALHID module have been compared with 

the results of SIMPA model (Ruiz, 1998) which has been widely generalized in 

almost all river basin districts in Spain, and also with the respective gauging 

stations located along the river basin. These gauging stations are integrated in 

the gauging stations official network (ROEA, for its acronym in Spanish). The 

SIMPA model is a distributed hydrological model used for the evaluation of water 

resources in natural regime. It was developed by the Centre for Public Works 

Studies and Experimentation (CEDEX) during the drafting of the White Paper on 

Water in Spain (MMA, 2000). As observed in figure 6, generally the results 

obtained with EVALHID model present a better adjustment than the ones 

obtained with SIMPA model. The main reason is that EVALHID model is 

calibrated with more detail in all the gauging stations located in the system, so 

it allows obtaining a better adjustment especially in headwaters flows. The 

average year represented in figure 6 has been used for the calibration period. 

 

Figure 6. Comparison between EVALHID and SIMPA results with the flows registered in the 
gauging stations EA 0018 and EA 0047 (hm3) (ROEA means gauging stations official 

network)  
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A4.4.2. FILLING IN THE SEEAW TABLES 

One of the main objectives of the water accounting is to compare 

hydrological information not only at spatial dimension, but also at temporal 

scale. As an example of the applicability of SEEAW approach, the following tables 

show the water accounts tables in May 1995 and January 1996 in the case study 

considered. The period 1991-1995 has gone down in history as the worst drought 

in recent times in Spain. The month of May 1995 represents the beginning of the 

irrigation season in a long dry period and, on the other hand, the month of 

January 1996 represents one of the first few months of drought recovery. In this 

way, we may compare the hydrological cycle processes and the use of water in 

two different situations, a severe dry period and a wet period. 

A4.4.2.1 Water accounts tables in May 1995 

As we observe in tables 4 and 5, as a result of the drought period the volume 

of reserves is zero and precipitation is very low. Similarly, there is a small amount 

of soil water and it is mainly used in the evapotranspiration process. As the 

reservoir is empty, the evaporation is zero. There is an small amount of water 

(0.01 hm3) that is used in downstream territories. Closing stocks are fewer than 

opening stocks, and as it is shown, the volume abstracted for water uses comes 

from La Viñuela reservoir and the intakes located in the river. The negative 

values of groundwater volumes at opening and closing stocks are explained by 

the principle of superposition (Reilly et al., 1984; Solera et al., 2010). This means 

that, as we do not know the volume of water stored in an aquifer, it is assumed 

that in natural system this volume is zero. So, any action on the aquifer caused 

by human activities has an effect on the piezometric levels and on its reserves. A 

negative value indicates a decrease in the volume of water stored in the aquifer, 

and a positive value indicates an increase. The main exchanges of flows between 

water resources are those between rivers to La Viñuela reservoir and, outflows 

from groundwater to river, reducing the amount of water stored in aquifers.  
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EA.131. Surface water 
EA. 132 
Ground
water 

EA. 133 
Soil 

water 
Total EA. 1311 

Artificial 
reservoirs 

EA. 
1312 
Lakes 

EA. 
1313 
Rivers 

EA. 1314 
Snow, ice 

and glaciers 

1. Opening stocks 0.00 0.00  0.00 -0.38 8.77 8.39 

 Increases in stocks        

 2. Returns 0.00  0.04  0.00  0.04 

 3. Precipitation      0.36 0.36 

 4. Inflows 0.03  0.06  0.00 0.00 0.09 

  4.a. From upstream territories       0.00 

  
4.b. From other resources in 
the territory 0.03 0.00 0.06 0.00 0.00 0.00 0.09 

 Decreases in stocks        

 5. Abstraction 0.02  0.07  0.00  0.09 

 
6. Evapotranspiration/actual 
evapotranspiration 0.00     6.63 6.63 

 7. Outflows 0.01  0.03  0.06 0.00 0.10 

  7.a. To downstream territories 0.01      0.01 

  7.b. To the sea   0.00    0.00 

  
7.c. To other resources in the 
territory 0.00 0.00 0.03 0.00 0.06 0.00 0.09 

 8. Other changes in volume       0.00 

9. Closing stocks 0.00 0.00  0.00 -0.44 2.49 2.06 

Table 4. Water asset accounts in May 1995 (hm3) 

 

EA.131. Surface water 

EA. 132 
Ground
water 

EA. 133 
Soil 

water 

Outflows to 
other 

resources in 
the territory 

EA. 1311 
Artificial 
reservoir

s 

EA. 
1312 
Lakes 

EA. 
1313 
Rivers 

EA. 
1314 
Snow, 
ice and 
glaciers 

EA.1311 Artificial reservoirs   0.00  0.00  0.00 

EA. 1312 Lakes        

EA. 1313 Rivers 0.03    0.00  0.03 

EA. 1314 Snow, ice and glaciers       0.00 

EA. 132 Groundwater   0.06    0.06 

EA. 133 Soil water   0.00  0.00  0.00 

Inflows from other resources in 
the territory 0.03 0.00 0.06 0.00 0.00 0.00 0.09 

Table 5. Matrix of flows between water resources in May 1995 (hm3) 

The physical use and supply tables are shown in table 6. As we observe, the 

main use is allocated for urban and recreational uses. Water resources employed 

to supply urban demands come from surface water (reservoirs and rivers) and 
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recreational water uses are supplied by reused water. These results are 

interesting because the month of May represents the beginning of the harvest 

period and all the water supplied is assigned to urban demands, with the 

consequent harm to agrarian sector. 

   Urban Farming 
Cattle 
raising 

Recreational 
Rest of 

the world 
Total 

1. Total abstraction 0.05    0.01 0.06 

1.a Abstraction for own use 0.05    0.01 0.06 

1.b Abstraction for distribution       

1.i From inland water resources 0.05    0.01 0.06 

 1.i.1 Surface water 0.05    0.01 0.06 

 1.i.2 Groundwater       

 1.i.3 Soil water       

1.ii From water resources       

 1.ii.1 Collection of precipitation       

 1.ii.2 Abstraction from the sea       

2. Use of water received from other economic units    0.04  0.04 

2.a Reused water    0.04  0.04 

2.b Wastewater to sewerage       

2.c Desalinated water       

3. Total use of water 0.05 0.00 0.00 0.04 0.01 0.10 

4. Supply of water to other economic units 0.04     0.04 

4.a Reused water 0.04     0.04 

4.b Wastewater to sewerage       

5. Total returns      0.00 

5.a To water resources       

 5.a.i Surface water       

 5.a.ii Groundwater       

 5.a.iii Soil water       

5.b To other sources       

6. Total supply of water 0.04     0.04 

7. Consumption 0.01 0.00 0.00 0.04 0.01 0.06 

7.a Losses from evaporation       

7.b Losses in distribution not because of leakages       

Table 6. Physical use and supply table in May 1995 (hm3) 
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A4.4.2.2 Water accounts tables in January 1996 

The situation in January 1996 is very different from the previous one, as 

observed in table 7. Opening stocks indicates that reservoir is filling up and the 

soil layer contains certain amount of water. The amount of precipitation and the 

inflows from other resources in the territory are considerable. Abstractions are 

higher than during the month of May of 1995 due to water availability - in spite 

of the fact that harvest period begins in May and water demanded by farming is 

higher. Evapotranspiration has grown up because the higher water availability in 

the soil, and the outflows also have increased. As a consequence, closing stocks 

are higher than opening ones, showing the recovering of the system. 

 

EA.131. Surface water 
EA. 132 
Ground
water 

EA. 133 
Soil 

water 
Total EA. 1311 

Artificial 
reservoirs 

EA. 
1312 
Lakes 

EA. 1313 
Rivers 

EA. 1314 
Snow, ice 

and glaciers 

1. Opening stocks 11.38    10.73 110.40 132.52 

 Increases in stocks        

 2. Returns 0.11  0.93  0.00  1.04 

 3. Precipitation      204.50 204.50 

 4. Inflows 72.13  101.77  71.19 0.00 245.08 

  
4.a. From upstream 
territories       0.00 

  
4.b. From other resources in 
the territory 72.13 0.00 101.77 0.00 71.19 0.00 245.08 

 Decreases in stocks        

 5. Abstraction 0.16  1.57  0.00  1.73 

 
6. Evapotranspiration/actual 
evapotranspiration 0.00     17.22 17.22 

 7. Outflows 0.76  101.13 0.00 30.43 138.05 270.37 

  
7.a. To downstream 
territories 0.47      0.47 

  7.b. To the sea   24.82    24.82 

  
7.c. To other resources in the 
territory 0.29 0.00 76.31 0.00 30.43 138.05 245.08 

 8. Other changes in volume       0.00 

9. Closing stocks 82.70    51.49 159.62 293.81 

Table 7. Water asset accounts in January 1996 (hm3) 

As we observe in table 8, the main flows between water resources are the 

ones between soil layer with rivers and groundwater, summing up more than 
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138 hm3. As a consequence, the flows from rivers enable an increase of the 

volume of water stored in reservoirs.  

 

EA.131. Surface water 

EA. 132 
Ground
water 

EA. 133 
Soil 

water 

Outflows to 
other 

resources in 
the territory 

EA. 1311 
Artificial 

reservoirs 

EA. 
1312 
Lakes 

EA. 
1313 
Rivers 

EA. 1314 
Snow, ice 

and 
glaciers 

EA.1311 Artificial reservoirs   0.29  0.00  0.29 

EA. 1312 Lakes        

EA. 1313 Rivers 72.13    4.18  76.31 

EA. 1314 Snow, ice and glaciers       0.00 

EA. 132 Groundwater   30.43    30.43 

EA. 133 Soil water   71.04  67.01  138.05 

Inflows from other resources in 
the territory 72.13  101.77 0.00 71.19 0.00 245.08 

Table 8. Matrix of flows between water resources in January 1996 (hm3) 

As in the previous balance, abstractions come from surface water as table 9 

shows. The main use of water is destined to urban uses and, as in the previous 

analysis in May of 1995, recreational water uses are supplied by reused water. 

The water transferred to other territories downstream has been increased in 

comparison with the month of May. 

   Urban Farming 
Cattle 
raising 

Recreational 
Rest of 

the world 
Total 

1. Total abstraction 1.16 0.53 0.01 0.00 0.47 2.17 

1.a Abstraction for own use 1.16 0.53 0.01  0.47 2.17 

1.b Abstraction for distribution       

1.i From inland water resources 1.16 0.53 0.01  0.47 2.17 

 1.i.1 Surface water 1.16 0.53 0.01  0.47 2.17 

 1.i.2 Groundwater       

 1.i.3 Soil water       

1.ii From water resources       

 1.ii.1 Collection of precipitation       

 1.ii.2 Abstraction from the sea       

2. Use of water received from other economic units 0.00 0.00 0.00 0.03 0.00 0.03 

2.a Reused water    0.03  0.03 

2.b Wastewater to sewerage       

2.c Desalinated water       

3. Total use of water 1.16 0.53 0.01 0.03 0.47 2.20 
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4. Supply of water to other economic units 0.03 0.00 0.00 0.00 0.00 0.03 

4.a Reused water 0.03     0.03 

4.b Wastewater to sewerage       

5. Total returns 0.90 0.11 0.00 0.00 0.00 1.01 

5.a To water resources 0.90 0.11    1.01 

 5.a.i Surface water 0.90 0.11    1.01 

 5.a.ii Groundwater       

 5.a.iii Soil water       

5.b To other sources       

6. Total supply of water 0.93 0.11 0.00 0.00 0.00 1.04 

7. Consumption 0.23 0.42 0.01 0.03 0.47 1.16 

7.a Losses from evaporation       

7.b Losses in distribution not because of leakages       

Table 9. Physical use and supply table in January 1996 (hm3) 

A4.4.2.3 Discussion on the specific results 

In general terms, as we observe in the tables, variables such as precipitation 

or evapotranspiration show high volumes of water, while other variables such as 

abstractions or outflows to the sea, which could be controlled by human actions 

are one order of magnitude lower than natural processes. This fact is remarkable 

because variables like precipitation and evapotranspiration cannot be modified 

during the planning and management of the water exploitation system. 

A4.4.3. INDICATORS DERIVED FROM SEEAW TABLES 

Indicators derived from water accounts show a general description of the 

river basin with an emphasis on the benefit of natural water and managed water 

(Pedro-Monzonis et al., 2015b) and allow decision-makers to characterize the 

pressures on water resources. Some of the indicators defined by United Nations 

(UNSD, 2012) have been applied in the case study. To show these indicators, we 

have selected the period 1980/81-2006/07. Internal Renewable Water 

Resources (IRWR) represents the average annual flow of rivers and recharge of 

groundwater generated from endogenous precipitation, and it can be obtained 

from the matrix of flows. For the selected period IRWR are 81.69 hm³/year. On 

the other hand, External Renewable Water Resources (ERWR) consists of river 

runoff and groundwater transfers between countries. This indicator is obtained 

from asset accounts. In the case study, for the same period ERWR are 0 
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hm³/year, stating that there are not any transfers from other river basins. The 

sum of IRWR and ERWR correspond to the maximum theoretical amount of 

water available for a country on an average year on a long reference period. This 

indicator is named Total Natural Renewable Water Resources (TNRWR) and it is 

81.69 hm³/year. When referring to the maximum theoretical amount of water 

actually available at a given moment, this is named Total Actual Renewable 

Water Resources (TARWR) and for the month of May of 1995 TARWRMay 95 is 

0.36 hm³ and in January of 1996, TARWRJan 96 is 204.50 hm³, both values vary 

greatly showing the temporal variability of renewable water resources in the 

basin. From the results above, we have obtained the Dependency ratio (DR) 

which expresses the part of the total renewable water resources originating 

outside the territory and it is obtained as the ratio between ERWR and TNRWR. 

In the case study DR is 0%. Taking into account the population size, we obtain 

the renewable resources per capita as the ratio between total renewable water 

resources and population. In the case study, this is 570 m³/person. And finally, 

the density of internal resources (DIR), which is 7.5 hm³/km², represents the ratio 

between the average internal flow and the area of the territory. United Nations 

(UNSD, 2012) also recommend the use of the indicator Exploitable Water 

Resources (or manageable resources) that represents the part of the water 

resources which is considered to be available for development under specific, 

technical, economic and environmental conditions. In this sense, it is not 

possible to obtain this indicator by employing water accounts. Pedro-Monzonis 

et al (2015a) propose a methodology for its acquisition. 

As can be seen, these indicators are mainly based on the amount of water 

that is generated in a territory, with special attention to the resources coming 

from other territories. This kind of indicators may be suitable for international 

river basins, but the features of those territories are far away from 

Mediterranean river basins, as we have seen in the case study. On the other 

hand, the proposed indicators do not refer to the abstractions in the river basin, 

and they are a crucial fact in order to assess the degree of water stress suffered 

by water exploitation systems. In this sense, Water Exploitation Index (WEI) 

(EEA, 2005) may help us to know the degree of stress in the river basin. This index 

is defined as the percentage of mean annual total demand for freshwater with 

respect to the long-term mean annual freshwater resources and shows to which 

extent the total water demand puts pressure on water resources. Values of WEI 

in a river basin between 0% and 20% show a situation of no stress; values 

between 21% and 40% indicate water stress; and values upper than 40% 
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represent extreme water stressed river basins (CIRCABC, 2012). For the period 

1980/81-2006/07 the WEI in the case study is 73.61%, showing a high degree of 

water stress in the river basin. Similarly, Water Consumption Index (WCI) (UNDS, 

2012) represents the ratio between water consumption and total renewable 

water resources. In this sense, WEI emphasizes the water abstractions and WCI 

is focused on the water consumptions in the river basin, taking into account the 

use of water returns for other uses downstream. For the period 1980/81-

2006/07 the WCI in the case study is 55.84%, softening the degree of stress in 

the river basin. 

On the other hand, we have observed that environmental needs are not 

explicitly considered in SEEAW tables. Likewise EEA (2013) noted that the 

ecological requirements represent an important issue and water accounts 

enable us to obtain a potential indicator of ecological stress for rivers (ESIr) (see 

Eq. 1): 

𝐸𝑆𝐼𝑟 =
𝑜𝑢𝑡𝑓𝑙𝑜𝑤

𝑜𝑢𝑡𝑓𝑙𝑜𝑤+𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠−𝑟𝑒𝑡𝑢𝑟𝑛𝑠
  (1) 

As ESIr is defined at monthly level, figure 7 represents a cumulative 

distribution of ESIr in the case study which aggregates the indexes during the 

analysed period. As noted by EEA (2013) values of ESIr between 0-15% represent 

a destructive ecological stress for rivers; between 15-25% symbolize a non 

sustainable ecological stress; between 25-50% represent an excessive ecological 

stress; between 50-65% represent a risky ecological stress; between 65-90% 

denote a warning ecological stress and finally, ESIr values between 90-100% 

show the inexistence of problems in the river. In our case study, the likelihood 

of having an ESIr less than 25% (non sustainable ecological stress) is 

approximately 25%, and the likelihood of having an ESIr higher than 90% without 

any problem in the river basin is 3%, showing the stress suffered by the system.  
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Figure 7. Cumulative distribution function of ESIr (%) in Vélez River Basin for the period 
1980/81-2006/07 

A4.5. DISCUSSION ON THE APPLICABILITY OF THE APPROACH 

As it has been shown in this paper, AQUATOOL DSS represents a reliable tool 

for building physical and use tables and the asset accounts under the SEEAW 

methodology, allowing the collection of those parameters of water cycle that 

cannot be obtained by monitoring. In this sense, AQUATOOL is capable of 

reproducing the potential evapotranspiration for non-irrigated land, the 

distinction between surface and groundwater runoff, the amount of soil water, 

the returns to groundwater and surface water bodies which had not been 

possible to determine in previous works with WEAP model (Dimova et al., 2014). 

Even so, there are still some parameters which cannot be reproduced as the 

losses in distribution networks. 

Although SEEAW is the most employed water accounting approach, there are 

some key issues that are not completely defined or should be better considered. 

The first handicap is the spatial and temporal aggregation. As regards the spatial 

consideration, water accounting may be developed in different levels of water 

use. Molden and Sakthivadivel (1999) defined three levels of analysis: macro 

level (basin or sub-basin level), mezzo level (service level) and micro level (use 
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level). In this way, Momblanch et al. (2014) noted that water management 

analysis is performed at a water resource system scale, which is conceptually 

different to the river basin scale. So it may be possible to build SEEAW tables at 

a river basin scale, at water exploitation system scale or at a local scale. As 

regards the temporal consideration, traditionally SEEAW tables are built in a 

natural year concurring with economic accounts but, what about the water 

exploitation systems with pluriannual regulation? 

We have emphasized throughout the paper the relevance of improving water 

efficiency. Several researches have demonstrated that more efficient irrigation 

technologies may cause, on the first hand, a decrease in the price of water and, 

as a consequence, an increase in water global use. On the second hand, they may 

reduce return flows, affecting downstream users and aquifer recharge. In these 

circumstances, the improvement in water efficiency can actually increase water 

depletions. This contradiction is named rebound effect or Jevon’s paradox 

(Dumont et al., 2013). To overcome this situation, designing water pricing 

policies and the revision of water rights are recommended. Measuring these 

effects is out of the reach of this paper but some evidence of them can be found 

in Ward and Pulido-Velazquez (2008) and Gutierrez-Martin and Gomez (2011). 

In section 2.3 there are some dark grey cells (see table 1 and table 2) which 

indicate zero entries because two possible reasons: 1) aggregated models do not 

distinguish between these types of results, such as precipitation on artificial 

reservoirs, lakes or rivers; 2) there are flows between water resources that are 

physically impossible or unlikely, such as precipitation on groundwater or 

outflows to the sea from soil water or artificial reservoirs. On the other hand, the 

column of EA. 1312 Lakes may have the same consideration as the column of 

EA.1311 Artificial reservoirs, due to they may be modelled in the water resources 

management model with the same type of element.  

As regards to the methodology in the case study, it is based on time series 

data of precipitation and temperatures from the Spain02 database. The data 

availability of Spain02 enables obtaining time series of results during the period 

1950-2008, being necessary the use of other sources of information in more 

recent periods. Other key issue is the classification of economic users presented 

in the SEEAW. In most of River Basin Districts, this information is not available 

because this information is not specified exhaustively, and it is preferable to 

classify the economic users in agrarian, urban or industrial users, as presented in 
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the case study. Asset accounts also distinguish between water flows and water 

in reservoirs. This differentiation is a complex task unless we use simulation 

models to obtain it.  

A priori, among the results obtained, indicators derived from water accounts 

allow policymakers to compare results between different territories and periods. 

But, as observed, they are mainly based on the amount of water generated in a 

territory, with special attention to those resources coming from other territories, 

but without an in-depth analysis of the amount of water that it is really 

abstracted. In this sense, WEI and WCI represent a first approximation to the 

degree of water stress suffered by the system, despite being based on annual 

averages and not displaying the seasonality or even a scarcity event at a monthly 

scale (Pedro-Monzonis et al. (2015b)). The consideration of several scenarios 

with and without reservoirs, pumping wells, waste water reuse or desalination 

may be useful for the definition of new indicators related to the stress of a water 

exploitation system. 

It is worth noting that environmental requirements are not explicitly 

considered in SEEAW tables. In this sense, water abstraction for supplying 

human populations and economic activities are substantially conditioned, 

especially in water scarce exploitation systems and/or drought episodes. The 

introduction of environmental flows in a water resources system may negatively 

affect the existing water uses in the basin and, in those periods when there are 

not enough water resources, those demands with the lowest priorities will 

present deficits (Pellicer-Martínez and Martínez-Paz, 2016). There is a clear need 

for improving water accounting approaches in order to include environmental 

requirements. As a first step the use of ESIr has enabled us to obtain a slight 

understanding of the stress suffered by the river at its mouth area, although 

results may improve if we analyse ESIr in every surface water body along the 

river basin. To deal with this issue, we suggest the use of simulation scenarios 

considering different environmental requirements to compare some of the 

values obtained in SEEAW tables among other: total abstractions and outflows 

to the sea. 

A4.6. CONCLUSIONS 

As seen, filling SEEAW tables needs a significant degree of knowledge about 

the temporal and spatial evolution of the different components of the 
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hydrological cycle and the flows between them. The main conclusion obtained 

from this research is the fact that AQUATOOL DSS is a reliable tool that provides 

information enough for building physical and use tables and asset accounts 

under SEEAW methodology, allowing the collection of those parameters of 

water cycle that cannot be obtained by monitoring. EVALHID module has been 

used for building physical water balances in natural regime. Moreover, the 

combined use of SIMGES simulation model and EVALHID allows complete 

physical water balances in altered flow regime, taking into consideration water 

allocation demands, evaporation from reservoirs and water transfers among 

others. In the case of building water accounts were mandatory in the river 

management plans, it may be desirable to have a standard for SEEAW tables as 

it exists in other water accounting approaches such as the ISO 14046 on Water 

Footprint. 

In this regard, society expects from policymakers and stakeholders to 

maximise the profit produced per unit of natural resources. This research 

pretends to contribute to the objectives of the “Blueprint to safeguard Europe’s 

water resources”. It is noteworthy that, in Spain, a large part of these 

methodological decisions are included in the Spanish Guideline of Water 

Planning (BOE, 2008) with normative status guaranteeing consistency and 

comparability of the results. 

Acknowledgements 

The authors thank two anonymous reviewers for their valuable comments, 

suggestions and positive feedback. The authors also wish to thank the Water and 

Environment team of INTECSA-INARSA and the Council of Agriculture, Fisheries 

and Environment of the Regional Government of Andalusia for the data provided 

in developing this study and the Spanish Ministry of Economy and 

Competitiveness for its financial support through the NUTEGES project 

(CGL2012-34978). We also value the support provided by the European 

Community’s Seventh Framework Program in financing the projects ENHANCE 

(FP7-ENV-2012, 308438), WAMCD (EC-DG Environment No. 

07.0329/2013/671291/SUB/ENV.C.1), LIFE ALBUFERA (LIFE12 ENV/ES/000685), 

IMPREX (H2020-WATER-2014-2015, 641811) and Research Group RNM-308 of 

the Andalusian Government. 

tel:2013%2F671291


Assessment of water exploitation indexes based on water accounting 

160 

References 

Andreu, J., Capilla, J., Sanchis, E., 1996. AQUATOOL, a generalized decision-

support system for water resources planning and operational management. J. 

Hydrol. 177: 269-291. Doi: 10.1016/0022-1694(95)02963-X 

Bergström, S. and Forsman, A., 1973. Development of a conceptual deterministic 

rainfall-runoff model. Nordic Hydrology.  

Benavente, J., El Mabrouki, K., García-Aróstegui, J.L., Calabrés, C. and Casas, A., 

2005. Uso de técnicas geofísicas para caracterizar la extrusión de agua salina en 

un acuífero costero mediterráneo bicapa (Río Vélez, provincia de Málaga). 

Geogaceta 37: 127-130 

BOE (Boletín Oficial del Estado), 2008. Instrucción de Planificación Hidrológica. 

Ministerio de Medio Ambiente, y Medio Rural y Marino.- 15340 - ORDEN 

ARM/2656/2008, de 10 de septiembre. Boletín Oficial del Estado 229, 38472-

38582.  

CIRCABC, 2012. ‘Informal meeting of Water and Marine Directors of the 

European Union, Candidate and EFTA Countries. Copenhagen, 4-5 June 2012. 

Synthesis’, Communication and Information Resource Centre for Administrations, 

Businesses and Citizens (https://circabc.europa.eu/sd/d/b5d535f4-0df2-4b7b-

aa39-

a71483ab8fd4/Synthesis_Water_and_Marine_Directors_Copenhagen.docx) 

(accessed 07.10.14) 

Dimova, G., Tzanov, E., Ninov, P., Ribarova, I., Kossida, M., 2014. Complementary 

use of the WEAP model to underpin the development of SEEAW physical water 

use and supply tables. 12th International Conference on Computering and 

Control for the Water Industry, CCWI2013. Procedia Engineering 70: 563-572 doi: 

10.1016/j.proeng.2014.02.062 

Duan, Q., Sorooshian, S. and Gupta, V., 1992. Effective and efficient global 

optimization for conceptual rainfall-runoff models. Water Resour. Res., 28 (4), 

pp. 1015–1031 



Annex 4 

161 

Dumont, A., Mayor, B. and López-Gunn, E. 2013. Is the rebound effect or Jevons 

paradox a useful concept for better management of water resources? Insights 

from the Irrigation Modernisation Process in Spain. Aquatic Procedia, 1, 64-76. 

EC (European Commission), 2012. A Blueprint to Safeguard Europe's Water 

Resources. European Commission, 14.11.2012 COM(2012) 673 final, Brussels. 

EC (European Commission), 2015. Guidance document on the application of 

water balances for supporting the implementation of the WFD. Final – Version 

6.1 – 18/05/2015, Brussels. 

EEA (European Environment Agency), 2005. The European Environment – State 

and Outlook 2005. European Environmental Agency, Copenhagen. 

EEA (European Environment Agency), 2013. Results and lessons from 

implementing the Water Assets Accounts in the EEA area. From concept to 

production. EEA Technical report No 7/2013, European Environment Agency, 

Copenhagen. 

EP (European Parliament), 2000. Directive 2000/60/EC of the European 

Parliament and of the Council of 23 October 2000 establishing a framework for 

Community action in the field of water policy. Official Journal L 327, 22-12-2000, 

Brussels. 

García-Aróstegui, J.L., Benavente, J., Cruz-San Julián, J.J., 2007. Río Vélez (M.A.S. 

060.026). Atlas Hidrogeológico de la provincia de Málaga 2, 185-190. Diputación 

de Málaga-IGME-UMA 

Götzinger, J. and Bárdossy, A., 2007. Comparison of four regionalization methods 

for a distributed hydrological model. J. Hydrol 333, 374-384 

Gutierrez-Martin, C. and Gomez, G. 2011. Assessing irrigation efficiency 

improvements by using a preference revelation model, Spanish Journal of 

Agricultural Research 9, 1009-1020. 

Hargreaves, G.H. and Samani, Z.A., 1985. Reference crop evapotranspiration 

from temperature.  Applied Eng. in Agric., 1(2): 96-99. 



Assessment of water exploitation indexes based on water accounting 

162 

Herrera, S., Gutiérrez, J.M., Ancell, R., Pons, M.R., Frías, M.D., Fernández, J., 2012. 

Development and analysis for a 50-year high-resolution daily gridded 

precipitation data set over Spain (Spain02). International Journal of Climatology.  

Hunink, J., 2014. La contabilidad de agua: el siguiente reto en la planificación 

hidrológica de España, iAgua, Apr. 2014 (http://www.iagua.es/blogs/johannes-

hunink/la-contabilidad-de-agua-el-siguiente-reto-en-la-planificacion-

hidrologica-de-espana) Accesed 8 July 2014. 

Lentini, A., Kohfahl, C., Benavente, J., Garacía-Aróstegui, J.L., Vadillo, I., Meyer, 

H., Pekdeger, A., 2009. The impact of hydrological conditions on salinisation and 

nitrate concentration in the coastal Velez River aquifer (southern Spain). 

Environmental Geology, 58: 1785-1795. 

MMA (Ministerio de Medio Ambiente), 2000. White paper on water in Spain. 

Madrid.  

Molden, D. and Sakthivadivel, R., 1999. Water Accounting to Assess Use and 

Productivity of Water, International Journal of Water Resources Development, 

15:1-2, 55-71, DOI: 10.1080/07900629948934 

Momblanch, A., Andreu, J., Paredes-Arquiola, J., Solera, A. and Pedro-Monzonis, 

M., 2014. Adapting water accounting for integrated water resource 

management. The Jucar Water Resource System (Spain) J. Hydrol 519: 3369-

3385, doi: http://dx.doi.org/10.1016/j.jhydrol.2014.10.002 

Paredes-Arquiola, J., Solera, A., Andreu, J., Lerma, N., 2012. Manual técnico de la 

herramienta EVALHID para la evaluación de recursos hídricos. Grupo de 

Ingeniería de Recursos Hídricos. Universitat Politècnica de València. 

Pedro-Monzonís, M., Ferrer, J., Solera, A., Estrela, T., Paredes-Arquiola, J., 2015a. 

Key issues for determining the exploitable water resources in a Mediterranean 

river basin. Sci Total Environ 503-504: 319-328. 

http://dx.doi.org/10.1016/j.scitotenv.2014.07.042 

Pedro-Monzonís, M., Solera, A., Ferrer, J., Estrela, T., and Paredes-Arquiola, J., 

2015b. A review of water scarcity and drought indexes in water resources 

planning and management. J. Hydrol 527 (2015) 482-493, 

http://dx.doi.org/10.1016/j.jhydrol.2015.05.003 

http://www.iagua.es/blogs/johannes-hunink/la-contabilidad-de-agua-el-siguiente-reto-en-la-planificacion-hidrologica-de-espana
http://www.iagua.es/blogs/johannes-hunink/la-contabilidad-de-agua-el-siguiente-reto-en-la-planificacion-hidrologica-de-espana
http://www.iagua.es/blogs/johannes-hunink/la-contabilidad-de-agua-el-siguiente-reto-en-la-planificacion-hidrologica-de-espana
http://dx.doi.org/10.1016/j.scitotenv.2014.07.042
http://dx.doi.org/10.1016/j.jhydrol.2015.05.003


Annex 4 

163 

Pellicer-Martínez, F. and Martínez-Paz, J.M., 2016. Grey water footprint 

assessment at the river basin level: Accounting method and case study in the 

Segura River Basin, Spain. Ecol. Indic. 60, 1173–1183 

http://dx.doi.org/10.1016/j.ecolind.2015.08.032 

Reilly, T.E., Franke, O.L., Bennett, G.D., 1984. The principle of superposition and 

its application in ground-water hydraulics. U.S. Geological Survey open-file report 

; 84-459. 

Ruiz, J.M., 1998. Desarrollo de un modelo hidrológico conceptual-distribuido de 

simulación continua integrado con un sistema de información geográfica. Tesis 

Doctoral. Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos. 

Universitat Politècnica de València. 

Solera, A., Paredes-Arquiola, J., Andreu, J., 2010. Componentes de un sistema de 

recursos hidráulicos. Modelos de uso conjunto de aguas superficiales y 

subterráneas. Madrid: Instituto Geológico y Minero de España 978-84-7840-852-

8; pp. 87–110. 

Tilmant, A., Marques, G., Mohamed, Y., 2015. A dynamic water accounting 

framework based on marginal resource opportunity cost. Hydrol. Earth Syst. Sci. 

Discuss., 19, 1457-1467, doi:10.5194/hessd-11-11735-2014 

United Nations, UN, 2008. International Standard Industrial Classification of All 

Economic Activities (ISIC), Rev 4, Statistical Papers, Series M, No. 4, Rev 4 (United 

Nations publication, Sales No. E.08.XVII.25) New York, 2008. 

United Nations Statistic Division, UNDS, 2012. System of Environmental-

Economic Accounting for Water. United Nations, Department of Economic and 

Social Affairs, Statistics Division, (United Nations publication, Sales No. 

E.11.XVII.12) New York, 2012. 

Vangelis, H., Tigkas, D. and Tsakiris, G., 2013. The effect of PET method on 

Reconnaissance Drought Index (RDI) calculation. Journal of Arid Environments, 

doi: http://dx.doi.org/10.1016/j.jaridenv.2012.07.020 (in press) 

Vardon, M., Lenzen, M., Peevor, S. and Creaser, M., 2007. Water accounting in 

Australia, Ecological Economics, 61, pp. 650-659. 

http://searchworks.stanford.edu/?q=%22Reilly%2C+Thomas+E.%22&search_field=search_author
http://searchworks.stanford.edu/catalog?q=%22Franke%2C+O.+Lehn.+%22&search_field=search_author
http://searchworks.stanford.edu/catalog?q=%22Bennett%2C+Gordon+D.+%22&search_field=search_author
http://searchworks.stanford.edu/catalog?q=%22U.S.+Geological+Survey+open-file+report+%3B%22&search_field=search_series
http://searchworks.stanford.edu/catalog?q=%22U.S.+Geological+Survey+open-file+report+%3B%22&search_field=search_series
http://dx.doi.org/10.1016/j.jaridenv.2012.07.020


Assessment of water exploitation indexes based on water accounting 

164 

Ward, F. A. and Pulido-Velázquez, M. 2008. Water conservation in irrigation can 

increase water use. Proceedings of the National Academy of Sciences, 105, 

18215-18220.



Annex 5 

165 

ANNEX 5. WATER ACCOUNTING FOR 
STRESSED RIVER BASINS BASED ON WATER 
RESOURCES MANAGEMENT MODELS5 

 

Abstract 

Water planning and the Integrated Water Resources Management (IWRM) 

represent the best way to help decision makers to identify and choose the most 

adequate alternatives among other possible ones. The System of Environmental-

Economic Accounting for Water (SEEA-W) is displayed as a tool for the building 

of water balances in a river basin, providing a standard approach to achieve 

comparability of the results between different territories. The target of this 

paper is to present the building up of a tool that enables the combined use of 

hydrological models and water resources models to fill in the SEEA-W tables. At 

every step of the modelling chain, we are capable to build the asset accounts 

and the physical water supply and use tables according to SEEA-W approach 

along with an estimation of the water services costs. The case study is the Jucar 

River Basin District (RBD), located in the eastern part of the Iberian Peninsula in 

Spain which as in other many Mediterranean basins is currently water-stressed. 

To guide this work we have used PATRICAL model in combination with 

AQUATOOL Decision Support System (DSS). The results indicate that for the 

average year the total use of water in the district amounts to 15143 hm3/year, 

being the Total Water Renewable Water Resources 3909 hm3/year. On the other 

hand, the water service costs in Jucar RBD amounts to 1634 million € per year at 

constant 2012 prices. It is noteworthy that 9% of these costs correspond to non-

conventional resources, such as desalinated water, reused water and water 

transferred from other regions. 

                                                           

5  Pedro-Monzonís, M., Solera, A., Ferrer, J., Andreu, J. and Estrela, T., 2016. 

Water accounting in stressed river basins based on water resources management models. Sci 

Total Environ 565, 181-190 doi:10.1016/j.scitotenv.2016.04.161 

 

http://dx.doi.org/10.1016/j.scitotenv.2016.04.161
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A5.1. INTRODUCTION 

The EU Water Framework Directive (WFD) (EP, 2000) establishes a 

framework for the Community action in the field of water policy. Among its main 

objectives highlights the scope of water protection to all waters in order to 

achieve their “good status”, a water management based on river basins, the 

implementation of pricing policies or the promotion of public participation. For 

the purpose of improving the implementation and integration of water policy 

objectives into other policy areas, the Blueprint to Safeguard Europe's water 

resources (EC, 2012) aims to facilitate the WFD Common Implementation 

Strategy (CIS). Blueprint proposes the use of water accounts in order to 

meliorate quantitative water management and water efficiency in Europe, 

contributing to water quality objectives. In this sense, as noted by Blueprint 

“water accounts provide the missing link in many river basins for water 

management”, representing an adequate tool to support basic information in 

the decision-making process. 

But building water accounts represents a complex task, due to the difficulty 

of the collection of the required data and, on the other hand, due to the lack of 

common European procedures (Dimova et al., 2014; Tilmant et al., 2015; Pedro-

Monzonís et al., 2016). Because of the difficulty of monitoring the components 

of the water cycle and the water management in a territory, hydrological models 

and Decision Support Systems (DSSs) have become an indispensable tool to 

provide the required data. A DSS is a computer tool created to help decision-

makers for the purpose of providing integration, screening alternatives, 

obtaining operation guidelines and implementing sensitivity analysis and risk 

assessment (Andreu et al., 1996). According to Sanz et al. (2011), modelling is 

generally one of the best approaches to integrate, administrate, quantify and 

validate hydrological information. Another important advantage of the use of 

DSS, is that models can be helpful in participatory and negotiation processes, as 

required by WFD, supporting more rational and well-informed decisions and 

consensus-building among different stakeholders based on a common 
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understanding and model of the problem and socio-economic implications of 

solutions (Andreu et al., 1996). 

Both WFD and Blueprint emphasise the need of an efficient use of water. As 

noted by Blueprint “not putting a price on a scarce resource like water can be 

regarded as an environmentally-harmful subsidy”. This requirement contrasts 

with the fact that, traditionally, water has been typically allocated according to 

historical, political, legal, institutional and social conditions (Harou et al., 2009). 

In this sense, one of the purposes of water accounts is to measure the influence 

of each water user, infrastructure and management decision to the total 

economic value of water resources in a given basin (Tilmant et al., 2015). Taken 

it into account, in many places, the available economic data do not fit the format 

of water accounts and, in these cases, hydroeconomic models can help provide 

this information, advancing on transparency and efficiency in water use (Harou 

et al., 2009). 

If in any territory the sustainable use of water is required for ensuring the 

well-being of citizens, this is particularly important in stressed river basins. In 

those regions where water resources are most fully allocated managing water 

resources especially during drought periods becomes a difficult task. Decision-

makers have to make an effort in order to guarantee water for human and 

environmental requirements, which means high investments in infrastructures 

exemplified by a heavily regulation of water resources and an intensive use of 

non-conventional resources such as reused water and desalination. 

The aim of this study was to broaden the knowledge of the applicability of 

the System of Environmental-Economic Accounting for Water (SEEA-W) (UNDS, 

2012) in stressed river basins. The SEEA-W is the most well-known approach of 

hybrid accounting and it is developed in many European countries, such as Italy, 

Greece, Germany, Slovenia, Spain and Bulgaria (Dimova et al., 2014; EC, 2015; 

Pedro-Monzonís et al., 2016). It has been created by the United Nations Statistic 

Division (UNSD) in conjunction with the London Group on Environmental 

Accounting. Its main purpose has been normalising concepts related to water 

accounting, giving a conceptual framework for organising hydrological and 

economic information. The SEEA-W covers five categories of accounts: (1) 

physical supply and use and emission accounts (representing the amount of 

water used and discharged back into the environment and the amount of 

pollutants added to water); (2) hybrid and economic accounts (linking to the 
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economic aspects of water with the physical supply and use data); (3) asset 

accounts (representing a water balance and measuring stocks and their changes 

due to natural causes and human activities); (4) quality accounts (indicating the 

stock of water in terms of its quality); (5) valuation of water resources. More 

information can be found at (UNDS, 2012).  

The Jucar River Basin District (RBD) has been selected as a case study because 

this region, as many other river basin districts in the Mediterranean region, 

suffers from water scarcity, persistent drought periods and groundwater 

overexploitation (Ferrer, 2012). This work represents another turn on the screw 

for water accounting in Jucar RBD. The Halt-Jucar-Des project (EVREN, 2012) 

provided an opportunity to test and check the feasibility of applying the SEEA-W 

in this system. Among its conclusions, to include altered regime, a mixed solution 

integrating hydrological models and management models was proposed as 

additional future steps to be taken. To guide this work, three models have been 

employed: 1) a GIS-based rainfall-runoff model to analyse the water cycle; 2) a 

water allocation model to simulate the water management; and 3) an acquisition 

tool to link the main variables of the rainfall-runoff model, with the results of the 

water allocation model and the economic data. All the data were provided by 

the Jucar River Basin Authority (RBA) (www.chj.es). 

A5.2. MATERIALS AND METHODS 

The proposed methodology (see figure 1) is represented as a modelling chain 

composed of three stages. The first stage lies in the hydrological model, which 

enables us to obtain the river basin water resources in a natural regime. This 

information is used in the DSS to simulate the water allocation, representing the 

second stage. Thirdly, once we know the amount of water allocated for the 

different uses we are able to link it to the economic costs. At every step of the 

modelling chain, we are capable to build the asset accounts and the physical 

water supply and use tables defined according SEEA-W approach. Moreover, an 

estimation of the water service costs in the district is done, being understood as 

all services which provide abstraction, storage, treatment and distribution of 

water and the wastewater collection and treatment facilities (WATECO, 2002). 

At this point, it is worth noting that other hydrological models and DSSs could 

have been implemented in order to calculate these tables. To guide this work we 

have used PATRICAL model (Pérez-Martín et al., 2014), SIMGES model (Andreu 

et al., 1996) and the acquisition tool AQUACCOUNTS explained in detail below. 

http://www.chj.es/
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Figure 1. Scheme of the approach to obtain SEEA-W tables by using different types of 
models related to water resources management 

The PATRICAL model (Pérez-Martín et al., 2014) is a large-scale, conceptual, 

and monthly, spatially distributed (grid 1 x 1 km2) water balance model with 

water quality that includes: streamflows, river-aquifer interactions, interactions 

between aquifers, groundwater discharge to wetlands and to the sea and 

average groundwater levels in aquifers. Within the model the river basin is 

divided into two vertical layers: an upper zone (where the model is distributed) 

and a lower zone (where the model is semi-distributed). Inputs to the model are 

monthly precipitation and air temperature. The model has the following 

modules: 1) snow, 2) runoff generation and soil moisture accounting, 3) runoff 

separation into surface flow and infiltration, 4) groundwater, 5) routing, and 6) 

groundwater transfer. At the moment, this model is used for different 

assignments related to the implementation of the WFD in the Jucar RBD (Ferrer 

et al., 2012), in the assessment of climate change impact on water resources 

(Estrela et al., 2012) and also in the definition of nitrate concentration objectives 

in groundwater bodies in Spain (Pérez-Martín et al., 2012). 
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AQUATOOL (Andreu et al., 1996) is a user-friendly DSS widely employed by 

Spanish River Basin Authorities, as well as in other countries (Salla et al., 2014; 

Sulis and Sechi, 2013; Uche et al., 2013). This DSS consists of several modules 

allowing the analysis of different approaches in water resources systems. The 

SIMGES module (Andreu et al., 1996) can simulate the water resources system, 

on a monthly time scale, by a simple flow balance in a flow network in order to 

find a flow solution compatible with the defined constraints. It can consider the 

aquifers, the returns to surface and groundwater system, the evaporation and 

infiltration losses from reservoirs, the energy production, the consideration of 

environmental flows as well as different water use priorities, and the definition 

of operating rules to reproduce source-demand interactions that can help 

improving integrated river basin management. 

To construct SEEA-W tables, we have developed an acquisition tool called 

AQUACCOUNTS, integrated into AQUATOOL DSS. This tool enables to link the 

main variables of the rainfall-runoff model such as precipitation, actual 

evapotranspiration, surface runoff, infiltration and river-aquifer interaction; 

with the results of the water balance model, such as water allocations, reserves, 

evaporation in reservoirs, among others, that can be managed by technicians. 

Both models (rainfall-runoff model and water balance model) enable the 

assembling of water asset accounts, matrix of flows between water resources 

and physical water supply and use tables. In the case of physical water supply 

and use tables, the economic activities are classified according to the 

International Standard Industrial Classification of All Economic Activities (ISIC) 

(UN, 2008), distinguishing the following groups: 

a) ISIC divisions 1-3, which include agriculture, forestry and fishing; 

b) ISIC divisions 5-33 and 41-43, which include mining and quarrying, 

manufacturing, and construction; 

c) ISIC division 35: electricity, gas, steam and air-conditioning supply; 

d) ISIC division 36: water collection, treatment and supply; 

e) ISIC division 37: sewerage; 

f) ISIC divisions 38, 39 and 45-99, which correspond to the service 

industries. 

With regards to economic issues, the WFD demands the assessment of the 

cost recovery of water services (Assimacopoulos et al., 2005; EC, 2012), although 

it does not define the methodology to calculate it (Borrego-Marín et al., 2015). 
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Seeing that different approaches were used in the previous river basin 

management plans, a new standard procedure was reported for the second cycle 

of WFD implementation in 2015 (Borrego-Marín et al., 2015). The estimation of 

the water services cost is based on this revision of cost recovery. The 

components of the full water services cost are composed by environmental, 

resource and financial costs (WATECO, 2002). Water services are classified in: a) 

High-pressure services (abstraction, storage and supply through public services 

for all uses), b) Abstraction and groundwater supply (no self-service), c) 

Distribution of water for irrigation, d) Urban cycle (treatment and distribution of 

drinking water), e) Self-service, f) Reuse, g) Desalination, and h) Collection and 

wastewater treatment in public networks. The estimation of the financial cost is 

based on data from public administrations budgets for each water service. 

Environmental costs are conceived as a penalty for deteriorate the status of 

water bodies and they are based on the annual equivalent cost of the necessary 

measures to correct the damages associated with a water service. Lastly, we do 

not consider the resource costs, although ignoring the resource opportunity cost 

can produce important errors in investments and water allocations (Pulido-

Velazquez et al., 2013). The approach used operates as a simulation-based 

hydroeconomic model. Thereby, we have a simulation model capable of 

representing the modus operandi of the system under the current operating 

rules and the economic assessment resulting from the water resource allocation. 

At this point, we would like to emphasize the use of hydroeconomic models to 

obtain water allocation costs, but the economic, social and environmental 

benefits remain a major challenge (Martínez-Paz et al., 2014), being out of our 

reach. 

A5.3. CASE STUDY: THE JUCAR RIVER BASIN DISTRICT 

A5.3.1. CHARACTERIZATION OF THE STUDY AREA 

The Jucar RBD, with a surface of 43,000 km2, is located in the eastern part of 

the Iberian Peninsula in Spain and is formed by the aggregation of watersheds 

that inflow into the Mediterranean Sea, between the Segura and Cenia river 

mouths, including also the latter. The set of basins is structured in nine water 

exploitation systems around the main rivers; among those, the Jucar is 

highlighted as it covers approximately 50% of the total area, which is therefore 

named Jucar RBD (see figure 2). 
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Figure 2. Location of the Jucar RBD in the Iberian Peninsula 

The Jucar RBD is characterized by a typical Mediterranean climate, with warm 

summers and mild winters, and where the average annual temperatures range 

from 14 to 16,5°C. The high temporal and spatial variability represent the main 

feature of Jucar RBD's climate. The average annual rainfall of the district is about 

500 mm, varying between 750 mm in the headwaters of the main rivers and 300 

mm in the southern regions. Time or seasonal variability in the rainfall regime is 

relevant in the region, existing frequent torrential rainfall episodes (short time 

and high intensity episodes) commonly known as “cold drop” (“gota fría” in 

Spanish), which are convective storms taking place mainly in autumn. On the 

other hand, the district suffers from dry periods, alternating with relatively wet 

periods. This makes water scarcity during dry periods one of the worst problems 

in this region. Conjunctive use of surface-ground waters has been historically a 

very important option in the district. In recent years, this situation has triggered 

an increased use of non-conventional resources, such as wastewater reuse or 

desalination of sea water.  

The Jucar RBD has a permanent population over 5 million inhabitants. 

Agricultural irrigation is the main water use in the Jucar RBD with a 78% of the 

total gross requirements (which includes net consumption, leakages and 

returns), urban and tourism necessities represent around 18% and industrial 

requirements use slightly less than 5% of the total consumptive uses. Otherwise, 

groundwater resources represent the 51% of the total water resource of the 

district in comparison with the 45% from surface water. Resources from reuse 

represent 3% of the total water resources. For more detailed information about 

the Jucar RBD, consult the web page of the Jucar RBA (www.chj.es). 

http://www.chj.es/
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A5.3.2. MODELLING THE JUCAR RBD BY USING AQUATOOL DSS 

At this point, a water allocation model has been developed with SIMGES 

module in which all the required data related with water resources, 

infrastructures and water requirements are included. Given the high number of 

elements to include in the model, the layout of the model was designed by 

spreadsheet databases provided by the Jucar RBA. The simulation model 

includes: 28 artificial reservoirs, 18 lakes, 210 user groups, 20 hydropower 

stations and 116 groundwater bodies, identifying the detail and complexity of 

the system. 

The elements represented in the water balance model are described below: 

 Surface water bodies. They include all the rivers, reservoirs and lakes 

defined by the Centre for Public Works Studies and Experimentation 

(CEDEX) (CEDEX, 2005) to which was commissioned the development of 

the basic hydrographic network in the Iberian Peninsula for the Report 

to the European Commission on Articles 5 and 6 of the WFD (CHJ, 2005). 

The inclusion of surface water bodies in the model requires a huge 

amount of information related to maximum and minimum flows, 

priorities, aquifers in which flows infiltrate, among others. In the same 

way, reservoirs and lakes required data related to evaporation rate, 

information related to level-area-volume, and monthly maximum, 

target and minimum rules curves used for zoning the reservoirs in order 

to manage water according to the priorities, among others. 

 Streamflows. Streamflow data series in natural regime included in the 

simulation model come from the results of PATRICAL rainfall-runoff 

model (Pérez-Martín et al., 2014). These results include the surface and 

groundwater flows, cover the period 1940/41-2011/12 and are 

expressed in hm3/month units. It is noteworthy that the hydrological 

year in Spain begins in October during the beginning of the rainy season 

and finishes in September coinciding with the end of the irrigation 

calendar. Moreover in Spain water resources systems are characterized 

by a marked reduction in streamflows throughout the past 30 years 

(Pérez-Martín et al., 2013; Pedro-Monzonís et al., 2015a), being the 

reason why two periods are usually considered in Spanish water 

planning works that are 1940/41-2011/12 (long period) and 1980/81-

2011/12 (short period). In this research, we simulate water resources 
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management models during the long period and we analyse the results 

obtained for the short period. Thus, we are approaching the current 

conditions and this allow us to obtain the initial volumes of reservoirs in 

an objective way. 

 Groundwater bodies. We have included all groundwater bodies 

considered in water planning works in Jucar RBD as unicellular aquifer 

elements. It is required to highlight that a high number of them might 

be unnecessary because of their low exploitation degree. Instead of this, 

they have been included because one of the objectives is considering all 

the elements of the water balance, being or not relevant. The values of 

the aquifer discharge coefficient (α) have been obtained from PATRICAL 

model (Pérez-Martín et al., 2014). Groundwater bodies have been 

simulated by applying the principle of superposition (Reilly et al., 1984; 

Solera et al., 2010). This approach implies that any action has an effect 

on the piezometric levels and flows into the aquifer that can 

superimpose natural levels and flows. 

 Water users. Three types of user groups were considered: 92 urban 

users, 95 agrarian and 23 industrial ones. Nominal water requirements 

contain a huge amount of information, such as the evolution of 

requirements during the year, the origin of the resource, returns and 

reliability criteria, among others. In relation to physical and use tables, 

traditionally in Spain the uses of water are divided into urban uses, 

agrarian uses, industrial uses for energy production, other industrial 

uses, aquaculture, recreational uses, boating and water transportation 

(BOE, 2008). This classification differs from the economic sectors 

described in ISIC (UN, 2008), consequently there are some sectors, such 

as division 36 and 37, which are difficult to include in our analysis. Other 

sectors such as service industries (divisions 38, 39 and 45-99) or 

households are both included in urban uses. In the case of Jucar RBD 

households represent 77% of urban requirements and service industries 

represent 23%. 

 External transfers. Due to the water scarcity condition of Jucar RBD, the 

use of resources coming from other territories should be highlighted. 

Mancomunidad de los Canales del Taibilla (MCT) supplies water 

destined to urban uses. Their water supply is provided by the Tajo-

Segura Aqueduct (ATS), the Taibilla River and desalination plants (March 

et al., 2014). Moreover, water resources from the ATS and Segura RBD 
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are used for agrarian requirements to the southern water exploitation 

system. 

As far as water management is concerned, as many other stressed river 

basins, in Jucar RBD water users employ several sources of supplies. Urban 

supplies are generally guaranteed, however, agrarian supplies depend on the 

hydrological state of the system: normal, pre-alert, alert and emergency; defined 

by the Status Index from the National Drought Indicator System in Spain (Pedro-

Monzonís et al., 2015b). The management of water resources made by SIMGES 

consists on, firstly, organizing water users according to their priority. In this way, 

urban users have higher priority than agrarian ones. In the case that a particular 

use can be supplied by more than one resource, supply priorities are used to rank 

the choices for obtaining water. Similarly, reservoirs are organized with priority 

numbers in order to release water firstly from reservoirs located downstream 

(inter-reservoir relationships). The model also considers operating rules, defined 

by monthly curves for a reservoir or a group of reservoirs which define a 

threshold to trigger an action, such as reducing or activating other sources of 

supplies (Lerma et al., 2014). During wet years, agrarian uses are supplied with 

conventional resources (surface or groundwater, as the case may be). In those 

years with less availability of surface streamflows (normal and pre-alert status), 

they use conventional resources and also non-conventional resources such as 

reused water. Under drought conditions (alert and emergency status) the use of 

non-conventional resources is widespread, such as emergency wells and 

desalination, and also external transfers are performed.  

According to the water service costs collected from Annex 9 of the Jucar River 

Basin Management Plan (BOE, 2016) the average cost of water depends on 

several factors such as the origin (surface water, groundwater, reused water or 

desalinated water) and the use (agrarian use, urban use or industrial use). In the 

case of water transfers the prices of the services are published (BOE, 2012; MCT, 

2016). In the case of urban use the average cost of water by employing surface 

supply is estimated in 1.38 €/m3, groundwater supply is estimated in 1.61 €/m3, 

desalinated water is estimated in 7.27 €/m3 and water transferred from other 

territories in 2.02 €/m3. In the case of industrial water the average costs are 1.45 

€/m3, 0.18 €/m3 and 7.44 €/m3 by employing surface, groundwater or 

desalinated water respectively. This disparity of average costs in desalinated 

water is explained by the huge investment in desalination plants during the last 

decade, which are no longer in operation, while surface infrastructures remain 
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fully amortized. The average cost of collection and treatment of used water is 

0.61 €/m3 for both urban and industrial uses. On the other hand, agrarian 

supplies are estimated in 0.14 €/m3 for surface water, 0.29€/m3 for groundwater 

supplies, 0.23€/m3 for reused water and 0.24 €/m3 for water transferred from 

other territories. These costs have been obtained for the period 2004-2013 and 

they are expressed at constant 2012 prices, coinciding with the last year of the 

simulation. 

A5.4. RESULTS 

As an example of the applicability of SEEA-W approach in the Jucar RBD, the 

following sections present the physical supply and use tables, the asset accounts 

and an estimation of water services costs for the average year. The reference 

period used for the determination of these tables is 1980/81-2011/12. 

A5.4.1. PHYSICAL SUPPLY AND USE ACCOUNTS 

The physical use and supply tables are presented below (see table 1 and 2). 

As we observe in table 1, the major use is allocated for agrarian requirements 

(7772 hm3/year) and energy production (6590 hm3/year) followed at some 

distance by households (376 hm3/year) and service industries (114 hm3/year). 

Attending to the origin of water resources, abstractions from surface water for 

energy production represent the highest figures followed by abstractions from 

soil water for agrarian uses (5474 hm3/year), while the rest of abstractions have 

relatively low values in comparison. With these elevated figures, the 4 hm3/year 

of water abstracted from the sea go unnoticed despite their significance. Leaving 

aside energy production and soil water abstractions, taking into account the 

origin of water resources groundwater represents 51% of total water resources 

followed by surface water. On the other hand, according to the use of water 

received from other economic units, reused water in conjunction with water 

transferred from other territories play an important role in the district, 

representing 115 hm3/year and 81 hm3/year respectively. Reused water is 

mainly used in agrarian and industrial supplies while approximately, 40 hm3/year 

coming from the MCT are destined to households and service industries, and 

about other 41 hm3/year from the ATS and Segura RBD are used for agrarian 

supplies.  
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In table 2, we observe that the origin of reused water comes from households 

and service industries. This table also includes the volume of water returned by 

the different uses to water resources (surface water and groundwater) and to 

other sources (sea water). As expected, the highest returns come from 

hydropower production, which are equal to its abstractions. At this point, it is 

required to highlight that wastewater can be discharged directly into the 

environment (in which case it is recorded as a return flow) or supplied to another 

industry for further use (reused water). Once returns are discharged into the 

environment (row 5.a from table 2) if they are abstracted downstream, they may 

be considered as indirect reused water, or in other words, as new abstractions 

from the environment. However, when these volumes are used directly for other 

uses, mainly agrarian ones, we refer to them as direct reuse. 
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A. Physical use table (hm3) 

Industries (by ISIC category) 

Households 

Rest 
of the 
world Total 1 - 3 

5 - 33, 
41 - 43 35 36 37 

38, 39, 
45 - 99 Total 

From the 
environment 

1. Total abstraction (= 1.a + 1.b = 1.i + 1.ii) 7772 95 6590   114 14571 376   14947 

1.a Abstraction for own use 7772 95 6590   114 14571 376   14947 

1.b Abstraction for distribution             

1.i From inland water resources 7772 95 6590   114 14571 376   14947 

  1.i.1 Surface water 1236 0 6590   37 7863 122   7986 

  1.i.2 Groundwater 1062 95    77 1234 254   1488 

  1.i.3 Soil water 5474      5474    5474  

1.ii Collection of precipitation           

 1.iii Abstraction from the sea      1 1 3   4  

Within the 
economy 2. Use of water received from other 

economic units 150 6    9 165 31 0 196 

of which:               

2.a Reused water 109 6     115    115 

2.b Transfers from other territories 41     9 50 31   81 

  3. Total use of water (= 1 + 2) 7922 101 6590 0 0 124 14736 407 0 15143 

Table 1. Physical use table for the average year 1980/81-2011/12 (hm3) 
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B. Physical supply table (hm3) 

Industries (by ISIC category) 

Households 

Rest 
of the 
world Total 1 - 3 

5 - 33, 
41 - 43 35 36 37 

38, 39, 
45 - 99 Total 

Within the 
economy 

4. Supply of water to other economic units 0 0 0 0 0 27 27 88 81 196 

of which:                  

4.a Reused water         27 27 88  115 

4.b Transfers from other territories              81 81 

Into the 
environment 

5. Total returns (= 5.a + 5.b) 835 81 6590 0 0 91 7598 301 0 7898 

5.a To water resources 726 81 6590 0 0 57 7454 187   7641 

  5.a.i Surface water 271 81 6590    57 6999 187   7186 

  5.a.ii Groundwater 455 0     0 455 0   455 

  5.a.iii Soil water                 

5.b To other sources  109          35 144 113    257 

  6. Total supply of water (= 4 + 5) 835 81 6590 0 0 118 7624 389 81 8094 

  7. Consumption (= 3 - 6) 7087 20 0 0 0 5 7112 18 -81 7049 

  7.a Losses from evaporation                 

  

7.b Losses in distribution not because of 
leakages 

                    

Table 2. Physical supply table for the average year 1980/81-2011/12 (hm3) 
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Based on the results of physical use and supply tables (see table 1 and table 

2) the ratio between irrigation water consumed (2248 – 835 = 1613 hm3/year) 

and irrigation water used (7922 - 5474 = 2448 hm3/year) for the whole district is 

about 65%.  This value represents the average efficiency of irrigation 

requirements in Jucar RBD. Although at first sight, this value may seem too low, 

we should highlight that the efficiency in the traditional irrigation users in Turia 

water exploitation system is more or less about 30%, while in Vinalopó-Alacantí 

water exploitation system the efficiency is more or less about 90% due to 

sprinkler and dripper irrigation systems. 

A5.4.2. ASSET ACCOUNTS 

Water asset accounts reflect a water balance in a territory, measuring the 

stocks at the beginning and at the end of a time period and recording the 

changes (increases or decreases) in the environment during that time. As we 

observe in table 3, the opening stocks in artificial reservoirs, which refer to the 

volume of water stored in September 1980, are 1510 hm3 (far away from their 

total capacity estimated in 3336 hm3). The opening stock in groundwater reaches 

the value of 92308 hm3. This latter aggregates the results of the hydrological 

model and the water resources management model according to the principle 

of superposition (Reilly et al., 1984; Solera et al., 2010). Asset accounts are linked 

with water supply and use tables. As we observe, the returns that appear in asset 

accounts, which are 7898 hm3/year, correspond to the total returns to water 

resources in the physical supply table (see row 5 from table 2). Turning to the 

returns, the highest values correspond with the returns of hydropower plants 

(6590 hm3/year out of 7898 hm3/year). On the other hand, about 455 hm3/year 

of returns recharge the aquifers and the rest flow to rivers mainly. Precipitation 

is directly assigned to soil water (20798 hm3/year). As indicated above, the 

abstraction that appears in table 3, which is 14947 hm3/year, corresponds to the 

abstraction from water resources by the economy in the physical use table (see 

row 1.i from table 1). As we observe in table 1, rivers and soil water supply 

hydropower production and rainfed agriculture respectively. The largest amount 

of outflows are produced by rivers; comparing table 1 and table 3, we observe 

that 257 hm3/year out of 1624 hm3/year of outflows to the sea correspond with 

returns to sea water. The closing stocks are approaching to the opening ones, 

closing the balance in the environment for the average year. In general terms, 

the highest values in the district correspond with precipitation and 

evapotranspiration, being one order of magnitude bigger than abstractions, 
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returns or outflows to the sea and, even more, considering that water used by 

hydropower plants is abstracted and returned many times. As a result, detecting 

possible errors in variables controlled by human actions becomes a very difficult 

task due to the fact that they remain masked by much bigger values. Similarly, 

table 4 represents the flows between water resources in the environment. This 

latter assists in identifying the contribution of reservoirs in the water resource 

management in the district, the contribution of groundwater to rivers, as well as 

the contribution of precipitation to river flows and groundwater recharge, 

among others. 
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EA.131. Surface water 

EA. 132 
Groundwat

er 

EA. 133 Soil 
water 

Total EA. 1311 
Artificial 

reservoirs 

EA. 1312 
Lakes 

EA. 1313 
Rivers 

EA. 1314 
Snow, ice 

and 
glaciers 

1. Opening stocks 1510 25  0 92308 1405 95248 

 Increases in stocks        

 2. Returns 1 54 7389  455  7898 

 3. Precipitation      20798 20798 

 4. Inflows 4349 303 7283 0 3277 0 15211 

  4.a. From upstream territories        

  4.b. From other resources in the territory 4349 303 7283  3277 0 15211 

 Decreases in stocks        

 5. Abstraction 49 1 7936  1488 5474 14947 

 6. Evapotranspiration/actual evapotranspiration 80 66    11415 11562 

 7. Outflows 3768 236 6784 0 2815 3909 17491 

  7.a. To downstream territories        

  7.b. To the sea  146 1624  509  2279 

  7.c. To other resources in the territory 3768 89 5139  2309 3909 15211 

 8. Other changes in volume        

9. Closing stocks 1524 27  0 92290 1405 95246 

Table 3. Water asset accounts for the average year 1980/81-2011/12 (hm3) 
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EA.131. Surface water 
EA. 132 

Groundwat
er 

EA. 133 Soil 
water 

Outflows to 
other 

resources in 
the 

territory 

EA. 1311 
Artificial 

reservoirs 

EA. 1312 
Lakes 

EA. 1313 
Rivers 

EA. 1314 
Snow, ice 

and glaciers 

EA.1311 Artificial reservoirs   3581  187  3768 

EA. 1312 Lakes   89    89 

EA. 1313 Rivers 4349 303   487  5139 

EA. 1314 Snow, ice and glaciers       0 

EA. 132 Groundwater   2306    2306 

EA. 133 Soil water   1306  2603  3909 

Inflows from other resources in the territory 4349 303 7283 0 3277 0 15211 

Table 4. Matrix of flows between water resources for the average year 1980/81-2011/12 (hm3) 
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A5.4.3. VALUATION OF WATER SERVICES 

Table 5 is inspired in hybrid accounts of SEEA-W approach and aims to 

describe the water services in physical and monetary terms in Jucar RBD for the 

average year. As stated above, the reference period used for the determination 

of these figures is 1980/81-2011/12. As we observe, the total water services 

costs in Jucar RBD amounts to 1634 million € per year at constant 2012 prices. 

Half of these annual costs corresponds to household uses, the rest is associated 

to agriculture and industry services. In relation to the supplies of water 

requirements, we distinguish between abstractions from surface water, 

groundwater, desalinated water, reused water and the use of water received 

from other territories. This availability of sources of supply is a crucial feature of 

water-stressed river basins, where water is scarce and the generation of 

additional resources is required to guarantee the water supplies. This fact 

translates into large investments and it is responsible of the increase of the total 

water services costs. In this sense, considering the desalination costs it is worth 

noting that desalinated water is only destined to supply urban uses.  
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Industries (by ISIC category) 

Households 

Rest of 
the 

world Total 1 - 3 
5 - 33, 
41 - 43 35 36 37 

38, 39, 
45 - 99 Total 

1. Abstraction, storage, treatment and distribution 
(Million €) 522 29       202 753 661   1414 

1.a Surface water 177       51 228 169   397 

1.b Groundwater 311 28      124 463 408   871 

1.c Desalinated water         7 7 22   29 

1.d Reused water 25 1       26    26 

1.e Transfers from other territories 10       19 29 62   91 

2. Wastewater collection and treatment (Million €)   50       40 89 131   220 

3. Total water services (Million €) 522 79       241 842 791   1634 

4. Abstraction, storage, treatment and distribution 
(hm3) 2448 101 6590    125 9264 410   9673 

4.a Surface water 1236  6590    37 7863 122   7986 

4.b Groundwater 1062 95      77 1234 254   1488 

4.c Desalinated water         1 1 3   4 

4.d Reused water 109 6       115    115 

4.e Transfers from other territories 41       9 50 31   81 

5. Wastewater collection and treatment (hm3)   81       65 145 213   358 

6. Total water services (hm3) 2448 182 6590     189 9409 622   10031 

Table 5. Valuation of water services for the average year 1980/81-2011/12 (Million € at constant 2012 prices) 
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A5.4.4. INDICATORS DERIVED FROM WATER ACCOUNTING 

From the results above, some indicators have been acquired referred to the 

period 1980/81-2011/12. Asset accounts table enable us to obtain the External 

Renewable Water Resources (ERWR) (UNDS, 2012) consisting of groundwater 

transfers and river runoff proceeding from other countries, in the case study this 

concept reaches the value of 0 hm3/year, as observed in row 4.a from table 3. 

On the other hand, as indicated in row EA. 133 Soil water from matrix of flows 

(table 4), the Internal Renewable Water Resources (IRWR) (UNDS, 2012) 

represents the amount of resources generated in the river basin from 

precipitation, which is 3909 hm3/year in the Jucar RBD. The Total Natural 

Renewable Water Resources (TNRWR) indicator (UNDS, 2012) is obtained as the 

sum of IRWR and ERWR and it corresponds to the maximum theoretical amount 

of water available for a country on an average year in a long reference period. 

This indicator is the same as IRWR. To assess the abstractions and the degree of 

water stress suffered by the Jucar RBD, the Water Exploitation Index (WEI) (EEA, 

2005) is described as the mean annual total abstraction of freshwater divided by 

the mean annual total renewable freshwater resource. For the period 

considered the WEI in the case study is 242%, showing a high degree of water 

stress in the river basin. This high figure is due to the consideration of 

hydropower abstractions in the calculation of the index. Leaving aside the 

abstractions made by hydropower stations the WEI is 74%, much lower than the 

obtained previously. In the same way, Water Consumption Index (WCI) (UNDS, 

2012) represents the ratio between water consumption and TNRWR. As this 

indicator takes into consideration the amount of water returned into the 

environment, the value obtained for the WCI in the case study is 40%, relaxing 

the degree of pressure in the district. Similarly, according to the results of the 

average year 1980/81-2011/12 the ratio of desalinated water amounts to 0.02%, 

in the case of reused water this ratio is 0.8% and 0.5% of total water used derives 

from water transferred from other territories. Despite the apparently minor 

significance of these volumes, they represent almost 9% of total water services 

costs as noted in table 5.   

A5.5. DISCUSSION 

The SEEA-W approach represents a powerful tool for describing the water 

cycle, proving to be capable of improving transparency in water management 

decisions. Among its benefits, they allow users to detect deficiencies in 
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controlling water in conjunction with a preventive use of water and the 

application of water rights. PATRICAL has allowed the collection of the water 

cycle parameters, which can not be obtained by monitoring, such as 

evapotranspiration, soil water, the distinction between surface and groundwater 

runoff or the returns to surface and groundwater bodies. Alone or, in 

combination with other tools, AQUATOOL DSS has demonstrated to be a reliable 

tool for building asset accounts and physical supply and use tables under SEEA-

W approach, as it has been shown in this and other recent works (Pedro-

Monzonís et al., 2016). And the acquisition tool AQUACCOUNTS has enabled to 

link the main variables of the rainfall-runoff model, with the results of the water 

allocation model and the economic data, enabling us to obtain the above water 

accounts in specific months or periods. 

Several authors (Molden and Sakthivadivel, 1999; Momblanch et al., 2014; 

Tilmant et al., 2015; Pero-Monzonís et al., 2016) pointed out that the first 

handicap of water accounting is the spatial and temporal aggregation. Regarding 

the spatial consideration, this research has considered the whole territory of 

Jucar RBD, but it could be possible to apply this approach at each of the nine 

water exploitation systems that conforms the Jucar RBD. Regarding the temporal 

consideration, water balances and, hence, water accounts can be built at 

monthly scale, annual scale or for an average year. As noted by Tilmant et al. 

(2015), even though the SEEA-W is increasingly implemented, there is no 

agreement in which is the best approach to build its tables. In accordance with 

the main objective of the water accounting which is to compare hydrological 

information at spatial and at temporal scale, it is required to have standard 

procedures for calculating the water accounts. 

In this paper physical use and supply tables and asset accounts have been 

obtained according to SEEA-W approach. According to the assignation system 

based on water rights in Spain, water is managed by river basin authorities in 

order to distribute surface and groundwater resources. In this sense, rainfed 

agriculture has traditionally played a secondary role in Jucar RBD. The difficulty 

of monitoring soil water abstractions is the reason why management models do 

not consider soil water as a source of water resources being hydrological models 

the providers of this information. It is necessary to emphasize that 

evapotranspiration represents a huge amount of water, distorting abstractions 

from surface and groundwater which are more interesting or decisive to the 

water users as noted by Momblanch et al. (2014). It is worth remarking that small 
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errors in the evapotranspiration values may be in the same order of magnitude 

as the rest of water abstractions in the Jucar RBD. Note that in other regions in 

Spain rainfed agriculture plays an essential role and this point requires further 

in-depth analysis (Borrego-Marín et al., 2015). As far as hydropower abstractions 

are concerned, the values presented in the tables are obtained as a result of the 

water allocation model, which may overestimate the energy production as it 

considers that hydropower plants are operating 24 hours a day. These high 

figures of hydropower abstractions distorts the main uses in the district, and, 

even more, considering that in stressed river basins, the volume of water 

abstracted for hydropower generation depends on the water resources 

management and, in the case of Jucar RBD, water resources are mainly managed 

for urban and agrarian uses. Finally, there is a lack of information about losses in 

distribution networks which makes difficult to consider them. 

In relation to asset accounts, it is worth noting that there are variables such 

as reservoir volumes, abstractions or outflows to the sea, which can be 

controlled by technicians, that might be covered up by other variables such 

precipitation or evapotranspiration (Pedro-Monzonís et al., 2016). In this sense, 

Momblanch et al. (2014) highlighted that small errors (5%) in these large terms 

may reach the same order of importance as water requirements.  

In relation to the valuation of water resources, as noted by Borrego-Marín et 

al. (2015) “the implementation of SEEA-W remains scarce, and full exploitation 

of the economic tables of the framework is negligible”. Probably, the main 

reason is that water resources valuation can be quite complex due to the fact 

that data are often not available or too expensive to collect (UNDS, 2012). Up to 

now, economic information is presented in either administrative or regional 

scale, which does fit neither river basin nor water exploitation systems scale. As 

a result, the absence of direct sources of economic data for filling these tables 

involves downscaling statistics in many cases (Borrego-Marín et al., 2015), having 

serious obstacles when we analyse past series (EC, 2015). Here we present a 

straightforward approach based on average costs for all water services, which 

have been estimated according to cost recovery analysis. Our valuation of water 

services is inspired in SEEA-W hybrid accounts taking into account the 

restrictions of data availability. In this sense, the objectives of hybrid and 

economic accounts are to describe the supply and use of water related products 

in monetary terms and on identifying (a) the costs associated with their 

production; (b) the income generated by their production; (c) the investment in 
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water related infrastructure and the maintenance costs; and (d) the fees paid by 

the users for water related services, as well as the subsidies received (UNDS, 

2012). To do this, SEEA-W tables require information on output and supply of 

industries at basic prices, intermediate consumption and use, cost fixed capital 

formation, taxes and subsidies on products, and trade and transport margins 

among others. This amount of data is not always easy to find. In accordance with 

the approach proposed in this paper based on average costs instead of other 

cost-benefit analysis tools, considering these figures may be interesting from 

users point of view, due to the fact that they do not represent the users’ costs 

as governments usually bear part of the expenses (Borrego-Marín et al., 2015). 

Besides, using average cost neglects the fact that optimal management decisions 

are based on marginal costs rather than average costs (Griffin, 2006). Lastly, in 

the case of energy production, it is not possible to know its average costs as 

energy sectors are not subject to a cost recovery analysis (EC, 2012). 

On the other hand, several indicators have been obtained in order to 

maximise the profits of water accounting. In this sense, IRWR and ERWR are 

mainly based on the amount of water generated in a territory, paying attention 

to groundwater transfers and river runoff proceeding from upstream territories. 

Also, as noted by Pedro-Monzonís et al. (2016) these indicators (IRWR and 

ERWR) seem more appropriate for transboundary river basins, where water 

management affects the availability of water resources in the nearby region. At 

this point, we miss an indicator that reflects the need of using external water 

transfers from other territories. A first approach to the stress suffered for the 

system is presented through WEI and WCI, but they present some 

inconveniences related with seasonality (EEA, 2013) as they are defined at 

annual scale and they are not able to identify scarcity episodes at monthly level. 

In the case of WEI, the inclusion of hydropower abstractions for its calculation 

should be discussed. Moreover, according to Spanish law (BOE, 2008), water 

supplies are considered satisfied if their monthly/annual deficits do not exceed 

a certain threshold and this information is not presented in SEEA-W tables, 

questioning their validity for resource allocation and reservation purposes. 

Another weakness of the SEEA-W tables is the fact they do not reflect 

environmental requirements. This is a crucial issue in water stressed river basins 

due to the fact that environmental benefits are extensively shared (Garrick et al., 

2009) but the consideration of environmental flows may harmfully affect the 

current water uses in the river basin (Pellicer-Martínez and Martínez-Paz, 2016). 



Assessment of water exploitation indexes based on water accounting 

190 

It is worth noting that Spanish Guideline of Water Planning (BOE, 2008) 

prioritises the environmental use of water front agrarian or industrial uses. 

During drought episodes, non-priority water uses are affected by a reduction in 

water availability and, moreover they are also affected by protection of the 

environment (Bennett, 2008). These circumstances have economic impacts that 

are not considered in hybrid and economical accounts. As noted in previous 

works (Pedro-Monzonís et al., 2016), improving water accounting 

methodologies in order to include environmental needs represents a clear 

requirement. 

Water planning and management in water stressed river basins can be based 

on two possibilities: increasing water supply sources or focusing on demand 

management. Water supply in Spain during the last century has been based on 

enhancing water infrastructures (March et al., 2014). As noted by Ferrer (2012), 

in the Mediterranean region, the reuse of treated wastewater together with 

desalination represents a crucial element for the IWRM. Also the 

Intergovernmental Panel on Climate Change (IPCC) describes desalination as a 

conceivable choice, jointly with wastewater reuse, to amend the effects of 

climate change, specifically in arid and semi-arid regions (Bates et al., 2008). 

Nonetheless, desalination implies a high cost (related with energy consumption 

and CO2 emissions) which is not affordable for farmers so only urban and tourism 

uses are willing to pay. Improving the knowledge on water services costs may 

help decision-makers and stakeholders with the adoption of new strategies 

compatible with economic developments and the sustainable use of water 

resources. 

Despite all the benefits of the SEEA-W, water accounts provide a static 

representation of the region analysed (Momblanch et al., 2014). In our case, this 

image can vary temporally (from 1940 to 2012) and spatially (within each of the 

water exploitation systems in Jucar RBD). There are some valuable aspects that 

water accounts are not capable of offering in comparison with traditional 

analysis provided by water resource management models such as deficits on 

water requirements or the identification of the limit on total water abstractions. 

From the point of view of water planning and management, water accounts do 

not solve all the current inconveniences concerning water uses, in this sense, as 

noted by EC (2012) “water accounts alone are not enough as the information 

they provide is only the basis for action”.  
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A5.6. CONCLUSIONS 

The main goal of this study, along with improving knowledge of all the 

components of the Jucar RBD itself, was the development of the required 

methodological tools for applying the SEEA-W and the acquisition of potential 

indicators derived from water accounting to be used during the planning and 

management stages of water resources. Therefore, this paper pretends to assist 

to the purposes of the “Blueprint to safeguard Europe’s water resources”. 

In the case study analysed, the results indicate that for the average year 

1980/81-2011/12, the total use of water in the district amounts to 15143 

hm3/year, being the TNRWR 3909 hm3/year. The ratios of desalinated, reused 

water and water transferred from other territories amount to 0.02%, 0.8% and 

0.5% respectively. On the other hand, the water service costs in Jucar RBD 

amounts to 1634 million € per year at constant 2012 prices, corresponding 9% 

of these costs to non-conventional resources, as described above.   

This research has demonstrated the utility of hydrological and water 

resources management models for building asset accounts and physical supply 

and use tables under SEEA-W approach. The combined use of SIMGES and 

PATRICAL enable us to emulate the water cycle and water balances altered by 

human actions, taking into account water abstractions, returns, outflows to the 

sea or water transfers among others. The economic cost of water services has 

also been incorporated in a straightforward line, in conjunction with several 

indicators to reflect the water stress suffered in the territory. In any case, our 

methodology does not resolve all existing issues and there is still a long way to 

go in order to facilitate the evolutions and improvements that SEEA-W approach 

requires. 
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ANNEX 6. WATER ACCOUNTING IN THE 
PO RIVER BASIN APPLIED TO CLIMATE 
CHANGE SCENARIOS6 

 

Abstract 

The influence of humans on the earth's temperature and climate is a fact 

recognised by scientific community and it is mainly caused by deforestation and 

burning fossil fuels. Mediterranean area is turning drier, becoming more 

vulnerable to wildfires and drought. In the coming years, it is expected that the 

increasing water demand in combination with water scarcity due to climate 

change would intensify the current water stress. The Po is the longest river in 

Italy, with a length of 652 km and it is also the largest river with an average 

discharge of 1540 m3/s.  The Po Valley covers the economically most important 

area of Italy, and a population of more than 16 million which produces 40% of 

the national Gross Domestic Product. As other Mediterranean areas, this river 

basin is subject to high flow variation, frequent floods and periods of low flows 

that may be amplified in the coming years. The main objective of this study is to 

apply a modelling chain for the development of water accounting analysis in the 

Po River Basin, including the impact of climate change on the region. To do this, 

the climate change impacts have been obtained under the Intergovernmental 

Panel on Climate Change scenario RPC4.5. The hydrological/hydraulic 

components are simulated through a physically based distributed model 

(TOPKAPI) and a water balance model at basin scale (RIBASIM). The accounting 

approach has been the SEEAW. The results show that, in future scenarios, the 

                                                           
6 Pedro-Monzonís, M., Del Longo, M., Solera, A., Pecora, S., Andreu, J., in press. Water 

accounting in the Po River Basin applied to climate change scenarios. 2nd International 

Conference on Efficient and Sustainable Water System Management towards Worth Living 

Development, 2EWaS 2016.  
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application of measures will be required to mitigate climate change maintaining 

water allocations. 

Keywords 

Climate change, water accounting, System of Environmental-Economic 

Accounting for Water (SEEAW), Po River Basin  

A6.1. INTRODUCTION 

The influence of humans on the earth's temperature and climate is a fact 

recognised by scientific community, and it is mainly caused by deforestation and 

burning fossil fuels. All regions around the world are affected by climate change. 

According to European Commission [1] heat waves, forest fires and drought events 

are becoming frequent phenomena in Southern and Central Europe, while 

Mediterranean area is turning drier, becoming more vulnerable to wildfires and 

drought. The most important fact is that these impacts may be intensified in the 

coming years. In fact, several authors have reviewed climate change and land use 

impacts on water resources in European and Mediterranean areas manifesting that 

the increasing water demand in combination with water scarcity due to climate 

change would intensify the current water stress [2, 3]. 

To overcome this situation, adaptation actions are preventing the damage 

climate change can cause, saving lives and money later. Some examples of 

adaptation measures are adapting building codes to future climate conditions and 

extreme events, building flood defences, developing drought tolerant crops or the 

more efficiently use of scarce water resources [1]. Regarding the last, in this sense, 

the Blueprint to safeguard Europe's water resources [4] recognizes water accounting 

as a useful tool to supply basic information with the aim of providing support to 

decision-makers in water resource management [5, 6]. 

To assess the impacts of climate change on water resources management, the 

Po River Basin (PRB) in North Italy, has been selected as a case study, because of its 

importance, dimensions, availability of data, and the increased severity of drought 

and flood episodes in recent years. Other studies have been used as a basis for the 

development of this research. Vezzoli et al. [7] studied the climate change impacts 

on the whole PRB under RPC4.5 scenario to 2040 applying the bias correction to the 

outputs of impact model and not to climate data, showing a reduction on discharges. 
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Afterwards, Vezzoli et al. [3] simulations are extended to 2100 under RPC4.5 and 

RPC8.5 scenarios to evaluate water availability in the PRB. 

This work is presented as follows: Section 2 summarises the methodology of the 

approach; Section 3 describes briefly the climate and hydrology of the PRB; in 

Section 4 the asset accounts for the considered scenarios are presented; Section 5 

presents the discussion; and finally in Section 6 the main conclusions are drawn. 

A6.2. METHODOLOGY 

The target of implementing climate and hydrological simulations is to assess the 

impacts of climate change and also the capability of PRB to adapt to new conditions. 

The methodology proposed consists on the application of four consecutive stages: 

1) a module for the climate; 2) a fully distributed physically-based rainfall-runoff 

model (TOPKAPI); 3) a water resources management model (RIBASIM) for simulating 

the behaviour of river basins during varying hydrologic conditions, and 4) the 

building of the required databases to connect the two latest models to organize the 

information to obtain the asset accounts under SEEAW methodology. 

The climate change impacts on the period 2001-2100 have been simulated under 

the Intergovernmental Panel on Climate Change (IPCC) Representative 

Concentration Pathways (RCP) 4.5 [8]. The hydrological model is composed by 

TOPKAPI (TOPographic Kinematic Approximation and Integration) model [9], a fully-

distributed physically-based rainfall-runoff model that can provide high resolution 

information on the hydrological state of a catchment. Once obtained the runoff, this 

is the input to RIBASIM (River Basin Simulation Model) [10], a water balance model 

to simulate the behaviour of river basins during varying hydrologic conditions (see 

Figure 1). More detailed information about the application of these models in the 

case study are described in Vezzoli et al. [7] and Vezzoli et al. [3]. 

The accounting approach applied in this research has been the System of 

Environmental-Economic accounting for Water (SEEAW) [11]. As other accounting 

approaches, SEEAW was developed with the objective of standardizing concepts and 

methods in water accounting for organizing economic and hydrological information 

permitting a consistent analysis of the contribution of water to the economy and the 

impact of the economy on water resources. SEEAW comprises five categories of 

accounts, this research is focused on obtaining asset accounts. 



Assessment of water exploitation indexes based on water accounting 

202 

 

Figure 1. Scheme of the water resources assessment in Po River Basin 

A6.3. DESCRIPTION OF THE CASE STUDY: THE PO RIVER BASIN 

The Po is the longest river in Italy, with a length of 652 km from its source in 

Cottian Alps (at Pian del Re) to its mouth in the Adriatic Sea, in the north of Ravenna 

(see figure 2). It is also the largest river with an average discharge of 1540 m3/s. The 

river basin area extends on about 71.000 km2 in Italy, and about 3000 km2 in 

Switzerland and France. 

 

Figure 2. Location of the Po River Basin 

Discharges are characterized by two maxima, in spring and autumn, and two 

minima, in winter and summer. On the one hand, the regime of Alpine tributaries 

responds to temperature pattern; late spring and summer discharges are the results 

of snow and glacier melting processes with a maximum in summer and a minimum 

in winter. On the other hand, the regime of Apennines tributaries are driven by 
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precipitation, showing two maxima and two minima. In the Alpine area, there are 4 

natural big lakes and 174 reservoirs, of which 143 are artificial reservoirs for 

hydropower production; furthermore, the basin comprises over 600 km2 of glacier 

areas. 

Climate conditions in the Po area are changing in a sensitive way: from 1960 to 

present an increase of the annual mean temperature of about 2°C has been 

observed, with a relevant increase of the linear trend which leads to forecasting an 

increase of the annual mean temperature close to 3-4 °C at the end of the century. 

The decrease of precipitation is not so evident, nevertheless, an increase in the 

intensity of the single rainfall events, but an overall decrease in the total number of 

the rainfall events can be observed, resulting in a decrease of the annual mean 

precipitation of about 20% observed during the last thirty years. The decrease is 

more evident during spring and summer seasons (when a maximum decrease of 

about 50% can be noticed) whereas the inter-annual variability increases. 

Furthermore, due to the strong negative correlation between the decreasing snow 

coverage and the increasing air temperature, a constant retreatment of the alpine 

glaciers is expected. 

The PRB covers the economically most important area of Italy, and a population 

of more than 16 million which produces 40% of the national Gross Domestic Product 

(GDP). Water uses within the PRB come from the electricity sector, from inland 

navigation and for an irrigation based agriculture. The river is subject to high flow 

variation, frequent floods and periods of low flows. Total water abstraction account 

to more than 20.5 billion m3 per year, most part of which (16.5 billion m3) is used in 

agriculture/irrigation, 2.5 billion m3 for drinking water and 1.5 billion m3 for industrial 

uses. Abstractions account for 14.5 billion m3 for surface waters and for 6 billion m3 

for groundwater. 

In this research, we concentrate on Pontelagoscuro station, which is 

representative of the water cycle on the whole PRB. 

A6.4. RESULTS 

Water accounts enable us to compare hydrological information at temporal 

scale. As an example of the applicability of the model chain, the following sections 

show the asset accounts in the current scenario, taking as a reference the 

hydrological year 2010/11; and in the RCP 4.5 scenario to consider the effects of 
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climate change, taking as a reference the time horizon 2040/41. The simulation of 

the current scenario has been driven by climate observations and it is used as a 

reference. For the scenario RCP 4.5, the simulations of precipitation and 

temperature until 2100 were provided by the Euro-Mediterranean Centre on 

Climate Change (CMCC). These simulations were obtained from the regional model 

COSMO-CLM model-driven global CMCC-CM [12]. RCP 4.5 scenario considers a 

stabilization of the entire radioactive forcing by 2100 through the adaptation of 

technologies and strategies to reduce greenhouse gas emissions [3]. This scenario 

assumes an increase in CO2 emissions until 2040 and a later decrease to less than 

the present, approximately 4.2 PgC / Yr. 

A6.4.1. CURRENT SCENARIO 

As we observe in table 1, at the beginning of the year the volume of reserves are 

over 95 km3, while closing stocks include over 93 km3. The values of snow and 

groundwater volumes at opening and closing stocks are explained by the principle 

of superposition [13]. In other words, we must pay attention to the changes in 

volumes and not in the volumes themselves. During 2010/11 precipitation 

represents more than 80 km3, mainly in the form of rain. The volume abstracted for 

water uses comes from the intakes located in the river. It is also relevant that the 

amount of evapotranspiration from soil is twice than the water abstracted for water 

uses. On the other hand, the outflows to the sea exceeds 50 km3. Other changes in 

volume are considered to close the balance, being explained the uncertainties such 

as variation in the river levels or aquifers and representing an error of 5% in the 

whole river basin. According to table 2, the main exchanges of flows between water 

resources are those between soil water and rivers. 
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EA.131. Surface water 
EA. 132 
Ground
water 

EA. 133 
Soil 

water 
Total EA. 1311 

Artificial 
reservoirs 

EA. 
1312 
Lakes 

EA. 
1313 
Rivers 

EA. 1314 
Snow, ice 

and glaciers 

1. Opening stocks  1.21  75.25 0.47 18.68 95.53 

 Increases in stocks        

 2. Returns   0.88  4.92  5.79 

 3. Precipitation    4.80  77.56 82.37 

 4. Inflows        

  4.a. From upstream territories        

  
4.b. From other resources in 
the territory   66.73  19.40 5.59 91.71 

 Decreases in stocks        

 5. Abstraction   14.69    14.69 

 
6. Evapotranspiration/actual 
evapotranspiration      28.60 28.60 

 7. Outflows        

  7.a. To downstream territories   0.34    0.34 

  7.b. To the sea   52.19    52.19 

  
7.c. To other resources in the 
territory   14.55 5.59 14.25 57.32 91.71 

 8. Other changes in volume   14.18  -10.11 0.89 4.96 

9. Closing stocks  1.21  74.46 0.42 16.74 92.83 

Table 1. Water asset accounts in the Po River Basin in 2010/11 (km3/year) 

 

EA.131. Surface water 

EA. 132 
Ground
water 

EA. 133 
Soil 

water 

Outflows to 
other 

resources in 
the territory 

EA. 1311 
Artificial 
reservoir

s 

EA. 
1312 
Lakes 

EA. 
1313 
Rivers 

EA. 
1314 
Snow, 
ice and 
glaciers 

EA.1311 Artificial reservoirs        

EA. 1312 Lakes        

EA. 1313 Rivers     14.55  14.55 

EA. 1314 Snow, ice and glaciers      5.59 5.59 

EA. 132 Groundwater   14.25    14.25 

EA. 133 Soil water   52.48  4.84  57.32 

Inflows from other resources in 
the territory   66.73  19.40 5.59 91.71 

Table 2. Matrix of flows between water resources in the Po River Basin in 2010/11 
(km3/year) 
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A6.4.2. SCENARIO RCP 4.5 

Table 3 shows as at the beginning of the time horizon 2040/41 the volume of 

reserves are over 72 km3, and closing stocks are over 67 km3. The main differences 

are in the volume of snow reserves, which have been considerably reduced due to 

the increase of temperatures. During this year, precipitation represents more than 

57 km3, mainly in the form of rain. It is also noteworthy that the amount of 

evapotranspiration from soil is three times the water abstracted for water uses 

(twice for the current scenario). Moreover, outflows to the sea have been reduced 

to around 33 km3. As we observe in the matrix of flows for the current scenario, table 

4 shows that the main exchanges of flows between water resources are those 

between soil water to rivers. 

 

EA.131. Surface water 
EA. 132 
Ground
water 

EA. 133 
Soil 

water 
Total EA. 1311 

Artificial 
reservoirs 

EA. 
1312 
Lakes 

EA. 
1313 
Rivers 

EA. 1314 
Snow, ice 

and glaciers 

1. Opening stocks  1.21  53.63 0.38 17.04 72.27 

 Increases in stocks        

 2. Returns   0.28  3.07  3.34 

 3. Precipitation    3.34  54.29 57.62 

 4. Inflows        

  4.a. From upstream territories        

  
4.b. From other resources in 
the territory   42.91  12.11 4.49 59.50 

 Decreases in stocks        

 5. Abstraction   8.31    8.31 

 
6. Evapotranspiration/actual 
evapotranspiration      22.16 22.16 

 7. Outflows        

  7.a. To downstream territories   0.28    0.28 

  7.b. To the sea   32.91    32.91 

  
7.c. To other resources in the 
territory   9.61 4.49 9.74 35.66 59.50 

 8. Other changes in volume   7.93  -5.50 -4.61 -2.18 

9. Closing stocks  1.21  52.48 0.32 13.39 67.40 

Table 3. Water asset accounts in the Po River Basin in time horizon 2040/41 (km3/year) 
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EA.131. Surface water 

EA. 132 
Ground
water 

EA. 133 
Soil 

water 

Outflows to 
other 

resources in 
the territory 

EA. 1311 
Artificial 
reservoir

s 

EA. 
1312 
Lakes 

EA. 
1313 
Rivers 

EA. 
1314 
Snow, 
ice and 
glaciers 

EA.1311 Artificial reservoirs        

EA. 1312 Lakes        

EA. 1313 Rivers     9.61  9.61 

EA. 1314 Snow, ice and glaciers      4.49 4.49 

EA. 132 Groundwater   9.74    9.74 

EA. 133 Soil water   33.17  2.49  35.66 

Inflows from other resources in 
the territory   42.91  12.11 4.49 59.50 

Table 4. Matrix of flows between water resources in the Po River Basin in time horizon 
2040/41 (km3/year) 

A6.5. DISCUSSION 

Despite all the uncertainties introduced by the assumptions associated in each 

step of the simulation chain [7], TOPKAPI and RIBASIM have been found to be a 

robust and powerful tool for the application of water accounting in the case study. 

As noted by Momblanch et al. [5], water balances cannot be more precise than the 

available records and observations in the basin. 

As we know, future is uncertain and we use IPCC climatological scenarios in order 

to help water end users to prepare for the future. These scenarios are coherent and 

consistent descriptions about how climate on the Earth can change in the future. 

Figure 3 is presented below in order to show how the evolution of water resources 

in the future could be. The indicator named Total Actual Renewable Water 

Resources (TARWR) represents the maximum theoretical amount of water actually 

available at a given moment. A priori, figure 3a shows that the TARWR in RCP 4.5 

scenario during the time horizons 2020/21, 2040/41 and 2099/00 is in the same 

order of magnitude than for the current scenario (2010/11). But, as it is observed 

high flows in spring due to snow melting processes become more frequent in RCP 

4.5 scenario also with the intensification of low flows in summer. In the same way, 

figure 3b shows a reduction in the volume of snow stored in the river basin. It is 

noteworthy to highlight that as the total volume is unknown, we consider an initial 

volume of 100 km3 of snow and this amount reduces over the time horizons. 
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Figure 3. (a) Total Actual Renewable Water Resources (TARWR) and (b) volume of snow 
reserves for RPC4.5 scenario in selected time horizons 

The consequences of polar ice sheets and glaciers melting may cause an increase 

in river levels, resulting in flooding and erosion along the river banks and causing 

damage to properties and infrastructures. 

A6.6. CONCLUSIONS 

The main objective of this study has been, on the one hand, the improvement of 

knowledge of the system itself and, on the other hand, the development of the 

methodological tools for the development of water accounting analysis in the Po 

River Basin, analysing the impact of climate change on the region. 

The main conclusion obtained from this research is the fact that TOPKAPI and 

RIBASIM are reliable tools that provide information enough for asset accounts under 

the SEEAW methodology, allowing the collection of those parameters of water cycle 

that can not be obtained by monitoring. 

This work has represented a first approximation of the development of water 

accounting, since new improvements in the chain model will allow us to consider the 

changes in the volumes and the amount of evaporation in reservoirs and lakes, the 

supply to groundwater demands, among others. Future works are aimed at including 

the economic issues in order to use this modelling chain as a predictive instrument 

for the implementation of measures required to improve the use of water resources 

according to the indications of the Blueprint. 
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