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Abstract 

A numerical method is presented for form-finding of cable domes. The topology and the 

types of members are the only information that requires in this form-finding process. 

Dummy elements are used to transform the cable dome with supports into self-stressed 

system without supports. The eigenvalue decomposition of the force density matrix and the 

Singular value decomposition of the equilibrium matrix are performed iteratively to find the 

feasible sets of nodal coordinates and force densities which satisfy the minimum required 

rank deficiencies of the force density and equilibrium matrices, respectively. Based on 

numerical examples it is found that the proposed method is very efficient, robust and 

versatile in searching self-equilibrium configurations of cable dome structures. 

 

Keywords: Cable dome, Singular value decomposition, Form-finding, New configuration. 

1. Introduction 

The Cable dome structures first proposed by Geiger [6] have been developed in recent 

years due to their innovative forms, lightweight and deployability. They belong to a class of 

pre-stressed pin-jointed systems that cannot be stable without introducing prestresses to 

some members (Pellegrino [16]). Kawaguchi et al. [8] proposed a least-square problem of 

nodal displacements with the specified external forces for obtaining optimum shapes of a 

cable dome structure. Recently, Ohsaki and Kanno [13] investigated the form-finding of 

cables domes under specified stresses by nonlinear mathematical programming problem. 

Deng et al. [4] suggested problem of shape finding of cable-strut assemblies which could be 

incomplete with missing or slack cables during construction by using the iterative algorithm 

until equilibrium equations satisfied. More recently, optimum prestressing of domes with a 

single or with multiple integral prestress modes is also examined by Yuan et al. [22]. 
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In this paper, a numerical method is presented for form-finding of cable domes. The 

topology and the types of members, i.e. either compression or tension are the only 

information that requires in this form-finding process. In other words, the initial nodal 

coordinates are not necessary for the present form-finding. Dummy elements are used to 

transform the cable dome with supports into self-stressed system without supports. The 

force density matrix is derived from an incidence matrix and an initial set of force densities 

assigned from prototypes, while the equilibrium matrix is defined by the incidence matrix 

and nodal coordinates. The eigenvalue decomposition of the force density matrix and the 

Singular value decomposition of the equilibrium matrix are performed iteratively to find the 

feasible sets of nodal coordinates and force densities which satisfy the minimum required 

rank deficiencies of the force density and equilibrium matrices, respectively. 

2. Formulation of Equilibrium for cable dome structures 

For a d-dimensional cable dome structure with b members, n free nodes and nf fixed nodes 

(supports), its topology can be expressed by a connectivity matrix Cs

( )

( )
b n n

f
× +

∈R  as 

discussed in Schek [18], Motro [11], and Zhang and Ohsaki [23]. Suppose member k 

connects nodes i and (i < j), then the thi  and th
j  elements of the thk  row of  Cs are set to 1 

and -1, respectively, as follows:   

 Cs(k,p)

1 =

= 1 =

0

for p i

for p j

otherwise

 


−  



 (1) 

If the free nodes are numbered first, then to the fixed nodes, Cs can be divided into two 

parts as 

 Cs = [C Cf] (2) 

where C ( )
b n×∈R  and Cf ( )

b n
f

×

∈R  describe the connectivities of the members to the free and 

fixed nodes, respectively. Let x, y, z ( )
n∈R  and xf, yf, zf ( )

n
f∈R  denote the nodal coordinate 

vectors of the free and fixed nodes, respectively, in x, y and z directions.  

The equilibrium equations in each direction of a general pin-jointed structure given by 

Schek [18] can be stated as      

 C
T
QCx + C

T
QCfxf = px (3a) 

 C
T
QCy + C

T
QCfyf = py (3b) 

 C
T
QCz + C

T
QCfzf = pz (3c) 

where px, py and pz (
n∈ R ) are the vectors of external loads applied at the free nodes in x, y 

and z directions, respectively. The symbol, (.)T , denotes the transpose of a matrix or vector. 

And Q ( )
b b×∈R  is diagonal square matrix, calculated by   

 Q = diag(q) (4) 

where q ( )
b∈R  suggested in Schek [18] is the force density vector, defined by   
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 q
1 2= { , , , }Tbq q qK  (5) 

in which each component of this vector is the force 
if  to length il  ratio = /i i iq f l  known as 

force density or self-stressed coefficient in Vassart and Motro [20]. Without external 

loading, Eq. (3) can be rewritten neglecting the self-weight of the structure as      

 Dx = -Dfxf (6a) 

 Dy = -Dfyf (6b) 

 Dz = -Dfzf (6c) 

where matrices D ( )
n n×∈R  and Df ( )

n n
f

×

∈R  are, respectively, given by      

 D = C
T
QC (7a) 

 Df = C
T
QCf (7b) 

or by      

 D = C
T
diag(q)C (8a) 

 Df = C
T
diag(q)Cf (8b) 

In order to solve Eq. (6) with respect to the unknown coordinates x, y and z of the free 

nodes, the coordinates xf, yf and zf of the fixed nodes must be given. In order to perform the 

advanced form-finding of the cable dome structures without given nodal coordinates of the 

fixed nodes, the dummy elements are used to free the fixed nodes. In other words, by using 

the concept of dummy elements the pre-stressed cable dome structure can be converted into 

free-standing self-stressed structure without supports. 

It is noted that when external load and self-weight are ignored, a self-stressed system does 

not require any fixed node, and the self-stressed geometry is defined by the relative position 

of the nodes, and the system can be considered as free, forming a rigid body free in space 

(Vassart and Motro [20]). In this context, Eqs. (7b), (8b) vanish, and Eq. (6) becomes:      

 Dx = 0 (9a) 

 Dy = 0 (9b) 

 Dz = 0 (9c) 

where D known as force density matrix (Tibert and Pellegrino [19], Estrada et al. [5]) or 

stress matrix (Connelly [2, 3]). 

For simplicity, Eq. (9) can be reorganized as   

 D[x y z]=[0 0 0] (10) 

However, by substituting Eq. (8) into Eq. (9) the equilibrium equations of the self-stressed 

structure can be expressed as      

 C
T
diag(q)Cx = 0 (11a) 

 C
T
diag(q)Cy = 0 (11b) 

 C
T
diag(q)Cz = 0 (11c) 

Eqs. (11) can be reorganized as   

 Aq = 0 (12) 
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where A ( dn b×∈R ) is known as the equilibrium matrix in Motro [11], defined by   

 

( )

( )

( )

T

T

T

diag

diag

diag

 
 

=  
 
 

C Cx

A C Cy

C Cz

 (13) 

Eq. (10) presents the relation between force densities and nodal coordinates, while Eq. (12) 

shows the relation between projected lengths in x,y and z directions, respectively and force 

densities. Both Eqs. (10) and (12) are linear homogeneous systems of self-equilibrium 

equations with respect to nodal coordinates and force densities, respectively. 

 

3. Requirement on Rank Deficiency Conditions 

Let q be the vector of force density and C be the incidence matrix of a d-dimensional self-

stressed structure in self-equilibrium. It is well known that the set of all solutions to the 

homogeneous system of Eq. (10) is the null space of D. The dimension of this null space or 

rank deficiency of D is defined as   

 n n r= −D D
 (14) 

where ( )r rank=D D . It is obvious that vector 1 {1,1, 1}
T=I L

1
( )

n×∈R , is a solution of Eq. (10) 

since the sum of the elements of a row or a column of D is always equal to zero (Tibert and 

Pellegrino [19]). The most important rank deficiency condition related to semi-definite 

matrix D of Eq. (10) is defined by   

 1n d≥ +D
 (15) 

This condition forces Eq. (10) to yield at least d useful particular solutions (Meyer [10]) 

which exclude the above vector 1I  due to degenerating geometry of self-stressed structure 

(Tibert and Pellegrino [19], Zhang and Ohsaki [23]). These d particular solutions form a 

vector space basis for generating a d-dimensional self-stressed structure. Therefore, the 

minimum rank deficiency or nullity of D must be (d+1) for configuration of any self-

stressed structure embedding into dR , which is equivalent to the maximum rank condition 

of D proposed by Connelly [2, 3], and Motro [11] as follows:   

 ( ) ( 1)max r n d= − +D
 (16) 

Similarly, the set of all solutions to the homogeneous system of Eq. (12) lies in the null 

space of A. Let nA  denote dimension of null space of the equilibrium matrix A which is 

computed by   

 n b r= −A A
 (17) 

where ( )r rank=A A . The second rank deficiency condition which ensures the existence of at 

least one state of self-stress can be stated as   

 1s n= ≥A
 (18) 
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where s is known as the number of independent states of self-stress, while the number of 

infinitesimal mechanisms is computed by m dn r= − A
, as presented in Calladine [1] and 

Pellegrino and Calladine [15]. It is clear that Eq. (18) allows Eq. (12) to create at least one 

useful particular solution (Meyer [10]). 

 

4.  Form-Finding Process 

The proposed form-finding procedure only needs to know the topology of structure in terms 

of the incidence matrix C, and type of each member, i.e. either cable or strut which is under 

tension or compression, respectively. Based on element type, the initial force density 

coefficients of cables (tension) are automatically assigned as +1 while those of struts 

(compression) as -1, respectively, as follows:   

 q
0
 = { 1 1 1 1 1 1}

T

cables struts

+ + + − − −
144424443 144424443

L L  (19) 

Subsequently, the force density matrix D is calculated from q
0
 by Eq. (8). After that, the 

nodal coordinates are selected from the eigenvalue decomposition of the matrix D which is 

discussed in the next section. These nodal coordinates are substituted into Eq. (12) to define 

force density vector q by the Singular value decomposition of the equilibrium matrix A 

which is also presented in the next section. The force density matrix D is then updated by 

Eq. (8). The process is iteratively calculated for searching a set of nodal coordinates [x y z] 

and force density vector q until the rank deficiencies of Eqs. (15) and (18) are satisfied, 

which forces Eqs. (10) and (12) become true. In this context, at least one state of self-stress 

can be created, s≥1. In this study, based on required rank deficiencies from Eqs. (15) and 

(18) the form-finding process is stopped as      

 *nD  = d +1 (20a) 

 *nA  = 1 (20b) 

where *nD  
and *nA  are minimum required rank deficiencies of the force density and 

equilibrium matrices, respectively. 

 

4.1  Eigenvalue decomposition of force density matrix 

The square symmetric force density matrix D can be factorized as follows by using the 

eigenvalue decomposition (Meyer [10]):   

 D = TΦΛΦ  (21) 

where Φ ( )
n n×∈R  is the orthogonal matrix ( =T

nIΦΦ , in which n n

nI
×∈R  is the unit matrix) 

whose thi  column is the eigenvector basis 
iφ ( )

n∈R  of D. Λ  ( )
n n×∈R  is the diagonal matrix 

whose diagonal elements are the corresponding eigenvalues, i.e., =ii iλΛ . The eigenvector 

iφ  of Φ  corresponds to eigenvalue 
iλ  of Λ . The eigenvalues are in increasing order as   

 
1 2 nλ λ λ≤ ≤ ≤L  (22)  
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It is clear that the number of zero eigenvalues of D is equal to the dimension of its null 

space. Let p  be the number of zero and negative eigenvalues of D. There are two cases 

need to be considered. The first one is *p n≤ D  and the other is 
*p n> D
. 

Case 1, the first *nD  orthonormal eigenvectors of Φ  are directly taken as potential nodal 

coordinates 

 [x y z] *1 2
= [ ]

n
φ φ φ∈ Φ

D

L  (23)  

The algorithm then iteratively modifies the force density vector q as small as possible to 

make the first *nD  eigenvalues of D become null as   

 *
= 0, ( = 1, 2, , )i i nλ DL  (24)  

Accordingly, D will finally have the required rank deficiency *nD  
without any negative 

eigenvalue. It implies D is positive semi-definite, and any self-stressed structure falling into 

this case is super-stable regardless of material properties and level of self-stress 

coefficients. 

Case 2, where *>p nD , the rank deficiency may be forced to be larger than requirement or 

enough but D may not be positive semi-definite during iteration. Additionally, the proposed 

form-finding procedure will evaluate the tangent stiffness matrix of the pre-stressed cable 

dome structure which is given in Murakami [12], Guest [7] and Zhang and Ohsaki [23]. If 

the tangent stiffness matrix is positive-definite, then the structure is stable when its rigid-

body motions are constrained. Using this criterion, stability of any pre-stressed or self-

stressed structure can be controlled by checking eigenvalues of tangent stiffness matrix of 

the structure (Murakami [12] and Ohsaki and Zhang [14]). 

In short, the best scenario of configuration in 3-dimensional space is formed by three best 

candidate eigenvectors selected from the first fourth eigenvector bases which corresponding 

to the first fourth smallest eigenvalues, respectively. These eigenvalues will be gradually 

modified to be zero by the proposed iterative form-finding algorithm. In other words, the 

proposed form-finding procedure has repeatedly approximated equilibrium configuration 

such that   

 D[x y z] ≈  [0 0 0] (25)   

 

4.2  Singular value decomposition of the equilibrium matrix 

The equilibrium matrix A is computed by substituting the set of approximated nodal 

coordinates [x y z] from Eq. (25) into Eq. (13). In order to solve linear homogeneous 

system (Eq. (12)) the Singular value decomposition (Meyer [10]) is carried out on the 

equilibrium matrix A:   

 A = UVW
T
 (26)   

where 1 2( ) [ ]dn dn

dn

×∈ =U u u u� L  and 1 2( ) [ ]b b

b

×∈ =W w w w� L  are the orthogonal matrices. 

( )
dn b×∈V �  is a diagonal matrix with non-negative Singular values of A in decreasing order 

as   
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1 2 0bσ σ σ≥ ≥ ≥ ≥L  (27)   

As indicated in Eq. (20b), the iterative form-finding algorithm is successful in case of 
* 1n =A . Accordingly, there are also two cases for s  during the iterative form-finding 

procedure: 

Case 1: s=0, there exists no null space of A. In other words, the right Singular value ( )bσ  

of A in V is not equal to zero. It denotes that Eq. (12) has no non-zero force density vector 

q as a solution. In this case, if the right single vector basis ( )bw  in W corresponding to 

smallest singular value ( )bσ  in V is used as the approximated q, the sign of q may not 

match with that of q
0
. Thus, all columns of W employed to compute a vector q that best 

matches q are scanned by form-finding procedure. The procedure stops sign-finding until 

the sign of all components of ( , 1, ...,1)j j b b= −w
 
is identical to that of q

0
, i.e. 

0( ) ( )jsign sign≡w q . That vector jw  is directly taken as the approximated q. In doing so, the 

form-finding procedure defines the approximated q that matches in signs with q
0
, such that   

   ≈Aq 0  (28)   

Case 2: s=1, it is known (Pellegrino [17]) that the bases of vector spaces of force densities 

and mechanisms of any self-stressed structure are calculated from the null spaces of the 

equilibrium matrix. In this case, the matrices U and W from Eq. (26) can be expressed, 

respectively, as      

 
1 2 1[ | ] r dn r−=

A A
U u u u m mL L  (29a)   

 1 2 1 1[ | ]b−=W w w w qL  (29b)   

where the vectors m ( )
dn∈R  denote the ( )m dn r= − A

 infinitesimal mechanisms; and the 

vector q1 ( )
b∈R  matching in signs with q

0
 is indeed the single state of self-stress which 

satisfies the homogeneous Eq. (12). 

In summary, the eigenvalue decomposition of force density matrix D and the Singular value 

decomposition of the equilibrium matrix A are performed iteratively to find the feasible set 

of nodal coordinates [x y z] and force density vector q which satisfy the minimum required 

rank deficiencies of the force density and equilibrium matrices as presented in Eq. (20), 

respectively. 

Since the self-stressed structure should satisfy the self-equilibrium conditions, the vector of 

unbalanced forces fε  ( )
dn∈R  defined as follows can be used for evaluating the accuracy of 

the results:   

  fε = Aq  (30)   

The Euclidean norm of fε  is used to define the design error ε  as   

 = ( )T
f f

ε ε ε  (31)   
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5. 2umerical Examples 

Numerical examples are presented for two and three-dimensional cable dome structures 

using Matlab Version 7.4(R2007a) (Yang et al. [21]).  

 

5.1. Two-dimensional cable dome structure 

5 6

(6)

(5)

(7)

1 2

4 3

(9)

(b)

(4)

(1) (3)

(2)

(8)

5 6

(6)

(5)

(7)

1 2

4 3

(a)

(4)

(1) (3)

(2)

(8)

⌧

�

 

Figure 1:  (a). A two-dimensional cable dome structure, (b). Its equivalent free-

standing 2-D self-stressed structure with dummy element to remove the supports. 

  

The initial topology of a two-dimensional cable dome structure (Fig. 1a) comprises  two 

struts and six cables. The supports can be converted into free nodes by using the dummy 

element in order to obtain the self-stressed system. After implementation of form-finding 

using the method proposed in Section 4, the dummy element will be removed to transform 

the two nodes back to the supports. By connecting the two supports with dummy element 9, 

the topology of the equivalent free-standing 2-D self-stressed structure is described in 

Fig.1b where thin, thick and dashed lines represent the cables, struts and dummy elements, 

respectively. 

No nodal coordinates as well as symmetry, member lengths and force density coefficients 

are known in advance. The only information is the incidence matrix C and the type of each 

member which is employed to automatically assign the initial force density vector by 

proposed form-finding procedure as   

 0

1 2 3 4 5 6 7 8 9{ , , , , , , , , } {1,1,1,1,1,1, 1, 1, 1}
T T

q q q q q q q q q= = − − −q  (32)   

The obtained force density vector normalized with respect to the force density coefficient of 

the cable 1 is as follows:   

  1 2 3 4 5 6 7 8 9{ , , , , , , , , } {1.0000,1.2808,1.0000,1.0000,1.2808,1.0000, 0.5001, 0.5001, 0.7192}T Tq q q q q q q q q= = − − −q  (33)   

The associated stable configuration of the structure after neglecting the dummy element 9 is 

plotted in Fig. 2.  
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Figure 2:  The obtained geometry of the two-dimensional cable dome structure. 

 

The form-finding procedure for converges in only one iteration with the design error ( )ε  

defined in Eq. (37) less than 1510− . The structure obtained has only one self-stress state 

( = 1)s  and one infinitesimal mechanism ( = 1)m  when their rigid-body motions are 

constrained indicating they are statically indeterminate and kinematically indeterminate 

(Pellegrino and Calladine [15]). The force density matrices D is positive semi-definite, and 

the structure is certainly super stable regardless of materials and prestress levels (Connelly 

[2, 3]). In other words, the introduction of single prestress stiffens the infinitesimal 

mechanism to make the structures stable in all but three directions. Consequently, the 

proposed form-finding procedure with limited information about the incidence matrix and 

element prototype is indeed capable of finding a self-equilibrium stable cable dome 

structure by imposing the two necessary rank deficiency conditions.  

 

5.2  Three-dimensional cable dome structure 
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Figure 3:  (a). A three-dimensional five-strut cable dome structure, (b). Its equivalent  

free-standing 3-D self-stressed structure with dummy elements to remove the supports.  
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Figure 4:  The obtained geometry of the three-dimensional 

five-strut cable dome structure, (a). Top view, (b). Perspective view. 

 

Consider the three-dimensional cable dome with five struts and twenty cables shown in Fig. 

3a. Its equivalent model is depicted in Fig. 3b. Similar to above example, the input 

information is the incidence matrix C and the type of each member which is used to 

automatically assign the initial force density vector by proposed form-finding procedure as   

 
0

1 20 21 30{ ~ 1, ~ 1}
Tq q q q= = = −q  (34)   

The calculated force density vector after normalizing with respect to the force density 

coefficient of the cable 1 is:   

 1 10 11 20 21 25 26 30{ ~ 1.0000, ~ 1.1206, ~ 0.5000, ~ 0.8794}
Tq q q q q q q q= = = = − = −q  (35)   

The associated stable configuration of the structure after neglecting the dummy elements 

(26 30):  is plotted in Fig. 4. The design error ( )ε  is about 1410− . The obtained structure 

possesses one self-stress state ( = 1)s  and ten infinitesimal mechanisms ( = 10)m  excluding 

their six body-rigid motions. In this problem, the force density matrix D is negative semi-

definite indicating the structure is not super stable. Accordingly, tangent stiffness of the 

structures has been investigated and found to be positive. It confirms that the structure is 

mechanically stable (Murakami [12], Ohsaki and Zhang [14]). 

 

6. Concluding Remarks 

The advanced form-finding procedure for cable dome structures has been proposed. The 

force density matrix is derived from the incidence matrix and initial set of force densities 

formed by the vector of type of member forces. The elements of this vector consist of 

unitary entries +1 and -1 for members in tension and compression, respectively. The 

equilibrium matrix is defined by the incidence matrix and nodal coordinates. The 

eigenvalue decomposition of the force density matrix and the Singular value decomposition 

of the equilibrium matrix are performed iteratively to find the range of feasible sets of nodal 

coordinates and force densities. In the numerical examples, a very good convergence of the 

proposed method has been shown for two-dimensional and three-dimensional cable dome 
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structures. The proposed algorithm is strongly capable of searching novel configurations 

with limited information of topology and the member's type. As a natural extension of this 

research, form-finding with more complicated constraints awaits further attention. 

 

Acknowledgement 

This research was supported by a grant (code#06-R&D-B03) from Cutting-edge Urban 

Development Program funded by the Ministry of Land, Transport and Maritime Affairs of 

Korean government.  

 

References 

[1]  Calladine C.R., Buckminster Fuller's "tensegrity" structures and Clerk Maxwell's rules 

for the construction of stiff frames. International Journal of Solids and Structures, 

1978; 14(2), 161-172.  

[2]  Connelly R., Rigidity and energy. Inventiones Mathematicae, 1982; 66(1), 11-33.  

[3]  Connelly, R., Tensegrity structures: why are they stable? In: Thorpe, M.F., Duxbury, 

P.M.(Eds.), Rigidity Theory and Applications. Kluwer Academic Publishers, 

Dordrecht, 1999; pp. 47-54.  

[4]  Deng H., Jiang Q.F., Kwan A.S.K., Shape finding of incomplete cable-strut assemblies 

containing slack and prestressed elements. Computers and Structures, 2005; 83(21-

22), 1767-1779.  

[5]  Estrada G., Bungartz H., Mohrdieck C., Numerical form-finding of tensegrity 

structures. International Journal of Solids and Structures, 2006; 43(22-23), 6855-

6868.  

[6]  Geiger D.H., Stefaniuk. A., Chen D., The design and construction of two cable domes 

for the Korean Olympics. In: Proceedings of the International Symposium on Shell 

and Spatial Structures, 1986; pp. 265-272.  

[7]  Guest S., The stiffness of prestressed frameworks: a unifying approach. International 

Journal of Solids and Structures, 2006; 43(3-4), 842-854.  

[8]  Kawaguchi M., Tatemichi I., Chen P.S., Optimum shapes of a cable dome structure. 

Engineering Structures, 1999; 21(8), 719-725.  

[9]  Masic M., Skelton R., Gill P., Algebraic tensegrity form-finding. International Journal 

of Solids and Structures, 2005; 42(16-17), 4833-4858.  

[10]  Meyer C.D., Matrix Analysis and Applied Linear Algebra. SIAM, 2000.  

[11]  Motro R., Tensegrity: Structural Systems for the Future. Kogan Page Science, 

London, 2003. 

[12]  Murakami H., Static and dynamic analyses of tensegrity structures. Part II. Quasi-

static analysis. International Journal of Solids and Structures, 2001; 38(20), 3615-

3629.  

2126



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia 
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures 

 

 

[13]  Ohsaki M., Kanno Y., Form-finding of cable domes with specified stresses. Technical 

Report, Department of Architecture and Architectural System, Kyoto University, 

2003; Sakyo, Kyoto 606-8501, Japan.  

[14]  Ohsaki M., Zhang J.Y., Stability conditions of prestressed pin-jointed structures. 

International Journal of /on-linear Mechanics, 2006; 41(10), 1109-1117.  

[15]  Pellegrino S., Calladine C.R., Matrix analysis of statically and kinematically 

indeterminate frameworks. International Journal of Solids and Structures, 1986;  

22(4), 409-428.  

[16]  Pellegrino S., A class of tensegrity domes. International Journal of Space Structures, 

1992; 7(2), 127-142.  

[17]  Pellegrino S., Structural computations with the singular value decomposition of the 

equilibrium matrix. International Journal of Solids and Structures, 1993; 30(21), 

3025-3035.  

[18]  Schek H.J., The force density method for form finding and computation of general 

networks. Computer Methods in Applied Mechanics and Engineering, 1974; 3, 115-

134.  

[19]  Tibert G., Pellegrino S., Review of form-finding methods for tensegrity structures. 

International Journal of Space Structures, 2003; 18(4), 209-223.  

[20]  Vassart N., Motro R., Multiparametered formfinding method: application to tensegrity 

systems. International Journal of Space Structures, 1999; 14(2), 147-154.  

[21]  Yang W.Y., Cao W., and Chung T.S., Applied /umerical Methods Using Matlab. 

John Wiley and Sons, New Jersey, 2005.  

[22]  Yuan X.F., Chen L.M., Dong S.L., Prestress design of cable domes with new forms. 

International Journal of Solids and Structures, 2007; 44(9), 2773-2782.  

[23]  Zhang J.Y., Ohsaki M., Adaptive force density method for form-finding problem of 

tensegrity structures. International Journal of Solids and Structures, 2006; 43(18-19), 

5658-5673.  

[24]  Zhang J.Y., Ohsaki M., Kanno Y., A direct approach to design of geometry and forces 

of tensegrity systems. International Journal of Solids and Structures, 2006; 43(7-8), 

2260-2278. 

2127




