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a  b  s  t  r  a  c  t

A  portable  electronic  tongue  has  been  developed  using  an array  of eighteen  thick-film  electrodes  of  dif-
ferent  materials  forming  a multi-electrode  array.  A  microcontroller  is  used  to implement  the  pattern
recognition.  The  classification  of  drinking  waters  is  carried  out  by  a  Microchip  PIC18F4550  micro-
controller  and  is  based  on neural  networks  algorithms.  These  algorithm  are  initially  trained  with  the
multi-electrode  array  on  a  Personal  Computer  (PC)  using  several  samples  of  waters  (still,  sparkling  and
tap)  to obtain  the  optimum  architecture  of the  networks.  Once  it is  trained,  the  computed  data  are  pro-
grammed  into  the microcontroller,  which  then  gives  the  water  classification  directly  for  new  unknown
water  samples.  A comparative  study  between  a Fuzzy  ARTMAP,  a Multi-Layer  Feed-Forward  network
(MLFF)  and  a  Linear  Discriminant  Analysis  (LDA)  has  been  done  in  order  to obtain  the  best  implementation
on  a microcontroller.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Sensors based on electrochemical techniques are used to deter-
mine the concentration of specific chemical compounds, or the
accurate measurement of physiochemical parameters. But gener-
ally they have an important drawback; namely that of susceptibility
to interference from other species that mask the species of interest.
However this drawback can be converted to advantage if, instead of
looking for that type of accurate measurement, another kind 7 mea-
surement of a rather more qualitative nature is employed, such as
the discrimination or classification of samples of complex chemical
nature. Under this concept, electronic tongue systems that employ
different sets of non-specific electrodes were developed some years
ago [1].  Each of the electrodes provides a signal that is proportional
to the set of species in the system under analysis. As electronic
tongue systems tend to produce a qualitative result, multivariate
analysis techniques are generally required in order to process the
data obtained from the measurements.

Various electrochemical techniques have been used in elec-
tronic tongues, such as potentiometry [2],  voltammetry [3] or
impedance spectroscopy [4].  These have been used in several appli-
cations, including waste water control [5] and food analysis [6].

∗ Corresponding author. Tel.: +34 963877608; fax: +34 963877609.
E-mail address: egarciab@eln.upv.es (E. Garcia-Breijo).

Potentiometric techniques have as their main desirable feature
simplicity of measurement method and electronic equipment. Var-
ious different types of electrodes have been used in potentiometry,
such as membranes [7] or metal surfaces [8].  In this latter electrode,
a voltage is obtained that is proportional to the concentrations of all
species present in solution and hence its quantification is difficult
to determine whenever the aqueous medium is complex [9].

A method for obtaining a multi-electrode of easy construction
and simple operation is to employ inks from thick-film hybrid cir-
cuit technology [10] because there are many different types of inks
and each has a key chemical element that can become the active
element of the sensor.

Most systems of electronic tongues remain in the laboratory
version, which requires the presence of a computer and, specially
above all, two  separate processes, one for taking measurements
and another for data processing. If it is desired for these systems to
have industrial application however, it is necessary to unify these
two  phases into a single system. The best method for achieving a
single system is the use of microcontrollers in systems which, in
addition to the measurement of potential, are able to perform the
analysis of relevant data using a software program implemented
in the microcontroller memory. Thus portable electronic tongues
are becoming popular as they offer simplicity, reliability and use
in field [11]. Some systems using microprocessors have been pre-
sented as electronic tongues [12] but the system presented in this
communication has as its main novelty the development and com-
parison of three types of pattern recognition algorithms. Pattern

0924-4247/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
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recognition algorithms have become a critical component in the
implementation of electronic tongues and noses and have been
used successfully in these applications [13]. For implementation in
portable equipment the algorithm must be transferable to a micro-
controller which has a limited amount of memory. Thus the perfect
pattern recognition algorithms will require high accuracy, to work
fast to work in real-time and have low memory requirements in
order to be implemented in a microcontroller. Not all pattern recog-
nition algorithms are able to reach each of these requirements.
In this communication three pattern recognition algorithms have
been used, Fuzzy ARTMAP, Multi-Layer Feed-Forward (MLFF) and
Linear Discriminant Analysis (LDA).

MLFF is the most popular type of artificial neural network (ANN);
basically it is formed basically by three layers of neurons (input, hid-
den and output). They require a training stage, where the weights of
each neuron are set, and another validation stage [14]. The Fuzzy
ARTMAP network uses the so-called adaptive resonance method
and is based on the use of prior actions to predict subsequent steps
[15]. For LDA the method is a probabilistic parametric classifica-
tion technique and maximizes the variance between categories
and minimizes the variance within categories, by means of a data
projection from a high dimensional space to a low dimensional
space. In this way, a number of orthogonal linear discriminant func-
tions equal to the number of categories minus one are obtained
[16,17]. Such algorithms have been used in electronic noses [18]
and electronic tongue systems [19] giving important benefits such
as: simplicity of implementation of computer algorithm, speed of
calculation and the attainment of good and reliable results with a
small number of measures.

The aim of this paper is to present a potentiometric electronic
tongue system that uses an electrode assembly constructed in thick
film technology whose data analysis system consists of a pattern
recognition algorithm implemented on a microprocessor system.
As an example application of this system, an analysis has been
made of various types of drinking water that have different concen-
trations and types of salts. The implemented pattern recognition
algorithm is able to perform a classification of these water samples
using the data obtained from potentiometric measurements. This
example can be extended to other industrial applications such as
quality control of water purification, wastewater discharges, qual-
ity control of drinks and, in general, in cases where it is appropriate
to conduct qualitative measures quickly, easily, economically, and
not necessarily carried out by specialized personnel.

2. System description

2.1. Samples

A total of five Spanish natural mineral waters of different brands
(Bezoya, Bronchales, Cortes, Lanjarón and Solán), one sparkling
water (Primavera) and tap water from Valencia City have been
selected as representative samples and they have been studied by
using the array of electrodes described below. The names and con-
centrations (in mg/L) of the main ions for the used mineral waters
are listed in Table 1.

2.2. Electrodes

A wide range of electrodes with different surfaces were selected
in order to explore their differential response in potentiometric
measurements. Following this approach various electrodes fabri-
cated using thick-film technology were prepared. To this purpose,
several inks with different active element were used; the pastes
were supplied by HERAEUS and they are RuO2 of 10 �/sq (model
R8911) and 1 M�/sq  (model R8961), Cu (model C7257), Ag (model

Fig. 1. Top side of multi-electrode realized in thick-film technology.

C8829), and Pt (model C1076D). The AgCl was manufactured by
mixing Ag and AgCl powder in a ratio of 1:1 and using low tem-
perature EG2020 glass (supplied by Ferro). The protective upper
layer paste was model D2020823D2 supplied by GWENT. The pro-
cess of fabricating these types of electrodes has been explained in
a previous paper [15,20].

The electrodes were supported on an alumina substrate
RUBALIT 708S (supplied by Ceramic Tec) with an area of
50.8 mm × 25.4 mm and thickness of 0.635 mm.  In order to pre-
pare the above mentioned set of electrodes, three thick film printer
screens were made, corresponding to three layers: namely, the con-
ductive layer working as an electronic interconnect for the signal,
the active layer and the upper protection layer. The conductive
paste used was  Ag C8829 (supplied by HERAEUS). The layout of
the tracks was  designed to join the ceramic substrate to a flat cable
connector with a separation of 3 mm between terminals.

Three different electrodes of each type were simultaneously
employed (Cu, RuO2 of 10 �/sq, RuO2 of 1 M�/sq, Ag, Pt and
AgCl). Thus we obtain a set of 18 electrodes, which was used
as an active system for potentiometric measurements forming a
multi-electrode board (Fig. 1 shows the final array of electrodes
implemented in thick-film technology). Using 6 electrodes pre-
pared from the same inks, the quantity of electrodes was enough
to be able to study the respond of each material and moreover to
obtain the respond average.

2.3. Electronic system

Two boards with 18 electrodes on each were used. Therefore
36 channels could be measured simultaneously. The external ref-
erence electrode employed was  an Ag/AgCl device (supplied by
CRISON).

Measurements were carried out using an own design portable
data logger. The output signals of the multi-electrode were acquired
using a 36:1 multiplexer architecture, which was  formed by two
18:1 channel MOS  analog multiplexers (MAX306, MAXIM) and one
8:1 channel analog multiplexer (MAX308, MAXIM). The selection of
each channel in the multiplexer was controlled by the microcon-
troller. The sampling rate for the 36 channels was one electrode
every 100 ms  in periods of 10 s.

A precision CMOS quad micro power Operational Amplifier
(LMC646, NATIONAL SMC), was  connected to the output mul-
tiplexer. This operational amplifier (AO) has very high input
impedance (ultra low input bias current of less than 16 fA) and
hence is suited to the signal impedance generated by the poten-
tiometric multi-electrode.

An analog to digital converter (A/D) (MAX128, MAXIM) has been
used because the AD of the microcontroller is merely of 10 bits reso-
lution and it only accepts positive voltage. This A/D has a resolution
of 12-bits and can work with unipolar or bipolar input signals. It
uses an external or internal reference voltage in order to obtain
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Table  1
Concentration (in mg/L) of certain anions and cations in mineral waters according to information provided by manufactures.

Water type CO3H− SO4
− Cl− Ca2+ SiO2 Mg2+ Na+ F− K+

Bezoya 18 15 0.67 4 8.9 1.8 1 – –
Bronchales 19 6 2 3 9 3 1.35 0.1 1.36
Cortes 268.4 17.6 8.7 81.9 9.2 37 6.4 1 0.7
Tap  water 154 258 84 117 3.3 37 49 – 2.5
Lanjarón 105 17.3 2.8 27.2 4.8 8.8 4.8 0.2 1.1
Sparkly water 297.2 43.9 35.8 88.7 7.1 23.4 20.7 0.1 1.3
Solan  279.4 18 8.1 59.3 7.1 25.8 5.2 0.2 1.1

different full scale ranges. In this case a 2.5 V external reference
and a bipolar input signal were used. With this configuration the
resolution (equivalent to 1 Least Significant Bit) is 1.22 mV.  The
PIC18F4550 microcontroller gathered the data from the A/D con-
verter using an I2C bus. PIC18F4550 was selected [21] for its low
power consumption (sleep mode currents down to 0.1 �A typical),
32K of memory program and 2K of RAM and USB port.

The software for the PIC18F4550 microcontroller has been
designed to obtain the average value for each channel. Six input
vectors are calculated using the 36 channels of data. These six input
vectors correspond to the six types of electrodes.

The process of measurement has been divided in two  stages:
the training period and the test period. In the training period, the
data were sent to the PC via an RS232 serial communications link in
order to use them in the training algorithm with MATLAB® R2010b.
The acquisition software was developed using Visual Basic® 6.0 and
Microsoft Excel® 2003 software. In the test period, the data were
measured and they were stored directly into the microcontroller in
order to be used in the embedded neural network. A block diagram
of the measurement system is shown in Fig. 2.

2.4. Measurement process

Initially the set of 36 electrodes were dipped at 25 ◦C in 300 mL
of 0.01 M KNO3 reference solution. The responses of the electrodes
were studied every other day until they reached a stable poten-
tial, which happened after fifteen days. This stage was called the
conditioning period (Fig. 3). Artificial neural networks training was
carried out with the first samples until obtaining an acceptable
recognition percentage (more than 80%) as we can see in Section 3.
That happened with the 8th sample (around 15 days).

After this initial period, measures were acquired every other day
for the duration of a further forty days, using four bottles of each
type of water. This stage was called the training and test period
(Fig. 3). The groups of electrodes were immersed in the correspond-
ing aqueous sample over a period of 10 min  during the last 5 min  of
which their potentials were recorded. Typical time to steady state
was always less than 5 min. The measurements were performed at

25 ◦C. After each measurement, the electrodes were cleaned with
distilled water. The samples were measured in a random order.
After each measurement, the set of electrodes was again dipped in
the reference solution. The response of the multi-electrode array
was  considered stable over the first 8 samples (see response to tap
water sample in Fig. 4). Considering that the results obtained using
the potentiometric measurement do not contribute to a clear dis-
crimination between the samples, it is necessary to study them
further using artificial neural networks.

3. Data analysis

The procedure for working with artificial neural networks con-
sists of two  stages, a first stage of training of the network and a
second stage for its verification. The training stage is performed
with some of the available measures. At this stage the network cat-
egories are set out (in our case the seven different types of water).
The data form six electrodes for each measurement are applied as
an input vector. With these data the coefficients of the algorithm
that configures the network are calculated. In the verification stage,
the data from new measures are applied to the inputs, checking
whether the output of the active network is correct or not.

The program Matlab 2010b® running on a PC computer has been
used to train the networks. The computer to be used is determined
by its computing power and ease of implementing the algorithms of
the neural networks. By contrast, the verification stage is performed
entirely in a microcontroller. To this end, the results obtained in
the training stage are used as the coefficients of the algorithms that
are incorporated into the microcontroller program. Through this
way  of working, once the training stage has been accomplished,
the developed system can work independently of a PC. This is one
of the key features of the equipment presented in this paper.

3.1. Training the Fuzzy ARTMAP

Fuzzy ARTMAP neural networks are based on the so-called adap-
tive resonance theory (ART) which aims to create algorithms that
are adaptable to a significant response and remain stable in the
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Fig. 2. Block diagram of the measurement system.
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Fig. 3. Electrode responses in reference solution.
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Fig. 4. Response to tap water samples.

response of irrelevant entries [22]. This theory has evolved into a
series of neural algorithms for unsupervised learning that are capa-
ble of creating stable classes by the presentation of arbitrary input
sequences with a fast learning rate [23].

ART network consists of two subsystems (Fig. 5a): A first sub-
system to complement the entry code where each input value is
doubled by including the value ac = 1 − a; and in this way  it avoids
the proliferation of categories. The second subsystem is similar-
ity and resonance (Fig. 5b). Whenever the network receives a new
input vector (V) the system reacts by activating one of the out-
put nodes (Cj). If the measure does not seem to be already closely
assigned to any node, the network creates a new node. The network
performance is mainly determined by three parameters (�,  ̌ and
˛).

M
apF
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Art BArt A

CV

M
apF
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Complemen tary Cod e
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Fig. 5. The fuzzy ARTMAP architecture.

Monitoring parameter (�) determines whether a new measure
is part of an existing class or whether another class must be created.
The value of this parameter (between 0 and 1) determines the level
of rigor the algorithm should use when grouping the measures.

The parameter  ̌ (between 0 and 1) determines the speed of
network learning, high values of  ̌ result in high learning speed
while low values causes low learning speed. Additionally it con-
tributes robustness to the classification algorithm, especially when
it comes to categorizing data that may  have some noise in their
values.

The parameter  ̨ is called the factor of choice and it enables the
system to make the decision in the case that, for a given input, there
are two  or more categories that can be activated. With a value of ˛
(>0) the output is elected whose weights are modified to the lesser
extent.

Fuzzy ARTMAP [24] network consists of two ART-type networks,
one that made the training (ART A) and the other the verification
(ART B). The connection between the two  networks is performed
by means of a memory map  called the mapfield. A supervised clas-
sification is performed through this network. The input data can be
either digital or analog in the range between 0 and 1. In the case of
analog values the network is called the Fuzzy ARTMAP.

The Fuzzy ARTMAP networks toolbox, designed by Aaron Gar-
rett, Jacksonville State University, was used on MATLAB® 2010b.
The Fuzzy ARTMAP was  trained in order to obtain the weights, map
field and max–min of each input.

The networks were trained with the first eight samples of drink-
ing waters, to give altogether 56 data results of 8 samples by 7 types
of water. The selected parameters to train the network were: the
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Fig. 6. Multi-layer feed-forward artificial neural network architecture.

vigilance parameter [�] was 0.75, the learning rate [ˇ] was 1 and
the biasing  ̨ was  0.001.

As a result of the training a 12 × 16 weight matrix and a 1 × 16
map field were obtained. A maximum and minimum of the input
data are also obtained. All these data were used in the firmware of
the microcontroller [37].

3.2. Training the multi-layer feed-forward neural network

In order to training a multi-layer feed-forward neural network
[25], the nprtool GUI (Neural Network Pattern Recognition tool
Graphical User Interface) of Matlab® 2010b has been used. The net-
work is a two layer feed-forward type with the default tan-sigmoid
transfer functions in both the hidden and output layers. It is called
patternnet (Pattern recognition network) in Matlab® (Fig. 6).

Pattern recognition networks are feed-forward networks that
can be trained to classify inputs according to target classes. The
target data for pattern recognition networks should consist of vec-
tors of all zero values except for a 1 in element i, where i is the class
they are to represent. Input data are normalized between [−1,1]
in order to enhance the neural network algorithm. When an input

Table 2
MSE  and Percent Error for training, validation and test of the MLFF network.

Samples MSE  Error [%]

Training 40 0.0237 0
Validation 8 0.0557 35.7
Test 8 0.0532 12.5

vector of the appropriate category is applied to the network, the
corresponding neuron should produce a 1, and the other neurons
should output a 0.

Tansig (Hyperbolic tangent sigmoid transfer function) activa-
tion functions are used for neurons in the hidden nodes and the
output nodes, this function is shown in Eq. (1).

Tansig(n) = en − e−n

en + e−n
= 2

1 + e−2n
− 1 (1)

56 samples have been used, 40 of them (70%) have been used to
train, 8 (15%) to valid and 8 (15%) to test. The selection of the
samples has been at random using random data division function.
The scaled conjugate gradient back-propagation algorithm imple-
mented in MATLAB® is used to train this network. The number of
the hidden nodes used was  20.

The values of MSE  (Mean Squared Error) and Percent Error for
training, validation and test of the MLFF network are shown in
Table 2. Fig. 7a shows the confusion matrix. In the confusion matrix
the diagonal cells show the number of residue positions that were
correctly classified for each structural class. The off-diagonal cells
show the number of residue positions that were misclassified. The
blue cell shows the total percentage of correctly predicted residues
(top number) and the total percentage of incorrectly predicted
residues (bottom number). Fig. 7b shows the Receiver Operating
Characteristic (ROC) curve, a plot of the true positive rate (sensitiv-
ity) versus the false positive rate (1 − specificity) as the threshold is
varied. Fig. 8 shows the histogram error (this shows how the error
sizes are distributed, typically most errors are near zero, with very
few errors far from that).
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Fig. 7. Confusion matrix and ROC curve. (a) Confusion matrix and (b) receiver operating characteristic (ROC) curve.

After training two weight matrices were obtained, one of them
(from input layer to hidden layer) of 6 × 2, the other (from hidden
layer to output layer) of 20 × 7 as well as a 1 × 20 bias matrix (hid-
den layer) and 1 × 7 bias matrix (output layer). A maximum and
minimum of input data are also obtained. All these data were used
in the firmware of the microcontroller.

3.3. Training the linear discrimination analysis

Discriminant analysis (LDA) is a multivariante statistical tech-
nique for classifying a set of observations into predefined classes
of groups [26]. The objective is to predict group membership of an
observation based on a set of input variables known as predictors
or training set. The model is built based on a training set for which
the classes are known. The technique constructs a set (as many as
the number of input variables) of linear functions of the predictors,
known as discriminant functions Eq. (2).

Di =
p∑

k=1

dikZk (2)

Fig. 8. Error histogram.

where the dik are discriminant coefficients and the Zk are the stan-
dardized input variables I created by subtracting the sample means
and dividing by the sample standard deviations.

This method maximizes the ratio of between-class variance to
the within-class variance (Eq. (3)).

maximize
�2

between

�2
within

(3)

To classify new cases into groups, classification functions are
derived. To classify an observation, a score is derived for each group.
The score for each group is calculated from Eq. (4).

Ci = ci0 +
p∑

k=1

cikIk (4)

where the cik are classification function coefficients and the Ik
are the input variables of new observation. These classification
functions are used to predict the class of a new observation with
unknown class. With a new observation, all the classification func-
tions are evaluated and the observation is assigned to the class
which has the highest value of Ci.

To determine the discriminant functions, 8 samples by class
were used. Among the 56 observations used to fit the model, 54
of them have been classified correctly (96.4286%). The LDA analy-
sis allowed the selection of a classification model that was based
on the 6 predictors. The final model used two discriminant func-
tions with p-values less than 0.05 and are statistically significant
at a confidence level of 95.0%. In Fig. 9 the scores for the two func-
tions are plotted (explaining 91.53% and 7.65% of the total variance,
respectively).

The classification function coefficients for classes are used to
determine which of the 7 classes any individual sample is most
likely to belong to. A 7 × 7 matrix classification function coefficients
(cik) for class have been obtained with the software Statgraphics
Centurion XVI.

4. Implementation of networks in the microcontroller

4.1. Introduction

The embedded system is built around a Microchip PIC18F4550
microcontroller. The PIC18F4550 is a PIC18/8-bit family
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Fig. 9. Plot of discriminant functions.

microcontroller and has 2 KB of RAM and 32 KB of reprogrammable
flash memory.

The software was coded in C language for the microcontroller
and consists of two main routines:

(a) Data acquisition system where the microcontroller reads the
data from the A/D converter and processes them in order to
obtain the average of each channel.

(b) Implementation of the pattern recognition algorithm [27–35].

4.2. Implementation of the fuzzy ARTMAP

In this routine the six input vectors, I, are calculated using the
36 channels. The data from 36 channels are acquired and they are
also normalized to set their range to [0,1] using the same function
of MATLAB®, Eq. (5).

IN = (Ymax − Ymin)(I − Imin)
(Imax − Imin)

+ Ymin (5)

where I is the input value, IN is the normalized input value, Ymax and
Ymin are maximum and minimum values respectively of interval
[0,1] and finally Imax and Imin are the maximum and minimum val-
ues of inputs obtained during the training period. The Imax and Imin
values can be change by the microcontroller algorithm depending
on the new inputs.

In order to preserve the amplitude information the data is com-
plemented, Eq. (6).

IN = (a, ac) = (a1, . . . , aM, ac
1, . . . , ac

M) (6)

where ac
i

= (1 − ai).
For each input I, the choice function is defined by Eq. (7).

TJ = |IN�WJ |
˛ + |WJ |

(7)

where Wj are the weights obtained during the training period, oper-
ator � is defined by Eq. (8) and  ̨ is called the biasing parameter

(p�q)i ≡ min(pi, qi) (8)

And where the norm |·| is defined by Eq. (9).

|p| ≡
M∑

i=1

|pi| (9)

The category choice is indexed by J, Eq. (10).

TJ = max{Tj : j = 1 . . . N} (10)

Resonance occurs if the match function of the chosen category
meets the vigilance criterion, Eq. (11).

|IN�Wj|
|IN | ≥ � (11)

If the match function is less than the vigilance criterion a lesser
choice function is selected and the resonance is checked again.
Finally if there is no choice function whose match function is
greater than the vigilance criterion, the input vector is classified
as out of range. If there is resonance then the input vector is clas-
sified. The category choice is indexed by J. This index J points
to the class in the map  field. The class is displayed on the LCD
panel.

The classification function was implemented onto the micro-
controller as shown in Fig. 10.

This routine is coded in the C language and is converted to HEX
code using a cross compiler. The HEX file is downloaded into the
flash memory of the microcontroller. The fuzzy ARTMAP neural net-
work has been programmed in 12.662 bytes of program memory
(39% ROM) and 1.632 bytes of data memory (79% RAM).

4.3. Implementation of the multi-layer feed-forward neural
network

In this routine the six input vectors, I, are calculated using the
36 channels. The data from 36 channels are acquired and they are
also normalized to set their range to [−1,1] using the same function
of MATLAB®, Eq. (5).

Weights (Wji) and biases (Bj) of the trained neural network are
obtained from the PC during the training period. Using the input
vectors (IiN), the weights and the biases, the microcontroller calcu-
lates the output for each of the twenty hidden nodes by using the
following expression Eq. (12).

yj = ˚

(
N∑

i=1

IiN · Wji + Bj

)
(12)

where:  ̊ is the Tansig activation function. The Tansig function can
be defined using Eq. (1).  i is the input nodes (i: 1–6). j is the hidden
nodes (j: 1–20).

By using this yj data and the weight (Vkj) and biases (Bk) val-
ues, the values of output nodes are obtained using the following
expression Eq. (13).

yk = �

⎛⎝ N∑
j=1

yj · Vkj + Bk

⎞⎠ (13)
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Fig. 10. Fuzzy ARTMAP implementation flowchart in C for microcontroller.

where: � is the Tansig function. k is the output nodes (k: 1–7). j is
the hidden nodes (j: 1–20):

Because the output function is a Tansig, the output has a value
in the range [–1,1] so they must be made to fit among [0,1] using
Eq. (2).  Outputs with a value of 1 (or close to it) point to the class
of the input vector. The class is displayed on the LCD panel.

This routine is coded in C language and is converted to HEX
code using the cross compiler. The HEX file is downloaded into the
flash memory of microcontroller. The ANN has been programmed
in 12,160 bytes of program memory (37% ROM) and 624 bytes of
program memory (30% RAM).

The whole process can be shown in a flowchart as shown in
Fig. 11.

4.4. Implementation of the discriminant function

In this routine the six input vectors (Ik) are calculated using the
36 channels. Classification function coefficients (cik) of the trained
network are obtained from the PC during the training period. Using
the input vectors and the classification function coefficients, the
microcontroller calculates the class score by using the following
expression Eq. (14).

Ci = ci0 +
p∑

k=1

cikIk (14)

where: cik are the classification function coefficients. i: 1–7. k: 1–6.
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Fig. 11. Multi-layer feed-forward neural network implementation flowchart in C
for  microcontroller.

The highest value of Ci shows the input class. The class is dis-
played on the LCD panel.

A score is calculated for each observation and each class accord-
ing to Eq. (14). Each new observation is assigned to whichever class
gives the largest value of Ci. Among the 81 new observations used
to validate the model, 67 of them have been classified correctly
(82.85%).

This routine is code in C language and is converted to HEX
code using the cross compiler. The HEX file is downloaded into the
flash memory of microcontroller. The ANN has been programmed
in 9800 bytes of program memory (30% ROM) and 620 bytes of
program memory (30% RAM).

The whole process can be shown in a flowchart as shown in
Fig. 12.

5. Results and discussion

The artificial neural networks were firstly trained with the array
data obtained from several samples of still, sparkling and tap water.
Training was done in a PC to obtain the optimum architecture of the

MICROCONTROLLER
INIZIALIZATION

36 CHANNELS
DATA ACQUISITION

CALCULATION 
6 INPUT VECTORS

Tap Water

WA

Bezoya Bronchales Cortes Lanjaron Primavera Sola n

READ ROM
Cik

C

CLASS CHOICE

Fig. 12. LDA implementation flowchart in C for microcontroller.

network. Nine samples more were acquired after training and all of
them were classified by the microcontroller system. The results are
presented in Table 3 where Bezoya is called number 1, Bronchales
number 2, Cortes number 3, tap water number 4, Lanjaron number
5, Primavera number 6 and Solan number 7. The classification of all
the samples was  the same by the microcontroller and the PC.

Figs. 3 and 4 show the electrodes respond. That signal suffer sig-
nificant variations, we believe that those variations can be due to
two  factors; on one hand to the process of ageing of the electrodes
and on the other hand to the possible differences of composition
of the bottles. These variations were compensated with the refer-
ence solution respond and the ability to learn of artificial neural
networks [36].

Fig. 13 shows the confusion matrix and the Receiver Operating
Characteristic (ROC) for fuzzy ARTMAP, it is observed a recognition
rate of 76.2% is observed in this case. Fig. 14 shows the confusion
matrix and the ROC curve for MLFF, it is observed a recognition
rate of 76.2% is observed. Fig. 15 shows the confusion matrix and
the ROC curve for LDA, it is observed a recognition rate of 82.5% is
observed in this case.

The most difficult classification is between Bronchales (number
2) and Bezoya (number 1) because they have very similar con-
centrations of anions and cations (Table 1). Solan (number 7) and
Lanjaron (number 5) are also difficult to classify. The main conclu-
sion from the results of the multi-electrode is that the ions that
most affect the results are sulphates, carbonates, chlorides and
sodium. The other ions do not significantly affect the response of the

Table 3
Comparison results.

Sample number Bottle number Fuzzy ARTMAP (Classes) MLFF (Classes) LDA (Classes)

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

9th 2nd 2 5 3 4 5 6 7 1 2 6 4 5 6 7 1 2 7 4 5 6 7
10th  2nd 1 2 3 4 5 6 5 1 2 6 4 5 6 5 1 2 6 4 5 6 7
11th  3rd 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 5
12th  3rd 2 2 3 4 5 6 7 1 1 3 4 5 6 5 1 2 3 4 5 6 5
13th  3rd 2 2 3 4 5 6 5 1 2 3 4 3 6 3 1 2 3 4 3 6 3
14th 3rd 2 2 3 4 5 3 5 1 1 3 4 5 6 5 1 2 3 4 5 6 5
15th 4th 2 2 3 4 7 6 3 1 2 3 4 5 6 3 1 2 3 4 5 6 3
16th  4th 1 2 7 4 5 6 5 1 1 5 4 5 6 5 1 2 3 4 5 6 5
17th 4th 2 2 3 4 5 6 7 1 1 7 4 5 6 7 1 2 3 6 7 6 7
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Fig. 13. Confusion matrix and ROC curve for fuzzy ARTMAP. (a) Confusion matrix and (b) receiver operating characteristic (ROC) curve.

multi-electrode. It is observed that Bezoya and Bronchales are very
similar when a PCA analysis of the water (Fig. 16)  is made but only
taking into account these more significant ions, the same result is
achieved as for Solan and Lanjarón. Bearing in mind that the value
of PC1 (X axis) is much higher than PC2 (Y axis), Lanjarón and Solan
are closer than they may  appear. The Ion that most significantly
determines the outcome of the analysis is SO4

− because there is
much more difference between tap water and the other waters on
this basis.

Recognition rates can be increased when the number of samples
is increased. In pattern recognition systems which work on the PC
platform it is easy to increase the number of samples for training

but when the system works in the microcontroller problems arise
with the amount of memory that is used. RAM and ROM size cannot
exceed the maximun microcontoller memory in both networks. The
amount of program memory used is very similar in both networks
but very different amounts of RAM memory are used, with a greater
amount in fuzzy ARTMAP than in MLFF or LDA (Table 4).

In the case of increasing the number of samples used for train-
ing, the behavior of the networks is different with reference to
the amount of used memory. In the MLFF network the memory
size only depends on the number of neurons of input, hidden and
output layers. This size does not change even though the num-
bers of samples are increased and Fig. 17 shows how the 20 nodes

Fig. 14. Confusion matrix and ROC curve for MLFF. (a) Confusion matrix and (b) receiver operating characteristic (ROC) curve.
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Fig. 15. Confusion matrix and ROC curve for LDA. (a) Confusion matrix and (b) receiver operating characteristic (ROC) curve.
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Table  4
Percentages of RAM and ROM used in the microcontroller for each ANN.

Network Memory used (PIC18F4550)

ROM RAM

Fuzzy ARTMAP 39% 80%
MLFF 37% 30%
LDA 30%  30%

Table 5
Weight matrix size depending on number of training samples.

Number of training samples Weight matrix size

8 12 × 16
10 12 × 17
12 12 × 20
14 12 × 22
16 12 × 23
18 12 × 26

feed-forward memory size is constant. Similarly with LDA, the
memory size only depends on the number of constants and Fig. 17
shows how the LDA memory size is also constant. However, in the
fuzzy ARTMAP it does not happen this way, the more samples used
in training the bigger will be the size of the weight matrix and map
field. Table 5 shows this increase. If the matrix size increases, the
size of the used memory increases too. Fig. 17 shows this varia-
tion for several matrices with different sizes, it is observed that for
a 12 × 22 weight matrix the used memory exceed 2K bytes so, in
this case, it will necessary to change the microcontroller. In con-
clusion, from the point of view of the microcontroller, the use of
Feed-Forward network is more efficient than the fuzzy ARTMAP.

6. Conclusion

A microcontroller-based electronic tongue system, capable of
discriminating between drinking water samples has been success-
fully developed. An 82.5% recognition rate has been achieved for
the samples tested. This intelligent system may  find application in
the area of water quality monitoring.

Pattern recognition algorithms have been applied to the clas-
sification. The main memory requirement for the algorithms can
be minimized sufficiently to fit in the limited memory space of a
microcontroller. MLFF networks need many more training cycles
[17,20] than fuzzy ARTMAP and LDA. The algorithm which used
the most memory of the microcontroller was the Fuzzy ARTMAP.
MLFF and LDA used similar amounts of RAM memory but MLFF
needs more program memory. Thus, the best pattern recognition
algorithm to be implemented on a microcontroller is LDA.

At present we are working with three research lines based on
this work; honey classification, meal classification and chemical
classification in a waste water depuration plant. Moreover, we are
developing new electrodes as well as improvements in electrode
stability as major topics for future work.
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