

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

http://dx.doi.org/10.1109/PACT.2013.6618810

http://hdl.handle.net/10251/71918

IEEE

Feliu Pérez, J.; Sahuquillo Borrás, J.; Petit Martí, SV.; Duato Marín, JF. (2013). L1-
Bandwidth Aware Thread Allocation in Multicore SMT Processors. IEEE.
doi:10.1109/PACT.2013.6618810.

L1-Bandwidth Aware Thread Allocation in
Multicore SMT Processors

Josué Feliu, Julio Sahuquillo, Salvador Petit, and José Duato
Department of Computer Engineering (DISCA)

Universitat Politècnica de València
València, Spain

Email: jofepre@fiv.upv.es, {jsahuqui,spetit,jduato}@disca.upv.es

Abstract—Improving the utilization of shared resources is a
key issue to increase performance in SMT processors. Recent
work has focused on resource sharing policies to enhance the
processor performance, but their proposals mainly concentrate on
novel hardware mechanisms that adapt to the dynamic resource
requirements of the running threads.

This work addresses the L1 cache bandwidth problem in SMT
processors experimentally on real hardware. Unlike previous
work, this paper concentrates on thread allocation, by selecting
the proper pair of co-runners to be launched to the same
core. The relation between L1 bandwidth requirements of each
benchmark and its performance (IPC) is analyzed. We found that
for individual benchmarks, performance is strongly connected to
L1 bandwidth consumption, and this observation remains valid
when several co-runners are launched to the same SMT core.

Based on these findings we propose two L1 bandwidth
aware thread to core (t2c) allocation policies, namely Static and
Dynamic t2c allocation, respectively. The aim of these policies is
to properly balance L1 bandwidth requirements of the running
threads among the processor cores. Experiments on a Xeon E5645
processor show that the proposed policies significantly improve
the performance of the Linux OS kernel regardless the number
of cores considered.

Keywords—SMT, thread allocation, bandwidth-aware schedul-
ing

I. INTRODUCTION

Simultaneous multithreading (SMT) processors exploit
both instruction-level and thread-level parallelism by issuing
instructions from different threads in the same cycle. Thread-
level parallelism increases the chance of having instructions
ready to be issued so reducing the vertical waste at the
issue logic [1]. Because of instructions from different threads
can be launched each cycle, threads are continuously sharing
processor resources. This means that performance of SMT
cores strongly depends on how resources are shared among
threads.

The subset of processor resources that are shared depends
on the actual SMT implementation but it typically includes,
among others, functional and arithmetic units, instruction
queues, renaming registers and first-level caches. If at a given
time of the execution, the demand for a given resource exceeds
what that resource can provide, the processor performance
can be damaged. Thus, smart thread to core (t2c) mapping
policies can help alleviate the contention in shared resources
in current multicore multithreaded processors. As opposite, a

naive policy could even create a new bottleneck by increasing
the contention for a given resource.

A critical shared resource in any current multicore system
is the memory bandwidth. Main memory bandwidth is shared
by all the processor cores. For a given system, the higher
the number of cores the higher the main memory bandwidth
contention. Climbing the memory hierarchy, LLC caches (and
caches of higher levels) are also typically shared by a subset or
all the cores; thus, bandwidth contention can rise at different
points of the memory hierarchy. Main memory [2] [3] and
LLC bandwidth [4] [5] [6] have been addressed in many recent
research works that have shown the potential performance
improvements that bandwidth-aware scheduling policies can
offer by providing a better sharing of the memory hierarchy
resources.

In summary, research works focusing on SMT processors
have concentrated on enhancing the utilization of shared re-
sources in the core, while research works focusing on CMPs
have proposed scheduling strategies to avoid bandwidth con-
tention in main memory and shared caches. However, to the
best of our knowledge, L1 bandwidth, which is private to SMT
cores in CMP systems but shared to threads in the core, has not
been addressed yet neither in scheduling nor resource sharing
strategies.

This paper has two main contributions. First, we explore
the connection between the L1 bandwidth and performance of
processes. The experiments performed in a real system show
that the performance of a given process is strongly connected
with its L1 bandwidth consumption while the amount of L1
bandwidth each thread consumes depends on the bandwidth
requirements of the threads running concurrently on the same
core (known as co-runners). Rises and drops in the L1 band-
width utilization of a thread have a direct impact on its IPC,
and affect in an opposite way the IPC of the co-runner, since
the amount of available L1 bandwidth changes. Therefore, it
is expected that the more balanced the L1 bandwidth is, the
highest the performance.

To leverage this finding, we propose two thread allocation
strategies, namely Static (St2c) and Dynamic (Dt2c), with the
goal of balancing L1 bandwidth requirements of the running
threads among the processor cores. The first policy uses the
average L1 bandwidth requirements of the threads measured
in standalone execution to perform the thread to core (from
now on t2c) mapping. In contrast, the Dynamic policy uses
performance counters to update the L1 bandwidth requirements

of the threads dynamically at runtime to adapt the t2c mapping
to the bandwidth requirements that threads exhibit at each point
of time.

Experimental results on a Xeon E5645 processor show that
the proposed policies can significantly improve the perfor-
mance over Linux OS scheduler. The Dynamic policy offers
the best performance under the evaluated workloads, achiev-
ing performance improvements up to 6.54% over Linux OS
scheduler. Moreover, the policy can be combined with memory
bandwidth-aware schedulers or resource sharing strategies to
provide farther performance benefits.

The rest of this paper is organized as follows. Section II dis-
cusses related work. Section III describes the platform where
the experiments have been carried out. Section IV analyses
the relationship between L1 bandwidth and performance of
processes when running alone and with a co-runner. Section V
proposes novel thread allocation policies designed to improve
performance by enhancing L1 bandwidth distribution. Section
VI explains the evaluation methodology. Section VII evaluates
the performance of the proposals. Finally, Section VIII presents
some concluding remarks.

II. RELATED WORK

A large amount of research work has analyzed the impact
of resource sharing in modern multicores as well as scheduling
and thread allocation strategies to exploit resource sharing
while avoiding negative effects on performance.

Some preliminary works [2] [3] on this topic focused on
main memory bandwidth contention. Antonopoulos et al. [2]
proposed several scheduling policies trying to match the total
bandwidth requirements of the running processes to the peak
memory bus bandwidth. In [3], Xu et al. proved that contention
can rise even when memory bandwidth requirements are below
the peak bandwidth due to irregular access patterns. They
proposed to distribute the memory accesses over the execution
time of a workload to minimize contention by means of
scheduling strategies.

Regarding LLC contention, Tang et al. [4] studied the
impact of sharing memory resources on datacenter applications
and found that improperly sharing LLC resources can cause
potential degradation. To tackle this issue, authors presented
two approaches that enhance the t2c assignments in the
datacenter. In [5], Zhuravlev et al. proposed a scheduling
algorithm that among other resources, addresses contention for
LLC space. Knauerhase et al. [7] presented a scheduler that
observes task execution properties using hardware counters to
provide co-schedules that reduce cache interference. Fedorova
et al. [8] proposed a cache-fair scheduling algorithm that gives
more execution time to those processes whose performance is
affected by unequal cache sharing. Most of these works base
the co-schedules in measuring the number of cache misses
during sampling periods. In contrast, Jiang et al. [9] presented
cache-contention aware proactive scheduling (CAPS), which
assigns processes according to cache reuse signatures, avoiding
some of the constraints of sampling-based techniques.

More recent scheduling strategies take into account several
levels of the memory hierarchy. Feliu et al. [6] addressed
bandwidth contention along the memory hierarchy of chip

multiprocessors (CMP), while Eyerman and Eeckhout [10]
count the number of misses along the cache hierarchy in
a simultaneous multithreading (SMT) processor and use the
number of misses in each cache to estimate job symbiosis in
a probabilistic way.

The current predominant approach to processor design
combines multicore and multithreading in a single chip. In
this type of processors, thread allocation plays a key role
in improving overall performance due to the multiple and
heterogeneous levels of resource sharing. In [11], Čakarević
et al. characterized different types of resource sharing in a
UltraSPARC T2 processor and presented a case study where
they improve the execution of a multithreaded network appli-
cation with a resource sharing aware scheduler. Acosta et al.
[12] showed that processor throughput has a high dependence
on thread allocation and proposed a t2c allocation policy that,
in general, combines computation-bound and memory-bound
processes in each core. A similar strategy is followed by Weng
and Liu in [13].

This work is related with resource partitioning in CMPs
with SMT cores. There is also a significant amount of research
exploring this issue, but no especial attention has been devoted
to L1 bandwidth utilization. Some SMT resource partitioning
policies like DCRA [14] account L1 misses in order to
classify threads as slow or fast, while recent techniques like
Hill-Climbing [15] or ARPA [16] concentrate on partitioning
internal pipeline resources by taking into account performance
feedback and core utilization metrics, respectively. Regarding
cache partitioning, the works by Moreto et al. [17] [18] focused
on partitioning the LLC of CMPs to increase memory level
parallelism and reduce workload imbalance. On the other hand,
recently proposed cache partitioning algorithms SHARP [19]
and PriSM [20] manage LLC cache sharing in CMPs using
formal control and probability theories, respectively. Finally,
Chen and John [21] coordinate pipeline and L2 management
to optimize performance in CMPs. This problem is also tackled
by Bitirgen [22] et al. using artificial neural networks.

III. EXPERIMENTAL PLATFORM

Experiments have been performed in a shared-memory
SMT Intel Xeon E5645 processor, with six dual-thread cores.
Each core includes two levels of private caches, a 32KB L1
and a 256KB L2. A third-level cache of 12 MB is shared
among the L2 private caches. The system is equipped with 12
GB of DDR3 RAM and runs at 2.4 GHz.

The system has installed a Fedora Core 10 Linux
distribution with kernel 3.3.0. The library libpfm 4.3.0
is used to manage hardware performance counters
[23]. Events perf count hw cache l1d:access and
perf count hw cache l1d:miss are used to gather the
L1 requests, while events unhalted core cycles and
instructions retired are used to collect executed cycles
and instructions, respectively. The events are gathered at
runtime to provide online values for L1 bandwidth and IPC
during the execution of benchmarks. In addition, the proposed
Static and Dynamic thread allocation policies are based on
runtime L1 bandwidth measures obtained from performance
counter values.

SPEC CPU2006 benchmark suite with reference inputs has
been used in all the experiments. For evaluation purposes, the
execution time of the benchmarks is fixed to 200 seconds
in standalone execution. Benchmarks with shorter or longer
execution time are relaunched or killed, respectively, to run ex-
actly during 200 seconds. The number of executed instructions
required by each benchmark to achieve this execution time is
recorded offline and used as target number of instructions for
further executions.

IV. EFFECTS OF L1 BANDWIDTH ON PERFORMANCE OF
SMT PROCESSORS

Current microprocessors deploy a cache hierarchy orga-
nized in two or three levels of caches. The first-level cache,
the closest to the processor, is the most frequently accessed
while low level caches, are accessed in case the looked data is
not found in the higher level caches. Consequently, L1 caches
are critical for performance and thus, they are designed to
provide fast access and high bandwidth.

This section analyzes the relation between L1 bandwidth
consumption and processor performance (i.e., IPC). First,
the dynamic behavior in stand-alone execution is analyzed.
Then, we study how co-runners (i.e., two threads running
simultaneously in the same core) interact each other on their
respective performances and L1 bandwidth consumptions.

A. Stand-alone execution

As a first step to investigate the possible relation between
the bandwidth utilization of the L1 cache and the overall pro-
cessor performance, we measured the average L1 transaction
rate (i.e., TRL1) and the IPC achieved by each process. To
avoid interferences of other applications each benchmark was
run alone.

Figure 1(a) and Figure 1(b) depict both average TRL1 and
IPC of the SPEC CPU2006 benchmarks. At first glance, a
certain correlation can be observed between both metrics since
most benchmarks with high IPC also present high TRL1, and
conversely, benchmarks with low IPC also experience low
TRL1. However, benchmarks with similar IPCs can widely
differ in their L1 transaction rates (e.g., gobmk and hmmer),
and vice versa, benchmarks with close TRL1 can diverge in

the achieved IPC (e.g., dealII and GemsFDTD). Thus, although
certain similarities appear among both performance indicators,
there is no clear evidence about the connection between them.

Nevertheless, it is well known that the benchmark behavior
can widely vary over the execution time. Thus although some
divergences can appear on the average values, one should look
for further insights in the dynamic values of both metrics at
run-time.

Figure 2 depicts the results at each OS execution quantum
for a subset of benchmarks. Each plot presents the IPC and
L1 bandwidth for the same benchmark to ease the analysis.
In addition, both Y axis (IPC and TRL1) are scaled in a
100x factor. The plots clearly illustrate the strong connection
between both metrics. As observed, L1 bandwidth utilization
and performance show an almost identical shape during the
entire execution time for all the benchmarks. Both metrics
follow the same trend (rises and drops) in a synchronized
way and similar magnitude. The trend in both performance
indicators is so close that even small peaks can be observed in
both IPC and TRL1 curves (e.g., by time equal to 40 seconds
in Figure 2(f)).

The finding that both IPC and TRL1 for a process follow
a so synchronized and correlated trend has important connota-
tions. It implies that when a process shows high performance
(i.e., high IPC) during a running period, it will certainly show
high L1 bandwidth consumption. And vice versa, if a process
is consuming a small amount of L1 bandwidth then its IPC is
expected to be low. Therefore, to allow processes to achieve
their best performance they must be run so that they can
get the highest bandwidth consumption; thus, these scenarios
should be promoted. Since some benchmarks present phases
with widely differenced L1 bandwidth requirements, changes
in the t2c allocation should be allowed dynamically at run-time
to favor such scenarios.

B. Analyzing interferences between co-runners

While current microprocessors implement LLC caches,
which are shared by a subset or all cores, L1 caches are
designed private to each core. In case of single-threaded cores,
all available L1 bandwidth is devoted to a single process. In
such a system, processes do not compete for L1 bandwidth.

(a) TRL1 (b) IPC

Figure 1. Average TRL1 and IPC for SPEC CPU 2006 benchmarks

(a) Perlbench (b) Bzip2 (c) Mcf

(d) Sjeng (e) H264ref (f) Astar

(g) Xalancbmk (h) Bwaves (i) Gamess

(j) CactusADM (k) DealII (l) GemsFDTD

Figure 2. TRL1 and IPC evolution with time for a set of SPEC CPU 2006 benchmarks

In contrast, in current SMT cores, those threads running
concurrently share the L1 cache. Since, as shown above, the
performance of the processes depends on the L1 bandwidth
they utilize, the performance will suffer when several threads
run in the same SMT core because of they compete for L1
bandwidth.

This section analyzes how sharing the L1 bandwidth can
limit the thread performance. To this end, multiple experiments
running two different benchmarks (co-runners) on a single
dual-thread core were performed. Results show that whatever
the pair of benchmarks launched to run concurrently, IPC
and L1 bandwidth values are significantly lower for both co-
runners than those obtained in stand-alone execution. These

performance drops are caused, among others, by the L1
bandwidth constraints.

To clearly show the impact of limited bandwidth on per-
formance, the pair of behavior of the benchmarks selected
to run concurrently must fulfill two key characteristics. First,
each pair of threads must include at least one benchmark with
high L1 bandwidth requirements. Notice that if the pair of co-
runners does not consume significant L1 bandwidth, the impact
of contention on performance will be less accentuated. Second,
at least one of the co-runners must present a non-uniform
shape. Otherwise, that is, if its bandwidth consumption is
uniform (does not rise and fall), no significant insights will
be appreciated on the resultant plot.

Figure 3 illustrates the results for three pairs of bench-

(a) TRL1 of bwaves and cactusADM (b) TRL1 of gamess and dealII (c) TRL1 of h264ref and bwaves

(d) IPC of bwaves and cactusADM (e) IPC of gamess and dealII (f) IPC of h264ref and bwaves

Figure 3. TRL1 and IPC dynamic evolution with time when running both benchmarks on a single SMT core

marks. For each pair, two plots are shown in the same column;
the individual TRL1 of both co-runners is shown in the upper
side and individual IPC in the lower side. The presented results
depict the dynamic evolution of both performance indicators
during a fragment, the comprised from seconds 20 to 120,
of the execution time, to ease the identification of trends.
Different observations can be appreciated in this figure that can
serve as a guide for designing thread allocation and scheduling
policies.

The first observation is that when a pair of benchmarks runs
concurrently on the same core, the individual L1 bandwidth
utilization of each benchmark can significantly drop with
respect to that achieved on stand-alone execution. Although
such drop is expected, it is not clear how strong it will be.
Notice that, in some cases, the TRL1 drop is below 40%,
what shows the importance of adequately sharing this resource.
The second observation is that the individual L1 bandwidth
consumption of a benchmark is strongly related with that of
its co-runner. More precisely, when the use of L1 bandwidth of
a benchmark drops, a large amount of bandwidth is available
for the co-runner, so a positive side effect occurs which results
in an increase of the co-runner’s L1 bandwidth consumption.

As example, lets analyze this behavior in Figure 3(a) with
bwaves and cactusADM as co-runners. The most interesting
effect is the caused by cactusADM on the bwaves’s behavior.
The TRL1 of bwaves in stand-alone execution is regular
although with important drops. However, the decreasing trend
in the cactusADM’s L1 bandwidth requirements leaves more
L1 bandwidth available to bwaves, which turns into an increase
in its TRL1. It can be also observed that when the TRL1 of
bwaves drops below 400 transactions per second, the band-
width consumption of h264ref slightly rises. This behavior,
even with a more accentuated impact, can be observed in
the two other pairs of benchmarks. In summary, rises, drops
and decreasing or increasing trends in the L1 bandwidth

consumption of a benchmark trigger the opposite behavior in
the co-runner.

Lets focus the analysis now on IPC values, which are
shown in Figure 3 (lower row of plots). As stated in Section
IV-A, the IPC achieved by a benchmark in stand-alone execu-
tion is strongly correlated with its consumed L1 bandwidth. An
important finding is that this property is preserved even if a
thread is sharing the L1 cache with a co-runner. Therefore,
the previous analysis of the impact of the L1 bandwidth
requirements on performance in stand-alone execution can be
extended for two co-runners.

Putting together the previous observations and findings, we
claim that sharp drops on the TRL1 of a benchmark cause
sharp loses on the benchmark performance (IPC), and trigger
an opposite behavior (both in L1 bandwidth and IPC) in its co-
runner. This pattern is also exhibited when benchmarks present
slightly rising or dropping trends.

In summary, although multiple microprocessor components
are shared in a SMT processor, L1 bandwidth contention
can strongly drop the performance further than half with
respect to stand-alone execution, showing that in such cases,
L1 bandwidth contention becomes the major performance
bottleneck. To reduce such bottleneck, this paper focuses on
L1 bandwidth-aware thread allocation policies.

V. L1 BANDWIDTH-AWARE THREAD ALLOCATION
POLICIES

The previous analysis illustrates the usefulness of designing
L1 bandwidth-aware thread allocation policies. The aim of
these policies is to properly balance L1 bandwidth require-
ments among cores in a timely manner in order to improve
performance. Performance benefits vary depending on how far
is the bandwidth required by the co-runners from that available
in the shared L1 cache.

This section presents the devised Static (St2c) and Dynamic
(Dt2c) thread to core allocation policies. Both policies rely on
the L1 bandwidth demand of the running processes to guide the
t2c allocation, but they differ on the way L1 bandwidth demand
is estimated. The policies could be also considered as a part
of a global scheduler that, before allocating threads to cores,
selects the proper jobs to run the following quantum among
all available processes. Below, these polices are described.

A. Static thread allocation policy

The Static t2c policy allocates threads to cores based on
their average L1 transaction rate when they run alone in the
system. The policy is referred to as static because it uses the
average L1 bandwidth requirements of the threads, without
taking into account dynamic deviations from this value. To
be able to run a given thread using this policy, its average
L1 bandwidth should be provided to the scheduler, which is
an approach similar to that used in several bandwidth aware
schedulers tackling main memory and LLC bandwidth [3] [6].

As stated before, the goal of the policy is to properly dis-
tribute the amount of accesses that all running threads perform
among the L1 caches in the system. Since the experimental
platform supports simultaneous execution for only two threads
in each core, balancing L1 requests among cores can be easily
done. For instance, threads can be ordered according to their
L1 bandwidth requirements. Then, the threads with highest and
lowest L1 bandwidth requirements can be selected to be run in
the same core. This rule can be iteratively applied to form the
remaining pairs of co-runners. If the SMT processor supports
the execution of three or more threads it is possible to balance
L1 requirements by calculating the cumulative TRL1 of all
the threads and dividing this value by the number of cores.
Then, threads can be properly allocated to the cores in order
to minimize TRL1 differences among caches. Given that the
allocation is guided by static measures, the t2c mapping only
needs to be recalculated on a change in the running threads.

The advantage of using the L1 bandwidth metric to guide
the allocation is that L1 bandwidth requirements are quite
uniform over the execution time in a noticeable group of
benchmarks (11 of the 25 analyzed), and thus it is a good
approximation of the real requirements of the processes.
Moreover, since these values are obtained while threads are
running alone in the system any possible interference from
other threads is avoided.

B. Dynamic thread allocation policy

The discussed St2c allocation policy presents two main
shortcomings. First, it requires the processes to be run alone
in order to estimate their average L1 bandwidth requirement
before applying the thread allocation policy, which is not
always possible. Second, the average L1 bandwidth require-
ments of benchmarks does not capture well the L1 bandwidth
requirements of processes with non-uniform shapes like as-
tar, xalancbmk or mcf. More precisely, when running such
benchmarks, the St2c allocation policy does not discern among
execution periods with high L1 bandwidth requirements from
those with scarce requirements, which may cause suboptimal
t2c mappings, that is, execution periods where L1 bandwidth
requirements are not properly balanced among L1 caches.

The proposed Dt2c allocation policy tackles both of the
aforementioned shortcomings. This policy uses the L1 band-
width requirements that processes experience during their
concurrent execution to guide the t2c mapping. Unlike the
static policy, L1 bandwidth requirements of the running threads
are dynamically obtained at run-time at the granularity of
quantum. The L1 bandwidth requirements for the next quantum
are assumed equal to the L1 bandwidth consumed during the
last quantum, which is obtained using performance counters
as stated in Section III. Since such values are gathered dy-
namically at run-time and at a smaller granularity, the policy
should be able to provide better L1 bandwidth estimations for
those threads presenting non-uniform bandwidth demands.

Balancing L1 requests among all the L1 caches can be
performed as explained for the St2c allocation policy, to either
dual-thread cores or cores with higher number of supported
threads, but using the dynamically measured L1 bandwidth
requirements of each thread, instead of the average value. Since
bandwidth requirements are updated at the granularity of a
scheduler quantum, the thread allocation process needs to be
performed at the same granularity to provide L1 bandwidth
balancing for each quantum.

As mentioned above, the main advantage of using dynamic
L1 bandwidth measures is that the t2c mapping is adapted
when a thread changes its L1 bandwidth requirements, and
thus L1 bandwidth balancing is improved. For instance, L1
bandwidth requirements of benchmarks like astar or mcf
can be properly addressed. That is, the t2c allocation can
assign to the same core astar together with a benchmark with
high L1 bandwidth requirements while astar’s L1 bandwidth
requirements are low, and change its co-runner to another with
lower bandwidth requirements as soon as the L1 bandwidth
consumed by astar grows. In this way, L1 bandwidth distribu-
tion among cores is enhanced when compared with the St2c
policy, where a given thread is launched to be run with the
same co-runner during its complete execution.

VI. EVALUATION METHODOLOGY

A. Methodology

To evaluate the effectiveness of the proposed policies, their
performance is compared against the Linux OS scheduler and
a naive thread allocation strategy. The four thread allocation
policies have been implemented in a user-level Linux sched-
uler, sharing the main part of the code and only differing in
the allocation algorithm. In this way, any possible overhead is
shared among the studied policies and thus they can be fairly
evaluated. The proposed policies are implemented following
the explained algorithms. Linux OS allocation strategy is im-
plemented by leaving to Linux the final decision about the t2c
mappings. Finally, the naive t2c allocation policy dynamically
allocates threads to cores such as the threads with higher L1
bandwidth requirements are allowed to run simultaneously in
the same core. Quantum length for the schedulers is set to 200
microseconds, which is the granularity at which performance
counters are accessed and the t2c mapping for the following
quantum is obtained.

To avoid performance differences caused by early finaliza-
tion of the execution of some benchmarks, which means that
part of the execution in some cores will be performed by a

Classification Benchmarks

Extreme L1 bandwidth h264ref, bwaves, gamess

High L1 bandwidth perlbench, bzip2, hmmer, libquantum,

leslie3d, namd, dealII, gemsFDTD

Medium L1 bandwidth gcc, gobmk, sjeng, astar,

xalancbmk, zeusMP, povray, lbm

Low L1 bandwidth mcf, omnetpp, milc, gromacs,

cactusADM, soplex

Table I. BENCHMARK CLASSIFICATION ACCORDING TO THE L1

BANDWIDTH REQUIREMENTS

single co-runner and thus, without L1 bandwidth contention,
we keep all benchmarks of the mix in execution until the last
one executes its target number of instructions. This implies
that some benchmarks will execute more instructions than the
targeted number. For comparison purposes, we consider in
these benchmarks only the performance metrics obtained while
the target number of instructions is executed.

Thread allocation strategies are evaluated using two dif-
ferent metrics: average IPC and harmonic mean of weighted
IPC. Average IPC of the threads composing a workload is
the plain metric to measure throughput improvement between
different runs of a workload. When evaluating schedulers,
this metric can provide greater benefits to unfair scheduling
strategies [24]. For example, at least for a while, it would be
possible to improve the average IPC running the processes with
highest IPCs. However, such scenarios are not possible with the
proposed experimental methodology, since all the benchmarks
are running until the complete execution of the mix. Thus,
under the umbrella of our experimental methodology, average
IPC is a good metric to quantify throughput improvement.
To quantify fairness in addition to performance, the harmonic
mean of weighted IPC [25] is typically used. This metric is
interesting because most metrics quantify either performance
or fairness independently, while this one encapsulates both of
them. Fairness is captured by using the harmonic mean, which

tends to be lower if any thread presents lower speedup than
the remaining co-runners.

B. Mix design

According to the average L1 bandwidth requirements of
the benchmarks in standalone execution, we classify them in
four groups, presented in Table I. Benchmarks with higher L1
bandwidth utilization can potentially induce higher degradation
in the co-runner and at the same time, they can suffer a
strong degradation due to L1 bandwidth constraints. Thus, it is
critical to allocate them sharing the core with the appropriate
co-runners to enhance performance. Otherwise, significant
performance losses will appear.

Based on the benchmark classification, mixes are classified
according to the number of extreme benchmarks they have.
The balanced mixes are formed with half the benchmarks
belonging to the extreme L1 bandwidth category. These work-
loads have potential to offer greater benefits with a good t2c
allocation since each benchmark with extreme L1 bandwidth
demand can be allocated to a different core to run with a
benchmark with lower L1 bandwidth requirements. The non-
balanced mixes are formed with less extreme benchmarks than
the number of cores. Since more threads can present intermedi-
ate bandwidth requirements, lower differences between distinct
t2c mappings are expected.

We designed a wide variety of mixes consisting of up to
twelve threads. In order to force that all the cores run two
threads simultaneously, each mix is run on half the number of
cores that threads contains the mix.

VII. THREAD ALLOCATION POLICIES EVALUATION

Performance of the proposed St2c and Dt2c policies is eval-
uated and compared against that of the Linux OS scheduler. A
wide set of mixes has been evaluated for a different number
of cores, ranging from two cores (four threads) to 6 cores
(twelve threads). For each number of threads, we used mixes
with different L1 bandwidth demands. We mingled balanced
mixes with mixes presenting a lower number of benchmarks
with extreme L1 bandwidth than cores.

Figure 4. Speedup of the average IPC relative to the naive thread allocation strategy with 95% confidence intervals

Figure 4 presents the speedup of the average IPC achieved
by the proposed policies and Linux for each mix over the
naive t2c allocation policy, which has been used as baseline.
Average values with 95% confidence intervals are represented.
With XE we refer to a mix with X extreme benchmarks; e.g.,
1E means only one extreme benchmark, that will be executed
in one of the cores, while the remaining cores will not have
any benchmark belonging to this category.

Compared to the Linux scheduler, the proposed policies
achieve better performance across all the twenty-four evaluated
mixes. While Dt2c and St2c policies provide speedups higher
than 5% in seventeen and fifteen mixes, respectively, Linux
scheduler only surpasses this value in four mixes. On the
contrary, the speedup of Linux scheduler falls around or below
2% in six mixes, while St2c and Dt2c policies only do that in
one mix.

As observed, the Dt2c allocation policy performs better, on
average, than the St2c allocation policy. Significant differences
can be appreciated in some mixes like 2, 3, 8, 12, 16 and 24.
The major differences appear when the mix includes bench-
marks showing a non-uniform shape in their L1 bandwidth
requirements. For instance, mix 2 includes bwaves and cactus-
ADM, which present a non-uniform shape. On the contrary,
mix 1 shows minor differences since all benchmarks present
an almost uniform shape in their L1 bandwidth consumption.
The only exception in which St2c provides significant benefits
over the Dt2c policy is in mix 6. The reason is that includes
the GemsFDTD benchmark, whose L1 bandwidth utilization
varies so fast (see Figure 2(l)) that the Dt2c policy is not able
to accurately predict the bandwidth requirement for the next
quantum.

As expected, the policies offer higher performance when
running balanced workloads. As the number of extreme threads
drops in the mix, the achieved speedup is on average smaller
since the L1 bandwidth contention is reduced. Nonetheless,
performance differences among mixes also come from the
characteristics of the non-extreme benchmarks. For example,
mix 20 has one and five benchmarks with medium and low L1
bandwidth demand, respectively; while mix 21 includes one,
three and two benchmarks with high, medium and low L1
bandwidth consumption. Since bandwidth differences among

possible pairs can be higher in mix 20 than in mix 21, one
should expect major performance benefits from appropriate t2c
mappings in such mix. Thus, even in non-balanced workloads
(e.g. 12, 16, 22, 23 and 24), noticeable performance benefits
can be achieved.

Notice too that confidence intervals of the Linux t2c policy
are considerably larger than those of the St2c and Dt2c
allocation policies. This is due to the fact that Linux does not
consider L1 bandwidth to perform the allocation. Therefore, its
thread to core mappings greatly vary along different instances
of the experiment, and consequently, their corresponding per-
formance. On the other hand, the confidence intervals for the
devised policies are usually below 0.1%, ensuring that the
achieved speedups are stable among executions.

Finally, the performance of the proposed policies scale
well with the number of threads. Nevertheless, the number of
accesses to main memory is expected to grow with the number
of threads. Thus, it may happen that LLC and main memory
contention grow so creating a new contention point in such
memory structures. On such a case, the proposed t2c policies
could be combined with main memory and LLC bandwidth-
aware schedulers to tackle such contention points.

Looking at Figure 5, which shows the speedups using the
harmonic mean of weighted IPC, the same conclusions can
be drawn. The speedup values are slightly reduced, however,
differences between the performance of the Dt2c policy and
the St2c policy are wider (e.g., mixes 3, 7, 17 and 24). Thus,
one can conclude that the Dt2c allocation policy is the best
one since this metric evaluates both performance and fairness.

Average values do not reflect what is happening over time.
To provide insights and a sound understanding about how the
different policies work with time, lets analyze the behavior
of mix 2. In this mix, the St2c policy significantly improves
Linux performance, and at the same time, the Dt2c policy
considerably improves the performance of the St2c policy.
Figure 6 shows the dynamic TRL1 of each benchmark during
the complete execution of the mix under the studied t2c
allocation policies.

Notice that the Linux and St2c policy plots are quite
similar during the first 250 seconds. According to the TRL1

Figure 5. Speedup of the harmonic mean of weighted IPC relative to the naive thread allocation strategy with 95% confidence intervals

(a) Linux thread to core allocation

(b) Static thread to core allocation

(c) Dynamic thread to core allocation

Figure 6. TRL1 of benchmark in mix 2 varying the tread to core allocation policy

curves, one can deduce that h264ref and cactusADM were
running on one core and bwaves and soplex on the other
one. Around second 250, Linux changes the thread to core
mapping and starts running together h264ref and bwaves. This
can be deduced because the rises in the TRL1 curve of h264ref
are synchronized with the drops of bwaves. However, notice
that in spite of this thread to core mapping yields to lower
performance, Linux keeps it until the end of the execution.

Unlike the previous policies, the Dt2c policy usually selects
as co-runners bwaves and cactusADM, which according to the
observed TRL1 is the best choice. As observed, Bwaves obtains
regular peaks around 1500 trans/usec, while the maximum
TRL1 does not surpass 1400 trans/usec in the other two t2c
policies. Finally, when bwaves experiences sharp drops in its
TRL1 curve, the Dt2c policy benefits the h264ref benchmark,
which at that point, is the more consuming L1 bandwidth
benchmark of the remaining ones. Consequently, the L1 band-
width of h264ref rises occurred during drops int the curve of
bwaves are higher than those obtained by soplex in the St2c
policy, thus, enhancing the performance.

VIII. CONCLUSIONS

This work has addressed the L1 bandwidth contention in
current multithreaded CMPs and has proven that by addressing
the L1 bandwidth distribution in SMT multicores, performance
enhancements can be achieved.

The relation between IPC and TRL1 of the benchmarks
in standalone execution has been analyzed, showing that both
metrics are strongly connected and follow the same shape
over their execution time. When two threads run on a dual-
thread SMT core, they share the available L1 bandwidth,
which many times is not enough to satisfy their requirements.
Results have shown that trends, rises and drops in the curve
of the L1 bandwidth consumption of a given thread trigger
the opposite behavior in the co-runner. Moreover, we found a
strong connection between TRL1 and IPC of a given thread in
stand alone execution, which is preserved when various threads
are executed concurrently in the SMT core.

According to the previous findings, if the L1 requests are
properly balanced among the processor cores, then the L1
bandwidth contention should be reduced, so increasing the
L1 bandwidth that threads can consume and consequently
improving their performance. To exploit this idea, we have
proposed two t2c allocation policies with the aim of improving
the L1 bandwidth balancing. The St2c policy uses the average
L1 bandwidth requirements of the threads to obtain the t2c
mapping, while the D2tc policy dynamically accesses perfor-
mance counters to update the L1 bandwidth requirements of
the thread at runtime and adapt the t2c mappings.

Experimental evaluation on a Xeon E5645 have shown that
both policies significantly improve the performance with re-
spect to the Linux OS scheduler, which in many cases is unable

to improve the performance of a naive policy further than 1%.
In contrast, the proposed Dt2c policy achieves speedups as
high as 10% over the naive scheduler and doubles the speedups
obtained by the Linux OS scheduler in most of the evaluated
mixes. Finally, the proposed thread allocation policies can be
combined with memory bandwidth-aware schedulers proposed
for CMPs and sharing resource strategies for SMTs in order
to improve the overall system performance.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministerio de
Economı́a y Competitividad (MINECO) and by FEDER funds
under Grant TIN2012-38341-C04-01; and by Programa de
Apoyo a la Investigación y Desarrollo (PAID-05-12) of the
Universitat Politècnica de València under Grant SP20120748.

REFERENCES

[1] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithread-
ing: maximizing on-chip parallelism,” SIGARCH Comput. Archit. News,
vol. 23, no. 2, pp. 392–403, May 1995.

[2] C. D. Antonopoulos, D. S. Nikolopoulos, and T. S. Papatheodorou, “Re-
alistic workload scheduling policies for taming the memory bandwidth
bottleneck of smps,” in High Performance Computing (HiPC), 2004,
pp. 286–296.

[3] D. Xu, C. Wu, and P.-C. Yew, “On mitigating memory bandwidth
contention through bandwidth-aware scheduling,” in International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
2010, pp. 237–248.

[4] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M.-L. Soffa, “The
impact of memory subsystem resource sharing on datacenter applica-
tions,” in International Symposium on Computer Architecture (ISCA),
2011, pp. 283–294.

[5] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared
resource contention in multicore processors via scheduling,” in In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2010, pp. 129–142.

[6] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “Understanding Cache
Hierarchy Contention in CMPs to Improve Job Scheduling,” in Inter-
national Parallel Distributed Processing Symposium (IPDPS), 2012, pp.
508 –519.

[7] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, “Using os
observations to improve performance in multicore systems,” IEEE
Micro, vol. 28, no. 3, pp. 54–66, may 2008.

[8] A. Fedorova, M. Seltzer, and M. D. Smith, “Improving performance
isolation on chip multiprocessors via an operating system scheduler,”
in International Conference on Parallel Architecture and Compilation
Techniques (PACT), 2007, pp. 25–38.

[9] Y. Jiang, K. Tian, and X. Shen, “Combining locality analysis with online
proactive job co-scheduling in chip multiprocessors,” in International
Conference on High Performance Embedded Architectures and Com-
pilers, (HiPEAC), 2010, pp. 201–215.

[10] S. Eyerman and L. Eeckhout, “Probabilistic job symbiosis modeling
for smt processor scheduling,” in International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2010, pp. 91–102.

[11] V. Čakarević, P. Radojković, J. Verdú, A. Pajuelo, F. J. Cazorla,
M. Nemirovsky, and M. Valero, “Characterizing the resource-sharing
levels in the ultrasparc t2 processor,” in International Symposium on
Microarchitecture (MICRO), 2009, pp. 481–492.

[12] C. Acosta, F. J. Cazorla, A. Ramirez, and M. Valero, “Thread to core
assignment in smt on-chip multiprocessors,” in International Symposium
on Computer Architecture and High Performance Computing (SBAC-
PAD), 2009, pp. 67–74.

[13] L. Weng and C. Liu, “On better performance from scheduling threads
according to resource demands in mmmp,” in International Conference
on Parallel Processing Workshops (ICPPW), 2010, pp. 339–345.

[14] F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernandez, “Dynamically
controlled resource allocation in smt processors,” in International
Symposium on Microarchitecture (MICRO), 2004, pp. 171–182.

[15] S. Choi and D. Yeung, “Learning-based smt processor resource dis-
tribution via hill-climbing,” in International Symposium on Computer
Architecture (ISCA), 2006, pp. 239–251.

[16] H. Wang, I. Koren, and C. M. Krishna, “An adaptive resource parti-
tioning algorithm for smt processors,” in International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2008, pp.
230–239.

[17] M. Moreto, F. J. Cazorla, A. Ramirez, and M. Valero, in Transactions
on High-Performance Embedded Architectures and Compilers III, 2011,
ch. Dynamic cache partitioning based on the MLP of cache misses, pp.
3–23.

[18] M. Moreto, F. J. Cazorla, R. Sakellariou, and M. Valero, “Load
balancing using dynamic cache allocation,” in International Conference
on Computing Frontiers (CF), 2010, pp. 153–164.

[19] S. Srikantaiah, M. Kandemir, and Q. Wang, “Sharp control: controlled
shared cache management in chip multiprocessors,” in International
Symposium on Microarchitecture (MICRO), 2009, pp. 517–528.

[20] R. Manikantan, K. Rajan, and R. Govindarajan, “Probabilistic shared
cache management (prism),” in International Symposium on Computer
Architecture (ISCA), 2012, pp. 428–439.

[21] J. Chen and L. K. John, “Predictive coordination of multiple on-chip
resources for chip multiprocessors,” in International Conference on
Supercomputing (ICS), 2011, pp. 192–201.

[22] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management
of multiple interacting resources in chip multiprocessors: A machine
learning approach,” in International Symposium on Microarchitecture
(MICRO), 2008, pp. 318–329.

[23] S. Eranian, “What can performance counters do for memory subsystem
analysis?” in Proceedings of the ACM SIGPLAN Workshop on Memory
Systems Performance and Correctness, 2008, pp. 26–30.

[24] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simulta-
neous mutlithreading processor,” SIGPLAN Not., vol. 35, no. 11, Nov.
2000.

[25] K. Luo, J. Gummaraju, and M. Franklin, “Balancing Thoughput and
Fairness in SMT Processors,” in International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), 2001, pp. 164–171.

