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Abstract—GPUs are being increasingly embraced by the high
performance computing and computational communities as an
effective way of considerably reducing execution time by acceler-
ating significant parts of their application codes. However, despite
their extraordinary computing capabilities, the adoption of GPUs
in current HPC clusters may present certain negative side-effects.
In particular, to ease job scheduling in these platforms, a GPU
is usually attached to every node of the cluster. In addition to
increasing acquisition costs this favors that GPUs may frequently
remain idle, as applications usually do not fully utilize them. On
the other hand, idle GPUs consume non-negligible amounts of
energy, which translates into very poor energy efficiency during
idle cycles.

rCUDA was recently developed as a software solution to
address these concerns. Specifically, it is a middleware that allows
transparently sharing a reduced number of GPUs among the
nodes in a cluster. rCUDA thus increases the GPU-utilization rate,
taking care of job scheduling. While the initial prototype versions
of rCUDA demonstrated its functionality, they also revealed
several concerns related with usability and performance. With
respect to usability, in this paper we present a new component of
the rCUDA suite that allows an automatic transformation of any
CUDA source code, so that it can be effectively accommodated
within this technology. In response to performance, we briefly
show some interesting results, which will be deeply analyzed in
future publications. The net outcome is a new version of rCUDA
that allows, for any CUDA-compatible program, to use remote
GPUs in a cluster with minimum overhead.

I. INTRODUCTION

Due to the high computational cost of current compute-
intensive applications, many scientists view graphic processing
units (GPUs) as an efficient means of reducing the execution
time of their applications. High-end GPUs include an extraor-
dinary large amount of small computing units along with a
high bandwidth to their private on-board memory. Therefore,
it is no surprise that applications exhibiting a large ratio of
arithmetic operations per data item can leverage the huge
potential of these hardware accelerators.

In GPU-accelerated applications, high performance is usu-
ally attained by off-loading the computationally intensive parts
of applications for their execution in these devices. To achieve
this, programmers have to specify which portion of their
codes will be executed on the CPU and which functions (or
kernels) will be off-loaded to the GPU. Fortunately, there
have been many attempts during the last years aimed at
exploiting the massive parallelism of GPUs, leading to no-
ticeable improvements in the programmability of these hybrid

CPU-GPU environments. Programmers are now assisted by
libraries and frameworks, like CUDA [28] or OpenCL [25]
among many others, that tackle this separation process. As
a result, the use of GPUs for general-purpose computing
(or GPGPU, from General-Purpose computation on GPUs)
has accelerated the deployment of these devices in areas as
diverse as computational algebra [2], finance [12], health-care
equipment [36], computational fluid dynamics [30], chemical
physics [31], or image analysis [22], to name only a few.
Moreover, the GPU technology mainly targets the gaming
market, of high manufacturing volumes and with a largely
favorable performance/cost ratio. The net result is that GPUs
are being adopted as an effective way of reducing the time-to-
solution for many different applications and are thus becoming
as a wide-appeal and consolidated choice for the application of
high performance computing (HPC) in computational sciences.

The approach currently in use in HPC facilities to leverage
GPUs consists in including one or more accelerators per
cluster node. Although this configuration is appealing from
a raw performance perspective, it is not efficient from a
power consumption point of view as a single GPU may well
consume 25% of the total power required by an HPC node.
Besides, in this class of systems, it is quite unlikely that
all the GPUs in the cluster will be used 100% of the time,
as very few applications feature such an extreme degree of
data-parallelism. Nevertheless, even idle GPUs consume large
amounts of energy. In summary, attaching a GPU to all the
nodes in an HPC cluster is far away from the green computing
spirit, instead being highly energy inefficient.

On the other hand, reducing the amount of accelerators
present in a cluster so that their utilization is increased is a
less costly and more appealing solution that would additionally
reduce both the contribution of the electricity bill to the total
cost of ownership (TCO) and the environmental impact of
GPGPU through a lower power consumption. However, a
configuration where only a limited number of the nodes in the
cluster have a GPU presents some difficulties, as it requires
a global scheduler to map (distribute) jobs to GPU nodes
according to their acceleration needs, thus making this new
and more power efficient configuration harder to be efficiently
managed. Moreover, this configuration does not really address
the low GPU utilization unless the global scheduler can share
GPUs among several applications, a detail that noticeably



increases the complexity of these schedulers.
A better solution to deal with a cluster configuration having

less GPUs than nodes is virtualization. Hardware virtualiza-
tion has recently become a commonly accepted approach to
improve TCO as it reduces acquisition, maintenance, admin-
istration, space, and energy costs of HPC and datacenter facil-
ities [9]. With GPU virtualization, GPUs are installed only in
some of the nodes, to be later shared across the cluster. In this
manner, the nodes having GPUs become acceleration servers
that grant GPGPU services to the rest of the cluster. With
this approach, the scheduling difficulties mentioned above
are avoided, as now tasks can be dispatched to any node
independently of their hardware needs while, at the same time,
accelerators are shared among applications, thus increasing
GPU utilization. This approach can be further evolved by
enhancing the global schedulers so that GPU servers are put
into low-power sleeping modes as long as their acceleration
features are not required, thus noticeably increasing energy
efficiency. Furthermore, instead of attaching a GPU to each
acceleration server, GPUs could be consolidated in dedicated
servers that would additionally present different amounts of
accelerators, so that some kind of granularity is provided to
the scheduling algorithms in order to better adjust the powered
resources to the workload present at any moment in the
system. If the global schedulers are further enhanced so that
they accommodate GPU task migration, then this architecture
would adhere to the green computing paradigm, as the amount
of energy consumed at any moment by the accelerators would
be the minimum required for the workload being served.

In order to enable our disruptive power-efficient proposal for
HPC deployments, we have recently developed the rCUDA
framework [5], [6], [7]. Our technology employs a client-
server middleware. The rCUDA client is executed in every
node of the cluster, whereas the rCUDA server is executed
only in those nodes equipped with GPU(s). The client software
resembles a real GPU to applications, although in practice it is
only the front-end to a virtual one. In this rCUDA configura-
tion, when an application requests acceleration services, it will
contact the client software, which will forward the acceleration
request to a cluster node owning the real GPU. There the
rCUDA server will process the request and contact the GPU
so that it performs the required action. Upon completion,
the rCUDA server will usually send back the corresponding
results, which will be delivered to the application by the
rCUDA client. The application will not become aware that it
is dealing with a virtualized GPU instead of its real instance.

Previous work in [5], [6], [7] mainly focused on demonstrat-
ing that using remote CUDA devices is feasible. Nevertheless,
three main concerns quickly arose during the completion of
those studies:
• The usability of the rCUDA framework was limited by

its lack of support for the CUDA C extensions. As it
will be thoroughly exposed in Section IV, this is due to
the fact that the CUDA Runtime library includes several
hidden and undocumented functions used by these exten-
sions. One easy way to address this issue would require
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Fig. 1. Execution time for a matrix-matrix product in several scenarios:
a GPU local to the host executing the product; rCUDA on top of Myrinet,
InfiniBand, and Ethernet networks; a general-purpose multi-core CPU local to
the host executing the product. Nodes equipped with 2 x Quad-Core Intel(R)
Xeon(R) E5520. The GPU is an NVIDIA Tesla C1060.

NVIDIA to provide the needed support by opening the
full API (application programming interface) and the
required documentation for those currently internal-use-
only functions. Unfortunately, commercial reasons hinder
disclosing the entire API. Therefore, in order to avoid
the use of these undocumented functions, our framework
only supports the plain CUDA C API, so far making
necessary to rewrite those lines of the application source
files that make use of the CUDA C extensions. In the case
of the CUDA SDK examples, up to 12.7% of the lines
of code had to be modified. For applications comprising
large amounts of source code, performing this process
manually may be painful.

• The use of remote GPUs in rCUDA reduces performance.
In our solution, the available bandwidth between the
main memory of the node demanding GPU services
and the remote GPU memory is constrained by that
of the network connecting client and server. (Note that
network bandwidth is usually lower than that of the PCI-
Express –PCIe– bus connecting the GPU and the network
interface in the server node.) This limitation in bandwidth
between client and server noticeably reduces rCUDA’s
performance, as clearly reported in Figure 1, that depicts
the execution time for a matrix-matrix multiplication in
different scenarios.

• Finally, the third concern is related with CUDA itself,
which is an ongoing technology from NVIDIA with
new versions being eventually released. As our rCUDA
virtualization solution aims at being compatible with the
latest release, it must evolve to support the new CUDA
versions. In this regard, the work presented in [5], [6],
[7] supported the now obsolete CUDA 2 and 3 versions.
After those initial versions of rCUDA, NVIDIA released
CUDA 4, with significant changes with respect to prior
versions. Therefore, rCUDA had to be upgraded in order
to support the new functionality introduced in the last
version of CUDA.



In this paper we present how we have addressed these three
concerns, focusing on the first one, and giving an overview
for the rest. In this manner, we have enriched rCUDA with
the following additions:
• A complementary tool, CU2rCU, to automatically ana-

lyze the application source code in order to find which
lines of code must be modified so that the original code
is adapted to the requirements of rCUDA. This tool
automatically performs the required changes, without the
intervention of a programmer. Moreover, the CU2rCU
tool has been integrated into the compilation flow, so
that rCUDA users can effectively replace the call to
NVIDIA’s nvcc compiler with the CU2rCU command,
which will internally make use of the backend compilers
after analyzing and adapting the source code files.

• An improved general communication architecture that can
later be tuned to a given particular network technology.
In this paper we introduce the case for the InfiniBand
technology.

• Support for the new CUDA 4, including multi-threaded
applications. Additionally, the new version of rCUDA
is now able to provide a single application access to
GPUs from many different nodes in the cluster (multi-
node configuration). This is an important improvement
over CUDA, where the amount of GPUs provided to
an application is limited to the GPUs which could be
attached to a single node (usually not more than 8).
In the new version, rCUDA can provide an application
direct access to all the GPUs in the cluster, thus boosting
application performance. Therefore, the only limit is the
ability of the programmer to extract parallelism.

In summary, this paper presents the only CUDA 4 compat-
ible GPGPU virtualization solution existing nowadays that, in
addition to enable green computing, also provides applications
a virtually unlimited amount of GPUs, thus making the use of
GPU accelerators in the HPC context even more appealing.

The rest of the paper is organized as follows. In Section II
we present previous work related to our solution. In Section III
we introduce the rCUDA technology. The next three sections
present how we have addressed the three concerns mentioned
above. We first thoroughly describe and analyze the CU2rCU
tool in Section IV; the new communication architecture is
briefly introduced in Section V; and the evolution of rCUDA
to support CUDA 4 is concisely presented in Section VI.
Although the last two topics well deserve a thorough analysis,
for brevity we will focus on the first one. Finally, Section VII
summarizes the conclusions of our work and also presents
future developments.

II. RELATED WORK

GPU virtualization has been addressed using both hardware
and software approaches. From the hardware perspective,
perhaps the most prominent commercial solution has been
NextIO’s N2800-ICA [26], based on PCIe virtualization [15].
This technology allows multiple computers in a rack to share
a small number of GPUs, thus enabling cluster configurations

with less GPUs than nodes. Nevertheless, the way this solution
shares a given GPU considerably limits performance and GPU
scheduling, as GPUs can be only assigned to a single node at
a time and, therefore, it does not permit concurrent access to
the same GPU from several cluster nodes. Additionally, this
hardware solution may result substantially expensive.

From the software perspective, there have been many efforts
to virtualize GPUs. In this case, as the protocols used at the
lowest level in order to address GPUs are proprietary and GPU
vendors do not disclose them, the virtualization boundary is
usually placed at the high-level APIs, which are always public.
In the case of graphics acceleration, these interfaces include
Microsoft’s Direct3D [3], OpenGL [35], [19], and Cg [11],
[23], whereas in the case of GPGPU the most commonly used
APIs are CUDA [28] and OpenCL [25].

GPU virtualization intended for graphics acceleration has
mainly been addressed in the context of virtual machines, as
the applications running in the virtualized computers demand
graphics acceleration which is usually provided by the real
GPU attached to the host computer. In this context, VMware’s
Virtual GPU [4] is a GPU virtualization architecture specifi-
cally intended for VMware virtual machines. A more general
solution is VMGL [16], an OpenGL-based virtualization so-
lution which is independent of the particular virtual machine
monitor used, as well as of the GPU architecture deployed.

When GPUs are used in the GPGPU context, the previous
solutions, intended for graphics acceleration, cannot be lever-
aged because they address completely different concerns (e.g.,
on GPGPU there is no need to take care of the visual output
and a bunch of related issues). Additionally, the specifics of
virtualizing GPUs drastically change. Therefore, new solutions
have been developed, like vCUDA [34], GViM [14], and
gVirtuS [13], which pursue the virtualization of the CUDA
Runtime API for GPGPU purposes. In the case of OpenCL,
the VCL [1] and the SnuCL [39] frameworks provide similar
features. All these solutions present a very similar middleware
architecture composed of two parts: the front-end installed in
the system requesting acceleration services which becomes the
interface to applications; and the back-end installed in the
system owning the accelerator, thus having direct access to
it.

Unfortunately, the CUDA-based solutions mentioned above
present different concerns. In the case of vCUDA, this technol-
ogy only supports a very old CUDA version (version 1.1) and,
additionally, it implements an unspecified subset of the CUDA
runtime. Moreover, its communication protocol presents a
considerable overhead because of the time devoted to the en-
coding and decoding stages. This overhead causes a noticeable
reduction in the overall performance. GViM is also based on
the old CUDA version 1.1 and does not seem to implement
the entire runtime API. Regarding gVirtuS, it presents similar
problems, as it is based on the old CUDA version 2.3 and
only implements a small fraction of the runtime API. For
example, in the case of the memory management module, it
only implements 17 out of 37 functions.

VGPU [37] is a recent tool that claims to provide very sim-
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Fig. 2. Overview of the rCUDA architecture.

ilar features to initial public open-source versions of rCUDA.
Unfortunately, the information provided by the VGPU authors
is very fuzzy and up to now there is no publicly available
version that can be used for testing and comparison purposes.
In a very similar way, GridCuda [17] also provides access
to remote GPUs in a cluster, as rCUDA does. Although the
authors of GridCuda mention how their proposal overcomes
some of the limitations of the early versions of rCUDA, they
later only detail similar capabilities to those included in the
initial public open-source releases of rCUDA, not providing
any insight about the supposedly enhanced features. There is
currently no publicly available version of GridCuda that can
be downloaded for testing purposes.

III. REVIEW OF RCUDA

The rCUDA framework grants applications transparent ac-
cess to GPUs installed in remote nodes, so that they are not
aware of being accessing an external device. This framework
is organized following a client-server distributed architecture,
as shown in Figure 2.

The client middleware is contacted by the application de-
manding GPGPU services, both running in the same cluster
node. The rCUDA client presents to the application the very
same interface as the regular NVIDIA CUDA Runtime API.
Upon reception of a request from the application, the client
middleware processes it and forwards the corresponding re-
quests to the rCUDA server middleware. In turn, the server
interprets the requests and performs the required processing by
accessing the real GPU to execute the corresponding request.
Once the GPU has completed the execution of the requested
command, the results are gathered by the rCUDA server, which
sends them back to the client middleware. There, the output
is finally forwarded to the demanding application. Notice
that in this approach GPUs are concurrently shared among
several demanding applications by using different rCUDA
server processes to support different remote executions over
independent GPU contexts.

The communication between rCUDA clients and (GPU)
servers is carried out via a customized application-level proto-
col that leverages the network available in the cluster. Figure 3
shows an example of the protocol implemented in the rCUDA
framework for a generic request. This example illustrates how
a kernel execution request is forwarded from client to server,
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Fig. 3. Example of the proprietary communications protocol used within
rCUDA: (1) initialization, (2) memory allocation on the remote GPU, (3)
CPU to GPU memory transfer of the input data, (4) kernel execution, (5)
GPU to CPU memory transfer of the results, (6) GPU memory release, and
(7) communication channel closing and server process finalization.

as well as the dataset used as its input. The retrieval of the
output dataset is also displayed.

The most recent version of the rCUDA framework targets
the Linux operating system, supporting the same Linux distri-
butions as NVIDIA CUDA. This last version of rCUDA sup-
ports the CUDA Runtime API version 4, except for graphics-
related CUDA capabilities, as this particular class of features
are rarely of interest in our HPC environment.

In general, the performance achieved by rCUDA is expected
to be lower than that of the original CUDA, as with rCUDA
the GPU is farther away from the invoking application than
with CUDA, thus introducing some overhead. Nevertheless,
this penalty is currently very low for most applications.
Moreover, the performance of applications using rCUDA is
often noticeably higher than that provided by computations on
regular CPUs. Taking into account the flexibility provided by
rCUDA, in addition to the reduction in energy and acquisition
costs it enables, rCUDA’s benefits definitely overcome the
overhead it introduces.

IV. CU2rCU: A CUDA-TO-RCUDA CONVERTER

This section motivates the need for a CUDA-to-rCUDA
source-to-source converter, presents the tool developed for that
purpose, CU2rCU, and describes the experiments carried out
in order to evaluate it.

A. The Need of a CUDA-to-rCUDA Converter

A CUDA program can be viewed as a regular C program
where some of its functions have to be executed by the GPU
(also referred to as device) instead of the traditional CPU



(also known as host). Programmers control the CPU-GPU
interaction via the CUDA API, which aims at easing GPGPU
programming. This API includes CUDA extensions to the C
language which are constructs following a specific syntax de-
signed to make CUDA programming more accessible, usually
leading to fewer lines of source code than its plain C equivalent
(although both codes tend to look quite similar). The following
piece of code shows an example of a “hello world” program
in CUDA. In this example, the functions cudaMalloc (line
13), cudaMemcpy (lines 15 and 19) and cudaFree (line 21)
belong to the plain C API of CUDA, whereas the kernel launch
sentence in line 17 uses the syntax provided by the CUDA
extensions:

1 # i n c l u d e <cuda . h>
2 # i n c l u d e <s t d i o . h>

4 / / Dev ice code
5 g l o b a l void h e l l o W o r l d ( char∗ s t r ) {
6 / / GPU t a s k s .
7 }

9 / / Host code
10 i n t main ( i n t argc , char ∗∗ a rgv ) {
11 char h s t r [ ] = ” H e l l o World ! ” ;
12 / / . . .
13 cudaMal loc ( ( void ∗∗)&d s t r , s i z e ) ;
14 / / copy t h e s t r i n g t o t h e d e v i c e
15 cudaMemcpy ( d s t r , h s t r , s i z e , cudaMemcpyHostToDevice ) ;
16 / / l a un ch t h e k e r n e l
17 he l loWor ld<<< BLOCKS, THREADS >>>(d s t r ) ;
18 / / r e t r i e v e t h e r e s u l t s from t h e d e v i c e
19 cudaMemcpy ( h s t r , d s t r , s i z e , cudaMemcpyDeviceToHost ) ;
20 / / . . .
21 c u d a F r e e ( d s t r ) ;
22 p r i n t f ( ”%s\n ” , s t r ) ;
23 re turn 0 ;
24 }

CUDA programs are compiled with NVIDIA nvcc com-
piler [27], which looks for fragments of GPU code within
the program and compiles them separately from the CPU
code. Moreover, during the compilation of a CUDA program,
references to structures and functions not made public in
the CUDA documentation are automatically inserted into the
CPU code. These undocumented functions impair the creation
of tools which need to replace the original CUDA Runtime
Library from NVIDIA. There exist a few solutions, e.g. GPU
Ocelot [8], which overcome this limitation by implementing
their own versions of these internals, inferring the original
functionality. However, this may easily render a behaviour
that is not fully compliant with the original library. Fur-
thermore, the stability of these approaches is hampered as
the specification of the internals is easily subject to change
without prior notification from NVIDIA. To overcome these
problems, we have decided to not support these undocumented
functions in rCUDA, offering a compile-time work-around
which avoids their use instead. Notice that avoiding the use of
these undocumented functions requires bypassing nvcc for
CPU code generation, as this compiler automatically inserts
references to them into the host code. Therefore, the CPU
code in a CUDA program should be directly derived to a
regular C compiler (e.g., GNU gcc). On the other side, since
a plain C compiler cannot deal with the CUDA extensions to
C, they should be unextended back to plain C. As manually

performing these changes for large programs is a tedious,
sometimes error-prone task, we have developed an automatic
tool which modifies a CUDA source code employing CUDA
extensions and transforms it into its plain C equivalent. In
this way, in order to be compiled for execution within the
rCUDA framework, a given CUDA source code is split into
the following two parts:
• Host code: executed on the host and compiled with a

backend compiler such as GNU gcc (for either C or
C++ languages), after being transformed.

• Device code: executed on the device and compiled with
the nvcc compiler.

Coming back to the previous “hello world” CUDA example,
the next code snippet shows the transformation of the kernel
call in line 17 employing the extended syntax into plain C:

1 # d e f i n e ALIGN UP( o f f s e t , a l i g n ) ( o f f s e t ) = \
2 ( ( o f f s e t ) + ( a l i g n ) − 1) & ? ( ( a l i g n ) − 1)

4 i n t main ( ) {
5 / / . . .
6 c u d a C o n f i g u r e C a l l (BLOCKS, THREADS) ;
7 i n t o f f s e t = 0 ;
8 ALIGN UP( o f f s e t , a l i g n o f ( d s t r ) ) ;
9 cudaSetupArgument (& d s t r , s i z e o f ( d s t r ) , o f f s e t ) ;

10 cudaLaunch ( ” h e l l o W o r l d ” ) ;
11 / / . . .
12 }

In order to separately generate CPU and GPU code, we
leverage an nvcc feature which allows to extract and compile
only the device code from a CUDA program and generate a
binary file containing only the GPU code. In the host code,
once the CUDA extensions to C have been transformed into
code using only the plain C CUDA API, we generate the
corresponding binary file with a backend C compiler. Notice
that prior to using a regular C compiler, the GPU code should
additionally be removed. The separation and transformation
process is graphically illustrated in Figure 4.

CUDA 
Program
(Device + 

Host Code)

NVCC

Converter

Device 
Code

Host Code

Fig. 4. CUDA-to-rCUDA conversion process.

B. Source-to-Source Transformation Tools

In order to implement the automatic tool that transforms
source code employing CUDA extensions into plain C code,
a source-to-source transformation framework has been lever-
aged. Different options for this class of source transformations
are available nowadays, from simple pattern string replacement
tools to frameworks which parse the source code into an
Abstract Syntax Tree (AST) and transform the code using
that information. Given that our tool needs to do complex
transformations involving semantic C++ code information, we
have selected the latter.



There are several frameworks which leverage complex
source transformations, as for example ROSE [32], GCC [10],
and Clang [20]. We have chosen Clang because, on one hand,
it is widely-used and, on the other, it explicitly supports pro-
grams written in CUDA. Moreover there are some converters
of CUDA source code that are also based on Clang, such as
CU2CL [24].

Clang, one of the primary sub-projects of LLVM [21], is
a C language family compiler which aims, among others,
at providing a platform for building source code level tools,
including source-to-source transformation frameworks.

Figure 5 shows how the developed converter interacts with
Clang. The input to the converter are CUDA source files
containing device and host code with CUDA extensions, as
explained in the previous subsection. The Clang driver (a com-
piler driver providing access to the Clang compiler and tools)
parses those files generating an AST. After that, the Clang
plugin that we have developed, CU2rCU, uses the information
provided by the AST and the libraries contained in the Clang
framework to perform the needed transformations, generating
new source files which only contain host code employing the
plain C syntax. Notice that during the conversion process our
CU2rCU tool is able to automatically analyze user source files
included by the input files to be converted, also converting
them when necessary.

CUDA 
Program
(Device + 

Host Code)

Converter

Host Code

Clang
Driver

AST CU2rCU

Clang
Framework

Fig. 5. CUDA-to-rCUDA converter detailed view.

C. CU2rCU Source Transformations

As explained in the preceding subsections, our converter
transforms the original source code written in CUDA into
code using only the plain C API, unextending CUDA C
extensions, and removing device code. Some of the most
important transformations are detailed next.

1) Kernel Calls: A kernel call employing CUDA C exten-
sions, as for example:

1 kernelName <<< Dg , Db >>>(param 1 , . . . , param n ) ;

must be transformed in order to use the plain C API as follows:
1 c u d a C o n f i g u r e C a l l ( Dg , Db ) ;
2 i n t o f f s e t = 0 ;
3 se tupArgument ( param 1 , &o f f s e t ) ;
4 se tupArgument ( . . . , &o f f s e t ) ;
5 se tupArgument ( param n , &o f f s e t ) ;
6 cudaLaunch ( ” MangledkernelName ” ) ;

The function setupArgument() is provided by the
rCUDA framework. It is a wrapper of the plain C API function
cudaSetupArgument() and, therefore, it just simplifies
the inserted code by avoiding the need to explicitly handle
argument offsets.

2) Kernel Names: In the cudaLaunch() call inserted in
the previous transformation, the mangled kernel name must be
used if it is not a function with external C linkage. Otherwise,
the kernel name as written must be used. For instance, if we
have the following kernel declaration:

1 g l o b a l void i n c r e m e n t k e r n e l ( i n t∗ x , i n t y ) ;

its mangled name may be used when launching this kernel:
1 cudaLaunch ( ” Z 1 6 i n c r e m e n t k e r n e l P i i ” ) ;

However, if the kernel is declared with external C linkage:
1 e x t er n ”C”
2 g l o b a l void i n c r e m e n t k e r n e l ( i n t∗ x , i n t y ) ;

the original kernel name has to be used instead.
Determining the mangled kernel name becomes a complex

task when there are kernel template declarations with type
dependent arguments. For example, for the kernel template
declaration:

1 template<c l a s s TData> g l o b a l void t e s t K e r n e l (
2 TData ∗d oda ta , TData ∗d i d a t a , i n t numElements ) ;

the mangled kernel name used to launch it depends on the
type of TData:

1 i f ( ( t y p e i d ( TData ) == t y p e i d ( unsigned char ) ) ) {
2 cudaLaunch ( ” Z 1 0 t e s t K e r n e l I h E v P T S 1 i ” ) ;
3 } e l s e i f ( ( t y p e i d ( TData ) == t y p e i d ( unsigned s h o r t ) ) ) {
4 cudaLaunch ( ” Z 1 0 t e s t K e r n e l I t E v P T S 1 i ” ) ;
5 } e l s e i f ( ( t y p e i d ( TData ) == t y p e i d ( unsigned i n t ) ) ) {
6 cudaLaunch ( ” Z 1 0 t e s t K e r n e l I j E v P T S 1 i ” ) ;
7 }

3) CUDA Symbols: When using CUDA symbols as func-
tion arguments, they can be either a variable declared in
device code or a character string naming a variable that was
declared in device code. As the device code has been removed,
only the second option becomes feasible. For this reason,
those occurrences that fall into the first category have to be
transformed. For instance, in the following function call:

1 c o n s t a n t f l o a t symbol [ 2 5 6 ] ;
2 f l o a t s r c [ 2 5 6 ] ;
3 cudaMemcpyToSymbol ( symbol , s r c , s i z e o f ( f l o a t ) ∗256) ;

the argument symbol has to be surrounded by quotation
marks to transform it into a character string:

1 cudaMemcpyToSymbol ( ” symbol ” , s r c , s i z e o f ( f l o a t ) ∗256) ;

4) Textures and Surfaces: Similarly to CUDA C extensions,
in order to use the C++ high level API functions from the
CUDA Runtime API, an application needs to be compiled with
the nvcc compiler. However, as within the rCUDA framework
application source code needs to be compiled with a GNU
compiler, we need to transform these functions. This is the
case of CUDA textures and surfaces. Thus, textures declared
using this API, like:

1 t e x t u r e<f l o a t , 2> t ex tu reName ;

are transformed as follows:
1 t e x t u r e R e f e r e n c e ∗ t ex tu reName ;
2 c u d a G e t T e x t u r e R e f e r e n c e ( ( c o n s t t e x t u r e R e f e r e n c e ∗∗)

&textureName , ” t ex tu reName ” ) ;



A consequence of this transformation is that texture vari-
ables become pointers, and access to their attributes such as:

1 t ex tu reName . a t t r i b u t e = v a l u e ;

will now result in:
1 t ex tureName−>a t t r i b u t e = v a l u e ;

The same transformations explained for CUDA textures
apply to CUDA surfaces.

D. Evaluation

In order to test the new CU2rCU tool, we have used sample
codes from the NVIDIA GPU Computing SDK [29], and
production codes from the LAMMPS Molecular Dynamics
Simulator [33].

Our first experiments dealt with a number of examples from
the NVIDIA GPU Computing SDK. Table I shows the time1

required for their conversion. In the experiment we employed a
desktop platform equipped with an Intel(R) Core(TM) 2 DUO
E6750 processor (2.66GHz, 2GB RAM) and a GeForce GTX
590 GPU, running the Linux OS (Ubuntu 10.04). Table I also
reports the amount of lines of the original application and
the modified sources obtained by our tool. The total amount
of time required for the automatic conversion of all these
examples, 10.68 seconds, compared with the time spent on
a manual conversion by an expert from the rCUDA team,
31.5 hours, clearly shows the benefits of using the converter.
Notice also that an automatic source code conversion leads to a
slightly larger amount of modified lines (though some of them
correspond to sentences split into two lines). Nevertheless, the
code automatically obtained is very similar to the one obtained
from a manual conversion.

Moreover, we have compared the time spent in the compi-
lation of the original CUDA source code of the SDK samples
with the period spent in their conversion and subsequent
compilation of the converted code by our tool. Results are
shown in Figure 6, demonstrating that the time of converting
the original code and later compiling it is similar to the
compilation time of the original sources.
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Fig. 6. CUDA SDK compilation time compared with CU2rCU conversion
plus compilation time.

After having successfully tested the converter with NVIDIA
SDK codes, we have evaluated it on a real-world produc-
tion code: the LAMMPS Molecular Dynamics Simulator.

1Conversion and compilation time shown in this section have been gathered
in an iterative way so that a given compilation (or conversion) has been
repeated until the standard deviation of the measured time was lower than
5%.

TABLE I
NVIDIA GPU COMPUTING SDK CONVERSION STATISTICS

Lines
CUDA SDK Sample Time (s) CUDA Modified/Added

Code Num. %
alignedTypes 0.259 186 32 17.20
asyncAPI 0.191 78 6 7.69
bandwidthTest 0.407 708 0 0.00
BlackScholes 0.364 281 13 4.63
clock 0.196 75 8 10.67
concurrentKernels 0.196 100 11 11.00
convolutionSeparable 0.591 319 18 5.64
cppIntegration 0.685 129 12 9.30
dwtHaar1D 0.221 266 11 4.14
fastWalshTransform 0.360 241 20 8.30
FDTD3d 1.082 860 13 1.52
inlinePTX 0.351 91 6 6.60
matrixMul 0.394 272 34 12.50
mergeSort 0.917 1124 105 9.34
scalarProd 0.358 138 10 7.25
scan 0.548 359 26 7.24
simpleAtomicIntrinsics 0.367 211 6 2.84
simpleMultiCopy 0.202 211 22 10.43
simpleTemplates 0.211 241 13 5.39
simpleVoteIntrinsics 0.196 222 19 8.56
SobolQRNG 1.278 10586 8 0.08
sortingNetworks 0.761 571 70 12.26
template 0.357 97 7 7.22
vectorAdd 0.192 88 8 9.09

TABLE II
LAMMPS CONVERSION STATISTICS

Lines
LAMMPS Package Time (s) CUDA Modified/Added

Code Num. %
USER-CUDA 6.910 14742 1409 9.56

LAMMPS is a classic molecular dynamics code which can
be used to model atoms or, more generically, as a parallel
particle simulator at the atomic, meso, or continuum scale.
The entire application comprises more than 300,000 lines of
code distributed over 30 packages. Some of those packages
are written for CUDA, such as GPU or USER-CUDA, which
are mutually exclusive.

We have evaluated our tool against the USER-CUDA pack-
age, with over 14,000 lines of code. Table II shows the results
of the conversion. The time spent by an expert from the
rCUDA team to adapt the original code was two weeks with
full time dedication. Again, the benefits of using the converter
are clearly proved.

Compilation time of the original LAMMPS source code is
compared with conversion plus compilation time in Figure 7,
showing that they are close. In this case, the time spent
in conversion and compilation is separately shown in order
to point out that the conversion process produces a smaller
compilation time of the converted code, thus compensating
each other.

V. AN IMPROVED COMMUNICATION ARCHITECTURE

The rCUDA internal architecture has been enhanced in order
to provide efficient support for several underlying client-server
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Fig. 8. New modular rCUDA architecture. Left: rCUDA client. Right:
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communication technologies. In the initial versions of rCUDA
—supporting only the TCP/IP protocol— communication be-
tween rCUDA clients and servers was directly implemented
within the code deploying general rCUDA functionality, in
a monothilic design. The new modular communication ar-
chitecture (see Figure 8) supports runtime-loadable specific
communication libraries. This functionality has been made
possible by a carefully designed proprietary common API for
rCUDA communications. That API enables rCUDA clients
and servers to (1) communicate through different underlying
communication technologies, and (2) to do it efficiently, as the
communication functionality can be specifically implemented
and tuned up for each different communication technology.

The new modular rCUDA architecture currently supports
efficient communication over Ethernet and InfiniBand, and
opens the door to other interesting technologies like EX-
TOLL [18] and virtual machine environments like Xen [38].
Due to space constraints, in the following we merely present
some performance results, as this is the most interesting
feature from a usage viewpoint. A complete analysis of the
new architecture would require substantially more space.

Figure 9 illustrates the performance benefits that the new
architecture brings to applications leveraging rCUDA. The
plot in that figure shows the effective bandwidth attained
in synchronous memory copy operations (i.e., cudaMemcpy
calls) to remote GPUs through different interconnects and
communication modules. The highly-tuned Ethernet module
enables rCUDA to attain up to 99.9% of the effective band-
width of a Gigabit Ethernet network, but a mere 55.5% of
the 40 Gbps InfiniBand QDR fabric when employing its IP
over InfiniBand (IPoIB) functionality. However, the specific
InfiniBand module, directly employing the InfiniBand Verbs
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Fig. 9. Bandwidth between CPU and remote GPU for several scenarios:
NVIDIA GeForce 9800 and Mellanox ConnectX-2 cards.

(IBV) API, enables rCUDA applications to reach 97.1% of
the available bandwidth.

The previous results, translated into the execution of an
application, lead to an efficient remote GPU usage with neg-
ligible overheads when compared to local GPU acceleration;
see Figure 10 for the particular example of a matrix-matrix
product. Compared with traditional CPU computing, the figure
also shows that computing the product on a remote GPU is
noticeably faster than its computation using the 8 general-
purpose CPU cores of a computing node employing a highly-
tuned HPC library.

Similar performance results can be obtained from the execu-
tion of a more complex application. In Figure 11, the execution
time of a LAMMPS simulation of the in.eam input script
included in the standard distribution package under the bench
directory scaled by a factor of 5 in the three dimensions is
compared in the following three scenarios: using the OPT
package (an optimized CPU package typically attaining 5–
20% performance improvement) on the 8 cores of the CPU;
employing the USER-CUDA package on a local NVIDIA
Tesla C2050 (use of plain CUDA); employing rCUDA over
an InfiniBand QDR fabric to access a remote GPU. Once
again, remote GPU acceleration brings a faster execution than
its CPU-equivalent counterpart, while just introducing a small
overhead when compared to the locally-accelerated execution.
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Fig. 10. Execution time for a matrix product executed in an NVIDIA
Tesla C2050 versus CPU computation on 2 x Quad-Core Intel Xeon E5520
employing GotoBlas 2. Matrices of 13,824x13,824 single-precision floating
point elements.
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Fig. 11. Execution time for the LAMMPS application, in.eam input script
scaled by a factor of 5 in the three dimensions. Computing node equipped with
2 x Quad-Core Intel Xeon E5520, NVIDIA Tesla C2050, and InfiniBand QDR
fabric. The CPU case employs the OPT package and 8 MPI tasks, whereas
the USER-CUDA package with one MPI task is used for CUDA (local GPU)
and rCUDA (remote GPU).

VI. CUDA 4 SUPPORT

In order to support the new features in CUDA 4, rCUDA
has evolved and now supports multi-threaded applications.
Figure 12(a) illustrates one possible scenario, where all the
threads of a multi-threaded application access the same remote
GPU, which is shared among them. The improvements to
rCUDA go farther than just supporting new CUDA features;
indeed, it also allows an application to access many remote
GPUs located in different nodes. We refer to this new feature
as multi-node support, as shown in Figure 12(b).

The combination of the new capabilities of rCUDA enables
the scenario represented in Figure 12(c), where each thread of
a multi-threaded application can access remote GPUs located
in different nodes.

Since a depth analysis of these new features is not possible
due to space limitations, we just present results for a single
experiment in Figure 13. There we report the normalized
execution time for a matrix-matrix product using CUDA and
rCUDA, employing several GPUs, where each GPU computes
its own product. All the four GPUs used in the experiments
with CUDA were in the same node, while the six GPUs used
in the execution with the rCUDA framework were located in
six different nodes. Notice that the experiments with CUDA
for 5 and 6 GPUs were not feasible because of the lack of a
node which such an equipment.

As shown in this figure, rCUDA not only mimics the
behavior of the original CUDA in terms of scalability, but
also allows an application to use a larger amount of GPUs.

VII. CONCLUSION

In this paper we have presented the new version of rCUDA,
the first complete remote GPU virtualization solution with
support for CUDA 4. This virtualization technology allows to
fulfill our disruptive approach to GPGPU green computing,
providing the flexibility necessary to adjust the number of
powered resources to the exact cluster workload.

This new rCUDA version comprises a CUDA-to-rCUDA
converter, which enables leveraging rCUDA from any CUDA
application, as well as an enhanced communication architec-
ture that features a minimum overhead when accessing remote
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Fig. 12. Using rCUDA in different scenarios.

0

0,5

1

1,5

2

1 2 3 4 5 6

N
o

rm
al

iz
e

d
 T

im
e

Number of GPUs

CUDA rCUDA 

Fig. 13. Matrix-matrix product normalized execution time for a matrix
dimension 14,336. Each GPU executes its own product associated with a
different thread. CUDA experiments were carried out in a node equipped
with 2 Quad-Core Intel Xeon E5440 processors and a Tesla S2050 computing
system (4 Tesla GPUs). rCUDA executions were done using 6 nodes, each one
equipped with 4 Quad-Core Intel Xeon E5520 processors and one NVIDIA
Tesla C2050.

devices and which will be detailed in future work. Moreover,
support for the last CUDA 4 version is also provided, at the
same time that applications can now exploit a larger amount of
GPUs than is possible with CUDA. A deep analysis of these
new supported features will be presented in next publications.



Finally, it is planned that future releases of rCUDA will
support efficient job scheduling within clusters, as a result
of an ongoing integration of rCUDA with schedulers like
SLURM.

FURTHER INFORMATION

For further details on rCUDA, please visit its web site at
http://www.rcuda.net. In particular, instructions can be found
in the website about how to obtain a free copy of rCUDA.
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