

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38574-
2_16

http://link.springer.com/chapter/10.1007/978-3-642-38574-2_16

http://hdl.handle.net/10251/71830

Springer

Erbatur, S.; Escobar Román, S.; Kapur, D.; Liu, Z.; Lynch, CA.; Meadows, C.; Meseguer,
J.... (2013). Asymmetric Unification: A New Unification Paradigm for Cryptographic Protocol
Analysis. En Automated Deduction – CADE-24. Springer. 231-248. doi:10.1007/978-3-642-
38574-2_16.

Asymmetric Unification: A New Unification
Paradigm for Cryptographic Protocol Analysis?

Serdar Erbatur1, Santiago Escobar3, Deepak Kapur4, Zhiqiang Liu5,
Christopher Lynch5, Catherine Meadows6, José Meseguer7, Paliath

Narendran2, Sonia Santiago3, and Ralf Sasse8

1 Università degli Studi di Verona, serdar.erbatur@gmail.com
2 University at Albany-SUNY, Albany, NY, USA, dran@cs.albany.edu

3 DSIC-ELP, Universitat Politècnica de València, Spain
sescobar@dsic.upv.es,ssantiago@dsic.upv.es

4 University of New Mexico, Albuquerque, NM, USA, kapur@cs.unm.edu
5 Clarkson University, Potsdam, NY, USA

liuzh@clarkson.edu, clynch@clarkson.edu
6 Naval Research Laboratory, Washington DC, USA, meadows@itd.nrl.navy.mil

7 University of Illinois at Urbana-Champaign, USA, meseguer@illinois.edu
8 Institute of Information Security, ETH Zurich, Switzerland,

ralf.sasse@inf.ethz.ch

Abstract. We present a new paradigm for unification arising out of a
technique commonly used in cryptographic protocol analysis tools that
employ unification modulo equational theories. This paradigm relies on:
(i) a decomposition of an equational theory into (R,E) where R is conflu-
ent, terminating, and coherent modulo E, and (ii) on reducing unification
problems to a set of problems s =? t under the constraint that t remains
R/E-irreducible. We call this method asymmetric unification. We first
present a general-purpose generic asymmetric unification algorithm. and
then outline an approach for converting special-purpose conventional uni-
fication algorithms to asymmetric ones, demonstrating it for exclusive-or
with uninterpreted function symbols. We demonstrate how asymmetric
unification can improve performanceby running the algorithm on a set
of benchmark problems. We also give results on the complexity and de-
cidability of asymmetric unification.

? S. Escobar and S. Santiago were partially supported by EU (FEDER) and the Span-
ish MEC/MICINN under grant TIN 2010-21062-C02-02, and by Generalitat Va-
lenciana PROMETEO2011/052. The following authors were partially supported by
NSF: S. Escobar, J. Meseguer, and R. Sasse under CNS 09-04749 and CCF 09-05584
; D. Kapur under CNS 09-05222; C. Lynch, Z. Liu, and C. Meadows under CNS
09-05378, and P. Narendran and S. Erbatur under CNS 09-05286. Part of the S.
Erbatur’s work was supported while with the Department of Computer Science,
University at Albany, and part of R. Sasse’s work was supported while with the De-
partment of Computer Science, University of Illinois at Urbana-Champaign. Portions
of this paper appeared in an abstract in the informal proceedings of UNIF’11.

2 S. Erbatur et al.

1 Introduction

The symbolic analysis of cryptographic protocols has been one of the most suc-
cessful applications of model-checking to security. In such an analysis, messages
are symbolic terms constructed out of function symbols and variables. Message
terms often satisfy some equational properties: e.g. that decryption with a key
cancels out encryption with the same key or that a symbol satisfies exclusive-or
properties. Also, the network is assumed to be under the control of a hostile
intruder who can read and modify all traffic, perform any operation available to
a legitimate principal, and may be in league with a set of corrupted principals,
and thus have access to their keys.

Protocol execution paths are usually computed by unifying messages re-
ceived with messages sent. Since equational properties are usually involved, the
unification must be modulo the equational theory describing those properties.
The following strategy to achieve unification in protocol analysis, which we call
variant-based unification, is used in one form or another by many cryptographic
protocol analysis tools, including ProVerif [3], OFMC [2], Maude-NPA [7] and
Tamarin [17] (see [7] for a detailed comparison). The equational theory is de-
composed into (R,E), where R is a set of sort-decreasing rewrite rules that are
confluent, terminating, and coherent modulo E (discussed further in Section 2).
Given two terms m1 and m2 to be unified, complete sets of irreducible variants
of m1 and m2 with respect to (R,E) are computed,9 and each irreducible variant
of m1 is E-unified with each irreducible variant of m2. Any unifier that results
in either side of the equation being reducible using R modulo E is discarded as
redundant. If the complete set of irreducible variants is guaranteed to be finite
(that is, (R,E) has the finite variant property [5]), this gives a finitary unification
procedure [9].

Example 1. Let us consider the following equational theory (Σ,E,R) for the
exclusive-or theory, where R consists of the following equations oriented into
rules,10 and E contains the associativity and commutativity (AC) axioms for ⊕:

X ⊕ 0 = X X ⊕X = 0 X ⊕X ⊕ Y = Y

For term t = M ⊕M , (0, id) is the only variant. For term s = X ⊕ Y , the set of
its most general variants is

{ (X ⊕ Y, id),
(Z, {X 7→ 0, Y 7→ Z}), (Z, {X 7→ Z, Y 7→ 0}),
(Z, {X 7→ Z ⊕ U, Y 7→ U}), (Z, {X 7→ U, Y 7→ Z ⊕ U}),
(0, {X 7→ U, Y 7→ U}), (Z1 ⊕ Z2, {X 7→ U ⊕ Z1, Y 7→ U ⊕ Z2})}

9 A set V of term-substitution pairs (u, ρ) is a complete set of variants of term t
with respect to (R,E) iff for any substitution θ there is a (u, ρ) ∈ V such that the
R/E-canonical form tθ↓R/E of tθ satisfies: tθ↓R/E=E uρ (more in Section 2).

10 Note that the first two equations are not AC-coherent, but adding the third equation
(with variable Y) is sufficient to recover that property (see [20, 6]).

Asymmetric Unification 3

since any possible variant of s is an instance of one of the terms according to the
substitution. For term u = X ⊕ n(A, r), the set of its most general variants is

{(X ⊕ n(A, r), id), (Z, {X 7→ n(A, r)⊕ Z}), (0, {X 7→ n(A, r)})}.

Now, given the unification problem Y ⊕ n(B, r′) = X ⊕ n(A, r) arising in [7]
for a simple protocol, the set of irreducible variants for each side is similar to
the variants shown above for term u and the pairwise AC-unification of them
gives the following substitutions as solutions to the unification problem:

{X 7→ n(B, r′)⊕ Z, Y 7→ n(A, r)⊕ Z}
{X 7→ n(A, r)⊕ Y ⊕ n(B, r′)} {Y 7→ n(B, r′)⊕X ⊕ n(A, r)}
{X 7→ n(A, r), Y 7→ n(B, r′)} {X 7→ n(A, r)⊕ Z, Y 7→ n(B, r′)⊕ Z}

However, there is only one most general unifier for the exclusive-or theory, {X 7→
n(A, r)⊕ Y ⊕ n(B, r′)}.

The use of variant-based unification is motivated by two key features. First,
it is theory-generic and can be applied to many of the theories and combina-
tions of theories that arise in cryptographic protocol analysis. Second, it makes
possible many state space reduction techniques common in cryptographic pro-
tocol analysis tools that require messages to be in irreducible form. This is the
case, for example, when states in which certain subterm patterns appear are dis-
carded. For example, Maude-NPA discards as unreachable any state in which the
intruder learns a term containing a nonce before that nonce is generated. Con-
sider a case, discussed in [7] in which the term learned is of the form n(A, r)⊕X,
where ⊕ satisfies the equational theory of exclusive-or and n(A, r) is a nonce.
If X is instantiated to n(A, r) later in the search, the term reduces to 0, but
variable X may appear in other positions so that the nonce could not have
been generated, making this instantiation impossible; this is represented in our
approach as an irreducibility constraint.

Such a strategy, although it has clear advantages, introduces performance
costs due to the fact that the attempt to unify each pair of generated irreducible
variants can lead to inefficiency, both because of the time it takes to generate all
irreducible variants of both terms and because the size of the most general set
of unifiers may be larger than optimal, as shown in Example 1. The latter also
causes the state space to be larger than expected, since each produced unifier
generally results in the creation of a new state. However, it may be possible to
relax the irreducibility conditions on messages. For example, Maude-NPA only
requires received messages to be in irreducible form. This led to the formula-
tion in [7] of the concept of contextual symbolic reachability analysis in which
irreducible variants, together with associated irreducibility constraints, are com-
puted on only some of the terms appearing in a state. In [7] this was proved sound
and complete with respect to state reachability analysis achieved via equational
unification.

However, contextual symbolic reachability analysis opens up a new problem:
how best to unify two terms, one of which must satisfy an irreducibility con-

4 S. Erbatur et al.

straint.11 Indeed, the only instance of an asymmetric unification algorithm we
could find was a modified variant-based unification, called asymmetric variant-
based unification, which is similar to variant-based unification described above
except that no variant is computed for the side with an irreducibility constraint.

Example 2. Following Example 1, for the asymmetric unification problem
Y ⊕ n(B, r′) = X ⊕ n(A, r) where X ⊕ n(A, r) is irreducible, the solutions com-
puted by asymmetric variant-based unification are:

{X 7→ n(B, r′)⊕ Z, Y 7→ n(A, r)⊕ Z} {Y 7→ n(B, r′)⊕X ⊕ n(A, r)}

However, there is only one most general asymmetric unifier for the exclusive-or
theory: {Y 7→ n(B, r′)⊕X ⊕ n(A, r)}.

This problem, which we call asymmetric unification has, to the best of our knowl-
edge, not been investigated before. Thus we ask the question: Is it possible to find
asymmetric unification algorithms that can be used in cryptographic protocol
analysis and are more efficient than asymmetric variant-based unification?

With this question in mind, we study asymmetric unification as a problem
in its own right. After some preliminaries necessary to understanding the paper
in Section 2, Section 3 gives a formal definition of asymmetric unification and
shows its relation to variant-based unification. Section 4 outlines a general pro-
cedure for converting a symmetric algorithm to an asymmetric one, and applies
it to exclusive-or with uninterpreted function symbols. In Section 5 we study
the complexity and decidability of asymmetric unification, and show there are
theories for which symmetric unification is decidable and asymmetric unification
is undecidable. Section 6 gives some experimental results on an implementation
of this algorithm for asymmetric exclusive-or in Maude-NPA, comparing its per-
formance with the asymmetric variant-based unification, and provides evidence
that variant-based unification is far from optimally efficient but theory-generic.
Section 7 concludes the paper and discusses future work.

2 Preliminaries

We follow the classical notation and terminology from [19] for term rewriting,
and from [16] for rewriting logic and order-sorted notions. We assume an order-
sorted signature Σ = (S,≤, Σ) with poset of sorts (S,≤). We also assume an
S-sorted family X = {Xs}s∈S of disjoint variable sets with each Xs countably
infinite. TΣ(X)s is the set of terms of sort s, and TΣ,s is the set of ground
terms of sort s. We write TΣ(X) and TΣ for the corresponding order-sorted
term algebras. For a term t, Var(t) denotes the set of variables in t. A substitu-
tion σ ∈ Subst(Σ,X) is a sorted mapping from a finite subset of X to TΣ(X).
Substitutions are written as σ = {X1 7→ t1, . . . , Xn 7→ tn} where the domain
of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables introduced by terms

11 Note that an irreducibility constraint on a term s that that does appear in the
unification problem can be made part of the problem by adding the equation s = s.

Asymmetric Unification 5

t1, . . . , tn is written Ran(σ). The identity substitution is id. Substitutions are
homomorphically extended to TΣ(X). The application of a substitution σ to
a term t is denoted by tσ. A Σ-equation is an unoriented pair t = t′, where
t, t′ ∈ TΣ(X)s for some sort s ∈ S. An equational theory (Σ,E) is a pair with
Σ an order-sorted signature and E a set of Σ-equations. The E-subsumption
preorder t wE t′ (meaning that t is more general than t′ modulo E) holds be-
tween terms t, t′ ∈ TΣ(X) iff there is a substitution σ such that tσ =E t′; such
a substitution σ is called an E-match from t′ to t. For substitutions σ, ρ and a
set of variables V we define σ =E ρ (over V) if xσ =E xρ for all x ∈ V ; and
σ wE ρ (over V) if there is a substitution η such that (ση)|V =E ρ|V . We say σ
is equivalent to ρ if σ vE ρ and ρ vE σ. An E-unifier for a Σ-equation t = t′

is a substitution σ such that tσ =E t′σ. For Var(t) ∪Var(t′) ⊆W , a set of sub-
stitutions CSUW

E (t = t′) is said to be a complete set of unifiers for the equality
t = t′ modulo E away from W iff: (i) each σ ∈ CSUW

E (t = t′) is an E-unifier of
t = t′; (ii) for any E-unifier ρ of t = t′ there is a σ ∈ CSUW

E (t = t′) such that
σ|W wE ρ|W (i.e., there is a substitution η such that (ση)|W =E ρ|W); and (iii)
for all σ ∈ CSUW

E (t = t′), Dom(σ) ⊆ (Var(t) ∪Var(t′)) and Ran(σ) ∩W = ∅.
A rewrite rule is an oriented pair l → r, where l 6∈ X and l, r ∈ TΣ(X)s

for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and R
a set of rewrite rules. The rewriting relation on TΣ(X), written t →R t′ or
t →p,R t′ holds between t and t′ iff there exist p ∈ PosΣ(t), l → r ∈ R and a
substitution σ, such that t|p = lσ, and t′ = t[rσ]p. The relation→R/E on TΣ(X)
is =E ;→R; =E . A relation →R,E on TΣ(X) is defined as: t →p,R,E t′ (or just
t →R,E t′) iff there is a non-variable position p ∈ PosΣ(t), a rule l → r in R,
and a substitution σ such that t|p =E lσ and t′ = t[rσ]p. The transitive (resp.
transitive and reflexive) closure of→R,E is denoted→+

R,E (resp.→∗R,E). A term
t is called →R,E-irreducible (or just R,E-irreducible) if there is no term t′ such
that t→R,E t′. For→R,E confluent and terminating, the irreducible version of a
term t is denoted by t↓R,E . In order to guarantee soundness and completeness of
→R/E-reducibility by→R,E-reducibility, we require R to be a set of rewrite rules
that are: (i) sort-decreasing, (ii) confluent, (iii) terminating, and (iv) coherent
modulo E (see [12, 20, 6]). We call (Σ,E,R) a decomposition of an order-sorted
equational theory (Σ,G) if G = R]E and R and E satisfy the four conditions
above. Given a decomposition (Σ,E,R) of an equational theory, (t′, θ) is an
R,E-variant [9] (or just a variant) of term t iff tθ↓R,E =E t′ and θ↓R,E =E θ. A
decomposition (Σ,E,R) has the finite variant property [9] (also called a finite
variant decomposition) iff for each Σ-term t, a complete set of its most general
variants is finite (see Example 1 for a complete set of variants for terms M ⊕M
and X ⊕ Y).

3 Asymmetric Unification

We give a formal definition of asymmetric unification.

6 S. Erbatur et al.

Definition 1 (Asymmetric Unification). Given a decomposition (Σ,E,R)
of an equational theory (Σ,E ∪ R), a substitution σ is an asymmetric R,E-
unifier of a set P of asymmetric equations {t1 =↓ t′1, . . . , tn =↓ t′n} iff for each
asymmetric equation ti =↓ t′i in P , σ is an (E ∪R)-unifier of the equation ti = t′i
and (t′i↓R,E)σ is in R,E-normal form. A set of substitutions Ω is a complete set
of asymmetric R,E-unifiers of P iff: (i) every member of Ω is an asymmetric
R,E-unifier of P , and (ii) for every asymmetric R,E-unifier θ of P there exists
a σ ∈ Ω such that σ wE θ (over V ar(P)).

In the following, we always assume that in every asymmetric equation t=↓ t′,
t′ is in normal form; otherwise, we can always normalize t′.

Example 3. Consider the asymmetric unification problem Y ⊕ n(B, r′) =↓X ⊕
n(A, r) arising in [7] for a simple protocol demonstrating the usefulness of the
contextual symbolic reachability analysis framework. Then, there is a most gen-
eral ⊕-unifier X 7→ Y ⊕ n(B, r′) ⊕ n(A, r). However, this is not an asymmetric
unifier; but an equivalent ⊕-unifier is Y 7→ X ⊕ n(B, r′)⊕ n(A, r), which is the
singleton most general asymmetric unifier.

For any (E∪R)-unifier θ of P and substitution τ , θτ is also an (E∪R)-unifier
of P . But this is not necessarily the case for asymmetric R,E-unifiers.

Example 4. Consider Example 3 and the most general exclusive-or asymmetric
unifier Y 7→ X ⊕n(B, r′)⊕n(A, r). If we apply the substitution X 7→ n(A, r) to
the above unifier, the resulting substitution is no longer an asymmetric unifier
of the original asymmetric unification problem.

The question now arises of how to produce such asymmetric algorithms that
improve upon the generic variant-based algorithm described above. We discuss
one such approach in the next section.

4 An Asymmetric Unification Algorithm for the Theory
of Exclusive OR with Uninterpreted Function Symbols

There are two metrics to be considered when optimizing asymmetric unification
algorithms for cryptographic protocol analysis. One of course is speed of execu-
tion. The other is the size of the most general set of unifiers. Each such unifier
results in the production of a new state, so minimizing the size of this set helps
to keep the size of the state space down.

One way of minimizing both execution time and mgu size is to convert a
symmetric algorithm that has already been optimized for these features. In that
case, we need to keep unifiers produced by the original algorithm whenever possi-
ble. We outline a general approach and illustrate it for exclusive-or of Example 1
together with uninterpreted function symbols, chosen because it is the simplest
theory appearing in cryptographic protocol analysis that combines both cancel-
lation rules and a non-trivial theory E in the decomposition (Σ,E,R).

Given a decomposition (Σ,E,R) of (Σ,G), and an asymmetric unification
problem Γ = {t1 =↓ t′1, . . . , tn =↓ t′n}, the key steps of the approach are:

Asymmetric Unification 7

1. First compute a complete finite set S of G-unifiers using a finitary unification
algorithm for G. If S is empty, then there are no asymmetric unifiers.

2. For each such unifier σ from the previous step, check whether every t′iσ is in
R,E-normal form. All such unifiers are retained also as asymmetric unifiers.

3. For a unifier σ such that some t′iσ is not in R,E-normal form, compute an
equivalent asymmetric unifier if possible.

4. If both of the previous steps fail, this implies that σ or its equivalents cannot
be asymmetric unifiers in their full generality. However, there may be some
instances obtained by instantiating variables in them which are asymmetric
unifiers. A complete set of instances of a given unifier is generated by suitably
instantiating variables. This step may be expensive, so it is employed only
as a last resort (as demonstrated in Table 4 of Section 6 using unification
problems manually chosen to stress this point). For each such instance the
above steps are repeated.

We explain below how steps (1)–(4) yield an asymmetric unification algo-
rithm for exclusive or with uninterpreted symbols (XOR) from a symmetric one.
Variables appearing in Γ are called original variables to distinguish them from
new variables, called support variables by the inference rules. For a unification
problem Γ and an XOR unifier σ we say in the assignment x 7→ t⊕ T ∈ σ some
original variable x has a conflict at some simple term t if

– there exists u =↓ v[x⊕ s] ∈ Γ and
– there exists T ′ such that sσ = t⊕ T ′

where s and t are simple terms (i.e., a term that does not have ⊕ as its outermost
symbol) and T ′ might be empty. The significance of conflicts is that a substitu-
tion of x cannot include t as a subterm, in order to ensure the irreducibility of
the right side of equations in Γ .

We present the algorithm as a collection of inference rules on a triple of sets:

σ‖Υ‖∆
σ′‖Υ ′‖∆′

,

where σ is an XOR unifier of Γ , Υ is a set of constraint pairs in which each
member has the form (v, s) (to mean that a substitution of v cannot include s
as a subterm to ensure the irreducibility of the right side of equations in Γ) ,
and ∆ is a set of disequations of the form s ⊕ t 6=? 0, with s and t having the
same topmost uninterpreted function symbol.

A complete set of XOR-unifiers is first generated using an XOR-unification
algorithm. For each XOR unifier σ, the algorithm starts with a triple σ‖∅‖∅.
The algorithm may generate numerous branches, some of which lead to a dead
end because either (i) no inference rule is applicable or (ii) the candidate for
an XOR unifier violates a constraint in the second component or a disequation
in the third component. Different branches can generate equivalent asymmetric
unifiers or asymmetric unifiers which are instances of other asymmetric unifiers.

We use the following notation. The result of applying a substitution θ to
Υ = {(v1, s1), · · · , (vn, sn)} is Υθ = {(vi, siθ ↓)|(vi, si) ∈ Υ}; we will rewrite

8 S. Erbatur et al.

(vi, t1⊕ · · ·⊕ tn) to (vi, t1), · · · , (vi, tn). A substitution δ satisfies Υ iff δ satisfies
every constraint pair in Υ , i.e., given a pair (v, s) ∈ Υ , δ satisfies (v, s) iff δ(v)⊕
δ(s) is irreducible using R,E (in this case the rules are the theory of XOR from
Example 1). If δ does not satisfy Υ , then δ violates Υ . Similarly, δ satisfies ∆
iff δ satisfies every disequation s⊕ t 6= 0 ∈ ∆, in other words (sδ ⊕ tδ) does not
rewrite to 0.

The Inference System

All inference rules below are don’t care nondeterministic rules. They are grouped
as: Splitting, Branching and Instantiation. The algorithm runs in two phases.
In the first phase, the Splitting and Branching rules are applied, attempting
to generate an asymmetric XOR unifier equivalent to the original XOR unifier.
The Splitting rule is applied as much as possible to (i) move all toplevel origi-
nal variables out of the range of an XOR unifier, while (ii) eliminating conflicts
between original variables and subterms with which they appear in t′is in Γ .
Once it is no longer applicable, an XOR unifier equivalent to the original uni-
fier is constructed such that its range only includes new variables at top levels.
Then, branching rules are repeatedly applied attempting to eliminate conflicts
between support variables with other variables and nonvariable subterms The
Non-Variable Branching rule, which eliminates a conflict between a support
variable and a nonvariable subterm, is repeatedly applied first. This is followed
by (i) the Auxiliary Branching rule and (ii) the Variable Branching rule.
The last two rules may not eliminate any conflicts; however they are helpful
later during the second phase. In this first phase, if any of the branches yields
an asymmetric XOR unifier, the algorithm terminates; it is not necessary to
consider other branches as all asymmetric XOR unifiers from various branches
are equivalent.

If the first phase does not succeed in generating an equivalent asymmetric
XOR unifier, all branches generated from the first phase must be considered in
the second phase. Instantiation rules are now applied to generate instances of
equivalent XOR unifiers. The Decomposition Instantiation rule generates
instances of an XOR unifier so that the rules x⊕ x⊕ y 7→ y and x⊕ x 7→ 0 are
applicable, whereas the Elimination Instantiation rule generates instances by
setting support some variables to 0. It is possible that an XOR unifier generated
by the Elimination Instantiation rule is equivalent to the original XOR uni-
fier (since it may have been generated by instantiating a support variable to 0
implying that it was unnecessary to introduce that support variable).

If along a branch, a result of Decomposition Instantiation is not an asym-
metric XOR unifier, the algorithm moves again to the first phase and applies
Splitting, since some of the original variables underneath interpreted function
symbols may get elevated to the top level in substitutions of original variables.
Elimination Instantiation is repeatedly applied only after Decomposition
cannot be applied any further. If the result is not an asymmetric XOR unifier,
then the Branching rules are applied by returning to the first phase (Splitting
is not applicable in this case).

Asymmetric Unification 9

The Splitting Rule

This rule transforms an XOR unifier σ into an equivalent XOR unifier σ′ such
that all the top variables in Range(σ′) are support variables.

[x 7→ y ⊕ S ⊕ T] ∪ σ‖Υ‖∆
([x 7→ y ⊕ S ⊕ T] ∪ σ) ◦ θ‖Υθ‖∆θ

where θ = {y 7→ v ⊕ S} and v is a fresh support variable. The rule is applied
only if (i) x, y ∈ V ars(Γ) and (ii) y /∈ V ars(S).

Even though S and T can be chosen in any way, if x has a conflict at some
simple term s in S ⊕ T , then for efficiency in our implementation, we will put s
into S, unless y ∈ V ars(s). After Splitting there will be no top level original
variables in the range of σ. So from now on, we assume that all the top variables
which appear in the range of σ are support variables.

The Branching Rules

The main objective in applying the two branching rules is to try to transform
an XOR unifier into an equivalent one without conflicts.

Non-Variable Branching. This rule considers the case that some original
variable x has a conflict at some non-variable simple term s.

σ‖Υ‖∆
σ ◦ θ‖(Υ [v′/v] ∪ (v′, s))θ‖∆θ

∨
σ‖Υ ∪ {(v, s)}‖∆θ

where there exists an assignment [x 7→ v ⊕ s⊕ S] ∈ σ and θ = [v 7→ v′ ⊕ s] with
v′ being a fresh support variable, under the conditions that x has a conflict at a
simple nonvariable terms s in Γ where (i) v /∈ V ars(s) and (ii) (v, s) /∈ Υ .

Above, Υ [v′/v] means: replace all occurrences of the variable v in the first
component of every pair in Υ by the variable v′. The first branch is used when
the conflict between x and s is successfully resolved using v by introducing a new
support variable v′; the second branch is used when that is not possible, thus
leading to an additional constraint (v, s) implying that v and s are in conflict.

Auxiliary Branching. This rule is applied when an original variable conflict
with another original variable in Γ and their substitutions in an XOR unifier
share a common part.

σ‖Υ‖∆
σ ◦ θ‖(Υ [v′/v] ∪ (v′, s))θ‖∆θ

∨
σ‖Υ ∪ {(v, s)}‖∆

where θ = {v 7→ v′ ⊕ s} with v′ being a fresh support variable, and there exist
two assignments [x 7→ v ⊕ s ⊕ S, y 7→ v ⊕ S′] in σ. This rule is applied only if
(i) x, y are in conflict in Γ , (ii) s is a simple non-variable term and v /∈ V ars(s)
and (iii) (v, s) /∈ Υ .

The additional simple nonvariable term s in the substitution for x in an
XOR unifier is used to possibly eliminate the conflict with a new variable v′,

10 S. Erbatur et al.

which stands for the common shared part of x and y. The reader will notice that
unlike the Non-Variable Branching rule, both branches after this rule still
have conflicts in the substitutions of x and y which are in conflict in Γ . So this
rule does not solve the conflict directly; it is preparing for the instantiation part.

Variable Branching. This rule is similar to the Auxiliary Branching rule
and is applied when two original variables x and y have a conflict in Γ and
share a common support variable v1 in their substitutions in an XOR unifier.
The key difference from the Auxiliary Branching rule is that instead of the
substitution for x having a simple nonvariable term that is not in conflict with
v1, it has another support variable v2. The common support variable v1 is then
split into two parts: the common part of x and y, represented by v12, and the
remaining parts of x and y, represented by v′1 and v′2, respectively.

σ‖Υ‖∆
σ ◦ θ‖Υ ′θ‖∆θ

∨
σ‖Υ ∪ {(v1, v2)}‖∆

where σ includes [x 7→ v1 ⊕ v2 ⊕ S, y 7→ v1 ⊕ S′], θ = [v1 7→ v12 ⊕ v′1, v2 7→
v12⊕v′2], v12, v

′
1 and v′2 are fresh support variables, and Υ ′ = (Υ [v12/v1)[v12/v2]∪

Υ [v′1/v1]∪Υ [v′2/v2]∪{(v12, v′1), (v12, v
′
2), (v′1, v

′
2), (v′1, v12), (v′2, v12), (v′2, v

′
1)}. This

rule is applied only if (i) x and y have a conflict in Γ and (ii) (v1, v2) /∈ Υ .
The first branch is the case when v1 and v2 have a common part, whereas

the second branch is the case when v1 and v2 have nothing in common.

Instantiation Rules

The following instantiation rules are used for solving conflicts by instantiating
support variables based on the equations x+ x→ 0 and x+ 0→ x

Decomposition Instantiation. This rule is used to solve the case that some
original variable x has a conflict with a simple nonvariable term t.

σ‖Υ‖∆
σ ◦ θ1‖Υθ1‖∆θ1

∨
· · ·

∨
‖σ ◦ θn‖Υθn‖∆θn

∨
σ‖Υ‖∆′′

where there exists an assignment [x 7→ s⊕t⊕S] in σ, x has a conflict with a simple
nonvariable subterm s in Γ and s and t have the same topmost uninterpreted

symbol; {θ1, · · · , θn} is a complete set of XOR unifiers of s
?
= t and ∆′′ =

∆ ∪ {s⊕ t 6=? 0}.

Elimination Instantiation. This rule is used to solve the case that some
original variable x has a conflict at some support variable v.

[x 7→ v ⊕ S] ∪ σ‖Υ‖∆
([x 7→ S] ∪ σ) ◦ θ‖Υθ‖∆θ

where θ = {v 7→ 0}, x and y are in conflict in Γ for some y. The rule is applied
only if yσ = v ⊕ S′ with S′ having at least one subterm.

Because v maps to 0, all pairs (v, s) in Υ will be removed from Υ .

Asymmetric Unification 11

Theorem 1. The asymmetric unification algorithm described above is sound,
terminating, and complete.

Proof. Soundness easy to establish since we need to show that if an inference rule
generates an asymmetric XOR unifier, then that unifier is either equivalent to
an XOR unifier or an instance of an XOR unifier. Termination and completeness
are nontrivial. We sketch the proofs below; detailed proofs are given in [14].

For termination, we must prove that the algorithm does not go into cycles
or keep on introducing new variables in the first phase; the termination of the
second phase is easy to establish. The intertwining of two phases also terminates
if it can be proved that throughout the algorithm, only a bounded number of
new variables are introduced by various rules. Only the Splitting and Branching
rules introduce new variables. We thus first prove that they are applied only
finitely often. We then complete the proof of the absence of cycles by proving
that the Instantiation rules are applied only finitely often.

Intuitively, the number of new variables generated is bounded by (i) the
number of all possible subsets of nonvariable subterms in the original problem
and (ii) an original variable sharing exclusively with another original variable,
two original variables, and so on. The substitution for any original variable x
is an XOR of (i) a subset of nonvariable subterms appearing in the original
problem and their instances due to the Decomposition Instantiation Rule, (ii)
original variables with which x has no conflict and (ii) new variables standing
for disjoint subsets of original subterms in the substitution of x different from
substitutions of variables in conflict with x (much like v12, the common part of
x and y, and v′1 and v′2, the parts of x and y that are disjoint from each other in
the Variable Branching rule). New variables also serve as placeholders to allow
for generation of conflict-free instances of an XOR unifier in case that it does
not have an equivalent asymmetric XOR unifier.

Once it is proved that the algorithm only introduces finitely many new vari-
ables (thus implying that the Splitting rule and the three Branching rules are
only applied finitely many times), the proof of termination becomes easier since
it only needs to be made sure that the two instantiation rules cannot be applied
infinitely often. The Elimination Instantiation rule reduces the size of the triple
since variables get instantiated to 0 and then simplified.

The Decomposition Instantiation rule reduces the number of simple terms in
the substitutions for the original variables along the branch due to the unification
of s, t in x 7→ s⊕ t⊕S thus replacing s⊕ t⊕S by θi(S). For the branch in which
the disequation s ⊕ t 6=? 0 is added, the set of instances of the original XOR
unifier being investigated get reduced12.

To prove completeness we must show that every inference rule only prunes
those non-asymmetric instances of an XOR unifier. Discarding of instances of an
XOR unifier can take place only with the instantiation rules. The Decomposition

12 The set of all possible instances of an XOR unifiers which must considered for in-
vestigating equivalent asymmetric XOR unifiers is finite since original variables only
need to be instantiated by an XOR of a subset of finitely many nonvariable subterms,
variable subterms and new variables.

12 S. Erbatur et al.

Instantiation rule does not discard any instances of an XOR unifier since the
branching is done based on whether two nonvariable subterms s and t are XOR
unifiable or not. The Elimination Instantiation rule discards instances of an XOR
unifier by considering only the case when a new variable is made equal to 0, while
not considering the case when that new variable is not equal to 0, but this is
done only if no other way is possible. ut

5 Decidability of Asymmetric Unification

It is easy to see that asymmetric R,E-unification is at least as hard as E ∪ R-
unification, since every asymmetric R,E-unifier is also an E∪R-unifier.However,
nothing can be said about its asymmetric unifiers of a problem from its set of
unifiers. The unification problem could have a nonempty set of unifiers, whereas
the asymmetric unification problem need not have any asymmetric unifier. Or,
the unification problem could have a single most general unifier, whereas the
asymmetric unification problem has exponentially many solutions, as illustrated
using the following asymmetric unification problem:

x1 ⊕ . . .⊕ xn =↓ a1 ⊕ . . . an, x1 ⊕ . . .⊕ xn =↓ x1 ⊕ . . .⊕ xn

which has a single unifier x1 7→ x2 ⊕ ...⊕ xn ⊕ a1 ⊕ ...⊕ an, and n! asymmetric
unifiers.

We show that there exist theories for which unification is decidable and
asymmetric unification is undecidable. These results are obtained by using a
restricted version of the Modified Post Correspondence Problem (MPCP) [11,
Section 9.4.2]. First, we define the theory (Σ,Rµ) based on the MPCP version
here and prove that unification modulo Rµ (and hence asymmetric unification
modulo Rµ) is undecidable by a reduction from MPCP. Moreover, matching
modulo Rµ is shown to be decidable and finitary. We use these facts to extend
(Σ,Rµ) to a theory for which unification is decidable but asymmetric unification
is not.

Let Ω = {a, b}, and let P = {(αi, βi) | i = 1, . . . , n} ⊆ Ω+ × Ω+ be a
finite set of pairs of non-empty strings over Σ. Then consider the following
restricted version of the Modified Post Correspondence Problem (MPCP) which
is undecidable [10, Theorem 4.4]:

Instance: A non-empty string α ∈ Ω+.
Question: Does there exist a sequence of indices i1, . . . , ik ∈ {1, . . . , n} such
that αi1αi2 . . . αikα = βi1βi2 . . . βik?

We constructRµ from this problem as follows. We start by defining the signature
of Rµ as Ω′ = Ω′1 ∪ Ω′3 where Ω′1 = {a, b, 1, . . . , n} and Ω′3 = {f}. Thus Ω′ has
n+ 2 unary function symbols and one ternary function symbol. Additionally, we
convert strings in the MPCP instance to terms as usual. For any string w ∈ Ω∗,
let w̃(x) denote the term formed by treating a and b as unary function symbols
and the concatenation operator as function composition; in other words,

λ̃(x) = x, ãu(x) = a(ũ(x)), b̃u(x) = b(ũ(x)).

Asymmetric Unification 13

For each pair (αi, βi) of the MPCP we create a rule

f(x, i(y), z)→ f(α̃i(x), y, β̃i(z))

Let Rµ be the set of all such rules, and let Σ be the set of symbols involved
in creating them. This system is confluent and terminating: we observe that Rµ
is left-linear and has no critical pairs, hence is orthogonal. Thus the confluence
of the system follows. In addition it is easy to show that Rµ is terminating,
since each application of rules of Rµ decreases the number of occurrences of a
symbol j ∈ {1, . . . , n} in a term. Finally, (Σ, ∅,Rµ) is trivially sort-decreasing
and coherent, since all symbols have the same sort, and E is empty. In particular,
by the following lemma, every congruence class modulo R is finite.

Lemma 2 Let R be a convergent term rewriting system. If R−1 is terminating
then every congruence class modulo R is finite.

Lemma 3 Matching modulo Rµ is decidable and finitary.

Proof. Note that R−1µ is terminating; hence by Lemma 2 for each term s, the
congruence class [s]Rµ is finite. It was shown by Bürkert, Herold and Schmidt-
Schauß [4] that if R is a theory where every congruence class is finite then the
matching problem modulo R is decidable and is of matching type finitary. ut

Lemma 4 Let c be an arbitrary constant. The following unification problem has
a solution if and only if the instance of the MPCP problem has a solution.

f(α(c), V, c) =?
Rµ f(X, c, X)

Proof. The “if” part is straightforward: assume that αi1αi2 . . . αikα = βi1βi2 . . . βik
for some indices i1, . . . , ik ∈ {1, . . . , n}. Then

τ = {X 7→ βi1βi2 . . . βik(c), V 7→ ikik−1 . . . i1(c)}
is a unifier for the unification problem. Note that we have

αi1αi2 . . . αikα(c) = βi1βi2 . . . βik(c) and thus

f(α(c), τ(V), c) −→∗Rµ f(αi1αi2 . . . αikα(c), c, βi1βi2 . . . βik(c))

≡ f(α(τ(X)), c, τ(X))

Conversely, suppose θ is a solution for the above equation. Then the following
necessarily holds: θ(f(α(c), V, c)) = f(α(c), θ(V), c) −→!

Rµ f(θ(X), c, θ(X)).

Now a solution for the MPCP instance can be obtained from θ(V) as follows.
Each rewrite step reveals an ij ∈ {1, . . . , n} by deleting the top symbol from
θ(V). Otherwise Rµ does not apply to f(α(c), θ(V), c) and hence we conclude
that there exists no sequence of i1, . . . , ik ∈ {1, . . . , n}. Thus by using ij ’s we
form a solution to the MPCP problem. ut

We now extend Rµ by adding a special constant ⊥ (annihilator) such that,
if it occurs in a term t, then t reduces to ⊥. That is, we add the rules

14 S. Erbatur et al.

a(⊥)→ ⊥, b(⊥)→ ⊥, f(x, y, ⊥)→ ⊥, f(x, ⊥, y)→ ⊥,

f(⊥, x, y)→ ⊥, and i(⊥) → ⊥, i ∈ {1, . . . , n}
Let R⊥ be the set of those new rules. Then we denote R = Rµ ∪R⊥ the system
extended by annihilator rules. Note that R is convergent as well.

Since equations where both sides contain variables can be trivially solved by
setting the variables to ⊥, we can show that

Theorem 5. Unification modulo R is decidable.

Proof. Without loss of generality, we may consider a problem consisting of one
equation s =?

R t. In the case that s or t are ground, the problem reduces to one
of matching modulo Rµ, which is decidable by Lemma 3. In the case that both
s and t contain variables, the problem becomes ⊥ =?

R ⊥ after substituting ⊥ to
the variables on both sides and reducing. Thus it has a trivial solution. ut

Theorem 6. Asymmetric unification modulo R is undecidable.

Proof. Consider the problem f(α(c), V, c) =↓
?
R f(X, c, X). A unifier obtained

by substituting ⊥ to the variables on both sides would violate asymmetry. More-
over, it is impossible to obtain a unifier by subsituting ⊥ to the variables in the
left side alone. Thus the problem has an asymmetric unifier modulo R if and
only if it has an asymmetric unifier modulo Rµ. Since f(X, c, X) is irreducible
moduloRµ no matter what substitution is made to X, the problem has an asym-
metric unifier modulo Rµ if and only if it has a symmetric unifier. The result
follows from Lemma 4 and the undecidability of MPCP. ut

6 Experiments with Unification Problems Arising in
Protocol Analysis

We implemented a variant-based algorithm for XOR and an algorithm produced
by applying the procedure outlined in Section 4 to the special-purpose XOR al-
gorithm of [13] in Maude-NPA and experimentally compared their performance.
We have run the experiments presented in this Section in an Intel Xeon machine
with 4 cores and 24GB of memory, using Maude 2.7, which includes a built-in
implementation of the variant generation.

Tables 1, 2 and 3 gather the results of unification problems from the follow-
ing protocols: (i) the running protocol example of [7], referred as ESORICS12,
(ii) the Wired Equivalent Privacy Protocol (WEPP) of [1], and (iii) the TMN
protocol of [18, 15], respectively. Table 4 gathers the results of some more com-
plex problems manually defined by the authors to stress the algorithms. Here
each unification problem combines several subproblems, shown below the table.
The ESORICS12, WEPP and TMN protocols were used in the experiments per-
formed in [7], in order to compare the contextual symbolic reachability approach
presented in that paper with other approaches. However, the experiments pre-
sented in this Section are more focused on concrete unification problems that

Asymmetric Unification 15

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #
NS1 ⊕NS2 =↓NS3 ⊕NA 153 12 153 1 0 91
NS1 ⊕NA =↓NS2 ⊕NS3 137 5 121 1 11 80

NS1 ⊕NS2 =↓NS3 ⊕NS4 ⊕NS5 286 54 116 1 59 98
NS1 ⊕NS2 =↓NS3 ⊕NS4 ⊕NA 159 36 115 1 27 97

NS1 ⊕NS2 =↓NA 127 4 114 1 10 75
NS1 ⊕NS2 =↓ null 128 1 105 1 17 0

NS1 ⊕NS2 =↓ null⊕NS3 130 7 105 1 20 85

Table 1. Unification Problems in ESORICS12 protocol.

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #
M1 ⊕M2 =↓M3 ⊕ pair(V1,M4) 51 12 44 1 13 91

pair(V, rc4(V1, kAB)⊕ ([NA, c(NA)]))
=↓ pair(V1,M1) 30 1 29 1 3 0

M1 ⊕M2 =↓M3 ⊕ V1 33 12 32 1 3 91
M1 ⊕M2 =↓M3 ⊕ ([N1, c(N2)]) 34 12 30 1 11 91

M1 ⊕M2 =↓M3 ⊕ pair(V1, pair(V2,M4)) 36 12 30 1 16 91

Table 2. Unification Problems in WEPP protocol.

occur during the analysis of these protocols and the efficiency of asymmetric
unification algorithms when solving them in terms of number of unifiers and
execution time.

In each table the first and second columns show, respectively, the execution
time (in milliseconds) and the number of unifiers obtained using the asymmetric
variant-based unification algorithm. The third and fourth columns show, respec-
tively, the execution time (in milliseconds) and the number of unifiers obtained
using the special-purpose asymmetric unification algorithm for exclusive-or. Fi-
nally, the two last columns present a percentage that reflects the performance
improvement of the special-purpose asymmetric unification algorithm with re-
spect to the asymmetric variant-based algorithm in terms of execution time and
number of unifiers obtained, respectively.

On the average the special-purpose asymmetric unification algorithm is about
8% faster than the variant-based one, and generates about 71% fewer unifiers.
Note, however, that in many cases the reduction in the number of unifiers is more
than 90%. Moreover the asymmetric variant-based unification algorithm does not
provide a minimal set of unifiers, whereas the special-purpose asymmetric algo-
rithm does in all our examples. Indeed, all the asymmetric unification problems
extracted from protocols have a singleton most general asymmetric unifier, as
shown in Tables 1, 2, and 3. However, as shown in Table 4, the special-purpose
algorithm can sometimes be slower than the variant-based one, even when it gen-
erates a smaller most general set of asymmetric unifiers. The reason is that the
post-processing step of the algorithm explained in Section 4 in which appropri-
ate asymmetric unifiers are only instances of the computed unifiers is sometimes
very expensive.

16 S. Erbatur et al.

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #
M1 ⊕M2 =↓M3 ⊕M4 115 18 105 1 8 94

M1 ⊕M2 =↓M3 ⊕M4 ⊕M5 5749 1 74 1 98 0
M1 ⊕M2 =↓M3 ⊕ pair(M4,M5) 71 12 71 1 0 91
pair(M1,M2)=↓ pair(M3,M4) 65 1 70 1 -1 0

M1 ⊕M2 =↓ pair(M3,M4) 67 4 71 1 0 91
M1 ⊕M2 =↓ null⊕M3 66 7 70 1 -6 85

Table 3. Unification Problems in TMN protocol.

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #
SP4 ∧ SP1 ∧ SP2 422 4 68 3 83 25
SP5 ∧ SP1 ∧ SP2 408 24 131 7 67 70
SP6 ∧ SP1 ∧ SP2 416 100 491 15 -18 85
SP7 ∧ SP1 ∧ SP2 454 360 3732 31 -722 91

SP8 ∧ SP1 ∧ SP2 ∧ SP3 151387 3 47 1 99 66
SP9 ∧ SP1 ∧ SP2 ∧ SP3 153913 33 80 3 99 66
SP10 ∧ SP1 ∧ SP2 ∧ SP3 154137 201 157 7 99 96
SP11 ∧ SP1 ∧ SP2 ∧ SP3 154534 1053 349 15 99 98
SP12 ∧ SP1 ∧ SP2 ∧ SP3 160114 5073 829 31 99 99

Table 4. Other Unification Problems

SP1 = M1 ⊕M2 =↓M1 ⊕M2

SP2 = M1 ⊕M3 =↓M1 ⊕M3

SP3 = M1 ⊕M4 =↓M1 ⊕M4

SP4 = M1 ⊕M2 ⊕M3 =↓ a⊕ b
SP5 = M1 ⊕M2 ⊕M3 =↓ a⊕ b⊕ c
SP6 = M1 ⊕M2 ⊕M3 =↓ a⊕ b⊕ c⊕ d

SP7 = M1 ⊕M2 ⊕M3 =↓ a⊕ b⊕ c⊕ d⊕ e
SP8 = M1 ⊕M2 ⊕M3 ⊕M4 =↓ a
SP9 = M1 ⊕M2 ⊕M3 ⊕M4 =↓ a⊕ b
SP10 = M1 ⊕M2 ⊕M3 ⊕M4 =↓ a⊕ b⊕ c
SP11 = M1 ⊕M2 ⊕M3 ⊕M4 =↓ a⊕ b⊕ c⊕ d
SP12 = M1⊕M2⊕M3⊕M4 =↓ a⊕ b⊕ c⊕d⊕ e

7 Conclusions and Future Work

We have shown how asymmetric unification arises in a natural way when analyz-
ing cryptographic protocols. We have investigated the complexity and decidabil-
ity of the problem and shown that variant-based unification can be adapted to
obtain a theory-generic asymmetric unification algorithm. We have also outlined
an approach for converting symmetric algorithms to asymmetric ones and ap-
plied it to an exclusive-or algorithm. Our experimental results are encouraging,
not only for increasing speed but for reducing the number of unifiers.

We plan to refine our procedures for converting algorithms by applying them
to other theories of interest to cryptographic protocol analysis. We conjecture
that our method for converting symmetric algorithms to asymmetric ones can
be developed into an algorithm for certain classes of unification algorithms and
will investigate this further. We will also investigate combining asymmetric al-
gorithms, since combined theories are a common occurrence in cryptographic
protocols. Variant-based narrowing lends itself relatively easily to such combi-
nation. Special-purpose asymmetric unification algorithms will not be as easy to
combine, but we have been investigating combination techniques that take ad-
vantage of special properties of the theories of interest to cryptographic protocol
analysis and plan to apply them in the asymmetric setting.

Asymmetric Unification 17

References

1. IEEE 802.11 Local and Metropolitan Area Networks: Wireless LAN Medium Access
Control (MAC) and Physical (PHY) Specifications. 1999.

2. D. Basin, S. Mödersheim, and L. Viganò. An on-the-fly model-checker for secu-
rity protocol analysis. In In Proceedings of Esorics’03, LNCS 2808, pp. 253–270.
Springer, 2003.

3. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In
CSFW, pp. 82–96. IEEE Computer Society, 2001.

4. H-J. Bürckert, A. Herold, and M. Schmidt-Schauß. On equational theories, unifica-
tion, and (un)decidability. Journal of Symbolic Computation 8(1/2): 3-49 (1989).

5. H. Comon-Lundh and S. Delaune. The finite variant property: How to get rid of
some algebraic properties. In RTA 2005, LNCS vol. 3467, pp. 294–307. Springer,
2005.

6. F. Durán and J. Meseguer. A Maude coherence checker tool for conditional order-
sorted rewrite theories. In WRLA, LNCS vol. 6831, pp. 86–103. Springer, 2010.

7. S. Erbatur, S. Escobar, D. Kapur, A. Liu, C. Lynch, C. Meadows, J. Meseguer,
P. Narendran, S. Santiago, and R. Sasse. Effective symbolic protocol analysis via
equational irreducibility conditions. In Proc. ESORICS 2012, LNCS vol. 7459, pp.
73–90. Springer, 2012.

8. S. Erbatur, S. Escobar, D. Kapur, Z. Liu, C. Lynch, C. Meadows, J.
Meseguer, P. Narendran, and R. Sasse. Asymmetric unification: A new uni-
fication paradigm for cryptographic protocol analysis. In UNIF 2011, 2011.
https://sites.google.com/a/cs.uni.wroc.pl/unif-2011/program.

9. S. Escobar, R. Sasse, and J. Meseguer. Folding variant narrowing and optimal
variant termination. J. Log. Algebr. Program., 81(7-8):898–928, 2012.

10. T. Harju, J. Karhumäki, and D. Krob. Remarks on generalized post correspondence
problem. In Claude Puech and Rüdiger Reischuk, editors, STACS, volume 1046 of
Lecture Notes in Computer Science, pages 39–48. Springer, 1996.

11. J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to automata theory,
languages, and computation - international edition (2. ed). Addison-Wesley, 2003.

12. J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of
equations. SIAM J. Comput., 15(4):1155–1194, 1986.

13. Z. Liu and C. Lynch. Efficient general unification for XOR with homomorphism.
In CADE 2011, pp. 407-421, 2011.

14. Z. Liu. Dealing Efficiently with Exclusive OR, Abelian Groups and Homomor-
phism in Cryptographic Protocol Analysis. PhD thesis, Clarkson University, 2012.
http://people.clarkson.edu/∼clynch/papers/Dissertation of Zhiqiang Liu.pdf.

15. G. Lowe and A.W.R.. Roscoe. Using CSP to detect errors in the TMN protocol.
IEEE Transactions on Software Engineering, 23:659–669, 1997.

16. J. Meseguer. Conditional rewriting logic as a united model of concurrency. Theor.
Comput. Sci., 96(1):73–155, 1992.

17. B. Schmidt, S. Meier, C. J. F. Cremers, and D. A. Basin. Automated analysis
of Diffie-Hellman protocols and advanced security properties. In Proc. CSF 2012,
pp. 78–94. IEEE, 2012.

18. M. Tatebayashi, N. Matsuzaki, and D. Newman. Key distribution protocol for
digital mobile communication systems. In Proc. CRYPTO’89, LNCS vol. 435, pp.
324–334. Springer, 1990.

19. TeReSe, editor. Term Rewriting Systems. Cambridge University Press, 2003.
20. P. Viry. Equational rules for rewriting logic. Theor. Comp. Sci., 285(2):487–517,

2002.

