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MicroRNAs: Promising New Antiangiogenic Targets in Cancer
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3Medical Oncology Department, General University Hospital, Avda Tres Cruces 2, 46014 Valencia, Spain
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MicroRNAs are one class of small, endogenous, non-coding RNAs that are approximately 22 nucleotides in length; they are very
numerous, have been phylogenetically conserved, and involved in biological processes such as development, differentiation, cell
proliferation, and apoptosis. MicroRNAs contribute to modulating the expression levels of specific proteins based on sequence
complementarity with their target mRNA molecules and so they play a key role in both health and disease. Angiogenesis is the
process of new blood vessel formation from preexisting ones, which is particularly relevant to cancer and its progression. Over the
last few years, microRNAs have emerged as critical regulators of signalling pathways in multiple cell types including endothelial
and perivascular cells. This review summarises the role of miRNAs in tumour angiogenesis and their potential implications as
therapeutic targets in cancer.

1. Introduction

MicroRNAs (miRNAs) were initially discovered in 1993 by
Lee et al. while they were studying the lin-4 gene. They
showed that lin-4 encodes a small RNA with antisense
complementarity to the lin-14 gene which resulted in reduced
lin-14 protein expression and thus disrupted the regulation
of developmental timing of the nematode Caenorhabditis
elegans [1]. miRNAs were subsequently shown to inhibit
their target genes through specific sequences which are
complementary to the target messenger RNA (mRNA). This
discovery resulted in a paradigm shift in our understanding
of gene regulation becausemiRNAs are now known to repress
thousands of target genes and to coordinate many physio-
logical processes including, but not limited to, development,
differentiation, cell proliferation, and apoptosis [2–4]. The
aberrant expression or alteration of miRNAs also contributes
to a range of human pathologies, including cancer [5–7].

2. MicroRNAs: Definition,
Biogenesis, and Function

miRNAs are one class of small noncoding RNAs that are
approximately 18–25 nucleotides in length; they are evo-
lutionary conserved single-stranded RNA molecules which
are involved in the specific regulation of gene expression
in eukaryotes [8–10]; thousands have been identified in a
wide variety of species.They can increase or decrease protein
expression by binding to the 3-untranslated region (UTR)
or to other regions (e.g., the 5-UTR, coding sequences) of
target mRNA transcripts [11] and thus play a central role in
gene regulation in both health and disease. miRNA genes are
located in inter- or intragenic regions of protein-coding gene
introns and/or exons and are transcribed from DNA but not
translated into proteins; they can exist individually or form
clusters (reviewed in [12]).

miRNA biogenesis starts with transcription from a
miRNA gene by RNA polymerase II (pol II), generating a
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primary transcript RNA (pri-miRNA) which is up to several
kilobases in length [13] andwhich can be distinguished by the
presence of an imperfect double stranded (ds) RNA region
known as the stem-loop structure. This structure is recog-
nised by the nuclear RNase III endonuclease Drosha and
its cofactor DGCR8 (DiGeorge syndrome critical region 8)
which together with other proteins form a complex known as
the microprocessor complex that cleaves the pri-miRNA and
releases an approximately 60–70 nt long precursor miRNA
(pre-miRNA) [14–17]. The pre-miRNA is exported from the
nucleus to the cytoplasm via the exportin-5 protein (RAN-
GTP-dependent transporter) [18–20] and once the complex
is in the cytoplasm, Dicer (RNase III endonuclease), with the
help of TRBP (the human immunodeficiency virus transacti-
vating) and AGO2 (argonaute 2), generates the final mature
18–25 nt ds miRNA, miRNA:miRNA∗ (the complementary
miRNA strand, referred to as miRNA∗) [21, 22]. The mature
miRNA loses one of its strands and the remaining one is
loaded onto an argonaute-containing RNA-induced silencing
complex (RISC) to form a miRISC which mediates protein
inhibition [23, 24].

Once a miRNA binds to its target gene, two mech-
anisms of action are known: (i) mRNA degradation and
(ii) translational mRNA inhibition without degradation, the
latter of which occurs in animals, including mammals [25].
In the first of these mechanisms the binding is completely
complementary between the miRNA and mRNA sequences
whereas in the second one, where the bound mRNA remains
untranslated, the binding is not completely complemen-
tary, resulting in reduced target gene expression (Figure 1).
Another important characteristic of miRNAs is that one
single miRNA has the potential to regulate many target genes
while any one gene can be targeted by multiple miRNAs,
meaning that miRNAome-mRNAome interaction can be a
complicated network.

Some data in humans have shown that about 30–50%
of genes coding for proteins are controlled by miRNAs
[26]; therefore, any signalling pathway or cellular mechanism
could potentially be governed by them.The causes of miRNA
dysregulation in cancer can result from various mechanisms
including (reviewed in [27]) the deletion or amplification of
miRNA-coding chromosomal regions [6, 28–30], mutations
in the miRNA or the target site sequence of its respective
gene(s) [31–34], epigenetic silencing of miRNA promoters
[35–38], or the dysregulation of proteins upstream of the
miRNA pathway such as cellular signalling and transcription
factors [39–45]. Hence, the ability of miRNAs to simulta-
neously regulate several genes makes them a very attractive
study target, especially, given that many tumour cell types
have alteredmiRNA expression patterns. In particular, recent
work has provided support for the idea that noncodingRNAs,
and in particular miRNAs, may play important roles in
physiological and pathological angiogenesis.

3. Tumour Angiogenesis

Tumour angiogenesis is the process by which new blood
vessels form in neoplasms; it starts in the early stages of

disease and is a crucial step in the growth and spread of
tumours.Without formingnewblood vessels tumours cannot
grow beyond a certain size due to the lack of oxygen and
other essential nutrients [46]. Neovascularization has a dual
effect on the tumour: firstly it supplies nutrients, oxygen,
and growth factors that stimulate tumour cell growth [47].
Secondly, in combination with lymphangiogenesis, it is a
prerequisite for metastasis as it provides a site of entry
into the circulation allowing shed tumour cells to travel
through the bloodstream to reach remote organs [48]. This
pathological angiogenesis is characterized by uncontrolled
growth and disordered vasculature and appears when there is
an imbalance between pro- and antiangiogenic factors [49].

In order to initiate the neovascularization, tumour cells
may overexpress one or more angiogenic inducers, mobilise
proangiogenic proteins from the extracellular matrix, or
attract host cells such as macrophages which produce their
own angiogenic proteins [50].

The activation of angiogenesis starts when preexisting
vessels become permeabilised in response to stimulating
factors such as VEGF (vascular endothelial growth factor),
PLGF (placental growth factor), or ANG-1 (angiopoietin-1).
The basement membrane and extracellular matrix (ECM) are
locally degraded by extracellular matrix metalloproteinases
(MMPs) allowing the underlying endothelial cells (ECs),
which are attracted by the angiogenic stimulus produced
by the tumour cells and the microenvironment, to migrate
into the perivascular space [51]. In tumour vasculature, the
pericyte coating is decreased or is inadequate, leading to the
formation of fenestrations and/or transcellular holes; these
incomplete basal membranes and the fact that tumour blood
vessel walls can also be formed by both endothelial and
tumour cells lead to the formation of vessels with irregular
diameters and structural abnormalities [51, 52].

In summary, angiogenesis is regarded as an essential step
in cancer development which promotes tumour progression
and metastasis by providing an entry site into the circulation
[53]. Angiogenesis has become the focus of intense study
in recent years, for example, in the development of antian-
giogenesis pharmacological agents as attractive antitumor
targets [54, 55]. In addition, the response of the vascular
endothelium to angiogenic stimuli is modulated by certain
miRNAs which can be either proangiogenic or antiangio-
genic. For this reason, the study of miRNAs and angiogenesis
is likely to improve our understanding of the process of
carcinogenesis and may lead to the identification of new
therapeutic targets for cancer treatment.

4. Role of MicroRNAs in the
Regulation of Angiogenesis

4.1. Enzymes Involved in miRNA Biogenesis. One approach to
studying the biological relevance of miRNAs is by silencing
their functions by mutating or disrupting Dicer, a critical
enzyme involved in miRNA maturation [22]. Functional
loss of Dicer results in profound vascular developmental
abnormalities in both zebrafish and mice [56, 57], but the
first evidence that miRNAs were involved in the regulation
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Figure 1: miRNA biogenesis: miRNA gene transcription generates primary miRNA (pri-miRNA) in the nucleus which is then cleaved by the
microprocessor complex (Drosha and DGCR8), liberating pre-miRNA which is exported from the nucleus to the cytoplasm by exportin-5.
Pre-miRNA is finally processed by Dicer and TRBP to obtain a mature miRNA with the capacity to bind to target mRNAs. AGO2: argonaute
2, DGCR8: DiGeorge syndrome critical region 8, miRISC: miRNA bound to RNA-induced silencing complex, ORF: origin replication frame,
Pol II: polymerase II, and TRBP: the human immunodeficiency virus transactivating.

of angiogenesis during vascular development came from
investigatingmice with hypomorphic Dicer expression; these
mice had a retarded phenotype and died as embryos between
days 12.5 and 14.5 because Dicer is specifically required
for the formation/maintenance of blood vessels in embryos
and yolk sacs [58]. Furthermore, these mutant embryos also
had altered Vegf, Flt1, Kdr (kinase insert domain receptor),
and Tie2 expression indicating that Dicer probably exerts
its function because it is involved in the biogenesis of
miRNAs that regulate the expression levels of these critical
proangiogenic factors in mice [58]. Similarly, generation
of mutant embryos disrupts Dicer in zebrafish and results
in pericardial oedema and vascular defects [59]. Moreover,
genetic silencing of Dicer and/orDrosha inHUVECs reduces
EC proliferation, migration, capillary sprouting, and tube
forming activity in vitro and, in the case of Dicer (but
not Drosha), reduces angiogenesis in vivo [60, 61]. This
difference in the effects of Dicer and Drosha might be due to
a recently described alternative Drosha processing pathway
which is miRNA-independent [62]. Another new study in
bone marrow mice endothelial progenitor cells (EPCs) also
showed that conditional ablation ofDicer led to the inhibition

of angiogenesis and impaired tumour growth, demonstrating
that functional Dicer is also necessary for bone marrow-
mediated tumour angiogenesis [63]. Together, these studies
reveal that Dicer and Drosha are prerequisite enzymes in
miRNA processing and demonstrate the essential role of
miRNAs in angiogenesis.

4.2. MicroRNAs and Endothelial Cells. Different cell types
contribute to tumour neovascularization; among them, the
endothelial and perivascular cells are generally acknowledged
to play a central role in the angiogenesis process. miR-126
was suggested to be an endothelium specific miRNA, which
modulates the endothelial phenotype in vitro andblood vessel
integrity in vivo, respectively [64]. It is encoded by intron 7 of
the EGFL7 (EGF-like domain 7) gene, which encodes an EC-
specific secreted peptide that acts as a chemoattractant and
smooth muscle cell migration inhibitor [65–67]; both miR-
126 and Egfl7 have a similar EC expression pattern [68]. In
concordance, it has been demonstrated that this miRNA is
enriched in tissues with a high vascular component such as
the lung and heart [69, 70].miR-126 promotes angiogenesis in
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response to VEGF and bFGF (basic fibroblast growth factor)
through negative suppression regulators in signal transduc-
tion pathways [64, 68, 71]. Furthermore, miR-126 has been
shown to be enriched in Flk-1 (kinase insert domain receptor;
a type III VEGF receptor tyrosine kinase) positive cells
derived frommouse embryonic bodies. miR-126 also directly
regulates the vascular process by targeting SPRED-1 (sprouty-
related, EVH1 domain containing 1), VCAM1 (vascular cell
adhesion molecule 1), and PIK3R2 (phosphoinositide-3-
kinase, regulatory subunit 2, also known as p85-𝛽) resulting
in posttranscriptional repression in HeLa cells [64]. miR-
126 loss-of-function studies in both mice and zebrafish
highlighted its importance in developmental and patholog-
ical angiogenesis affecting the EC function in vivo [64].
Targeted deletion of miR-126 in mice causes leaky vessels,
hemorrhaging, and partial embryonic lethality, due to a
loss of vascular integrity and defects in EC proliferation,
migration, and angiogenesis; these vascular abnormalities are
similar to those caused by diminished angiogenic growth
factor signalling (e.g., by VEGF or FGF). miR-126 enhances
MAP kinase signalling in response to VEGF and FGF and,
in its absence, angiogenic growth factor signalling is reduced.
This process may be regulated by Vegf suppression mediated
by Spred-1, considering that it is a negative regulator of
the RAS/MAP kinase pathway; therefore, miR-126 promotes
blood vessel formation by repressing SPRED-1 expression
[68]. Another finding was that miR-126 deletion inhibits
VEGF-dependent AKT and ERK signalling derepressing the
p85𝛽 subunit of Pi3-kinase and of Spred-1, respectively [71].
Finally, Png and colleagues reported that miR-126 regulates
EC recruitment to metastatic breast cancer cells in vitro and
in vivo [72]. According to these data, it seems that miR-
126 contributes to the EC recruitment in physiological as
well as in pathological conditions and might be a promising
antiangiogenic target.

Other miRNAs have been found to regulate the angio-
genic process by exerting an antiangiogenic function. Among
these miR-221 and miR-222 are highly conserved miRNAs
which are transcribed from a pri-miRNA located on the
human X chromosome. These miRNAs are negative reg-
ulators of angiogenesis [73], have a proliferative effect on
cancer cells [74], and are also expressed by growth factor-
stimulated or quiescent ECs [11]; indeed, microarray data
indicate that these are the most abundantly expressed miR-
NAs in HUVECs [73]. This latter study showed that these
two miRNAs inhibit stem cell factor (SCF) by decreasing the
abundance of c-KIT (tyrosine kinase receptor for SCF), thus
blocking EC migration, proliferation, and angiogenesis in
vitro. Their antiangiogenic activity was further demonstrated
by their interaction with the c-KIT 3-UTR in ECs [75]
and this group also showed that these two miRNAs regulate
endothelial nitric oxide synthase (eNOS) in ECs by silencing
Dicer [61]. NO is synthesized by eNOS and is necessary
for EC survival, migration, and angiogenesis [76]. However,
binding sites for these miRNAs were not found in the eNOS
3-UTR, suggesting that miR-221/222 are likely to indirectly
regulate eNOS protein production. These miRNAs can also
specifically promote cancer cell proliferation by regulating
the p27 (Kip1) tumour suppressor gene [74], indicating that

the regulation of proliferation by miR-221/222 is cell-type
specific. More recent studies have shown that these miRNAs
control different target genes: miR-222 is involved in inflam-
mation mediated by vascular growth factors [77], whereas
miR-221 is required for vascular remodelling [78]. Similarly,
a study performed in a murine model of liver tumorigenesis
showed that miR-221 but not miR-222 accelerated tumour
growth [79].

Similar to miR-221/222, the polycistronic miR-17-92 gene
cluster (Cl3orf25), located on human chromosome 13q31.3,
which encodes six mature miRNAs, miR-17, miR-18a, miR-
19a, miR-20a, miR-19b, and miR-92a [80], is also highly
expressed in ECs [81].This cluster is amplified in several types
of lymphoma and solid tumours [45, 82] and regulates vascu-
lar integrity and angiogenesis, promoting tumour neovascu-
larization in vivo by downregulating antiangiogenic THBS1
(thrombospondin 1) [83]. A recent study showed that while
miR-17, miR-18a, and miR-19a expression were enhanced and
miR-92a expression was reduced during EC differentiation,
inhibiting these miRNAs did not affect EC differentiation
[84]. Although the cluster is highly upregulated in several
human tumour types, only miR-18a and miR-19a have a
proangiogenic function during tumour angiogenesis [71, 85,
86]. In contrast, an antiangiogenic role for miR-17-92 cluster
members has also been reported in two different studies in
cultured ECs [86, 87]: the first reported an antiangiogenic role
for miR-92a in ECs, where injection of miR-92a antagomirs
(small synthetic RNAs that are perfectly complementary
to the specific miRNA to inhibit its function) into mice
promoted neovascularization in ischemic limbs. This antian-
giogenic function was mediated by ITGA5 (integrin 𝛼5
subunit) repression and also indirectly suppressed eNOS
production [87]. The second showed that overexpression of
miR-17, miR-18a, miR-19a, miR-20a, and miR-19b inhibited
EC sprouting, network formation, and cell migration, which
was reversed when they were silenced [86]. However, the
combined antagomir inhibition of miR-17 and miR-20a in
vivo enhanced vessel invasion into subcutaneous tissue,
although it did not enhance tumour angiogenesis; relevant
targets for this miR-17 antiangiogenic activity include the
cell cycle inhibitor p21, the S1P receptor EDG1, and the
protein kinase JAK-1 [86]. A new study has shown that
miR-17-3p controls the angiogenic process in HUVECs in
vitro in a cell-autonomous manner by modulating the FLK-1
(VEGFR-2) expression implicated in the pleiotropic effects of
angiogenesis. miR-17-3p negatively regulates FLK-1-mediated
angiogenesis in ECs by rapidly downregulating expression via
a 21 bp fragment from the FLK-1 3-UTR [88]. Thus both the
pro- and antiangiogenic properties of the miR-17-92 cluster
seem to be related to the cellular microenvironment.

Inhibition of Dicer and Drosha by siRNAs reduces let-
7f and miR-27b expression in ECs in vitro, and inhibitors
for both miRNAs contribute to the reduction of in vitro
angiogenesis and sprout formation, suggesting that let-7f and
miR-27b promote angiogenesis by targeting antiangiogenic
genes such as THBS1 (using in silico analysis of predicted tar-
gets), although these targets have not yet been characterised
[60, 75]. Furthermore,miR-214 overexpression in ECs signifi-
cantly inhibited tubular sprouting, and, similarly, knockdown
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of the quaking protein (a direct miR-214 target which is
critical for vascular development) reduced proangiogenic
growth factor expression and EC sprouting; moreover, miR-
214 upregulation decreased the secretion of proangiogenic
growth factors, including VEGF, which was reversed by
inhibiting it [89].

Finally, Fang et al. reported that miR-93, a miRNA
from the miR-106B-25 cluster and a paralog of the miR-17-
92 cluster, has both pro- and antiangiogenic properties. It
enhanced EC activities, including cell spreading and tube
formation in a human breast carcinoma cell line by targeting
the LATS2 gene (large tumour suppressor kinase 2), whereas
it was found to be upregulated in human breast carcinoma
tissues [90].

The most important mechanisms and functions involved
in EC regulation by miRNAs described above are summa-
rized in Figure 2 and Table 1.

4.3. miRNAs and Hypoxia. Hypoxia, a key driver of angio-
genesis, works primarily by inducing angiogenic factors
via the HIF-1𝛼 (hypoxia-inducible factor-1 alpha) pathway.
Hypoxia occurs during tumour development, and several
hypoxia-regulated miRNAs have been identified in cancer
cells, as detailed below.

miR-210 is the only miRNA so far identified which
strongly responds to hypoxic stress in virtually all exper-
imental systems in vivo and in vitro and in both normal
and tumour cells under physiological hypoxic conditions
[91]. Hypoxia in tumours is closely related with angiogenesis
[92] and several proangiogenic factors are overexpressed
in tumours as a response to a hypoxic microenvironment
[93], VEGF being the best example [94, 95]. miR-210 and
VEGF expression were closely correlated in breast cancer
patients [96], showing a possible role for miR-210 in tumour
angiogenesis. In support of this, two independent studies
demonstrated that upregulation of miR-210 in normoxic
HUVECs induced the formation of capillary-like structures
and VEGF-dependent EC migration, while inhibiting it
antagonised these processes [97, 98]. Furthermore, miR-210
induces angiogenesis in part repressing endothelial ligand
ephrin-A3, which is an antiangiogenic factor [97]. In another
study HUVECs cultured with exosomes derived frommouse
breast cancer 4T1 cells which were transfected with miR-210
had significantly increasedmigration and capillary formation
[99]. Taken together, this data suggests that miR-210 may
be one of the angiogenesis-promoting factors released by
tumour cells, therefore explaining the increased quantities of
miR-210 found in the circulation of cancer patients [100, 101].

Two studies performed in four different murine tumour
cell lines as well as the MCE-7 breast cancer cell line showed
that miR-20b regulates angiogenesis by targeting VEGF and
HIF-1𝛼 [102, 103].While repression of miR-20b enhanced
HIF-1𝛼 and VEGF protein levels in normoxic conditions,
hypoxic conditions increased miR-20b levels and decreased
HIF-1𝛼 and VEGF levels. Overexpression of HIF-1𝛼 also
downregulated miR-20b expression in normoxic tumour
cells, whereas HIF-1𝛼 repression in hypoxic tumour cells
caused miR-20b to increase. It is thought that this might

be a novel molecular regulation mechanism through which
miR-20b regulates HIF-1𝛼 and VEGF but which is also self-
regulated by HIF-1𝛼 so that tumour cells continuously adapt
to different oxygen concentrations [103]. In support of this
idea Cascio et al. used hypoxia-mimicking conditions (CoCl

2

exposure) to demonstrate that VEGF expression in breast
cancer cells is mediated by HIF-1𝛼 and STAT3 in a miR-20b-
dependent manner. miR-20b decreased VEGF protein levels
after CoCl

2
treatment, and VEGF mRNA downregulation by

miR-20b was associated with reduced levels of nuclear HIF-
1𝛼 and STAT3; STAT3was also necessary for CoCl

2
-mediated

HIF1𝛼 nuclear accumulation and its recruitment to theVEGF
promoter [102].

Additionally, miR-21 has been identified as one of the
most important miRNAs associated with tumour growth and
metastasis. Lei et al. confirmed that its overexpression in
DU145 cells increases both HIF-1𝛼 and VEGF expression
to promote tumour angiogenesis and that, similar to pre-
vious findings [103], HIF-1𝛼 (itself a key downstream miR-
21 target) downregulation negated miR-21-induced tumour
angiogenesis. miR-21 activates AKT and ERK 1/2 (extracellu-
lar signal-regulated kinases) by targeting PTEN (phosphatase
and tensin homolog) which elevates HIF-1𝛼 and VEGF
expression [104]. Interestingly, miR-21 is only upregulated by
hypoxia in AKT2-expressing cells, and AKT2 confers greater
resistance to hypoxia than AKT1 or AKT3. When miR-21
is upregulated in hypoxic conditions AKT2 downregulates
PTEN which then activates the other two Akt isoforms. In
addition, miR-21 also downregulates PDCD4 (programmed
cell death 4) and sprouty 1 (Spry1) which, together with
PTEN downregulation, confers resistance to hypoxia [105].
This group also confirmed the involvement of theAKT2/miR-
21 pathway in angiogenesis in vivo in hypoxic human ovarian
carcinoma cells and in the MMTV-PyMT (mouse mammary
tumour virus-polyoma-middle T) breast cancer metastasis
model. Taken together, these data indicate that a novel AKT2-
dependent pathway is activated by hypoxia and that this
promotes tumour resistance by inducing miR-21.

The miR-200 family plays a crucial role in epithelial-to-
mesenchymal transition by controlling cell migration and
polarity [106–108]. Delivery ofmiR-200bmimic intoHMECs
(human microvascular endothelial cells) suppressed the
angiogenic response, whereas miR-200b-depleted HMECs
exhibited elevated angiogenesis in vitro, as evidenced by
Matrigel tube formation and cell migration assays [109].
Using different technologies, this group showed that (i) ETS-1
(avian erythroblastosis virus E26 (v-ets) oncogene homolog-
1), an essential angiogenesis-related transcription factor, is
a direct miR-200b target, (ii) some ETS-1-associated genes
such as MMP-11 and VEGFR-2 were downregulated by miR-
200b, and (iii) hypoxia and HIF-1𝛼 stabilisation inhibited
miR-200b expression, increasing ETS-1 expression. As miR-
200b becomes downregulated in a hypoxic environment
its expression is derepressed and angiogenesis is promoted
[109]. A recent study on the A549 and HUVEC cell lines
demonstrated that miR-200c regulates VEGFR-2 expres-
sion, increasing cancer cell radiosensitivity by targeting the
VEGF-VEGFR-2 pathway. Ectopic miR-200c expression in
HUVECs significantly impaired angiogenesis, tubulogenesis,
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andmigration, whereasmiR-200c suppression increased tube
formation and migration by about 30% [110].

In addition to the key miRNAs discussed above, miR-
107, miR-519c, and miR-424 have also been implicated in
hypoxia-induced angiogenesis. Yamakuchi et al. showed that
miR-107 decreases hypoxic signalling in human colon cancer
cells by inhibiting HIF-1𝛽 and that it is transcriptionally

regulated by p53; in addition, miR-107 overexpression in
mouse tumour cells repressed tumour angiogenesis, growth,
and VEGF expression [111]. Cha et al. identified miR-
519c as another important hypoxia-independent regulator
which directly binds the HIF-1𝛼 3UTR and thus causes a
reduction in tumour angiogenesis. Overexpression of this
miRNA significantly decreased HIF-1𝛼 protein levels and
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Table 1: Angiogenic miRNAs related to cancer and their targets.

miRNA Role Function Targets Reference

Dicer Function loss Maturation of microRNAs miRNAs [56, 57]
[58, 60, 61]

miR-126 Proangiogenic Regulates the response of endothelial cells to
VEGF

SPRED-1,
PIK3R2,

VECAM-1,
[64, 68, 71]

miR-221/222 Antiangiogenic and proangiogenic Inhibitor of SCF C-KIT, eNOS,
p27

[73]
[61]
[74]

miR-17-92 cluster Proangiogenic and antiangiogenic Regulation of vascular integrity
THBS1, p21, S1P,

JAK1
Flk-1 (VEGFR-2)

[83]
[86]
[88]

let-7f; miR-27b Proangiogenic ↑EC-mediated angiogenesis ∗ND [75]
miR-214 Antiangiogenic Tubular sprouting Quaking [89]
miR-93 Proangiogenic Enhanced endothelial cell activity LATS2 [90]

miR-210 Proangiogenic Endothelial cell migration and formation of
capillaries Ephrin-A3 [97]

miR-20b Antiangiogenic Decreases levels of HIF1A and VEGF VEGF, HIF-1𝛼 [102, 103]

miR-21 Antiangiogenic Induction of tumour angiogenesis, confers
resistance to hypoxia

PTEN,
PDCD4, Sprouty1

[104]
[105]

miR-200 family Antiangiogenic Epithelial-mesenchymal transition ETS-1 [109]
miR-200c Antiangiogenic Epithelial-mesenchymal transition VEGFR-2 [110]
miR-107 Antiangiogenic Hypoxia signalling HIF-1𝛽 [111]
miR-519c Proangiogenic Depletion of tumour angiogenesis HIF-1𝛼 [112]

miR-424 Proangiogenic and antiangiogenic Destabilization of the E3-ligase assembly,
increasing HIF-1𝛼 levels

CUL-2
VEGF

VEGFR-2
FGFR-1

[113]

[117]

miR-15a Antiangiogenic Control of the cell cycle, apoptosis,
proliferation, and angiogenesis

BCL-2
VEGF-A [116]

miR-16 Antiangiogenic Controls VEGF expression and induces cell
apoptosis

VEGF
VEGFR-2
FGFR-1
BCL-2
VEGF-A

[117]
[116]

miR-378 Proangiogenic Cell survival and tumour growth SUFU and FUS-1 [114, 119]

miR-296 Proangiogenic Promotes angiogenesis by increasing levels
of proangiogenic growth factor receptors HGS [120]

miR-199a Antiangiogenic Suppresses tumour angiogenesis via the
HIF-1𝛼/VEGF pathway HER3 [121]

miR-125b Antiangiogenic Suppresses tumour angiogenesis via the
HIF-1𝛼/VEGF pathway

HER2
HER3 [121]

miR-361-5p Antiangiogenic Cancer development and progression VEGF A [122]
miR-1/206 Antiangiogenic Regulation of VegfA expression VEGF A [124]

miR-10b Proangiogenic Regulation of endothelial cell division and
migration HOXD10, FLT1 [123]

miR-196b Proangiogenic ∗ND ∗ND [63]

miR-503 Antiangiogenic Overexpression reduces tumour
angiogenesis FGF2, VEGFA [130]

miR-128 Antiangiogenic Decreases cell proliferation, tumour growth,
and angiogenesis P70S6K1 [131]
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Table 1: Continued.

miRNA Role Function Targets Reference

mir-145 Antiangiogenic Inhibition of tumour growth and
angiogenesis P70S6K1 [132]

miR-130a Proangiogenic Increases angiogenesis by targeting GAX
and HOXA5 (antiangiogenic genes) GAX, HOXA5 [133]

miR-132 Proangiogenic Increases Ras activity p120RasGAP [134]

miR-26a Antiangiogenic Suppresses tumour growth and metastasis PIK3C2𝛼
HGF

[135]
[136]

∗ND: not described.

reduced HUVEC tubulogenesis, whereas its inhibition by
antagomirs had the opposite effect [112]. miR-424, which is
increased in hypoxic ECs and during vascular remodelling
in vivo, is thought to play an important role in postischemic
vascular remodelling and angiogenesis. It inhibits CUL2
(Cullin 2) expression by targeting its 3-UTR, stabilisingHIF-
1𝛼, which then transcriptionally activates VEGF; similarly,
EC transfection with miR-424 increases both HIF-1𝛼 and
HIF-2𝛼 expression and increases proliferation andmigration,
presumably through the same VEGF-mediated mechanism
[113].

In summary, many different studies have identified
the functional targets and pathways involved in miRNA-
mediated regulation of hypoxia (Figure 2 and Table 1), pro-
viding a rationale for a new therapeutic approach to suppress-
ing hypoxia-induced tumour angiogenesis.

4.4. miRNAs and the VEGF Pathway. The first miRNAs
which were directly associated with tumour biology by
their downregulation or deletion were miR-15a and miR-16;
expression of thesemiRNAs is reduced in response to hypoxia
which increases VEGF expression [114]. These miRNAs also
induce apoptosis in leukaemia cells by inhibiting BCL-2 (an
antiapoptotic protein) and blocking cell cycle progression,
making them attractive antitumour targets which could
be used to block tumour cell survival, proliferation, and
VEGF-mediated angiogenesis [115]. miR-15a and miR-16 are
significantly underexpressed in primary multiple myeloma
(MM) cells as well as MM cell lines and their expression
inversely correlates with VEGF in both humanMM cell lines
and normal plasma cells [116]. Moreover, miR-16 and another
miRNA, miR-424, decrease VEGF, VEGFR-2, and FGFR-1
(fibroblast growth factor receptor-1) expression (all of which
have been validated as miR-16 and miR-424 targets in ECs
usingmimeticmicroRNAs) and hence play an important role
in regulating the cell-intrinsic angiogenic activity of ECs by
increasing VEGF and bFGF signalling [117]. Dejean et al.
showed that miR-16 directly interacts with VEGF mRNA at
the 3-UTR and that ALK expression leads to miR-16 down-
regulation, thus increasing VEGF levels. This was further
supported by experiments in TPM3-ALK (conditional onco-
ALK) MEF cells which showed that both ALK and HIF1𝛼
expression are a prerequisite for miR-16 downregulation; in
agreement with these findings, increased miR-16 expression
in vivo reduced angiogenesis and tumour growth [118].

miR-378 is another important angiogenic regulator.
When this miRNAs is overexpressed in cancer cell lines,
SUFU (suppressor of fused) and FUS-1 (FUS RNA binding
protein), two tumour suppressor genes, are downregulated,
and as a consequence there is an increase in the levels of
VEGF, thus increasing cell survival and reducing cell death
[119].

Similarly, increased miR-296 expression activates angio-
genesis in cultured ECs due to the suppression of HGS (hep-
atocyte growth factor-regulated tyrosine kinase substrate)
which mediates VEGFR-2 and PDGFR-𝛽 (platelet derived
growth factor receptor beta) degradation, whereas miR-296
inhibition reduces angiogenesis in tumour xenografts [120].
In contrast, He et al. identified another two miRNAs, miR-
199a and miR-125b, which were downregulated in ovarian
cancer tissues and cell lines, and overexpression of these
miRNAs inhibits tumour-induced angiogenesis and is associ-
ated with a decrease in VEGF mRNA and protein expression
[121]. A different miRNA, miR-361-5p, represses a miRNA
recognition element located in a conserved downstream
region of the VEGFA 3-UTR and is inversely correlated
with VEGFA expression in human squamous cell carcinoma
(SCC) cells and in healthy skin, indicating that it may play a
role in cancers [122].

Two studies in zebrafish have demonstrated that miR-1,
miR-206, and miR-10 govern angiogenesis by targeting vegf
[123, 124]. They negatively regulate developmental angiogen-
esis by controlling VegfA in muscle and thus angiogenic
signalling to the endothelium. Interestingly, reducing the
levels ofVegfAa but notVegfAb rescued the increase in angio-
genesis previously observed when miR-1/206 were knocked
down [124]. miR-10 repression led to premature truncation
of intersegmental vessel growth in the trunk of zebrafish
larvae, and its overexpression promoted angiogenesis in both
zebrafish and cultured HUVECs. miR-10 acts by directly
regulating FLT1 (a cell-surface receptor that binds VEGF)
and its soluble splice variant SFLT1. Its downregulation in
zebrafish and HUVECs increases FLT1/SFLT1 protein levels,
which binds VEGF with higher affinity than VEGFR-2 and
therefore negatively regulates VEGFR-2 signalling pathway
[123]. Moreover, miR-10b and miR-196b have been related to
angiogenesis and cancer metastasis [125–129] and are both
upregulated in murine ECs treated with tumour-conditioned
medium, although only miR-10 responded to increased
VEGF levels. These miRNAs are preferentially expressed
in the vasculature of more invasive human breast tumours
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and are upregulated by tumour-produced growth factors in
human ECs [63]. Taken together, these studies establish miR-
10, and perhaps miR-196b, as potential new targets for the
selective modulation of angiogenesis [123].

Zhou et al. reported that miR-503 simultaneously down-
regulates FGF2 and VEGFA. miR-503 expression is inhibited
in hepatocarcinoma cells and primary tumours whichmay be
due to an epigenetic mechanism; its overexpression reduces
tumour angiogenesis in vitro and in vivo, and furthermore,
its expression is downregulated by hypoxia via HIF1𝛼, thus
indicating an antiangiogenesis role in tumorigenesis [130].
Finally, other studies have indicated that miRNAs may
function as tumour suppressors by targeting p70S6K1. Two
independent studies, the first with miR-128 in glioma [131]
and the second with miR-145 in colon cancer tissues [132],
demonstrated that decreased p70S6K1 expression, mediated
by these miRNAs, inhibits cell proliferation, tumour growth,
and angiogenesis which is thought to be because HIF-1𝛼 and
VEGF are both downstream to this molecule.

In conclusion, the key angiogenic factor VEGF appears to
be regulated by several miRNAs including miR-191, miR-126,
miR-155, miR-31, the miR-17-92 cluster, miR-10, miR196, and
miR-1/206 (summarized in Figure 2 and Table 1); however,
exhaustive studies on the implication of these miRNAs in
therapeutic treatments are needed before these findings can
be added to existing therapeutic anti-VEGF drugs.

4.5. miRNAs That Affect Other Pathways Implicated in Angio-
genesis. Other angiogenesis-modulatingmiRNAs that do not
affect any of the previously described targets include miR-
132, miR-26a, and miR-130a (Figure 2 and Table 1), the latter
of which inhibits the expression of two antiangiogenic genes:
GAX (growth arrest homeobox) andHOXA5 (homeoboxA5)
[133] and is produced in increased amounts by hECs (human
embryonic carcinoma cells) in culture. Similarly, miR-132 is
also highly upregulated in a human vasculogenesis model
as well as in human tumour endothelium [134]. Its ectopic
expression in vitro enhances EC proliferation and tubuloge-
nesis. MiR-132 expression in hECs repressed p120RasGAP
(its predicted target) increasing RAS activity and thus pro-
moting angiogenesis, which could explain why p120RasGAP
is expressed in normal but not in tumour endothelium
[134]. Further, supporting this, the same group showed that
the addition of anti-miR-132 inhibited angiogenesis in wild-
type mice but not in mice with an inducible Rasa1 (encod-
ing p120RasGAP) deletion; in another experiment, targeted
delivery of anti-miR-132 nanoparticles to the vessels restored
p120RasGAP expression in the tumour endothelium, sup-
pressing angiogenesis and decreasing the tumour burden
in an orthotopic xenograft mouse model of human breast
carcinoma. It is therefore thought that miR-132 acts as an
angiogenic switch by suppressing endothelial p120RasGAP
expression, resulting in Ras activation and induction of neo-
vascularization which is counteracted by anti-miR-132 [134].
Taken together, these observations indicate that miR-132 may
play an important role in pathological neovascularization
downstream of multiple triggers, including tumour-derived
growth factors, viral infections, and inflammation.

Recent studies in human HCCs (hepatocellular carci-
noma cells) have demonstrated that miR-26a is implicated
in tumour angiogenesis [135, 136]. Ectopic expression of
miR-26a reduces VEGFA levels in HepG2 (human hep-
atocellular liver carcinoma cell line) cells. Furthermore,
in silico analysis indicates that PIK3C2𝛼 is a downstream
miR-26a target gene, and inhibition studies suggest that
miR-26a decreases VEGFA expression in HCCs via the
PI3K/AKT/HIF-1𝛼/VEGFA pathway. Finally, VEGFA levels
inversely correlatewithmiR-26a levels inHCC tumours [135],
and there is also a correlation between miR-26a downreg-
ulation and increased angiogenic potential in HCCs [136].
In addition, HGF (hepatocyte growth factor) has been iden-
tified as a miR-26a target, demonstrating its antiangiogenic
function which is at least partially mediated by inhibiting
cMet (HGF-hepatocyte growth factor receptor) and its down-
stream signalling pathway, thus reducing VEGFA expression
in HCCs and decreasing VEGFR-2 signaling in ECs [136].

5. ‘‘Angiogenic’’ miRNAs in the Era of
Personalised Medicine

There are different therapeutic strategies for inhibiting miR-
NAs in vivo that are currently being evaluated in preclinical
models (reviewed in [137]). These strategies include the
following.

Antagomirs. They are a class of chemically engineered
oligonucleotides which are able to silence endogenous
miRNAs. They are specifically designed, chemically modi-
fied, cholesterol-conjugated single-stranded RNA analogues
which are complementary to miRNA targets [138–140].

Locked Nucleic Acid- (LNA-) AntimiRs. They are antisense
RNA oligonucleotides in which the ribose moiety of an LNA
nucleotide is modified to increase stability and specificity.
LNA nucleotides can be mixed with DNA or RNA residues
in the oligonucleotide depending on the user’s requirements
[141].

MiR Sponge. This is miRNA-inhibiting transgene which
expresses anmRNAwhich containsmultiple tandem binding
sites for an endogenous miRNA which is thus able to stably
interact with the corresponding miRNA and prevent its
association with its endogenous targets [142].

miR-Mask. This is a single-stranded 2-O-methyl-modified
antisense oligonucleotide which is fully complementary to
the predicted miRNA binding sites in the 3-UTRs of target
mRNAs.ThemiR-mask is therefore able to obscure the access
of the miRNA to its binding sites on the target mRNA and so
impairs its inhibitory function [143].

Alternatively, there are strategies intended to restore
miRNA levels, such as miRNA mimics. It is based on the
use of double-stranded synthetic oligonucleotides thatmimic
endogenous miRNAs and are processed into the cell when
they are transfected [144]. The expression vectors of these
miRNAs are constructed with promoters that can enable the
expression of certain miRNAs in a tissue-/tumour-specific
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manner [145]. For instance, a liposome-formulated mimic
of the tumour suppressor miR-34 named MRX34 (devel-
oped by Mirna Therapeutics) produced a complete tumour
regression in orthotopic mouse models of hepatocellular car-
cinoma [146]. These results prompted the development of an
ongoing phase I multicentre clinical trial (ClinicalTrials.gov
identifier:NCT01829971) to evaluate the safety of MRX34
in patients with primary liver cancer or those with liver
metastasis from other cancers.

In summary, although the pharmacologicalmanipulation
of miRNAs is still in its initial steps, there are scientific
evidences demonstrating the potent modulatory impact of
certain miRNAs on the angiogenic response.

6. Conclusions

miRNAs are implicated inmost, if not all, signalling pathways
and in many human diseases, including cancer. This review
summarizes the role of miRNAs in the control of different
pathways related to angiogenesis and, in particular, with
the tumour neovascularization. To date there are groups
of well characterized miRNAs implicated in regulating EC
function and angiogenesis, making them attractive objectives
in tumour angiogenesis. Hopefully, in a few years targeted use
of specific miRNAs against angiogenic pathways in cancer
will become a reality, allowing combining these with other
types of antitumour strategies.
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[140] J. Krützfeldt, S. Kuwajima, R. Braich et al., “Specificity, duplex
degradation and subcellular localization of antagomirs,”Nucleic
Acids Research, vol. 35, no. 9, pp. 2885–2892, 2007.

[141] J. Elmén, M. Lindow, A. Silahtaroglu et al., “Antagonism of
microRNA-122 in mice by systemically administered LNA-
antimiR leads to up-regulation of a large set of predicted target
mRNAs in the liver,” Nucleic Acids Research, vol. 36, no. 4, pp.
1153–1162, 2008.

[142] M. S. Ebert and P. A. Sharp, “MicroRNA sponges: progress and
possibilities,” RNA, vol. 16, no. 11, pp. 2043–2050, 2010.

[143] C. Esau, S. Davis, S. F. Murray et al., “miR-122 regulation of
lipid metabolism revealed by in vivo antisense targeting,” Cell
Metabolism, vol. 3, no. 2, pp. 87–98, 2006.

[144] A. G. Bader, D. Brown, J. Stoudemire, and P. Lammers, “Devel-
oping therapeuticmicroRNAs for cancer,”GeneTherapy, vol. 18,
no. 12, pp. 1121–1126, 2011.

[145] J. Ji, J. Shi, A. Budhu et al., “MicroRNA expression, survival, and
response to interferon in liver cancer,”TheNew England Journal
of Medicine, vol. 361, no. 15, pp. 1437–1447, 2009.

[146] A. G. Bader, “MiR-34 - a microRNA replacement therapy is
headed to the clinic,” Frontiers in Genetics, vol. 3, article 120,
2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Anatomy 
Research International

Peptides
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Molecular Biology 
International 

Genomics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Bioinformatics
Advances in

Marine Biology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Signal Transduction
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Evolutionary Biology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Biochemistry 
Research International

Archaea
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Genetics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporation
http://www.hindawi.com

Nucleic Acids
Journal of

Volume 2014

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Enzyme 
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Microbiology


