

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

http://dx.doi.org/10.1109/ICPP.2013.70

http://hdl.handle.net/10251/72769

IEEE

Ros Bardisa, A.; Cuesta Sáez, BA.; Gómez Requena, ME.; Robles Martínez, A.; Duato
Marín, JF. (2013). Temporal-Aware Mechanism to Detect Private Data in Chip
Multiprocessors. IEEE. 562-571. doi:10.1109/ICPP.2013.70.

Temporal-Aware Mechanism to Detect Private Data
in Chip Multiprocessors

Alberto Ros∗, Blas Cuesta†, Marı́a E. Gómez‡, Antonio Robles‡, José Duato‡

∗Departamento de Ingenierı́a y Tecnologı́a de Computadores, Universidad de Murcia
aros@ditec.um.es

†Intel Labs Barcelona
blasx.cuesta@intel.com

‡Department of Computer Engineering, Universitat Politècnica de València
{megomez,arobles,jduato}@disca.upv.es

Abstract—Most of the data referenced by sequential and
parallel applications running in current chip multiprocessors
are referenced by only one thread and can be considered as
private data. A lot of recent proposals leverage this observation to
improve many aspects of chip multiprocessors, such as reducing
coherence overhead or the access latency to distributed caches.
The effectiveness of those proposals depend to a large extent on
the amount of detected private data. However, the mechanisms
proposed so far do not consider thread migration and the private
use of data within different application phases. As a result, a
considerable amount of data is not detected as private. In order to
make this detection more accurate and reaching more significant
improvements, we propose a mechanism that is able to account
for both thread migration and private data within application
phases. Simulation results for 16-core systems show that, thanks
to our mechanism, the average number of pages detected as
private significantly increases from 43% in previous proposals
up to 74% in ours. Finally, when our detection mechanism is
used to deactivate the coherence for private data in a directory
protocol, our proposal improves execution time by 13% with
respect to previous proposals.

I. INTRODUCTION

Chip-multiprocessors (CMPs) usually implement the
shared-memory programming model which requires coherence
maintenance among data in private caches. In these systems
coherence is ensured by means of cache coherence protocols.
These protocols are one of the most important design
aspects of CMPs because the have a huge impact on system
performance and scalability. Thus, since the core count is
continuously increasing, coherence protocols must scale to
provide increasing performance.

The two typical approaches for maintaining coherence are
snooping and directory. Snooping protocols are based on
broadcasting messages and consequently the bandwidth re-
quirements of the network grow dramatically with the core
count. A lot of efforts have been made to reduce them [1],
[2], [3]. An alternative solution to reach this goal is the use
of directory protocols, which keep track of cached memory
blocks and do not require the use of broadcast messages.
Nevertheless, they require a directory structure whose size
grows exponentially with the system size. Again, some works
have addressed this problem [4], [5], [6].

Another important design aspect of CMPs is the organiza-
tion of the last-level cache (LLC). Usually, it is organized as
a NUCA cache (Non-Uniform Cache Architecture) to reduce
the number of off-chip accesses [7]. Since the average access
latency to NUCA caches increases with the number of cores
some works have also addressed this inefficiency [8], [9], [10].

A common technique used to improve coherence protocols
and the organization of the LLC is classifying data accessed by
applications into private (i.e., accessed by only one thread) and
shared (i.e., accessed by two or more threads) [3], [5], [10],
[11], [12], [13], [14], [15], [16]. The key observation behind
these works is that a significant fraction of the memory blocks
referenced during the execution of sequential and parallel
applications is private. Hence, they implement mechanisms
to detect such private blocks in order to handle them in a
more efficient and fast way. For instance, Cuesta et al. [5]
propose to prevent directory information of private blocks from
being included in the directory, which leads to more effective,
smaller, and faster directories; Hardavellas et al. [10] and Li
et al. [11], [14] keep private blocks in the NUCA bank of the
requesting processor to reduce the access latency to NUCA
caches; and Kim et al. [3] avoid issuing broadcast messages
when accessing private blocks, thus leading to network traffic
reductions.

The effectiveness and benefits of all these proposals depend
to a large extent on the amount of private data detected.
However, the mechanisms that they use to detect private data
have some limitations drawbacks: (i) they have high storage
requirements; (ii) they are unable to exploit core proximity of
CMPs, which makes them slow; and (iii) they do not account
for temporality in memory references, which significantly
reduces the amount of detected private data, and consequently,
the final impact on performance.

In this paper we propose a different mechanism to detect
private blocks that deals with these three problems. First,
unlike previous proposals, our mechanism only keeps the
information about private data in the TLB, which reduces
the storage requirements. Hence, it does not require extra
information in a directory-like structure [12], [13], [16] or in
the page table [3], [5], [10], [17].

Second, it exploits the proximity of cores in a CMP. Upon
a TLB miss, our mechanism collects information about the
use of pages from the TLB of other cores. This also allows
us to get the missing address translation, which accelerates
the TLB miss resolution. Differently, in the related proposals
it is mandatory to retrieve the information about private
pages from the page table, which prevents them from being
employed along with an efficient TLB-to-TLB miss resolution
mechanism [18], [19].

Third, our mechanism accounts for temporarily private
pages (e.g., as a consequence of thread migration or temporar-
ily private data within application phases) by predicting for
each core whether it will use the page in a near future or not.
Since data access patterns change throughout different phases
of the application lifetime [20], [21], we claim in this work
that a temporal-aware detection mechanism is fundamental to
achieve a good accuracy when detecting private pages.

Cycle-accurate simulations of a 16-core CMP running a
large variety of scientific and commercial workloads show that
our proposal is able to increase the number of pages classified
as private from 43% (with previous OS-based mechanisms)
up to 74%, on average. Additionally, our results show that
the TLB-to-TLB miss resolution mechanism solves 60% (on
average) of TLB misses without requiring access to the page
table, which results in execution time improvements of 11.9%
(on average). When applying our mechanism to the previously
described coherence optimizations, it can achieve much more
significant improvements. For example, when it is applied
to improve the efficiency of directory caches, the average
execution time is reduced by 17% over the baseline and by
13% over previous proposals.

The rest of the paper is organized as follows. In Sec-
tion II we review the private-shared classification mecha-
nisms and its applications. Section III describes the TLB-
to-TLB transfer technique used in this paper to accelerate
TLB misses. The proposed temporal-aware mechanism is
presented in Section IV, and details of its application for
different optimizations are given in Section V. Section VI
introduces our simulation methodology and Section VII shows
the performance results. Section VIII discusses other system
configurations. Finally, Section IX reviews the related work,
and Section X draws some conclusions.

II. BACKGROUND

Among the different mechanisms used to detect private
accesses or blocks, we compare ours against those aided
by the OS [5], [10], [3]. Unlike hardware-based approaches
[13], [12], OS-based mechanisms do not require additional
hardware support because they take advantage of existing OS
structures (i.e., page table and TLBs). On the other hand,
compiler-assisted approaches [11], [14] face the difficulty of
knowing at compile time (1) whether a variable is going to be
shared or not and (2) in which core the processes and threads
will be scheduled and rescheduled. The OS-based detection
avoids these difficulties and provides a more accurate run-time
mechanism.

An OS-based classification considers pages as private the
first time they are accessed, annotating the requesting core in
the page table. If another core different to the first requestor
accesses a private page, then it is re-classified as shared. To
this end, each page table entry adds a PS bit that indicates
the page state (private or shared) and a field that stores the
id of the first core that accessed the page. The PS bit is also
included in the TLB entries to allow a fast access to the page
state for those cores that have the page entry in the TLB.

When a page changes from private to shared, the core having
the page as private must be notified in order to update its TLB
accordingly. As we explain in the following sections, depend-
ing on the target application of the classification technique it
may be necessary to perform other actions such as invalidating
every block belonging to the page cached at the core accessing
the page privately. Otherwise, coherence problems might arise.

A. Improving directory cache effectiveness

Recent directory-based protocols only keep directory infor-
mation for a small fraction of the memory pages, those that
have at least a block cached, in small directory caches with
the aim of reducing the memory overhead [22]. But, due to the
lack of a backup directory, the eviction of an entry from the
directory cache entails the invalidation of every cached copy
of the blocks tracked by the entry. Since the size of directory
caches is quite limited, they can suffer frequent evictions
and, consequently, data caches may exhibit high miss rates
due to these evictions, which results in serious performance
degradation.

A private-shared classification mechanism can improve the
effectiveness of directory caches by not tracking private blocks
since they do not require coherence maintenance, as proposed
in the Coherence Deactivation approach [5]. The proposal
improves the availability of directory entries for the blocks
that really need coherence (i.e., shared blocks) and exploits
more efficiently the limited directory capacity.

This mechanism requires restoring the coherence state when
a page transitions from private to shared since blocks in that
page, that are cached by a single core, have not been tracked
by the directory. In particular, the OS triggers a recovery
mechanism that just evicts the corresponding blocks from the
cache of that core that holds the blocks of the recovered page.

B. Reducing NUCA access latency

The organization of the LLC in a many-core CMP can be
either private or shared. A private organization achieves low
access-latency while a shared organization offers large storage
capacity. Although a shared LLC organization (or NUCA
cache) is more common, its average access latency increases
with the number of cores in the system.

Again, a private-shared classification can reduce the NUCA
access latency, as described in the Reactive NUCA proposal
[10]. Private blocks are placed into the local NUCA bank of
the requesting core, enabling low-latency accesses for such
blocks, while shared blocks are placed across all tiles at the
corresponding address-interleaved locations.

When a page changes from private to shared, every block
belonging to that page that is cached in the core accessing
the page, either in the L1 cache or in the local LLC bank, is
evicted to avoid duplicated and incoherent data in the CMP.

C. Reducing traffic in broadcast-based protocols

Broadcast-based protocols offer low-cost and simple coher-
ence for small-scale systems. However, the required broadcast
traffic not only consumes an important amount of power but
also prevents such protocols from being used in large-scale
systems.

The scalability of snooping protocols can also be improved
with a private-shared classification, as proposed by the Sub-
space Snooping approach for token-based protocols [3]. Since
there are not copies of blocks belonging to private pages,
cache-misses due to accesses to blocks within private pages
can be resolved without broadcasting requests to all the nodes
in the system, thus reducing unnecessary snoops.

In this case, when a page changes from private to shared, a
recovery mechanism is not required. Just updating the page as
shared in the page table and in the TLB makes that successive
cache-misses will be broadcast, discovering in a natural way
the existence of other cached copies.

III. TLB MISS RESOLUTION THROUGH TLB-TO-TLB
TRANSFERS

CMPs have different characteristics than traditional multi-
processors. One key aspect is that core-to-core communication
is much faster in CMPs. While in traditional multiprocessors
this latency is about hundreds of cycles, in CMPs it is just
a few cycles. This means that TLBs in a nearby core can
be accessed with low latency. Due to this, in this paper
we propose, on a TLB miss, to obtain the page sharing
information in a fast way from the TLBs of other cores, and as
a consequence also the page address translation. Some recent
proposals have made the most of this short-latency translation,
although with different aims to the ones pursued in this paper
[18], [19].

This section describes a simple mechanism that allows cores
to retrieve information about the privacy of page and address
translations from another core’s TLB instead of from the page
table. This mechanism, although simpler, has some similarities
with the Synergistic TLBs mechanism proposed in [19]. Upon
a TLB miss, getting the page information from a remote
TLB is faster than from the page table, since “walking” the
page table, often broken down into several levels, may imply
several memory references (e.g., four memory references for
the current 48-bit x86-64 virtual address space [23]).

Our mechanism works as follows. On a TLB miss, a page
table walk process is started to get the address translation
from the page table. However, at the same time, the core
snoops the other TLBs in the CMP by issuing a page info
request. When a core receives the page info request, it checks
its TLB and, in case of finding the page entry, the translation
is sent to the requester by means of a short response message.
When the first response is received, the memory request can

tag data

Vvirtual address physical address L P counter
2−bit

Fig. 1: TLB entry with the extra fields in gray

proceed and the page table walk is cancelled. Although upon
every TLB miss the described mechanism snoops other TLBs,
TLB misses are not frequent, thus keeping traffic overhead and
energy consumption low and not jeopardizing its scalability,
as shown in Section VII-C.

As for cache misses, TLB misses also allocate an entry
in the Miss Status Holding Register (MSHR), where the
information about ongoing misses is placed. Although the TLB
miss can be solved once the first TLB response is received,
to avoid complex race conditions the MSHR entry is not
deallocated until all TLB responses have been received.

IV. TEMPORAL-AWARE PRIVATE-SHARED
CLASSIFICATION

This paper deals with the fact that data can be requested
by multiple cores and stored in their private caches during the
application run time although they are actually private (due to
thread migration) or not shared at the same time (because of
the different phases of applications). The detection mechanism
that we propose (i) is aware of the temporality in memory
references, (ii) can employ techniques to solve the TLB misses
from the other CMP cores (as the one described in the previous
section), and (iii) does not require extra hardware structures.

Although our detection mechanism can be applied to caches
with any indexing and tagging technique, for the sake of
clarity, in the next sections we assume the common virtually
indexed, physically tagged (VIPT) L1 caches. A discussion
about the application to other cache schemes is given in
Section VIII-D.

A. Basic idea

Our detection mechanism stores the sharing information
along with the address translation in the TLB entries. Hence,
each TLB entry has a Private (P) bit that indicates whether
the page is private (bit set) or shared (bit clear), as shown in
Figure 1. The P bit for a page is set when there is just one
core TLB caching the translation. This indicates that it is the
only core that can request such page blocks without causing
a TLB miss. When several TLBs hold an entry for that page,
their P bits are clear.

On memory references, before accessing the L1 cache, a
TLB lookup is performed to get the physical address of the
requested block. If a TLB miss takes place, the page info
request is sent to the other TLBs. The goal of this request is
to get the address translation, but also the information about
the use of the page by the other cores. If any of the requesting
core is going to access the page, then it is marked as private.
Otherwise, the page will be classified as shared.

B. Page access prediction

To detect the private use of data within different phases
of applications, each processor has to predict if it is going

TABLE I: Response messages for TLB requests
State (in TLB Address Access Message type Next stateor MSHR) translation prediction
Not Present NO Not used Not Present Not Present
Requested (- or S) NO Used Requested Requested (S)
Decayed (P or S) YES Not used Decayed Not Present
Present (P or S) YES Used Present Present (S)

to accessing a page in a near future. To make predictions
independent of the TLB size, we introduce a TLB decay
technique, similar to the one proposed by Kaxiras et al. to
save power in data caches [24]. The prediction works as
follows. First, if the page entry is not present in the TLB,
the core assumes that it will not access it in the near future.
This situation can happen because the page has been never
referenced by the core or because the entry has been evicted
from the TLB since it has not been referenced for some time
(TLBs employ a least recently used –LRU– policy). Second,
if the page entry is present in the TLB, a 2-bit saturated
counter is kept (see Figure 1). This counter will be increased
periodically according to a certain timeout and will be reset
when any block within the page is accessed by the core (i.e.,
on a TLB hit). If the counter for a given entry saturates, the
entry becomes decayed. Cores will consider decayed entries
as not going to be accessed in a near future. Third, if the
page entry is present and not decayed, the core predict that it
will be accessed again. Table I shows the possible TLB entry
states, the response messages to page info requests, and the
information included in the responses.

C. Coherent classification

The information about the private pages must be kept
coherent in all the core TLBs. To keep this information
coherent, we use the transition diagram shown in Figure 2.
Pages can be in three situations: (i) the page translation is not
paged in any TLB; (ii) only one TLB holds the entry as private
(either present or decayed); (iii) one or several TLBs hold the
entry, all of them as shared.

Figure 2 shows the TLB state transitions depending on the
incoming requests and responses to guarantee TLB coherence.
When a TLB entry is Not Present in a given core and a local
TLB request is issued by that core, the entry transitions to the
Requested state. On the reception of remote page info requests
in this state, the TLB predicts to the others as accessing the
page and the page transitions then to the Requested S state.
This way, when two or more TLBs send page info requests at
the same time, they will answer to each other as accessing the
page and TLB coherence is guaranteed since every TLB will
see the page as shared. The Requested S transitions to Present
S once all responses have been received, regardless of their
content. On the other hand, the Requested state transitions to
Present S or Present P depending on the responses received
from the other TLBs. It transitions to Present S if at least one
TLB predicts to use the page, and to Present P otherwise.

When the entry becomes decayed, Present P and Present S
states transition to Decayed P and Decayed S, respectively. On
the other hand, from the Decayed states, if the core accesses
the page, the decay counter is reset, and the TLB entry holding

Fig. 2: TLB state transition diagram.

the page translation goes back to the Present state (P or S
depending on the P bit). Note that these transitions only imply
to saturate or reset the decay counter.

Finally, from the Decayed states, upon the reception of a
remote TLB request, the TLB will answer with no intentions of
accessing the page. At this point, this TLB loses the permission
to access the page, and the page transitions to the Not Present
state. A subsequent access to that page will incur in a TLB
miss. This can increase the number of TLB misses if the decay
timeout is not chosen appropriately. However, this extra misses
will probably find the entry in the other TLB, and the miss
will be resolved with short latency by means of a TLB-to-
TLB transfer. TLB evictions (not shown for the sake of clarity)
cause transitions to the Not Present state, but other TLBs are
not notified about the evictions.

D. TLB-L1 cache inclusion policy

Since TLBs maintain per-page sharing information that fi-
nally will affect the coherence management of memory blocks,
our proposal prevents data blocks from being stored in the
core’s L1 cache if the translation of their page is not stored by
the TLB. Hence, when a TLB entry transitions to Not Present,
the cached blocks belonging to the corresponding page are
evicted from L1 cache. This will hardly affect performance
(as shown in Section VII-B) because of two reasons. First, a
TLB entry transitions to Not Present when the page has not
been accessed for some time, so most page blocks may have
been already evicted from the cache. Second, it is likely that
no block within this page will be accessed in the near future.

When evicting the blocks from the cache, the access to
the corresponding TLB entry is blocked. To do that, each
TLB entry includes a Lock (L) bit (see Figure 1). Note that
when the state transitions from Decayed to Not Present, the
corresponding response message is not sent until the page
flushing of all the blocks belonging to the page is completed
to ensure coherence.

E. Thread migration

Although the OS is not aware of phase changes of applica-
tions, it is aware of thread migrations. This section proposes a
simple technique to help the classification considering thread
migrations. When a migration happens, all the TLB entries
corresponding to pages accessed by the process of the migrated

TABLE II: Actions due to TLB-L1 inclusion and recovery
Application scenario TLB-L1 inclusion Recovery (P→S)
Coherence Deactivation L1 flushing L1 flushing
Reactive NUCA L1 and LLC flushing LLC flushing
Subspace Snooping L1 flushing No action

thread are marked as decayed. If the thread is then scheduled
to run in a new core, all TLB pages will be found as decayed
in the previous core’s TLB, without going to main memory,
and therefore, will be classified as private. If in the interim
some pages are accessed in the previous core (e.g., by another
thread of the same process), the decay counter of the accessed
pages will be reset and the pages will be consider as shared
when requested by other core.

V. REQUIREMENTS FOR PRIVATE-SHARED OPTIMIZATIONS

Our temporal-aware page classification mechanism can be
applied to perform different protocol optimizations. Depending
on the optimization, when a page classified as private becomes
shared, it may be needed to trigger a recovery procedure to
restore the coherence state of the blocks belonging to the
page. This recovery procedure depends on the optimization
for which the private-shared classification is being applied to.
Also, the TLB-L1 inclusion policy may vary depending on
the purpose of the private-shared classification. This actions
are summarized in Table II.

When applied to improve the cache directory effectiveness
(coherence deactivation) all blocks within the page becoming
shared that are stored in the L1 cache need to be flushed (and
written back to the home LLC bank if they are dirty). This is
because cached private blocks are not tracked by the directory
cache. By flushing them we restore the coherence status.

When applied to reduce NUCA access latency (reactive
NUCA), blocks cached in the local NUCA bank must be
evicted and written back to the home NUCA bank (if the
local and the home bank are not the same). This is because
when a page becomes shared its mapping in the NUCA cache
may vary. In addition, when evicting a TLB entry the blocks
belonging to the evicted page must be also replaced from the
local NUCA bank (and from the L1 cache due to the TLB-L1
inclusion policy).

Finally, when applied to reduce traffic in snooping protocols
(subspace snooping), no recovery action is needed. This is
because, once the page becomes shared, cache-misses for
blocks belonging to that page will be treated as coherent,
and the request will be broadcast. This will discover in a
natural way the existence (if any) of other cached copies of
the requested block.

VI. SIMULATION ENVIRONMENT

We evaluate our proposal with full-system simulation using
Virtutech Simics [25] along with the Wisconsin GEMS toolset
[26], which enables detailed simulation of multiprocessor
systems. The interconnection network has been modelled using
the GARNET simulator [27]. We simulate a 16-tile CMP
architecture implementing directory-based cache coherence

TABLE III: Base system parameters
Memory Parameters

Processor frequency 2.8GHz
Cache hierarchy Non-inclusive
Cache block size 64 bytes
Split instr & data L1 caches 64KB, 4-way (256 sets)
L1 cache hit time 1 (tag) and 2 (tag+data) cycles
Shared unified L2 cache 1MB/tile, 8-way (2048 sets)
L2 cache hit time 2 (tag) and 6 (tag+data) cycles
Directory cache 256 sets, 4 ways (same as L1)
Directory cache hit time 1 cycle
Memory access time 160 cycles
Split instr & data TLBs 128 sets, 4 ways
TLB hit time 1 cycle
Page size 4KB (64 blocks)

Network Parameters
Topology 2-dimensional mesh (4x4)
Routing technique Deterministic X-Y
Flit size 16 bytes
Data and control message size 5 flits and 1 flit
Routing, switch, and link time 2, 2, and 2 cycles

and with the parameters shown in Table III. TLB miss latency
considers four memory references to walk the page table, as in
the 48-bit x86-64 virtual address space. Cache latencies have
been calculated using the CACTI tool [28] assuming a 32nm
process technology.

We evaluate our proposal with a wide variety of parallel
workloads from several benchmarks suites, covering different
sharing patterns and sharing degrees. Barnes (8192 bodies, 4
time steps), Cholesky (tk15.O), FFT (64K complex doubles),
Ocean (258 × 258 ocean), Radiosity (room, -ae 5000.0 -en
0.050 -bf 0.10), Raytrace (teapot), Volrend (head), and Water-
NSQ (512 molecules, 4 time steps) are from the SPLASH-
2 benchmark suite [29]. Tomcatv (256 points, 5 time steps)
and Unstructured (Mesh.2K, 5 time steps) are two scientific
benchmarks. FaceRec (script), MPGdec (525 tens 040.m2v),
MPGenc (output of MPGdec), and SpeechRec (script) belong
to the ALPBenchs suite [30]. Blackscholes (simmedium),
Swaptions (simmedium), and x264 (simsmall) come from
PARSEC [31]. Finally, Apache (1000 HTTP transactions), and
SPEC-JBB (1600 transactions) are two commercial workloads
[32]. All the reported experimental results correspond to the
parallel phase of benchmarks.

VII. EVALUATION RESULTS

We first analyze how the TLB-to-TLB miss resolution im-
proves performance with the aim of knowing its contribution
to the improvements of our mechanism. We also study the
influence of the decay technique for TLBs. Then we show
how our classification mechanism can improve the accuracy
in the classification of private pages. Finally, we study the
benefits entailed of our proposal when applied to the coherence
deactivation technique.

A. TLB-to-TLB Miss Resolution

Here, we analyze the benefits and overheads of the TLB-to-
TLB miss resolution mechanism by a sensitivity study done
on the TLB size which ranges from 256 sets to 64 sets (all of
them are 4-way associative).

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0

1.0

2.0

3.0

4.0

5.0

6.0

N
o
rm

a
liz

e
d
 T

L
B

 m
is

s
e
s

PageTable
TLB

7.44 7.02

1. TLBs_256sets_4ways 2. TLBs_128sets_4ways 3. TLBs_64sets_4ways

Fig. 3: Distribution of TLB misses resolved by other TLBs or
by the page table

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

T
L
B

 m
is

s
 l
a
te

n
c
y
 (

in
 c

y
c
le

s
) TLBs_256sets_4ways

TLBs_128sets_4ways
TLBs_64sets_4ways

Fig. 4: Average TLB miss latency

TLB-to-TLB miss resolution saves access to the page table.
Figure 3 shows the number of TLB misses normalized to
those caused when using a 256-set TLB. Each bar shows the
distribution of misses resolved by another TLB or the page
table. We can see that the number of TLB misses increases
for smaller TLBs. The number of TLB-to-TLB resolutions also
increases, thus making its percentage almost independent of
the TLB size. Particularly, 61.7%, 64.8%, and 64.8% of misses
are resolved from a neighbor TLB for 256-, 128-, and 64-set
TLBs, respectively.

Since almost two out of three TLB misses are resolved
without accessing the page table, their average latency is
considerably reduced, as plotted in Figure 4. We can see
that the applications with a significant amount of TLB misses
resolved by the page table (FaceRec and Spec-JBB) are the
ones with higher average latency. Similarly, the ones that
are mainly resolved by means of TLB-to-TLB transfers (e.g.,
FFT and Raytrace) have a low miss latency. On average and
regardless of the TLB size, the TLB miss latency can be
reduced by 60% when the TLB miss resolution mechanism
is applied.

Low TLB miss latency results into reductions in execution
time, as Figure 5 plots. In this figure, each bar shows the
reduction in the number of cycles when compared to a
configuration that does not implement TLB-to-TLB transfers
but with the same TLB size. As we can observe, smaller TLBs
implies more misses, and consequently, larger improvements
in execution time when using the TLB-to-TLB transfer mech-
anism. On average, execution time is reduced by 6.5%, 11.9%,
and 26.4% for 256-, 128-, and 64-set TLBs, respectively.

Finally, Figure 6 shows the normalized network traffic due
to the issue of page info requests. Since TLB misses are not
frequent, the traffic increase is low. Only Spec-JBB and Apache
(and for small TLB sizes) reach an overhead of 20%. This

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

TLBs_256sets_4ways
TLBs_128sets_4ways
TLBs_64sets_4ways

Fig. 5: Improvements in execution time when using TLB-to-
TLB transfers

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
e
tw

o
rk

 t
ra

ff
ic

 v
a
ri
a
ti
o
n

TLBs_256sets_4ways
TLBs_128sets_4ways
TLBs_64sets_4ways

Fig. 6: Variations in network traffic when using TLB-to-TLB
transfers

is because commercial applications have a high TLB-versus-
cache miss rate. Overall, the overhead in traffic of the TLB
resolution mechanism is just 2.9%, 3.4%, and 5.2% for 256-,
128-, and 64-set TLBs, respectively. Finally, we believe that
this low traffic overhead can be paid since the reduction in
execution time is significant.

B. Detection of private pages and decay value

This section shows the trade-off between the number of
private pages detected by our mechanism and the number of
TLB misses depending on the decay value. A high value for
the decay timeout results into few page entries decayed, and
consequently few extra TLB misses. On the other hand, more
private pages can be detected by our mechanism with a low
value.

Figure 7 shows the number of TLB misses for configura-
tions with different decay timeouts, all of them normalized
with respect to the absence of decay timeout (TLB bar).
We classify the misses into 3C misses (cold, capacity, and
conflict) and Forced misses, which come as a consequence
of invalidations of decayed TLB entries. As can be seen,
shorter decay timeouts lead to increase the number of TLB
misses, which could finally impact negatively performance.
As expected, a shorter timeout only increase Forced misses.
Observe that a timeout greater than or equal to 50000 is able
to minimize the number of Forced misses (≤ 3%, on average).
Also, the negative impact of the decay technique will be partly
mitigated because those extra misses will probably find the
address translation in the TLB that caused the invalidation of
the decayed entry.

Invalidations and replacements of TLB entries cause the
eviction of L1 cache blocks due to our TLB-L1 inclusion
policy. However, these events only occur for decayed or LRU
entries. Since these entries have not been accessed for a long

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

x264

Apache

SPEC-JBB

Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

T
L
B

 m
is

s
e
s

3C
Forced

1. TLB
2. Decay_250000

3. Decay_50000
4. Decay_10000

5. Decay_2000

Fig. 7: TLB misses

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

x264

Apache

SPEC-JBB

Average

0.0%
0.2%
0.4%
0.6%
0.8%
1.0%
1.2%
1.4%
1.6%
1.8%
2.0%
2.2%
2.4%
2.6%
2.8%

P
e

rc
e

n
ta

g
e

 o
f

L
1

-T
L

B
-i
n

c
lu

s
io

n
 m

is
s
e

s

TLB
Decay_250000

Decay_50000
Decay_10000

Decay_2000

Fig. 8: Percentage of L1 cache misses due to our TLB-L1
inclusion policy

time, the L1 cache is likely not holding many blocks from the
invalidated or evicted page. Also, these blocks are probably
not going to be accessed soon. Hence the effect of flushing is
negligible. As we can see in Figure 8, only 0.4% (on average)
of cache misses are due to the flushing effect of the inclusion
policy. We also can observe that this number does not vary
with the decay timeout.

Figure 9 shows the impact in execution time of our TLB-
based mechanism for different decay values compared to
the traditional TLB miss resolution that accesses the page
table (Base). We can see that a decay value smaller than or
equal to 10000 cycles mitigates the benefits of TLB-to-TLB
transfers. As expected, the TLB-based classification without
decay (TLB) gets the most significant improvements. The
decay technique degrades performance by 3% and 7% for
250000 and 50000 timeouts, respectively. However, it is still
better than the base approach.

Although a low decay timeout leads to extra TLB misses,
it also helps to detect more private pages. Figure 10 shows
the pages considered as private and shared according to
each mechanism. Particularly, we show numbers for the OS-
based detection (OS), our basic idea without employing decay
techniques (TLB), and a more elaborate detection using decay
timeouts of 2500000, 50000, 10000, and 2000 cycles. We
consider 128-set TLBs. If a page has been considered as shared
at least once during the execution of the application, it will
be seen as shared in the graph. Note that this is unfair for our
approach since, unlike the OS-based proposal, we are able
to re-classify pages from shared to private. We can see that
the TLB mechanism classifies 20% more pages as private than
OS. Additionally, employing decay techniques we can improve
this detection up to 41% (for a short decay timeout of 2000
cycles) but at the cost of increasing TLB misses, as shown

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

Base
TLB

Decay_250000
Decay_50000

Decay_10000
Decay_2000

1.91 1.70

Fig. 9: Execution time degradation of the decay technique

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

c
ti
o
n
 o

f
re

fe
re

n
c
e
d
 p

a
g
e
s

Private
Shared

1. OS
2. TLB

3. Decay_250000
4. Decay_50000

5. Decay_10000
6. Decay_2000

Fig. 10: Private vs. shared pages

above. Finally, it is important to note that thread migration is
rare in the evaluated applications due to its short execution
time. As explained in Section IV-E, thread migration would
have a dramatic impact for the OS classification, but not for
our proposal.

C. A case of study: coherence deactivation

Previous sections analyze the impact on performance of
our proposal without taking advantage of the temporal-aware
page classification. This section evaluates its impact when
applied to the coherence deactivation scheme proposed for
directory caches [5]. Although the percentage of detected
private pages is a good general metric to show the goodness of
our classification mechanism, each optimization has different
requirements, and therefore, we need another statistics. For
the coherence deactivation proposal we are interested in the
number of required directory entries, as shown in Figure 11.
Particularly, this figure shows the average number of directory
entries required per cycle normalized with respect to no deac-
tivation at all. We can observe that the OS-based classification
can avoid the storage of 24.4% entries in the directory cache.
However, when accounting for temporality the number of
entries required in the directory falls dramatically: TLB avoids
the storage of 38.3% of entries and, when applying the decay
technique, up to 78.3% of entries do not require to be tracked.

This large reduction in the number of required directory
entries results in less directory evictions and consequently less
invalidations in the private caches. Invalidations cause extra
cache misses (named as coverage misses). Since coherence
deactivation reduces the number of coverage misses, the
execution time can be improved as shown in Figure 12. The
figure is normalized with respect to the baseline configuration
that does not detect private pages. The OS-based classification
can just reduce 5.8% the execution time. When compared to

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
q
u
ir
e
d
 d

ir
e
c
to

ry
 e

n
tr

ie
s

Base OS TLB Decay_250000 Decay_50000 Decay_10000 Decay_2000

Fig. 11: Average directory entries required (per cycle)

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

Base OS TLB Decay_250000 Decay_50000

Fig. 12: Execution time improvements for coherence deacti-
vation

the base configuration, TLB reduces the execution time by
16.9% due to both the reduction in the required directory
entries and the TLB miss resolution mechanism. Furthermore,
when compared to the OS-base classification, TLB reduces the
execution time by 13%. For most applications the introduction
of the decay technique hurts performance with respect to TLB.
FFT is the exception. This is due to the “large” size of the
directory. Since TLB removes 38.3% of entries, the current
directory size is not a bottleneck any more. Nevertheless, in
scenarios with smaller directories, or with frequent thread
migration or with larger TLBs, the decay mechanism may
introduce more improvements in performance.

We may be interested in reducing the directory cache size to
make it more scalable and fast. Reducing the directory size will
increase execution time for all the configurations, but the decay
technique mitigates this increase. Figure 13 shows different
configurations in the y axis and different cache sizes in the x
axis. The value shown in each cell corresponds to the average
execution time of all the applications normalized to the base
configuration. When moving to smaller directory caches we
can see that the use of the decay technique becomes necessary
for a good performance. Particularly, a decay timeout of
250000 can outperform TLB by 5% for a 16-set directory.
As we can see, the smaller the directory is, the smaller decay
timeout is recommended.

As a conclusion, we can affirm that the election of the
decay value will depend on the benefits of performing a more
accurate detection of private pages for the different protocol
optimizations. When the improvements obtained thanks to the
optimizations are higher, a smaller decay timeout can translate
into more benefits.

128 163264256

Decay 10000

Decay 250000

Decay 50000

Base

TLB

0.99 1.301.091.030.98

0.88 1.321.060.930.85

0.91 1.301.080.940.88

1.901.311.061.031.00

0.86 1.381.070.920.83

Directory sets

C
on

fi
gu

ra
ti

on

Fig. 13: Normalized execution time depending on the directory
size and the decay timeout employed

VIII. DISCUSSION

A. Scalability

The proposed TLB-based private-shared classification works
fairly well for small- or medium-scale systems due to the
reduced number of TLB misses (only 2 % of the TLB accesses
are misses). Large-scale systems may have excessive traffic
when using this classification mechanism, even considering
that TLB misses are much less frequent than cache misses. Al-
though this paper focuses on small- or medium-scale systems,
for larger systems our proposal could be adapted to reduce the
traffic generated, for instance by having centralized sharing
TLB information (similar to a directory) to avoid broadcasts,
or by employing a Token-like protocol [33] to avoid most TLB
responses.

B. Large or multilevel private caches

Our proposal scales with the size of the private caches since
on a TLB eviction, only the content of the evicted page needs
to be flushed (due to the TLB-L1 inclusion policy). Therefore,
the number of visited cache lines on a TLB eviction is given
by the page size (64 cache lookups for 4KB pages), and not
by the cache size.

Additionally, our proposal is also applicable to configu-
rations with two or more levels of private caches. In this
case, performing the page flushing requires the invalidation
of the corresponding page blocks at every private cache in the
hierarchy. This action can be performed in parallel.

C. Large pages

Our proposal can also work in systems implementing large
pages. Naively, the eviction of the entries for large pages from
the TLB will require a more expensive flushing. However,
more elaborate approaches can be employed to lessen the cost
of flushing, particularly in terms of latency. For example, a
simple counter can be added to the TLB entry indicating the
number of live or cached blocks for the evicted TLB entry,
considerably reducing the amount of required lookups.

D. Virtual caches

Although this work assumes the common case of virtually
indexed, physically tagged (VIPT) L1 caches. Our proposal is

directly applicable to any other cache where the access to the
TLB is required before accessing the cache (e.g., physically
indexed, physically tagged –PIPT– caches).

On the other hand, virtually indexed, virtually tagged
(VIVT) caches, a.k.a. virtual caches, do not require TLB
accesses for cache hits, which can result in faster lookups and
less power consumption than the physical caches. Fortunately,
the address translation is anyway performed on every cache
miss since coherence is kept for physical addresses. Also, L1
hits do not issue coherence actions. These two characteristics
allow our proposal to be completely applicable to virtual
caches. We can still maintain TLB-L1 inclusion and classify
every cache miss into private or shared.

IX. RELATED WORK

Some works rely on the compiler and/or memory allo-
cator to classify memory pages in order to either remove
coherence for private pages [34] or improve data placement
[11], [14]. In [11], a data ownership analysis of memory
regions is performed at compilation time. This information
is transferred to the page table by modifying the behavior
of the memory allocator by means of hooks. This proposal
is further improved in [14] by considering a new class of
data, named as practically-private, which is mapped to the
NUCA cache according to a first-touch policy. In [34], private
data is not stored at the LLC with the aim of avoiding cache
thrashing for private blocks. Unlike our approach, these works
mark statically data as private either by the memory allocator
or at compile time, when privacy of some data cannot be
guaranteed.

SWEL [12] is a novel hardware-based coherence protocol
that uses a private-shared block classification at the directory
to allocate shared read-write blocks only at the shared LLC, so
removing the need of coherence maintenance for them. The
main drawback of that proposal is the latency penalization
of accessing shared read-write blocks, which must be served
by the LLC cache. POPS [13] decouples data and coherence
information in the shared LLC to reduce access latency to this
information and to improve the aggregate NUCA capacity. It
also employs a directory private-shared classification (this time
with the help of a predictor table). Spatiotemporal Coherence
Tracking [16] also classifies private and shared data at the
directory, accounting for temporal private data. It tries to find
large private regions to merge them in the directory to save
directory space. Differently, our approach is not only aiming
directory size reduction, but it has a larger scope, as described
in Section II. In general, private-shared classification at the
directory has the drawback of adding extra area requirements.
Additionally, it is not suitable for simple request-response
protocols (such as VIPS [17]), because of the requests sent
by the directory upon private-to-shared changes.

Our proposal discovers the private-shared page status by
benefitting from the resolution of TLB misses through TLB-
to-TLB transfers. Related to the fast resolution of TLB
misses, Synergistic TLBs [19] employs the snooping of other
TLBs to propose a distributed-shared organization of TLBs.

Also, UNITD Coherence [18] employs the TLB snooping
to integrate the existing cache coherence protocol with the
maintenance of the TLB coherence. Differently, we employ
the TLB snooping to account for the temporality of private
accesses and, so, improve the private-shared classification. In
[35], neighbour TLBs are snooped with the aim of detecting
shared pages. However, that proposal requires important mod-
ifications in the TLB, such as making it both physically and
virtually indexed or the addition of a non-scalable full-sharing
vector. Differently, we just add 4 bits to the TLB regardless
of system size. Also we employ a decay technique for TLBs
that allows more accurate access predictions.

Bhattacharjee et al. use inter-core cooperative TLB prefetch-
ers to reduce the number of TLB misses by exploiting com-
monality and predictability in TLB miss patterns across cores
in CMPs [36]. After a core resolves a TLB miss, it can either
push the address translation into the TLBs of the potential
predicted sharers or search itself in advanced predictable future
translations. In both cases, predictable translations are placed
into a prefetch buffer. Alternatively, the authors propose to use
a last-level TLB shared by all cores to achieve the same goal
[37]. Both can be use in conjunction with our proposal.

Some other proposals, such as RegionScout filters [38],
Region Coherence Arrays [39], and RegionTracker [40], also
share with the ours the idea of removing coherence for private
data. However, these approaches require additional storage
resources and are focused only on reducing snoop traffic in
snooping-based coherence. On the contrary, our proposal can
be applied for different purposes, and not only for directory
reductions, and does not require additional storage resources,
just a few additional bits at the TLBs.

X. CONCLUSIONS AND FUTURE WORK

This paper proposes an effective temporal-aware detection
of private pages for medium-scale CMPs based on predicting
whether the page is going to be accessed in the near future
by the other cores in the system on a TLB miss. This way,
our mechanism classifies pages accessed by several cores at
different points in time (e.g., thread migration or program
phase changes) as private. This leads to a bidirectional page
re-classification, from private to shared, and vice versa, that
results in a significantly increase in the number of pages
considered as private compared to an OS-based classification
(from 43% to 74%). Furthermore, unlike OS-based page detec-
tion, our approach is compatible with recently proposed low-
latency TLB miss resolution mechanisms. When applied to
improve the effectiveness of directory caches by deactivating
coherence for private blocks, our proposal can remove up to
78% entries from the directory cache, reducing execution time
by 13%, on average, compared to an OS-based mechanism.

Our future work focus on the scalability of the proposed
classification for larger CMPs. Directory-like information
could be added at page level by means of shared TLBs. Also,
Token-like protocols could be employed at the TLB level
to avoid responses from TLBs not holding page translations.

These two options will result in reducing traffic and latency
in many-core systems.

REFERENCES

[1] J. F. Cantin, J. E. Smith, M. H. Lipasti, A. Moshovos, and B. Falsafi,
“Coarse-grain coherence tracking: RegionScout and region coherence
arrays,” IEEE Micro, vol. 26, no. 1, pp. 70–79, Jan. 2006.

[2] N. Agarwal, L.-S. Peh, and N. K. Jha, “In-Network Snoop Ordering
(INSO): Snoopy coherence on unordered interconnects,” in 15th Int’l
Symp. on High-Performance Computer Architecture (HPCA), Feb. 2009,
pp. 67–78.

[3] D. Kim, J. A. J. Kim, and J. Huh, “Subspace snooping: Filtering
snoops with operating system support,” in 19th Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), Sep. 2010, pp. 111–
122.

[4] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos, “A tagless
coherence directory,” in 42nd IEEE/ACM Int’l Symp. on Microarchitec-
ture (MICRO), Dec. 2009, pp. 423–434.

[5] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Increasing
the effectiveness of directory caches by deactivating coherence for
private memory blocks,” in 38th Int’l Symp. on Computer Architecture
(ISCA), Jun. 2011, pp. 93–103.

[6] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo
directory: A scalable directory for many-core systems,” in 17th Int’l
Symp. on High-Performance Computer Architecture (HPCA), Feb. 2011,
pp. 169–180.

[7] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches,” in 10th Int’l Conf.
on Architectural Support for Programming Language and Operating
Systems (ASPLOS), Oct. 2002, pp. 211–222.

[8] S. Cho and L. Jin, “Managing distributed, shared L2 caches through
OS-level page allocation,” in 39th IEEE/ACM Int’l Symp. on Microar-
chitecture (MICRO), Dec. 2006, pp. 455–465.

[9] C. Liu, A. Sivasubramaniam, and M. Kandemir, “Organizing the last
line of defense before hitting the memory wall for CMPs,” in 11th Int’l
Symp. on High-Performance Computer Architecture (HPCA), Feb. 2004,
pp. 176–185.

[10] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: Near-optimal block placement and replication in distributed
caches,” in 36th Int’l Symp. on Computer Architecture (ISCA), Jun. 2009,
pp. 184–195.

[11] Y. Li, A. Abousamra, R. Melhem, and A. K. Jones, “Compiler-assisted
data distribution for chip multiprocessors,” in 19th Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), Sep. 2010, pp. 501–
512.

[12] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian,
“SWEL: Hardware cache coherence protocols to map shared data
onto shared caches,” in 19th Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), Sep. 2010, pp. 465–476.

[13] H. Hossain, S. Dwarkadas, and M. C. Huang, “POPS: Coherence
protocol optimization for both private and shared data,” in 20th Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT),
Oct. 2011, pp. 45–55.

[14] Y. Li, R. G. Melhem, and A. K. Jones, “Practically private: Enabling
high performance cmps through compiler-assisted data classification,” in
21st Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2012, pp. 231–240.

[15] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi,
“End-to-end sequential consistency,” in 39th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2012, pp. 524–535.

[16] M. Alisafaee, “Spatiotemporal coherence tracking,” in 45th IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), Dec. 2012, pp. 341–350.

[17] A. Ros and S. Kaxiras, “Complexity-effective multicore coherence,” in
21st Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2012, pp. 241–252.

[18] B. F. Romanescu, A. R. Lebeck, D. J. Sorin, and A. Bracy, “UNified in-
struction/translation/data (UNITD) coherence: One protocol to rule them
all,” in 16th Int’l Symp. on High-Performance Computer Architecture
(HPCA), Feb. 2010, pp. 1–12.

[19] S. Srikantaiah and M. Kandemir, “Synergistic tlbs for high performance
address translation in chip multiprocessors,” in 43rd IEEE/ACM Int’l
Symp. on Microarchitecture (MICRO), Dec. 2010, pp. 313–324.

[20] M. Kambadur, K. Tang, and M. A. Kim, “Harmony: Collection and

analysis of parallel block vectors,” in 39th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2012, pp. 452–463.

[21] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in applications,”
in 10th Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2001, pp. 3–14.

[22] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes,
“Blade computing with the AMD OpteronTM processor (”Magny
Cours”),” in 21st HotChips Symp., Aug. 2009.

[23] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching: Skip, don’t
walk (the page table),” in 37th Int’l Symp. on Computer Architecture
(ISCA), Jun. 2010, pp. 48–59.

[24] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting gener-
ational behavior to reduce cache leakage power,” in 28th Int’l Symp. on
Computer Architecture (ISCA), Jun. 2001, pp. 240–251.

[25] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” IEEE Computer, vol. 35, no. 2, pp. 50–58,
Feb. 2002.

[26] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”
Computer Architecture News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[27] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in IEEE Int’l
Symp. on Performance Analysis of Systems and Software (ISPASS), Apr.
2009, pp. 33–42.

[28] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Cacti
5.1,” HP Labs, Tech. Rep. HPL-2008-20, Apr. 2008.

[29] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in 22nd Int’l Symp. on Computer Architecture (ISCA), Jun. 1995,
pp. 24–36.

[30] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes, “The
ALPBench benchmark suite for complex multimedia applications,” in
Int’l Symp. on Workload Characterization, Oct. 2005, pp. 34–45.

[31] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in 17th Int’l Conf.
on Parallel Architectures and Compilation Techniques (PACT), Oct.
2008, pp. 72–81.

[32] A. R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper, M. M. Martin,
D. J. Sorin, M. D. Hill, and D. A. Wood, “Evaluating non-deterministic
multi-threaded commercial workloads,” in 5th Workshop On Computer
Architecture Evaluation using Commercial Workloads (CAECW), Feb.
2002, pp. 30–38.

[33] M. M. Martin, M. D. Hill, and D. A. Wood, “Token coherence: Decou-
pling performance and correctness,” in 30th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2003, pp. 182–193.

[34] J. Meng and K. Skadron, “Avoiding cache thrashing due to private data
placement in last-level cache for manycore scaling,” in Int’l Conference
on Computer Design (ICCD), Oct. 2009, pp. 282–288.

[35] M. Ekman, F. Dahlgren, and P. Stenström, “TLB and snoop energy-
reduction using virtual caches,” in Int’l Symp. on Low Power Electronics
and Design (ISLPED), Aug. 2002, pp. 243–246.

[36] A. Bhattacharjee and M. Martonosi, “Inter-core cooperative tlb for
chip multiprocessors,” in 15th Int’l Conf. on Architectural Support for
Programming Language and Operating Systems (ASPLOS), Mar. 2010,
pp. 359–370.

[37] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared last-level tlbs
for chip multiprocessors,” in 17th Int’l Symp. on High-Performance
Computer Architecture (HPCA), Feb. 2011, pp. 62–73.

[38] A. Moshovos, “RegionScout: Exploiting coarse grain sharing in snoop-
based coherence,” in 32nd Int’l Symp. on Computer Architecture (ISCA),
Jun. 2005, pp. 234–245.

[39] J. F. Cantin, M. H. Lipasti, and J. E. Smith, “Improving multiprocessor
performance with coarse-grain coherence tracking,” in 32th Int’l Symp.
on Computer Architecture (ISCA), Jun. 2005, pp. 246–257.

[40] J. Zebchuk, E. Safi, and A. Moshovos, “A framework for coarse-grain
optimizations in the on-chip memory hierarchy,” in 40th IEEE/ACM Int’l
Symp. on Microarchitecture (MICRO), Dec. 2007, pp. 314–327.

