

Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

Adapting a noSQL database for autoscaling

on a PaaS environment

Trabajo Fin de Grado

Grado en Ingeniería Informática

Autor: Fraseniuc, Bogdan-Alexandru

Tutor: Bernabeu Aubán, José Manuel

2015-2016

Adapting a noSQL database for autoscaling on a PaaS environment

2

3

Resumen
Este trabajo se afana en crear un servicio que ofrece la funcionalidad de un clúster

fragmentado MongoDB y que al mismo tiempo es capaz de auto escalar dentro de una

plataforma como servicio.

La base de datos utilizada es MongoDB y la plataforma es Kumori PaaS.

Esta solución tiene la ventaja de que permite al desarrollador de software centrarse

más en la parte de desarrollo del servicio que en la gestión de la base de datos.

Para alcanzar este objetivo se realiza un estudio sobre los mecanismos internos de

MongoDB, se proporciona una vista general sobre cómo funciona Kumori PaaS y se

crean dos aplicaciones de servicio. Estas aplicaciones de servicio tienen topologías

distintas: una más simple que no soporta auto escalado pero que se usa para ver si

MongoDB podría funcionar sobre esta plataforma, y una más compleja que se parece a

la topología de un clúster fragmentado MongoDB y que además ofrece auto escalado.

Palabras clave: Computación en la Nube, Bases de datos, NoSQL, autoescalado, PaaS.

Abstract
This project strives to create a service offering the functionality of a MongoDB

sharded cluster while also being able to autoscale on a Platform-as-a-Service.

The database used is MongoDB and the platform is the Kumori PaaS.

The benefit of this solution is that it allows a software developer to focus more on the

development of the service instead of the management of the database.

In order to achieve this objective a study of the MongoDB internal mechanisms is

done, an overall view of how the Kumori PaaS works is given and two service

applications are created. These service applications have different topologies: a simple

one which does not support autoscalability but is used to view if MongoDB can work on

this platform, and a more complex one which resembles the topology of a MongoDB

sharded cluster and also offers autoscalability.

Keywords : Cloud Computing, Databases, NoSQL, autoscaling, PaaS.

Adapting a noSQL database for autoscaling on a PaaS environment

4

5

Table of contents

1. Introduction ... 8

1.1 Scope .. 8

1.2 Objectives .. 8

1.2 Document structure .. 9

2. MongoDB .. 11

2.1 Introduction .. 11

2.2 MongoDB Internals ... 11

2.2.1 Replication .. 13

2.2.2 Sharding .. 16

2.2.2.1 Sharding – Chunk Splitting .. 17

2.2.2.1 Sharding – Chunk Migration .. 18

3. Kumori PaaS ... 22

3.1 Introduction ... 22

3.2 ECloud service model and components.. 22

3.4 Service applications ... 24

4. Simple MongoDB Service .. 26

4.1 Introduction ... 26

4.2 Topology ... 26

4.3 Legacy servers .. 27

5. Complex MongoDB Service ... 28

5.1 Topology ... 28

5.2 Front-End .. 29

5.3 Config server ... 29

5.4 Shards ... 30

5.4 Query router ... 31

6. Conclusions and future work .. 34

7. References .. 37

8. Appendix .. 38

8.1 Appendix A ... 38

8.1 Appendix B ... 40

Adapting a noSQL database for autoscaling on a PaaS environment

6

Table of figures

Figure 1: MongoDB Nexus Architecture ... 12

Figure 2: MongoDB three member replica set .. 14

Figure 3: MongoDB metadata ... 17

Figure 4: Chunk Splitting .. 18

Figure 5: Chunk Migration .. 19

Figure 6: Simple MongoDB Service topology .. 26

Figure 7: Complex MongoDB Service topology .. 28

file:///C:/Users/shangxor/Google%20Drive/2015-2016/TFG/Adapting%20a%20noSQL%20database%20for%20autoscaling%20on%20a%20PaaS%20environment.docx%23_Toc460423804

7

Adapting a noSQL database for autoscaling on a PaaS environment

8

1. Introduction

1.1 Scope

In this day and age, everything seems to be moving to the cloud, and this includes

databases. One potential solution for someone wanting to deploy a database on the

cloud is using a Platform as a System (PaaS).

A PaaS is a category of cloud computing services which allows developers to create

and test their applications without having to worry about the underlying infrastructure.

This includes not having to worry about the network, the operating system, the storage,

runtime environment or the database.

The developer wants to spend time writing the code for the actual application or

service; not work on the infrastructure, concern himself with backups, scalability or

how to recover from crashes. This is what PaaS tries to offer, cover the entire lifecycle of

the programmer’s application, allowing him to do what a developer should do, code.

The work done in this project was realized during an internship at the Instituto

Tecnológico de Informática (ITI) of the Universidad Politécnica de Valencia (UPV),

working alongside the team who is currently developing this PaaS.

1.2 Objectives

There are three main objectives defined: understand how MongoDB works

internally, understand how Kumori PaaS works in order to build components and

service applications for it, and create a service application serving a MongoDB sharded

cluster which autoscales on the Kumori PaaS.

The first objective two objectives are straightforward, before trying to adapt a

technology and mold it to some specific needs, a good understanding of that technology

is needed. The concepts explained about MongoDB are related to a database

administrator’s point of view, since the main concern is how the database works

internally and how to manage it, not how to code a user application which uses this

database to store its data.

The Kumori PaaS, as any other PaaS solution on the market, has to offer a database

solution, be it relational (SQL) or non-relational (noSQL). In order to adapt MongoDB

to work inside this PaaS and be able to autoscale, it is imperative to understand how

components and services are modelled in this platform.

The final objective is to build a service application which can offer the MongoDB

sharded cluster functionality and more, autoscaling.

9

1.2 Document structure

This document is structured in six chapters and the content of each chapter is

detailed below.

In the first chapter a brief introduction to the project is made and the reader is

presented with the scope of this project followed by the objectives which it aims to

achieve.

The second chapter offers a brief explanation of MongoDB and some of its key

elements and concepts, the objective of this chapter is to explain how replication and

sharding is achieved.

The third chapter offers insight on how the actual platform on which the MongoDB

service application will be deployed, works.

The fourth chapter describes a first approach to the design and implementation of

the service.

The fifth chapter presents the topology needed to achieve the objective proposed at

the beginning of the project: adapt a noSQL database for autoscaling on a PaaS

environment.

The sixth chapter goes into detail about the conclusions and future work that still

has to be done.

There are two appendices:

 Appendix A: more details about manifests

 Appendix B: certain parts of the source code used and scripts

Adapting a noSQL database for autoscaling on a PaaS environment

10

11

2. MongoDB

2.1 Introduction

MongoDB is a noSQL database. The word “noSQL” has had different meanings over

the years: “non SQL”, “non relational” or even “not only SQL”. This term is used to refer

to database technologies which try to adapt to some of the needs (high availability and

horizontal scalability) of Web 2.0 [1] companies such as Google and Amazon. [2]

Essentially, MongoDB is an open-source document database, which implies that

instead of storing the data in rows (as in traditional relational databases), data is stored

inside documents. It can be said that the equivalent to SQL databases rows and tables

are represented inside MongoDB by documents and collections, and the main

difference between these two concepts is that in SQL a strict schema has to be defined,

whereas in MongoDB a dynamic schema is used. [3]

At the moment, it is the most used noSQL database solution on the market and it

has even surpassed PostgreSQL in popularity. MongoDB is fourth on the overall

complete database ranking; with Oracle, MySQL and Microsoft SQL Server being the

top three solutions [4]. It should be noted that the top three on this ranking list, all

represent relational database models, and these technologies have been worked on and

improved over the last 40 years.

One of the reasons why it got so popular is because of the design philosophy behind

its architecture, the so called MongoDB Nexus Architecture [5]. The objective is to

avoid “reinventing the wheel”, there are many features in relational databases which

are critical (e.g. secondary indexes and consistency), so the idea is to maintain this

foundation while adding the innovations of noSQL (e.g. flexible data model and

scalability).

In conclusion, apart from being a noSQL document database, it also strives to

provide some other key features of relational databases. The goal is to achieve a mixture

between noSQL and relational technologies in order to satisfy the requirements of

modern applications.

2.2 MongoDB Internals

In order to adapt MongoDB and integrate it in a PaaS, a better understanding of

some key features of the ecosystem is needed. As mentioned in the introduction of this

chapter, noSQL databases try to address the issues of high availability and horizontal

scalability. According to the MongoDB Nexus Architecture, which can be seen in the

Figure 2 below, innovations offered by noSQL systems would solve these issues [5].

Adapting a noSQL database for autoscaling on a PaaS environment

12

Figure 1: MongoDB Nexus Architecture

Before moving forward and explaining the mechanisms which MongoDB uses to

provide high availability and horizontal scalability, it is useful to explain these two

concepts.

High availability basically means that the system will be available to its users for a

higher than normal period of time, which has been agreed upon beforehand. In the case

of MongoDB it relates more to data availability, since this is the service that a database

provides. The main thing to take into consideration is not to confuse the uptime of a

system with the availability of the service provided by it. A given server could be up and

running, fully configured with a correct installation and deployment of a service but

because of different possible problems, like a network outage for example, the service

offered would not be available to the users.

The solution adopted by MongoDB to provide high availability is replication, which

implies having the service running on multiple nodes instead of just one. All data is

copied to all the nodes, this way data redundancy is provided, and if one node fails,

another one can serve the data to the users. It also provides automatic failover,

meaning that in the case of a node failing, the whole process which setups and allows a

different node to offer the service, is done by the system itself without intervention of a

database administrator. This way, the availability time of the service is increased even

more because it is not necessary to wait for someone to detect the problem and fix it

afterwards.

The other issue which remains to be addressed is horizontal scalability. First of all,

the concept of scalability refers to the process of adding more resources to a system in

order to deal with an increasing workload [6]. There are two solutions available, scaling

up (vertical scalability), which resolves the problem by upgrading the hardware of the

node (e.g. more ram, better cpu); but this is limited by the available hardware on the

market and there is an obvious top limit which can be achieved, a certain point beyond

which the node cannot be improved anymore. This approach is also quite expensive

MongoDB Nexus Architecture

Relational DBMS

Exrepssive
Query

Language &
Secondary

Indexes

Strong
Consistency

Enterprise
Management

& Integrations

noSQL

Flexibility
Scalability &
Performance

Always On,
Global

Deployments

13

given that the hardware must always be changed with newer one and also because the

nodes tend to be high end servers.

The alternative to vertical scalability is scaling out (horizontal scalability). As

opposed to the first solution, instead of using top of the line servers, multiple

commodity systems are used. So instead of improving the hardware of the node,

whenever more resources are needed, more nodes are added. This approach is cheaper

because the nodes are cheaper. But the same thing that makes this solution better

(because it is cheaper and easier to attain) also makes it worse, given the fact that

commodity servers have more hardware failures than servers. This means that the

software now has to handle with individual nodes failing.

In order to achieve horizontal scalability, apart from using replication, MongoDB

also uses sharding. A brief explanation of replication was given earlier, but both of

these concepts will be further explained in the next subsections of this chapter.

2.2.1 Replication

Most of the explanations from here on out and until the end of this chapter are

based on the MongoDB manual [3] and the author’s own expertise on the matter. This

expertise was gained by using MongoDB for a period of half a year, during which

different deployment architectures of the service have been tested in order to better

understand how this database operates.

As previously mentioned, one of the needs that noSQL databases try to fulfil is high

availability, maximize the availability of a service and set in place different mechanisms

which can deal with potential failures of the system in such a way that the user will not

be affected. The mechanisms used to solve this issue are automatic failover and data

redundancy, which are included in the replication feature of this database technology.

Before explaining what replica sets are and how they behave, a brief explanation of

the core MongoDB processes and different components is necessary.

The MongoDB core processes are:

 mongod, which actually is a daemon [7] process (hinted by the fact that the

name of the process ends with the letter “d’). A daemon process is a

background process. This is the primary process for MongoDB and it

handles all the data and background management operations.

 mongo, which is an interactive MongoDB shell. It uses JavaScript and it has

two main functions: provide an interface for the system administrators and

allow the developers to conduct tests directly on the database.

The different components which are part of a replica set:

 primary, a mongod process which handles are the write requests; there

cannot be more than one primary in the same replica set at the same time.

Adapting a noSQL database for autoscaling on a PaaS environment

14

 secondary, a mongod process which holds a copy of the data on the

primary and which can become a primary.

 arbiter, a mongod process with no data, which is added to the replica set in

order to avoid an even number of members. An even number of members

inside a replica set can result in a tied election for a new primary.

The minimum setup recommended for a replica set is two data bearing nodes and

an arbiter, or three data bearing nodes. For the remainder of this chapter the term

“replica set” will be used to refer to a setup made up by one primary and two

secondary members. This is one of the most common setups but a replica set can have

up to fifty members in total, but only seven members can vote.

Figure 2: MongoDB three member replica set

The primary member is the node which accepts all reads and writes by default.

After applying the database operations on the primary, MongoDB records these

operations on the primary’s oplog. The oplog is a special collection in MongoDB where

all the database operations which modify data are registered. This oplog is replicated by

the secondary which applies the operations from the oplog to its own data set in order

to maintain an identical data set throughout the replica set, and thus achieving data

redundancy.

The process described above is the data synchronization method known as

replication. But how do new nodes, or nodes recovering from failure, replicate the data?

This is achieved by means of another data synchronization method called initial sync,

which basically consists of copying all the data from one member of the replica set to

another.

In order to achieve high availability one more requisite is needed apart from data

redundancy, and that is automatic failover. This is the process which allows a

secondary member of a replica set to become a primary. This is necessary for

situations like a network partitions between the primary and the remaining members

of the set, or when the primary fails because of a power outage or hardware failure. In

these situations the remaining secondary members must be able to hold an election

and chose another primary without manual intervention, so that the replica set can

15

function normally and accept writes. If no primary can be elected, the replica set

cannot accept writes and all its members are read-only.

An immediate consequence of failovers are rollbacks (return the database to a

previous state). This occurs when a primary accepts writes operations and it steps

down before the secondary members have a chance to replicate these writes. The

rollback is necessary in order to maintain consistency.

In MongoDB, by default, a write operations is acknowledged after it has been

propagated to the primary. This is known as write concern w: 1. Starting with version

3.2, a new write concern is introduced: majority. If this write concern is used and if

journaling is enabled (by default journaling is enabled) then a write will only be

acknowledged after the writes have been propagated to the majority of the voting

members in a replica set (this includes the primary) and have also been written to the

on-disk journal. This journal and the oplog are different files. The oplog is used for the

replication process, the journal is used for the recovery process in case of failover.

Using write concern majority has both drawbacks and benefits. The benefit

explained above is the ability to avoid rollbacks in some cases of failover and to ensure

data durability. But this comes at the cost of losing performance in order to assure that

the write operation is truly committed. This is a perfect example to illustrate how the

use case of each user is what dictates the configuration needed .If the data is sensitive

and performance is not as important, then using write concern majority is the solution.

In this case the system will not be available as much because of the replication lag

which leads to higher latency.

An important aspect to take into account is that write concern only blocks write

operations. Which means that users can read writes from the primary which have not

been committed to the majority of replica set members. This leads to reads known as

dirty reads, because a rollback is possible if failure occurs.

To avoid this dirty reads, starting with version 3.2, read concern is implemented.

Two modes are available:

 local, the latest locally committed data is returned to the user. If reading

from the primary this means that the user might read data which can be

eventually rolled back. The user can see results of write operations before

they are acknowledged.

 majority, only the data which has been committed to a majority of nodes is

returned to the user. This fixes the issue with dirty reads but introduces a

new problem: eventual consistency and latency. The user might be reading

slightly out of date data.

Adapting a noSQL database for autoscaling on a PaaS environment

16

2.2.2 Sharding

In the previous subsection it has been explained how MongoDB achieves high

availability by using replica sets. But what happens when the working set does not fit in

the RAM, or the user application generates too many queries/operations. This is when

horizontal scalability becomes relevant.

In MongoDB, horizontal scalability is achieved by using sharding [8], [9]. The

process of sharding is based on a simple idea: divide the data set into parts and put

these parts on different servers.

In order for sharding to work, another MongoDB core process is needed, apart from

mongod and mongo. This third core process is called mongos and its main

functionality is to route queries and write operations. It is the bridge that links the user

applications to the sharded cluster, it presents users with a single view of the sharded

database.

By using replication, different members of a replica set have the same documents,

the same data. A sharded cluster represents a set of shards, each shard being a replica

set. Since the data is distributed among the different shards, this means that at any

given point in time a document lives on only one shard.

In replica sets, each replica set contains a primary and various secondary

members, and all the members share the same data. When using a sharded cluster,

each shard (replica set) contains only a part of the data. In order for the user to access

the data, the mongos process must be used. This process is hosted on a new component

called query router.

The main issue now is on which criteria are the documents distributed to different

shards, which steps are taken to split a collection and distribute its documents. To

achieve this goal, each document in the same collection must have a unique indexed

field. This will be the shard key. Each shard will host the documents which belong to a

certain range of shard key values.

This concept is explained easier by means of an example. Consider a collection

made up of documents which all have a common unique field name. This field will be

indexed and chosen as the shard key. The resulting chunks and their associated shard

key ranges are considered metadata and can be viewed in the Figure 3 below.

17

Figure 3: MongoDB metadata

The Figure 3 illustrates a map that describes how the documents are distributed

and to which shard they belong; a chunk is represented by a shard key range which is

contained in between an inclusive lower boundary, nameL, and an exclusive upper

boundary, nameH. All the documents with values of the name field contained in this

chunk are physically located on the shard S2.

This metadata information is not hosted on the shards and neither on the query

router. The query router only keeps a cached copy of this information. The metadata

for the cluster is actually located on a component called config server, which runs a

mongod process and is deployed as a replica set. Apart from the metadata, the config

server also stores other settings for the cluster, such as authentication configuration. If

this component loses its primary, the cluster metadata becomes read-only, unless a

new primary is elected. If the cluster metadata is read-only the system can still attend

read and write operations, but no new chunk migrations and chunk splits can be

realized. Without the metadata the cluster can reach an inoperable state.

2.2.2.1 Sharding – Chunk Splitting

This operation is initiated by the query router, it is the action which does the actual

partition of the data. There is no real change to the data, it is a remapping, so it only

affects the metadata. A sharded cluster can have more than one query router, they do

not talk to each other and each one tracks writes to the chunks. This process is

automatic:

1. When the data written reaches 20% of the defined max chunk size (default

size is 64MB) the query router sends the splitVector command to the

primary of the shard that owns the chunk.

2. The primary checks if the chunk can be split and calculates a list split

points.

3. The primary returns a list of split points, it can be an empty list, to the

query router.

nameL

• Alex
• Kevin
• Lana

• ...

nameH

• Kevin
• Lana
• Mary

• ...

shard

• S2

• S0

• S1

• ...

Adapting a noSQL database for autoscaling on a PaaS environment

18

4. If the list is not empty, the query router updates the config server in order

for the metadata to reflect the splits.

5. No data changed/moved.

6. If the split points list is empty the query router waits until 40% and it send

the splitVector command again.

The following Figure 4 represents the chunk splitting process.

Manual splitting is also possible. By using the mongo shell, a connection can be

established with a query router and the following commands can be used to split

chunks manually:

 splitFind(“database.collection”, { “field”: “value” }) – splits the chunk

containing the first document which fulfills the query into two chunks of the

same size.

 splitAt(“database.collection”, { “field”: “value” }) – the document which

fulfills the query will be the lower bound of the new chunk.

These commands are needed in order to deal with so called jumbo chunks; these

chunks cannot be split automatically because they exceed the maximum chunk size or

the number of documents contained in the chunk exceeds the maximum allowed.

2.2.2.1 Sharding – Chunk Migration

This process represents the actual movement of data from one shard to another.

Different stages of the chunk migration are coordinated by the query router but the

actual work is done by the primaries. The query router checks the config database on

the config server and requests a balancing round in order to make sure that it can

acquire the necessary locks and start the balancer. After acquiring the lock, the balancer

proceeds to identify the imbalance (draining shards have more priority: shards which

are being removed from the sharded cluster) and pick the chunk which has to be

migrated and the migration procedure starts:

Figure 4: Chunk Splitting

19

1. The balancer send the moveChunk command to the source shard.

2. The source shard performs sanity checks: check if the range for the chunk is

valid, if the command is valid, if it is not already doing too many deletes

from previous migrations.

3. The source shard initiates the transfer with an internal moveChunk

command.

4. The destination shard checks if it has all the necessary indexes (if not, it will

have to create them).

5. The destination checks for existing documents which belong in this range to

avoid unique key violations, duplicate records.

6. After these checks the actual transfer begins.

7. Catch on subsequent operations. During the migration process the chunk

still lives on the source shard, so all write operations to this chunk which

occur during migration are directed to the source shard.

8. When the destination shard finishes catching up to all the changes which

occurred during the migration, the transfer itself finishes.

9. The process now enters the critical section, the source shard connects to the

config server in order to update the cluster metadata.

10. Once the metadata is up to date and there are no open cursors on the chunk,

the cleanup starts: the source shard deletes the data which has just finished

migrating.

11. Subsequent requests to the source shard asking for the migrated chunk will

trigger a “stale config exception”. This triggers a refresh of the metadata for

the query router which requested the chunk, and after refreshing it

proceeds to retry using the updated information.

Figure 5: Chunk Migration

The Dest. Shard which is represented in Figure 5 is the destination shard which

receives the migrating chunks.

As mentioned in the chunk migration procedure, the query router is the

component which can start a balancing round. These balancing rounds allow the

Adapting a noSQL database for autoscaling on a PaaS environment

20

balancer to redistribute the chunks in order to achieve an even number of chunks for

the collection across the shards.

The balancer is a MongoDB background process, enabled by default, which only

cares about the number of chunks. It does not consider the size of the chunks or the

number of documents inside a chunk because the auto-split process takes care of these

problems.

The balancer activates a migration process based on the migration threshold,

which is different depending on the total number of chunks for a sharded collection.

These migration thresholds represent the imbalance in number of chunks between the

“biggest shard”, highest number of chunks for the collection, and the “smallest shard”,

the fewest number of chunks for the same collection. To reduce this imbalance, the

chunk with the lowest range is moved from the shard with the highest count of chunks

to the shard with the lowest count of chunks.

One of the possible problems induced by the automatic chunk migration are empty

chunks. For example having a total of ten chunks for a sharded collection, half of them

are empty and reside on one shard and the other half are not empty and reside on

another shard. From the balancer’s point of view, there is no imbalance, since it only

checks the number of chunks.

Empty chunks can be the result of a pre-splitting mistake, or the use of a time

based shard key: periodically deleting old data. The solution is to merge chunks but

with a few conditions: the chunks must be on the same shard, contiguous and at least

one of the chunks has to be empty.

If a chunk is empty an imbalance is created within the sharded cluster, but if a

chunk is too big, this also leads to data imbalance. This can occur because of a poor

shard key selection or maybe a pre-splitting error. If a chunk does not receive any

traffic, the auto-split will not occur, so the series of actions to take in this situation are:

1. Do manual splits and then wait for the balancer to do its job.

2. Turn of the balancer, do manual splits and then manual migration of the

chunks.

All the concepts which have been explained throughout chapter 2 give more insight

on the mechanics behind MongoDB. This will be useful later on when modelling and

creating the MongoDB service for the Kumori PaaS.

21

Adapting a noSQL database for autoscaling on a PaaS environment

22

3. Kumori PaaS

3.1 Introduction

After explaining what MongoDB is, going over some of the more relevant features

(replication and sharding) and comprehending the key components and processes

which make this features possible, there is a need for a better understanding of the

system for which MongoDB is adapted.

The Kumori PaaS is a Platform-as-a-Service provided by Kumory systems, a startup

of the Polytechnic University of Valencia (Spain). From now on the Kumori PaaS will be

referred to as simply ECloud.

ECloud is designed to manage the life cycle events of services deployed on it. The

main objective is to allow the service provider to work on the development of the

service instead of dealing with the service management tasks.

The current stage of ECloud is ongoing development, some of the functionality

might change/evolve; only certain aspects of ECloud will be covered since going into

too much detail is beyond the scope of this work. All elements defined as to be disclosed

(TBD) are not explained, but they are shown in the example/schemas in order for the

reader to get a broader view of the entire system; they are needed for the system to

work correctly, but they do not affect directly (at the point in time when the work was

done) the design/implementation which the author has presented. Some of these

elements are still not well defined and merely informative.

3.2 ECloud service model and components

In order for a service application to work on ECloud, it must comply with the

architectural patterns known as ECloud service model. According to this service model,

a service application is represented by a set of interconnected components. Each of

these components has a different role inside the service. The components contain the

source code and a description of how to connect them to other components. The service

applications contain a description of how its components are connected and also how

they can be connected to other service applications.

To make possible this model, these elements are available in ECloud: component,

role, channel, channel protocol, configuration resources, configuration parameters,

types, runtime, service application, channel connector, role instance, service and

topology.

Some of the elements must have a unique name to identify them, this is achieved by

using a uniform resource identifier (URI). The structure of a URI is the following:

23

slap://<domain>/<elementtype>/<name>/<version>

The <domain> must be a domain name belonging to the author of the component,

the <elementtype> represents the type of element being identified, the <name> is the

generic name of the element within its domain and the <version> is used to identify

which particular version of the element is being named. The following is an example of

how a URI would look like:

slap://afraseniuc/components/mongodbsimpleproxylb/0_0_4

To define an element, javascript object notation (json) files referred to as manifests

are used. An example of how these manifest are structured:

{

 "spec":"slap://slapdomain/manifests/service/0_0_1",

 "name":"slap://afraseniuc/services/mongodbsimpleproxylbservice/0_0_4",

…

}

From here on, in order to maintain a clear structure, all the example which are

necessary to explain future manifest definitions can be found in the Appendix.

The spec refers to the specification version to be found in the manifest and the

name is the ID of the element being defined.

As it was stated previously, service applications are made up of interconnected

components. A component is viewed as an autonomously runnable executable. Even

though component instances are isolated one from each other, they sometimes need

functionality offered by other components. This is what will be referred to as the

dependency set. Whereas the functionality offered by the component itself is referred to

as the provided function set.

To allow this exchange of functionality between components different types of

communication (message based) channels are offered:

 send: this type of channel can only send messages.

 receive: this type of channel can only receive messages.

 request: this type of channel can both send and receive messages. The only

messages it can receive are replies to messages it has previously sent.

 reply: this type of channel can both send and receive messages. The only

messages it can send are responses to messages it has previously received.

 duplex: this type of channel can both send and receive messages without any

restrictions.

ECloud makes a distinction between provided and required channels. Provided

channels are used to access the functionality of the component while the required

channels are used to access the functionality of other components. This is related to the

distinction which was made earlier between the provided function set which is linked to

the provided channels, and the dependency set which is linked to the required

channels. An example of how to define the channels in a manifest is given in Appendix

A (on page 38).

Adapting a noSQL database for autoscaling on a PaaS environment

24

Apart from channels, a component also needs to be able to declare configuration

settings which are used when executing the instance of a component. There is a

distinction between configuration resources (for example cpu, cores, memory) and

configuration parameters which refer to application data. The configuration parameter

types offered by ECloud are: boolean, integer, json, list number, string, vhost. If no type

is specified, json is assumed. The developers can also chose to define new types which

derive from the ones offered. An example of how to define configuration parameters in

a component manifest is given in Appendix A (on page 38)

The final element which is needed in order to define a component is the runtime. In

order for a component to work correctly, the environment on which the component will

be run must have certain characteristics, and this is defined by the runtime. ECloud

provides predefined runtimes but it also is possible to define new ones.

As a result, the manifest which specifies the definition of a component includes the

component’s identifier, the runtime, the configuration and the channels. An example of

a complete component manifest is given in Appendix A (on page 38).

3.4 Service applications

 According to the ECloud service model, in order for the components to be part of a

service application they must be interconnected and play a role. The component

manifest defines which channels ca be used communicate, but it is the service

application which connects these channels in order to allow the different roles to be

able to exchange information.

This is possible due to channel connectors which are used to link the actual roles by

defining a relationship between their channels. There are three types: publish-

subscribe (PS), load balancer (LB) and full connector (FC).

The PS connector links send and receive channels; messages sent by the send

channel are received by all receive channels (broadcast manner). The LB connector

relates request and reply channels; when a message is sent by a request channel, the LB

picks one of the instances of the roles with reply channel and after the message is

processed the same channel is used to deliver the response. The FC connector pairs list

of duplex channels; in this case when a message is sent by a duplex channel from the

list, the destination must be specified in order to determine which duplex channel from

the list receives the message. An example on how connectors are defined in a service

application manifest is given in Appendix A (on page 39).

The server application manifest is comprised of the roles, the connectors, the

configuration and its propagation to the roles. The service application specifies the

configuration parameters in a similar manner to the component manifest, but it also

has to specify how to propagate this configuration to the roles. An example of a

complete server application manifest is given in Appendix A (on page 39).

25

Adapting a noSQL database for autoscaling on a PaaS environment

26

4. Simple MongoDB Service

4.1 Introduction

In the previous chapter, some concepts were left out because it is easier to explain

them now. Concepts like deployment of a service application, legacy servers (services

not designed specifically to work on the native runtime of ECloud).

This service topology is just a first design of a MongoDB service, it is not the

recommended one because it does not represent the optimal behavior of a MongoDB

sharded cluster. The objective of this first approach was to allow the author to learn

how ECloud works, test how a legacy server would behave when deployed as a service

application on ECloud and how to improve the mechanisms and components which

make this deployment possible.

4.2 Topology

For simplicity reasons the replication factor used will be one, meaning that the

MongoDB replica sets will be made up of only one primary and no secondary

members. The config replica sets also use replication factor one for the same reason.

Moreover, in this first design, all of the MongoDB components are represented by

one ECloud component which includes all the files and necessary logic to run a sharded

cluster on a single node. This is the MongoDB component in Figure 6.

Figure 6: Simple MongoDB Service topology

The MongoDB component offers its functionality by means of a reply channel. The

component which will access this functionality is the Front-End by using a request

channel. These two channels are linked by a load balancer connector. The Front-End

req rep

27

component also has a reply channel which is used to provide the Service Entry Point

(SEP) with the information that the end-user requires. The Front-End and the SEP are

connected via a load balancer connector.

The SEP is part of the ECloud built-in services and it allows incoming http

connections from the internet to services deployed on ECloud. So in order for the user

to be able to use the Front-End, a simple RESTful API can be implemented on the

Front-End component.

The Front-End represents the component which implements the MongoDB driver.

This driver is used by the user application to interact with MongoDB.

4.3 Legacy servers

All communication between ECloud components is done by using the channels, but

the communication between the MongoDB driver and the database itself is done using

the Wire Protocol (TCP/IP socket-based, request-response style protocol). For these

cases when legacy components expect to communicate directly instead of using the

channels, ECloud offers the proxy-tcp module.

In order for this to work, both the Front-End and the MongoDB component must

use proxied channels and their source code must use the proxy object accordingly.

Assume that the MongoDB component wants to have the query router process listening

on port 27000. When this component gets instantiated, the proxy will open the port

27000 on a local IP address. The component is aware of this because once this port gets

open the proxy fires an on ready event which returns the local IP address. Since the

port number is known, the legacy server now has the port and IP address on which the

query router should listen for requests.

On the side of the Front-End component, a similar situation occurs. This

component, once instantiated, awaits for the proxy to notify it with the legacy servers IP

and port. Once the legacy server component is listening for new connections, the proxy

fires an on ready event returning the legacy servers IP and port. This information can

then be used to setup the MongoDB driver and connect to the sharded cluster.

Adapting a noSQL database for autoscaling on a PaaS environment

28

5. Complex MongoDB Service

5.1 Topology

The topology of this service relates more to the topology of an actual MongoDB

sharded cluster. The query router, shard and config server logic are implemented in

the mongo-router component, mongo-shard component and mongo-config

respectively. This introduces more complexity because when the service is deployed,

the order in which the role instances are created is random, but the order in which the

sharded cluster components have to be added and configured is not. But it also has

benefits, more shards can be added to the sharded cluster by instantiating more roles of

mongo-shard component thus making scalability possible.

Figure 7: Complex MongoDB Service topology

The topology of the Complex MongoDB Service is represented in the Figure 7. All

channels in this figure with the name dupB are require duplex channels and all the

channels with the name dupC are provided duplex channels. Since MongoDB needs to

have an overall view of the sharded cluster, the duplex channels paired with the full

connectors are used.

29

5.2 Front-End

The Front-end component contains a RESTful API and a basic MongoDB driver

written in coffeescript (based on the NodeJS MongoDB driver [10]) which implements

primitive operations such as create, find and delete records inside the database.

This component is very similar to the Front-End in the Simple MongoDB Service.

The only difference is that it now communicates with the mongo-router component

instead of communicating directly to the sharded cluster.

In order to provide the http connections to the service, the SEP component is used

again. The service that creates SEP instances is a built-in service called HTTP

entrypoint. Even though the SEP acts mainly as a load balancer which redirects

incoming http petitions to the legacy server (Front-end component), it must adapt the

petitions to send them over the request channel. This does not add extra complexity

because the protocol used by the SEP (message/http) can be handled by the http-

message module, which behaves in a similar manner to the http-server in nodejs.

The source code for the Front-End component can be found in Appendix B (on page

40).

5.3 Config server

Since parts of the configuration and initialization steps of the three components are

similar, with the mongo-config source code being the base on top of which the logic for

the mongo-router and mongo-shard source code is built, the common parts are

explained only in this subchapter.

The mongo-config component is the key component in the sharded cluster. It must

be the first component to be up and running, without it the query router cannot be

started, and without the query router shards cannot be added to the cluster. When the

service is deployed, the sequence in which the components are instantiated cannot be

controlled, so the mongo-router and mongo-shard sometimes will have to be stalled.

The runtime used for all three components of the sharded cluster is the native

runtime offered by Kumori PaaS. One thing that this runtime is missing are the

MongoDB binaries, the files needed to execute the actual mongod and mongos

processes. These files will be included in each component alongside the scripts needed

to initialize and setup each MongoDB process. Each component in the sharded cluster

is responsible for making sure the binaries and the scripts have execute permission

before anything else.

Both the mongod and mongos process can be started by either using command-line

options or by using at startup time a YAML-based [11] configuration file. This file

contains information regarding the storage, log, replication, sharding and networking

settings. Most of these settings are predefined, excluding the IP and port. The port is

Adapting a noSQL database for autoscaling on a PaaS environment

30

defined as a configuration parameter in the manifest and the IP is provided by the

proxy.

In the case of the config server, two provided duplex channels are defined, one

which allows the query router to communicate with it, and one for the shard. The

connector used in both cases is the full connector.

The initialization process of the mongo-config component is the following:

 The mongo-config component is instantiated

 The configuration parameters and channels are computed; the configuration

parameters provide the port, and the channels are passed to the proxy

object.

 The proxy notifies the mongo-config component, by firing an on ready

event, of the IP which the mongod process can bind to.

 The binary files and the startup/configuration scripts are granted the

necessary permissions.

 The configuration file is prepared, by adding the missing IP and port needed

by the mongod to bind successfully.

 The startup script is executed:

o the necessary directory paths are created for the database and the

logs

o the mongod process is executed

o the config server replica set is initialized

Parts of the source and the startup script are given in Appendix B (on pages 41, 42

and 43).

5.4 Shards

The mongo-shard component is instantiated and configured almost in the same

manner as the mongo-config, they are both a mongod process, both are a replica set;

but the mongo-shard represents the shards which will store the actual data of the

database, whereas the mongo-config stores only the metadata since it plays the role of

the config server. The differences are:

 In the configuration file, the mongo-config has a predefined replica set

name and the configsvr cluster role; the mongo-shard has the shardsvr

cluster role assigned and the replica set name is computed by using the

mongo-shard component ID.

 The shards must be able to communicate with other shards, this means that

the mong0-shard component needs to implement both a required and a

provided duplex channel to allow communication between role instances of

this component.

31

 Apart from the shards communicating with each other, the shard must be

able to communicate metadata changes to the config server, so a required

duplex channel is needed.

 Another required duplex channel is setup so that the shard can initiate

communication with the query router.

This topology setup allows the service to operate with more than just one shard,

thus providing the scalability which MongoDB is known for.

The mongo-shard itself does not create or add the shards. Even if this component

eventually becomes a shard, the configuration done by itself only allows it to reach a

replica set state. After all the startup and setup process is complete this node represents

a replica set made up of one primary.

The logic necessary for the shard management is inside the mongo-router

component.

5.4 Query router

The mongo-router component main concern is to first establish a connection with

the mongo-config component. To achieve this, it requires: IP and port on which the

mongos can bind and the IP and port of the config server.

In the case of the query router there are two required duplex channels and one

provided duplex channel. The required channels are used to connect from the query

router to the config-server and to the shards; the provided channel is to allow

connections from the shards to the query router.

As opposed to the config server and shard, there is no replica set running on the

query router. The query router is a mongos process and its configuration file needs the

networking settings (IP and port to bind to), log settings, the IP and port of the config

server. It has no database files stored on it and it needs no extra configuration after the

mongos process is executed (the config server and the shard need to configure their

replica set after starting up).

First of all, as soon as the mongo-router component is instantiated, it computes the

configuration parameters and it creates the proxy object. All three components share

this initial setup, where they take the necessary steps in order to obtain the IP and port

necessary to start their respective process, be it mongod or mongos. But the mongo-

router needs more than this in order to startup, it also needs to know the IP and port of

the config server.

Whenever a new mongo-shard instance is created, the proxy fires an on change

event which provides the mongo-router component with a list containing the IP and

port of all the mongo-shard instances currently alive. If a new instance is born or if an

old one dies, the list is updated and sent again. The same applies to the mongo-config

instances. This implies that the mongo-router must always check the list and decide if

Adapting a noSQL database for autoscaling on a PaaS environment

32

the instances on this list are shards which need to be removed or added (normally there

should be only one mongo-config instance).

This events are asynchronous, so even if the list of mongo-shards available is

updated and ready to be processed, no steps can be taken until the mongo-router

connects to the mongo-config first.

When the proxy fires an on change event the list of instances provided can be

related to the duplex channel belonging to the mongo-config or the mongo-shard. The

mongo-router waits until it receives an on change event belonging to the mongo-config,

it updates its internal list of available config servers and it tries to connect to it. Even

though the proxy list has a config server this does not mean that the given config

server is ready to accept connections. This event can be triggered before the instance

has finished configuring and starting up. So before attempting to connect to a config

server the mongo-router uses the mongo shell to check when the mongo-config

instance replica set has a working primary. At first it might get errors regarding that

the connection failed because the startup process has not even started on mongo-config

instance; secondly the mongo-config might be initializing the replica set and during a

period of time it will be in a secondary state so all connections attempts from the

mongo-router will fail with an error stating that no primary was detected for the

replica set.

Once the query router establishes a connection with the config server, new shards

can be added to the server. In order to keep track of the shards, an internal list is used.

Each time an on change event is triggered, it has to be for the duplex channel related to

the mongo-shard, and the connection details provided in this list must not belong to

shards which are available in the internal list and are already added to the sharded

cluster. If this criteria is met, the mongo-router tries to add the new shard, or shards.

The same problem as in the mongo-config case arises. The proxy might inform of

new mongo-shard instances long before these instances are ready to actually accept

connections. So before being able to add a mongo-shard instance as an actual shard of

the sharded cluster, that instance should be up and running with a designed primary

for its replica set.

Another thing to keep in mind is that when adding new shards to a sharded cluster,

the information needed is the replica set name along with the IP and port of the

primary for this replica set. The mongo-shard component uses its ID to create the

replica set name. The details which the proxy includes in its list of currently available

instances is the ID, IP and port of the mongo-shards. This way the ID can be used to

obtain the replica set name without the mongo-shard and mongo-router having to do

extra communication.

The complexity of the whole process resides in the fact that it is asynchronous.

Depending on the hardware on which it is being run and delays in the network,

defining situations, such as how much time a query router should wait before giving up

on trying to add a shard which is too slow in completing its initiation process, is

difficult. Part of the source code for this component is given in Appendix B (on page 43,

44, 45 and 46).

33

Adapting a noSQL database for autoscaling on a PaaS environment

34

6. Conclusions and future work

Adapting a noSQL database for autoscaling on a PaaS environment is not trivial and

it sometimes requires adding extra functionality on behalf of the PaaS system in order

for the database to work. For example, if the Kumori PaaS would not provide the

proxy-tcp module then any communication between the components of a MongoDB

sharded cluster would be impossible, and the service would not even work as a simple

replicate set, let alone a sharded cluster.

Regarding autoscaling, as it has been show in chapter 5, it is doable and some parts

which normally are done by a database administrator can be automated. On the other

hand, in order for a collection inside a database to be split among the shards of a

cluster, various steps have to be taken: enable sharding on the database, chose an

appropriate shard key, use this shard key to split the collection. This is not an

impossible task to be automated and there are some solutions: the service could be set

up in such a way that all new created databases have sharding enabled; when the user

creates a new collection inside his database he should specify the shard key which

should be used. Of course this implies that the logic supported by the query router has

to be improved, but it can be done.

There are also more complex situations. For example if the user already has a

populated database and wants to load it directly in the service without providing a

shard key (as explained in chapter 2, choosing the right shard key is very important and

it greatly affects scalability). This would require more work on behalf of the platform,

an analysis of the data available in the database needs to be done in order to attempt to

determine a suitable shard key. This also implies that if all this process has to be

automated and done by the platform itself, then a built-in service capable of machine

learning techniques is needed. This service could also be used then to define patterns

depending on which shards would be added or removed accordingly.

This also raises another issue, how would the scenario of deleting a shard be

handled. Deleting a shard is more complicated than adding one because of the draining

process: when a shard is removed from a cluster, all the data residing on that shard has

to be migrated to the remaining shards in the cluster. This implies that once a mongo-

shard instance is given the order to shutdown, the time frame needed by the shard to

complete its draining and shut down can vary a lot, depending on factors such as:

hardware performance, network latency and data set size.

The logic to remove a shard from a cluster should be implemented in the mongo-

shard component. The mongo-shard is aware of all the available mongo-router

instances by means of the proxy. Each time a mongo-router instance is created the

mongo-shard would be notified via on change event issued by the proxy. By using a

mongo shell to connect to one of the mongo-routers from the list returned by the proxy

and issuing the removeShard command, the draining process would start immediately

and a message stating that the draining has started would be returned. If the same

command is issued again, the message returned would specify that the draining is

ongoing. Once the draining is completed, if the command is run again, the message

35

returned indicates that the removeShard completed successfully. At this point in time

the instance for this mongo-shard could be terminated without losing any data.

As specified in chapter 3, there is the possibility to create runtimes. A runtime

could be created that includes the MongoDB binaries. There are also other

optimizations which could be applied to the runtime in order for the sharded cluster to

operate as optimal as possible in the case of a real life production MongoDB

deployment:

 Transparent huge pages: disable and turn off defrag.

 Ulimits: the ulimit is used in unix systems to limit resources. A low “soft”

ulimit can cause can't create new thread, closing connection errors if the

number of connections grows too high. For this reason, it is extremely

important to set both ulimit values (soft and hard) to the recommended

values. In order for MongoDB to perform correctly, some of the resources

controlled by ulimit need certain minimum values. The starting points for

large systems are:

o file handles (fs.file-max): /proc/sys/fs/file-max, 98000

o kernel pid limit (kernel.pid_max): /proc/sys/kernel/pid_max,

64000

o maximum threads per process (kernel.threads-max):

/proc/sys/kernel/threads-max, 64000

 Ensure that system has swap space configured. Allocating swap space can

avoid issues with memory contention and can prevent the Out of Memory

Killer (OOM Killer) on Linux systems from killing mongod in order to free

up memory. Given sufficient memory pressure, data may be stored in swap

space.

 TCP keep-alive: In case of socket errors between client-server or between

members of a sharded cluster, use a shorter TCP keep alive (order of around

120 seconds) instead of default 7200 seconds (common for Linux systems).

 File systems: XFS is recommended and atime for the storage volume

containing the database files. The atime refers to the file access time.

These are just some of the optimizations and future work that can be done. Some of

them are easier to implement and some of them are harder, but overall there is still

room for improvement.

Adapting a noSQL database for autoscaling on a PaaS environment

36

37

7. References

[1] P. Graham. Web 2.0, November 2005. [Online]. Available:

http://www.paulgraham.com/web20.html. Retrieved: August 27, 2016.

[2] C. Garling. Amazon Goes Back to the Future With ‘NoSQL’ Database, January

2012. [Online]. Available: http://www.wired.com/2012/01/amazon-dynamodb/.

Retrieved: August 27, 2016.

[3] MongoDB, MongoDB Manual. [Online]. Available:

https://docs.mongodb.com/manual/. Retrieved: August 27, 2016.

[4] DB-Engines, DB-Engines Ranking, August 2016. [Online]. Available: http://db-

engines.com/en/ranking. Retrieved: August 27, 2016.

[5] MongoDB White Paper, MongoDB Architecture Guide MongoDb 3.2, June 2016.

[Online]. Available:

https://webassets.mongodb.com/_com_assets/collateral/MongoDB_Architecture_Gu

ide.pdf. Retrieved: August 27, 2016.

[6] P. Anderson, Web 2.0 and Beyond: Principles and Technologies, p. 36, CRC Press,

Boca Raton, 2012

[7] E. S. Raymond, The Jargon File. [Online]. Available:

http://www.catb.org/jargon/html/D/daemon.html. Retrieved: August 27, 2016.

[8] P. J. Sadalage; M. Flower, NoSQL Distilled, A brief guide to the emerging world of

polyglot persistence, pp. 37-38, Addison-Wesley, Boston, 2012.

[9] MongoDB White Paper, Delivering MongoDB-as-a-Service: Top 10

Considerations, August 2016. [Online]. Available: https://s3.amazonaws.com/info-

mongodb-com/MongoDB_as_a_Service.pdf. Retrieved: August 27, 2016.

[10] MongoDB, MongoDB Node.JS Driver. [Online]. Available:

http://mongodb.github.io/node-mongodb-native/. Retrieved: August 27, 2016.

[11] C. C. Evans, YAML Ain’t Markup Language, [Online]. Available:

http://www.yaml.org/. Retrieved: August 27, 2016.

http://www.paulgraham.com/web20.html
http://www.wired.com/2012/01/amazon-dynamodb/
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
https://webassets.mongodb.com/_com_assets/collateral/MongoDB_Architecture_Guide.pdf
https://webassets.mongodb.com/_com_assets/collateral/MongoDB_Architecture_Guide.pdf
http://www.catb.org/jargon/html/D/daemon.html
https://s3.amazonaws.com/info-mongodb-com/MongoDB_as_a_Service.pdf
https://s3.amazonaws.com/info-mongodb-com/MongoDB_as_a_Service.pdf
http://mongodb.github.io/node-mongodb-native/
http://www.yaml.org/

Adapting a noSQL database for autoscaling on a PaaS environment

38

8. Appendix

8.1 Appendix A

ECloud component manifest:

In the component manifest, the sepdest is a provided channel. Since its purpose is

to provide functionality it makes sense that the type of channel used is a reply

channel. The other channel defined in the example is req1, a required channel. This is

the channel which will allow the component to request functionality from another

component, thus the type of this channel is request.

The configuration parameter represents a string type configuration parameter.

39

ECloud service application manifest:

The above manifest displays how a LB connector links two components, sep and

fe. In this case the sep is the component which requires information and fe is the

component which supplies it. The dependents and providers classification is related to

the components channels and it corresponds to the respective required and provided

channels.

The components describes the roles which the components will have inside the

service application.

The configuration represents the configuration parameters. The fe component will

receive at execution time the configuration parameters described by proxyTcpFe. The

mongodb component will receive at execution time the configuration parameters

described by the proxyTcpMongodb.

Adapting a noSQL database for autoscaling on a PaaS environment

40

8.1 Appendix B

41

The two screen captures on the previous page represent the mongo-driver.

The initialization of the mongo-config component:

The method used to compute the configuration parameters and channels:

The method used to grant execute permission to the binaries and script:

Adapting a noSQL database for autoscaling on a PaaS environment

42

The method used to setup the configuration file and start up mongo-config:

The method used to setup the replica set for the mongo-config:

43

This is the script used to start up mongo-config and initialize the replica set:

This is the method used to initialize the mongo-router:

Adapting a noSQL database for autoscaling on a PaaS environment

44

This is the method used to decide which steps need to be taken in case the list

provided by the proxy contains either shard IPs or config server IPs:

This is the method used to add shards to sharded cluster:

45

This the method used to start the mongo-router:

Adapting a noSQL database for autoscaling on a PaaS environment

46

