Best proximity points for cyclical contractive mappings

J. Maria Felicit and A. Anthony Eldred
Department of Mathematics, St. Joseph's College (Autonomous), Tiruchirappalli, Tamil Nadu, India (malarfelicit@gmail.com, anthonyeldred@yahoo.co.in)

Abstract

We consider p-cyclic mappings and prove an analogous result to Edelstien contractive theorem for best proximity points. Also we give similar results satisfying Boyd-Wong and Geraghty contractive conditions.

2010 MSC: 47H09; 47 H10.
KEYWORDS: best proximity point; p-cyclic mapping; cyclical contractive mapping; cyclical proximal property.

1. Introduction

Best proximity theorems has evoked considerable interest in recent years following the results of [1], where the authors investigate the existence of an element x satisfying $d(x, T x)=d(A, B)=\inf \{d(x, y) / x \in A, y \in B\}$ for the map $T: A \cup B \rightarrow A \cup B$ satisfying $T(A) \subset B$ and $T(B) \subset A$. In [1] the authors proved a Banach contraction type result in a uniformly convex Banach space setting, which was extended by Di Bari et. al. [4] for cyclic Meir-Keeler contractions. Karpagam et. al. [7] and Vetro [3] considered p-cyclic mappings $T: \cup_{i=1}^{p} A_{i} \rightarrow \cup_{i=1}^{p} A_{i}$ satisfying $T\left(A_{i}\right) \subset A_{i+1}$, for $1 \leq i \leq p$ and $A_{p+i}=A_{i}$ and they explored the existence of the best proximity point $x \in A_{i}$ satisfying $d(x, T x)=d\left(A_{i}, A_{i+1}\right)$. In fact, p-cyclic mappings were first considered by Kirk et. al. [8] in which they discussed fixed point theorems for mappings satisfying the contraction condition. They have also considered extensions of fixed point theorems of Edelstien [5], Boyd-Wong [2] and Geraghty [6].

In this paper we give analogous results to the above fixed point theorems using cyclical contractive conditions which does not force $\cap_{i=1}^{p} A_{i} \neq \varnothing$ as in [7] and thereby we investigate the existence of best proximity point $x \in A_{i}$ satisfying $d(x, T x)=d\left(A_{i}, A_{i+1}\right)$. The contractive conditions given in this paper behave differently from the ones used in [7] and [3], in the sense that the nonexpansive implication is nontrivial as we shall see in section 3 .

2. BASIC DEFINITIONS AND RESULTS

In this section we give some basic concepts related to our results. Given two nonempty subsets A and B of a metric space X, the following notations and definitions are used in the sequel.

$$
\begin{aligned}
d(A, B) & =\inf \{d(x, y): x \in A, y \in B\} \\
d(x, A) & =\inf \{d(x, y): y \in A\} \\
A_{0} & =\left\{x \in A: d\left(x, y^{\prime}\right)=d(A, B) \text { for some } y^{\prime} \in B\right\} ; \\
B_{0} & =\left\{y \in B: d\left(x^{\prime}, y\right)=d(A, B) \text { for some } x^{\prime} \in A\right\} ; \\
P_{A}(x) & =\{y \in A: d(x, y)=d(x, A)\} .
\end{aligned}
$$

A Banach space X is said to be
(a) uniformly convex if there exists a strictly increasing function $\delta:(0,2] \rightarrow$ $[0,1]$ such that for all $x, y, p \in X, R>0$ and $r \in[0,2 R]:$

$$
\|x-p\| \leq R,\|y-p\| \leq R,\|x-y\| \geq r \Rightarrow\left\|\frac{x+y}{2}-p\right\| \leq\left(1-\delta\left(\frac{r}{R}\right)\right) R
$$

(b) strictly convex if for all $x, y, p \in X$ and $R>0$:

$$
\|x-p\| \leq R,\|y-p\| \leq R, x \neq y \Rightarrow\left\|\frac{x+y}{2}-p\right\|<R .
$$

Definition 2.1 ([7]). Let $A_{1}, A_{2}, \ldots, A_{p}$ be nonempty subsets of a metric space X. Then $T: \cup_{i=1}^{p} A_{i} \rightarrow \cup_{i=1}^{p} A_{i}$ is called p-cyclic mapping if $T\left(A_{i}\right) \subset A_{i+1}$ for $i=1,2, \ldots, p$, where $A_{p+i}=A_{i}$. A point $x \in \cup_{i=1}^{p} A_{i}$ is said to be a best proximity point if $d(x, T x)=d\left(A_{i}, A_{i+1}\right)$.

Definition 2.2 ([1]). Let $A_{1}, A_{2}, \ldots, A_{p}$ be nonempty subsets of a metric space X. A p-cyclic map T on $\cup_{i=1}^{p} A_{i}$ is a p-cyclic contraction mapping if for some $k \in(0,1)$,

$$
\begin{equation*}
d(T x, T y) \leq k d(x, y)+(1-k) d\left(A_{i}, A_{i+1}\right) \tag{2.1}
\end{equation*}
$$

for all $x \in A_{i}, y \in A_{i+1}, i=1,2, \ldots, p$.
Remark 2.3. Note that Definition 2.2 implies that T satisfies $d(T x, T y) \leq$ $d(x, y)$, for all $x \in A_{i}, y \in A_{i+1}$, moreover, the inequality (2.1) can be written as $d(T x, T y)-d\left(A_{i}, A_{i+1}\right) \leq k\left[d(x, y)-d\left(A_{i}, A_{i+1}\right)\right]$ for all $x \in A_{i}, y \in A_{i+1}$.

Definition 2.4 ([7]). Let $A_{1}, A_{2}, \ldots, A_{p}$ be nonempty subsets of a metric space X. Then a p-cyclic mapping $T: \cup_{i=1}^{p} A_{i} \rightarrow \cup_{i=1}^{p} A_{i}$ is called a p-cyclic nonexpansive mapping if $d(T x, T y) \leq d(x, y)$ for all $x \in A_{i}, y \in A_{i+1}, i=$ $1,2, \ldots, p$.

The nonexpansive condition ensures the equality of distance between consecutive sets.

Lemma 2.5 ([7]). Let (X, d) be a metric space and let $A_{1}, A_{2}, \ldots, A_{p}$ be nonempty subsets of X. If $T: \cup_{i=1}^{p} A_{i} \rightarrow \cup_{i=1}^{p} A_{i}$ is a p-cyclic nonexpansive mapping then $d\left(A_{i}, A_{i+1}\right)=d\left(A_{i+1}, A_{i+2}\right)=\cdots=d\left(A_{1}, A_{2}\right), i=1,2, \ldots, p-1$.
Lemma 2.6 ([1]). Let A be a nonempty closed and convex subset and B be a nonempty closed subset of a uniformly convex Banach space. Let $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ be a sequences in A, and let $\left\{y_{n}\right\}$ be a sequence in B satisfying
(i) $\left\|z_{n}-y_{n}\right\| \rightarrow d(A, B)$,
(ii) for every $\epsilon>0$, there exists $N_{0} \in N$, such that for all $m>n>$ $N_{0},\left\|x_{m}-y_{n}\right\| \leq d(A, B)+\epsilon$.
Then, for every $\in>0$, there exists $N_{1} \in N$, such that for all $m>n>N_{1}, \| x_{m}-$ $z_{n} \| \leq \epsilon$.
Lemma 2.7 ([1]). Let A be a nonempty closed convex subset and B be a nonempty closed subset of a uniformly convex Banach space. $\operatorname{Let}\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ be a sequences in A and let $\left\{y_{n}\right\}$ be a sequence in B satisfying
(i) $\left\|x_{n}-y_{n}\right\| \rightarrow d(A, B)$,
(ii) $\left\|z_{n}-y_{n}\right\| \rightarrow d(A, B)$.

Then $\left\|x_{n}-z_{n}\right\|$ converges to zero.
Theorem 2.8 ([7]). Let $A_{1}, A_{2}, \ldots, A_{p}$ be nonempty subsets of a metric space X and let $T: \cup_{i=1}^{p} A_{i} \rightarrow \cup_{i=1}^{p} A_{i}$ be a p-cyclic mapping. If for some $x \in A_{i}$, the sequence $\left\{T^{p n} x\right\} \in A_{i}$ contains a convergent subsequence $\left\{T^{p n_{j}} x\right\}$ converging to $\xi \in A_{i}$, then ξ is a best proximity point in A_{i}.
Definition 2.9. Let $A_{1}, A_{2}, \ldots, A_{p}$ be nonempty subsets of a metric space X. A p-cyclic mapping T on $\bigcup_{i=1}^{p} A_{i}$ is said to be a p-cyclic contractive map if $d(T x, T y)<d(x, y)$, for all $x \in A_{i}, y \in A_{i+1}$ satisfying $d(x, y)>d\left(A_{i}, A_{i+1}\right)$, for all $i=1, \ldots, p$.
Definition 2.10. The nonempty subsets $A_{1}, A_{2}, \ldots, A_{p}$ of a metric space X are said to satisfy cyclical proximal property if there exists $x_{i} \in A_{i}$ for all $1 \leq i \leq p$ such that $x_{i}=x_{i+p}$ for all $i=1, \ldots, p$ whenever $\left\|x_{i}-x_{i+1}\right\|=d\left(A_{i}, A_{i+1}\right)$.

3. Main Results

The following lemma shows that any p-cyclic contractive mapping is also p-cyclic non-expansive.

Lemma 3.1. Let $A_{1}, A_{2}, \ldots, A_{p}$ be nonempty closed and convex subsets of a uniformly convex Banach space X. Let $T: \bigcup_{i=1}^{p} A_{i} \rightarrow \bigcup_{i=1}^{p} A_{i}$ be such that
(i) $T\left(A_{i}\right) \subset A_{i+1}, i=1,2, \ldots, p$, where $A_{p+i}=A_{i}$,
(ii) $\|T x-T y\|<\|x-y\|$, for all $x \in A_{i}, y \in A_{i+1}$ and $\|x-y\| \neq$ $d\left(A_{i}, A_{i+1}\right)$.
Then $\|T x-T y\| \leq\|x-y\|$, for all $x \in A_{i}, y \in A_{i+1}$.

Proof. It is easy to observe that $d\left(A_{i}, A_{i+1}\right)=d\left(A_{i+1}, A_{i+2}\right)$, for all $i=$ $1, \ldots, p-1$. We shall prove that $\|T x-T y\|=d\left(A_{i}, A_{i+1}\right)$, whenever $\|x-y\|=$ $d\left(A_{i}, A_{i+1}\right)$. Assume that $\|x-y\|=d\left(A_{i}, A_{i+1}\right)$, then it is possible to choose sequences $\left\{x_{n}\right\} \in A_{i}$ and $\left\{y_{n}\right\} \in A_{i+1}$ such that $\left\|x_{n}-y_{n}\right\|>d\left(A_{i}, A_{i+1}\right)$ and $\left\|x_{n}-y_{n}\right\| \rightarrow d\left(A_{i}, A_{i+1}\right)$ with $x_{n} \neq x, y_{n} \neq y$. Since $d\left(A_{i}, A_{i+1}\right) \leq$ $\left\|T x_{n}-T y\right\|<\left\|x_{n}-y\right\|,\left\|T x_{n}-T y\right\| \rightarrow d\left(A_{i}, A_{i+1}\right)$. Similar argument asserts that $\left\|T y_{n}-T x\right\| \rightarrow d\left(A_{i}, A_{i+1}\right)$. Since $\left\|P_{A_{i+1}} T y-T y\right\| \leq\left\|T x_{n}-T y\right\|$, $T x_{n} \rightarrow P_{A_{i+1}} T y$ and $T y_{n} \rightarrow P_{A_{i+2}} T x$. As $\left\|T x_{n}-T y_{n}\right\| \rightarrow d\left(A_{i}, A_{i+1}\right)$, we have $\left\|P_{A_{i+1}} T y-P_{A_{i+2}} T x\right\|=d\left(A_{i}, A_{i+1}\right)$. By uniqueness of the proximal point, $T y=P_{A_{i+2}} T x, T x=P_{A_{i+1}} T y$. Hence the lemma.

It is necessary to ensure the non-expansive condition as it may not be explicitly given in the contractive condition for example Theorem 3.4, whereas the conditions used in Theorem 3.6 directly imply the non-expansive condition.

Theorem 3.2. Let $A_{1}, A_{2}, \ldots, A_{p}$ be nonempty closed and convex subsets of a strictly convex Banach space X satisfying cyclical proximal property. Further, assume one of the subsets is compact. Let $T: \bigcup_{i=1}^{p} A_{i} \rightarrow \bigcup_{i=1}^{p} A_{i}$ be a pcyclic mapping such that $\|T x-T y\|<\|x-y\|$ for all $x \in A_{i}, y \in A_{i+1}$ and $\|x-y\| \neq d\left(A_{i}, A_{i+1}\right)$, then for each $i, 1 \leq i \leq p$, there exists a unique best proximity point such that, for any $x_{0} \in A_{i_{0}}$ (with respect to A_{i+1}), the sequence $\left\{x_{p n}\right\}$ converges to the best proximity point.

Proof. Assume A_{i} is compact. Define $\phi: A_{i_{0}} \rightarrow \mathbb{R}^{+}$by $\phi(y)=d(y, T y)$ for all $y \in A_{i_{0}}$. From the Lemma 2.7 it is easy to observe that T is continuous on $A_{i_{0}}$. In general, T^{m} is continuous on any $A_{i}, i=1, \ldots, p$, where m is positive integer. So ϕ is continuous and hence there exists $y_{0} \in A_{i_{0}}$, such that $d\left(y_{0}, T y_{0}\right)=\phi\left(y_{0}\right)=\inf _{y \in A_{i_{0}}} d(y, T y)$. Suppose $d\left(y_{0}, T y_{0}\right)>d\left(A_{i}, A_{i+1}\right)$, then $d\left(T^{p} y_{0}, T^{p+1} y_{0}\right)<d\left(y_{0}, T y_{0}\right)$ which is a contradiction. Hence $d\left(y_{0}, T y_{0}\right)=$ $d\left(A_{i}, A_{i+1}\right)$. Assume that $x_{0} \in A_{i_{0}}$, and $\left\{x_{p n}\right\} \in A_{i_{0}}$, for all $n=1,2, \ldots$

Suppose for some $n, x_{p n}=y_{0}$, then $x_{p n+1}=T x_{p n}=T y_{0}$, Assume $x_{p n} \neq y_{0}$ for any n. Since $\left\|T^{n} y_{0}-T^{n+1} y_{0}\right\|=d\left(A_{i}, A_{i+1}\right)$ and $T^{p} y_{0}=y_{0}$, by cyclical proximal property.
$d\left(x_{p n}, P_{A_{i+1}}\left(y_{0}\right)\right)=d\left(T^{p} x_{p n-p}, T^{p+1} y_{0}\right) \leq d\left(x_{p n-p}, T y_{0}\right)=d\left(x_{p(n-1)}, P_{A_{i+1}}\left(y_{0}\right)\right)$.
Therefore $d\left(x_{p n}, P_{A_{i+1}}\left(y_{0}\right)\right)$ is a decreasing sequences converging to some $r \geq 0$. Since A_{i} is compact, it follows that the sequence $\left\{x_{p n}\right\}$ has a subsequence $\left\{x_{p n_{k}}\right\}$ converging to some $z \in A_{i}$. If $d\left(z, P_{A_{i+1}}\left(y_{0}\right)\right) \leq d\left(A_{i}, A_{i+1}\right)$, then there is nothing to prove. Assume that $d\left(z, P_{A_{i+1}}\left(y_{0}\right)\right)>d\left(A_{i}, A_{i+1}\right)$, then

$$
\begin{aligned}
d\left(z, P_{A_{i+1}}\left(y_{0}\right)\right) & =\lim _{n \rightarrow \infty} d\left(x_{p n}, P_{A_{i+1}}\left(y_{0}\right)\right)=\lim _{n \rightarrow \infty} d\left(T^{p} x_{p n}, P_{A_{i+1}}\left(y_{0}\right)\right) \\
& =\lim _{k \rightarrow \infty} d\left(T^{p} x_{p n_{k}}, P_{A_{i+1}}\left(y_{0}\right)\right)=d\left(T^{p} z, T^{p+1} y_{0}\right)
\end{aligned}
$$

(Since T^{p} is continuous on $A_{i_{0}}$)

$$
<d\left(z, T y_{0}\right)=d\left(z, P_{A_{i+1}}\left(y_{0}\right)\right)
$$

which is a contradiction. Therefore $z=y_{0}$. Since any convergent subsequence of $\left\{x_{p n}\right\}$ converges to $y_{0},\left\{x_{p n}\right\}$ itself converges to y_{0} which is the best proximity point.

For uniqueness, suppose there exists $z \in A_{i}$ with $z \neq y_{0}$ such that $\|z-T z\|=$ $d\left(A_{i}, A_{i+1}\right)$, by cyclical proximal property $T^{p} y_{0}=y_{0}, T^{p} z=z$. If $\left\|y_{0}-T z\right\|-$ $d\left(A_{i}, A_{i+1}\right)>0$ then

$$
\begin{aligned}
\left\|T y_{0}-T^{2} z\right\|-d\left(A_{i}, A_{i+1}\right) & <\left\|y_{0}-T z\right\|-d\left(A_{i}, A_{i+1}\right) \\
& =\left\|T^{p} y_{0}-T^{p+1} z\right\|-d\left(A_{i}, A_{i+1}\right) \\
& \leq\left\|T y_{0}-T^{2} z\right\|-d\left(A_{i}, A_{i+1}\right) .
\end{aligned}
$$

which is a contradiction.
Example 3.3. Let $A_{1}=\left\{(0,0, x) \in \mathbb{R}^{3} / x \geq 1\right\}, A_{2}=\left\{(0,1, x) \in \mathbb{R}^{3} / x \geq 1\right\}$, $A_{3}=\left\{(1,1, x) \in \mathbb{R}^{3} / x \geq 1\right\}$, and $A_{4}=\left\{(1,0, x) \in \mathbb{R}^{3} / x \geq 1\right\}$ be subsets in the space \mathbb{R}^{3} with euclidean norm. Clearly A_{1}, A_{2}, A_{3} and A_{4} satisfy cyclical proximal property. Define T on $\cup_{i=1}^{4} A_{i}$ as

$$
\begin{aligned}
T(0,0, x) & =\left(0,1, x+\frac{1}{x}\right), \text { for }(0,0, x) \in A_{1}, \\
T(0,1, x) & =\left(1,1, x+\frac{1}{x}\right), \text { for }(0,1, x) \in A_{2} \\
T(1,1, x) & =\left(1,0, x+\frac{1}{x}\right), \text { for }(1,1, x) \in A_{3}, \\
T(1,0, x) & =\left(0,0, x+\frac{1}{x}\right), \text { for }(1,0, x) \in A_{4} .
\end{aligned}
$$

For any $(0,0, x) \in A_{1}$, and $(0,1, y) \in A_{2}$. If $\|(0,0, x)-(0,1, y)\|>d\left(A_{1}, A_{2}\right)=$ 1 , then $x \neq y$. Also

$$
\begin{aligned}
\|T(0,0, x)-T(0,1, y)\| & =\left\|\left(0,1, x+\frac{1}{x}\right)-\left(1,1, y+\frac{1}{y}\right)\right\|<\left(1+(x-y)^{2}\right)^{\frac{1}{2}} \\
& =\|(0,0, x)-(0,1, y)\|
\end{aligned}
$$

Hence T is a cyclic contractive map. Also for any $(0,0, x) \in A_{1}$,

$$
\begin{aligned}
\|(0,0, x)-T(0,0, x)\| & =\left\|(0,0, x)-\left(0,1, x+\frac{1}{x}\right)\right\| \\
& =\left(1+\left(\frac{1}{x}\right)^{2}\right)^{\frac{1}{2}}>1=d\left(A_{1}, A_{2}\right) .
\end{aligned}
$$

Here T does not admit any best proximity point as none of the sets are compact.
Next we consider two of the famous extensions of Banach contraction theorem due to Boyd-Wong and Gregathy.

Theorem 3.4. Let $A_{1}, A_{2}, \ldots, A_{p}$ be nonempty closed subsets of a complete metric space (X, d). Let $T: \cup_{i=1}^{p} A_{i} \rightarrow \cup_{i=1}^{p} A_{i}$ be a p-cyclic mapping. Suppose $d(T x, T y) \leq \psi\left(d(x, y)-d\left(A_{i}, A_{i+1}\right)\right)+d\left(A_{i}, A_{i+1}\right)$ for all $x \in A_{i}, y \in A_{i+1}$, where $\psi:[0, \infty) \rightarrow[0, \infty)$ is upper semi-continuous from the right and satisfies $0 \leq \psi(t)<t$ for all $t>0$. Then
(i) $d\left(T^{p n} x, T^{p n+1} y\right) \rightarrow d\left(A_{i}, A_{i+1}\right)$ as $n \rightarrow \infty$
(ii) $d\left(T^{p(n+1)} x, T^{p n+1} y\right) \rightarrow d\left(A_{i}, A_{i+1}\right)$ as $n \rightarrow \infty$

Note: The contractive condition here does not directly guarantee the nonexpansive condition and hence the importance of Lemma 3.1.
Proof. (i) Choose $x_{0} \in A_{i}$, set $s_{n}=d\left(T^{p n} x_{0}, T^{p n+1} x_{0}\right)-d\left(A_{i}, A_{i+1}\right)$. Given $\psi(t)<t$ for all $t>0$, from the Lemma 3.1, it follows that

$$
d\left(T^{p(n+1)} x_{0}, T^{p(n+1)+1} x_{0}\right) \leq d\left(T^{p n} x_{0}, T^{p n+1} x_{0}\right)
$$

Therefore $\left\{s_{n}\right\}$ is a decreasing sequence and hence converges . Let r be the limit of s_{n}. Then $r \geq 0$.

Suppose $r>0$. Then

$$
\begin{aligned}
d\left(T^{p(n+1)} x_{0}, T^{p(n+1)+1} x_{0}\right)-d\left(A_{i}, A_{i+1}\right) & \leq d\left(T^{p(n+1)-1} x_{0}, T^{p(n+1)} x_{0}\right) \\
& \leq d\left(T^{p(n+1)-2} x_{0}, T^{p(n+1)-1} x_{0}\right) \\
& \leq \cdots \\
& \leq d\left(T^{p n+1} x_{0}, T^{p n+2} x_{0}\right) \\
& \leq \psi\left(d\left(T^{p n} x_{0}, T^{p n+1} x_{0}\right)\right. \\
& \left.-d\left(A_{i}, A_{i+1}\right)\right) .
\end{aligned}
$$

Taking limsup on both sides,

$$
\begin{aligned}
& \limsup d\left(T^{p(n+1)} x_{0}, T^{p(n+1)+1} x_{0}\right)-d\left(A_{i}, A_{i+1}\right) \\
& \quad \leq \lim \sup \psi\left(d\left(T^{p n} x_{0}, T^{p n+1} x_{0}\right)-d\left(A_{i}, A_{i+1}\right)\right)
\end{aligned}
$$

We obtain $r \leq \psi(r)$, which is a contradiction. Hence $d\left(T^{p n} x_{0}, T^{p n+1} x_{0}\right) \rightarrow$ $d\left(A_{i}, A_{i+1}\right)$ as $n \rightarrow \infty$. Similar argument shows that $d\left(T^{p(n+1)} x, T^{p n+1} y\right) \rightarrow$ $d\left(A_{i}, A_{i+1}\right)$ as $n \rightarrow \infty$.

Theorem 3.5. Let $A_{1}, A_{2}, \ldots, A_{p}$ be nonempty closed and convex subsets of a uniformly convex Banach space X. Let $T: \bigcup_{i=1}^{p} A_{i} \rightarrow \bigcup_{i=1}^{p} A_{i}$ be a p-cyclic mapping such that $d(T x, T y) \leq \psi\left(d(x, y)-d\left(A_{i}, A_{i+1}\right)\right)+d\left(A_{i}, A_{i+1}\right)$ for all $x \in A_{i}, y \in A_{i+1}$, where $\psi:[0, \infty) \rightarrow[0, \infty)$ is upper semi-continuous from the right and satisfies $0 \leq \psi(t)<t$ for all $t>0$ and $\psi(0)=0$. Then for each $i, 1 \leq i \leq p$,there exists a unique best proximity point such that, for any $x_{0} \in A_{i},\left\{T^{p n} x_{0}\right\}$ converges to the best proximity point.

Proof. Choose $x_{0} \in A_{i}$. Suppose $d\left(A_{i}, A_{i+1}\right)=0$, then T has a unique fixed point $x \in \cap_{i=1}^{p} A_{i}$, see in [8]. Assume that $d\left(A_{i}, A_{i+1}\right) \neq 0$, then by Theorem 3.4 it follows that $\left\|T^{p n} x_{0}-T^{p n+1} x_{0}\right\| \rightarrow d\left(A_{i}, A_{i+1}\right)$ and $\left\|T^{p(n+1)} x_{0}-T^{p n+1} x_{0}\right\| \rightarrow$ $d\left(A_{i}, A_{i+1}\right)$. By Lemma 2.7, it follows that $\left\|T^{p n} x_{0}-T^{p(n+1)} x_{0}\right\| \rightarrow 0$. Similarly $\left\|T^{p n+1} x_{0}-T^{p(n+1)+1} x_{0}\right\| \rightarrow 0$. To complete the proof, we have to show that for every $\epsilon>0$, there exists N_{0}, such that for all $m>n \geq N_{0}$, $\left\|T^{p m} x_{0}-T^{p n+1} x_{0}\right\| \leq d\left(A_{i}, A_{i+1}\right)+\epsilon$. Suppose not, then there exists $\epsilon>0$, such that for all $k \in N$ there exists $m_{k}>n_{k} \geq k$ for which $\| T^{p m_{k}} x_{0}-$ $T^{p n_{k}+1} x_{0} \| \geq d\left(A_{i}, A_{i+1}\right)+\epsilon$. This m_{k} can be chosen such that it is the least integer greater than n_{k} to satisfy the above inequality and $\| T^{p\left(m_{k}-1\right)} x_{0}-$
$T^{p n_{k}+1} x_{0} \|<d\left(A_{i}, A_{i+1}\right)+\epsilon$. Consequently $\left\|T^{p n} x_{0}-T^{p n+1} x_{0}\right\| \rightarrow d\left(A_{i}, A_{i+1}\right)$ and $\left\|T^{p(n+1)} x_{0}-T^{p n+1} x_{0}\right\| \rightarrow d\left(A_{i}, A_{i+1}\right)$. By Lemma2.7, it follows that $\left\|T^{p n} x_{0}-T^{p(n+1)} x_{0}\right\| \rightarrow 0$. Similarly $\left\|T^{p n+1} x_{0}-T^{p(n+1)+1} x_{0}\right\| \rightarrow 0$.

$$
\begin{aligned}
d\left(A_{i}, A_{i+1}\right)+\epsilon & \leq\left\|T^{p m_{k}} x_{0}-T^{p n_{k}+1} x_{0}\right\| \\
& \leq\left\|T^{p m_{k}} x_{0}-T^{p\left(m_{k}-1\right)} x_{0}\right\|+\left\|T^{p\left(m_{k}-1\right)} x_{0}-T^{p n_{k}+1} x_{0}\right\| \\
& \leq\left\|T^{p m_{k}} x_{0}-T^{p\left(m_{k}-1\right)} x_{0}\right\|+d\left(A_{i}, A_{i+1}\right)+\epsilon
\end{aligned}
$$

This implies that $\lim _{k \rightarrow \infty}\left\|T^{p m_{k}} x_{0}-T^{p n_{k}+1} x_{0}\right\|=d\left(A_{i}, A_{i+1}\right)+\epsilon$. Since

$$
\begin{gathered}
\left\|T^{p\left(m_{k}+1\right)} x_{0}-T^{p\left(n_{k}+1\right)+1} x_{0}\right\| \leq\left\|T^{p m_{k}+1} x_{0}-T^{p n_{k}+2} x_{0}\right\| \\
\left\|T^{p m_{k}} x_{0}-T^{p n_{k}+1} x_{0}\right\| \leq\left\|T^{p m_{k}} x_{0}-T^{p\left(m_{k}+1\right)} x_{0}\right\|+\| T^{p\left(m_{k}+1\right)} x_{0} \\
\leq-T^{p\left(n_{k}+1\right)+1} x_{0}\|+\| T^{p\left(n_{k}+1\right)+1} x_{0}-T^{p n_{k}+1} x_{0} \| \\
\leq\left\|T^{p m_{k}} x_{0}-T^{p\left(m_{k}+1\right)} x_{0}\right\| \\
+\left\|T^{p m_{k}+1} x_{0}-T^{p n_{k}+2} x_{0}\right\| \\
+\left\|T^{p\left(n_{k}+1\right)+1} x_{0}-T^{p n_{k}+1} x_{0}\right\| \\
\leq \quad\left\|T^{p m_{k}} x_{0}-T^{p\left(m_{k}+1\right)} x_{0}\right\| \\
+\psi\left(\left\|T^{p m_{k}} x_{0}-T^{p n_{k}+1} x_{0}\right\|\right. \\
\left.-d\left(A_{i}, A_{i+1}\right)\right)+d\left(A_{i}, A_{i+1}\right) \\
+\left\|T^{p\left(n_{k}+1\right)+1} x_{0}-T^{p n_{k}+1} x_{0}\right\|
\end{gathered}
$$

which yields that

$$
\begin{aligned}
& \left\|T^{p m_{k}} x_{0}-T^{p n_{k}+1} x_{0}\right\|-d\left(A_{i}, A_{i+1}\right) \\
& \leq\left\|T^{p m_{k}} x_{0}-T^{p\left(m_{k}+1\right)} x_{0}\right\|+\psi\left(\left\|T^{p m_{k}} x_{0}-T^{p n_{k}+1} x_{0}\right\|\right. \\
& \left.\quad-d\left(A_{i}, A_{i+1}\right)\right)+\left\|T^{p\left(n_{k}+1\right)+1} x_{0}-T^{p n_{k}+1} x_{0}\right\| .
\end{aligned}
$$

Therefore $\lim \sup _{k}\left\|T^{p m_{k}} x_{0}-T^{p n_{k}+1} x_{0}\right\|-d\left(A_{i}, A_{i+1}\right) \leq \lim \sup _{k} \psi\left(\| T^{p m_{k}} x_{0}-\right.$ $\left.T^{p n_{k}+1} x_{0} \|-d\left(A_{i}, A_{i+1}\right)\right)$, as $\left\|T^{p m_{k}} x_{0}-T^{p\left(m_{k}+1\right)} x_{0}\right\| \rightarrow 0$ and $\| T^{p\left(n_{k}+1\right)+1} x_{0}-$ $T^{p n_{k}+1} x_{0} \| \rightarrow 0$. Hence $\epsilon \leq \psi(\epsilon)$, a contradiction. By Lemma 2.6, $\left\{T^{p n} x_{0}\right\}$ is a cauchy sequence and converges to $x \in A_{i}$. From Theorem 2.8, it follows that $\|x-T x\|=d\left(A_{i}, A_{i+1}\right)$.
To see that $T^{p} x=x$, we note that

$$
\begin{aligned}
\left\|x-T^{p+1} x\right\| & =\lim _{n \rightarrow \infty}\left\|T^{p n} x_{0}-T^{p+1} x\right\| \\
& \leq \lim _{n \rightarrow \infty}\left\|T^{p(n-1)} x_{0}-T x\right\| \\
& =\|x-T x\|=d\left(A_{i}, A_{i+1}\right)
\end{aligned}
$$

Since A_{i+1} is convex set and X is uniformly convex Banach space, $T x=T^{p+1} x$. Consequently

$$
\left\|T^{p} x-T x\right\|=\left\|T^{p} x-T^{p+1} x\right\| \leq\|x-T x\|=d\left(A_{i}, A_{i+1}\right)
$$

Hence $T^{p} x=x$. Uniqueness follows as in Theorem 3.2.

The following result on Geraghty contractive condition can be proved in a similar fashion.
Theorem 3.6. Let $A_{1}, A_{2}, \ldots, A_{p}$ be nonempty closed and convex subsets of a uniformly convex Banach space X and let $\mathbb{S}=\left\{\alpha: \mathbb{R}^{+} \rightarrow[0,1): \alpha\left(t_{n}\right) \rightarrow\right.$ $\left.1 \Rightarrow t_{n} \rightarrow 0\right\}$. Let $T: \bigcup_{i=1}^{p} A_{i} \rightarrow \bigcup_{i=1}^{p} A_{i}$ be a p-cyclic mapping such that $\|T x-T y\| \leq \alpha(\|x-y\|)(\|x-y\|)+(1-\alpha(\|x-y\|)) d\left(A_{i}, A_{i+1}\right)$ for all $x \in$ $A_{i}, y \in A_{i+1}$, where $\alpha \in \mathbb{S}$. Then for each $i, 1 \leq i \leq p$, there exists a unique best proximity point such that, for any $x_{0} \in A_{i},\left\{T^{p n} x_{0}\right\}$ converges to the best proximity point.

Acknowledgements. The authors are very grateful to the reviewers for their comments which have been very useful when improving the manuscript.

References

[1] A. Anthony Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323, no. 2 (2006), 1001-1006.
[2] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
[3] C. Vetro, Best proximity points: Convergence and existence theorem for p-cyclic mappings, Nonlinear Anal. 73 (2010), 2283-2291.
[4] C. Di Bari, T. Suzuki and C. Vetro, Best proximity points for cyclic Meir-Keeler contraction, Nonlinear Anal. 69 (2008) 3790-3794.
[5] M. Edelstein, On fixed and periodic points under contractive mapping, J. London Math. Soc. 37 (1962), 74-79.
[6] M. Geraghty, On contractive mapping, Proc. Amer. Math. Soc. 40 (1973), 604-608.
[7] S. Karpagam and S. Agrawal, Best proximity point theorems for p-cyclic Meir-Keeler contractions, Fixed Point Theory Appl. 2009 (2009), Article ID 197308.
[8] W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mapping satisfying cyclical contractive condition, Fixed Point Theory 4 (2003), 79-89.

