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Abstract
Bachground—Hepatitis C virus (HCV) infection is a well-documented etiological factor for
hepatocellular carcinoma (HCC). As HCV shows remarkable genetic diversity, an interesting and
important issue is whether such a high viral genetic diversity plays a role in the incidence of HCC.
Prior data on this subject are conflicting.

Objectives—Potential association between HCV genetic mutations or strain variability and HCC
incidence has been examined through a comparative genetic analysis merely focused on a single
HCV subtype (genotype 4a) in a single country (Egypt).
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Study design—The study focused on three HCV sequence datasets with explicit sampling dates
and disease patterns. An overlapping HCV Core/E1 domain from three datasets was used as the
target for comparative analysis through genetic and phylogenetic approaches.

Results—Based on partial Core/E1 domain (387 bp), genetic and phylogenetic analysis did not
identify any HCC-specific viral mutations and strains, respectively.

Conclusions—The Core/E1 domain of HCV genotype 4a in Egypt does not contain HCC-
specific mutations or strains. Additionally, sequence errors resulting from the polymerase chain
reaction, together with a strong evolutionary pressure on HCV in patients with end-stage liver
disease, have significant potential to bias data generation and interpretation.
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1. Background
The causal relationship between hepatitis C virus (HCV) infection and hepatocellular
carcinoma (HCC) is well documented.1,2 About 1–3% patients with chronic HCV infection
will develop HCC in the United States.3 HCV-related tumorigenesis has been studied
extensively and almost all HCV-encoded viral proteins, especially Core protein, can cause
cellular transformation through multiple mechanisms.4 As a positive, single-strand RNA
virus, a remarkable feature of HCV genome is the high genetic diversity with at least six
major genotypes and more than 100 subtypes.5 Based on underlying mechanisms in HCV-
related HCC, it is important to know whether such a high viral genetic diversity plays a
differential role in the incidence of HCC. In other words, is the incidence of HCC
preferentially associated with specific HCV genotype(s)/subtype(s)/strain(s) or particular
mutations in the HCV genome? Due to the lack of appropriate small animal models
supporting the HCV life cycle, these issues have been studied mostly in clinical settings.6–17

However, published reports have yielded conflicting data concerning these questions.6–17

The development of HCC is a long-term, multi-step process affected by many factors from
both the host and the virus. To assess the role of viral genetic diversity in the incidence of
HCC, it is therefore necessary to have a well-designed experimental strategy that minimizes
the interference from other factors contributing to carcinogenesis.

2. Objectives
In the present study, the potential association between HCV genetic mutations or strain
variability and HCC incidence has been examined through a comparative genetic analysis
merely focused on a single HCV subtype (genotype 4a) in a single country (Egypt).

3. Study design
3.1. HCV sequence data collection

Three HCV sequence datasets were included in this study. The first HCV dataset was
derived from a nationwide epidemiological study designed to evaluate the prevalence of
HCV in Egyptian blood donors.18 The dataset consists of 49 HCV genotype 4a E1/Core
sequences with assigned GenBank accession numbers from AF271825 to AF271873,
representing a subset of blood donors from 15 geographically diverse governorates in
Egypt.19 The second dataset was generated in our laboratory in a study to investigate the
role of HCV genotype in end-stage liver disease in Egypt.20 This dataset includes a total of
146 HCV E1/Core sequences corresponding to 97 patients with HCC, 43 patients with
cirrhosis and 6 individuals without end-stage liver disease (GenBank accession numbers
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HQ615723 to HQ615868).20 The final dataset includes 36 HCV E1/Core sequences from a
study that investigated familial transmission of HCV in an Egyptian village.21 A summary
for three datasets is presented in Table 1.

3.2. Control experiment to estimate data quality
The three datasets were generated from three different laboratories. It is thus possible that
some nucleotide differences may simply result from differences in experimental protocols.
In each laboratory, the sequences were obtained from serum samples through direct
sequencing of reverse transcription-polymerase chain reaction (RT-PCR) product. Thus, the
use of different primers in the RT-PCR protocols is a potential concern.22 We determined
the HCV Core/E1 sequences for five randomly selected samples using primer sets from all
three laboratories (Table 2). Sequences were compared for the estimation of potential
influence by primer selection. In our experimental protocol, RT and PCR were respectively
conducted with M-MLV reverse transcriptase (Promega) and AmpliTaq DNA polymerase
(Applied Biosystems) as we described previously.22

3.3. Genetic analysis
The genetic analysis was performed between datasets 1 and 2, while dataset 3 was used as a
reference control. The target domain for comparative analysis was an overlapping region
among these datasets, 387 bp in length from nucleotide position 873 through 1259 (all
position numbering in the study is based on HCV strain H77, GenBank accession number
AF009606). A consensus sequence corresponding to this target domain was first generated
from 41 unrelated HCV genotype 4a sequences deposited in the Los Alamos HCV
database.23 Nucleotide (387 sites) and amino acid (129 sites) frequencies were calculated
against the consensus sequence at each site, followed by Chi-square test. Next, we evaluated
intra-group mutation patterns and selection pressure by both Tajima’s D test24 and the
calculation of genetic diversity parameters, including genetic distance (d), the number of
synonymous substitutions per synonymous site (dS), the number of non-synonymous
substitutions per non-synonymous site (dN) and dN/dS values. Tajima’s D test (coding
region) was done with program DnaSP25 and genetic parameters were analyzed with either
maximum composite likelihood (d) or Nei-Gojobori method (dN, dS) implemented in the
Molecular Evolutionary Genetics Analysis software package (MEGA, version 4.0).26

3.4. Phylogenetic analysis
Phylogenetic analysis was performed for the combination of datasets 1 and 2. The best-fit
nucleotide substitution model was first estimated through a hierarchical likelihood ratio test
(hLRT) with Modeltest.27 Under the best-fit model, the unrooted maximum-likelihood (ML)
tree was generated in program PHYML (20) and used as the template to evaluate the extent
of clock-like evolution between the datasets 1 and 2 through a regression analysis of root-to-
tip distance against sampling dates in program Path-O-Gen
(http://tree.bio.ed.ac.uk/software/pathogen). Bayesian Markov chain Monte Carlo (MCMC)
phylogenetic trees were simulated in BEAST package under the best-fit nucleotide
substitution model as well as additional parameter settings, including a relaxed molecular
clock (uncorrelated, lognormal), a Bayesian skyline coalescent prior, and a total run of 50
million generations to reach relevant parameter convergence as estimated by Tracer.28 The
inferred MCMC trees then served as the input to estimate the strength of HCV strain
clustering in terms of disease patterns or sample dates in program BaTS with 1000
replications and the removal of the first 10% trees as burn-in.29 Both the association index
(AI)30 and the parsimony score (PS)31 were computed to see whether disease patterns or
sampling dates are more strongly associated with the underlying phylogeny than expected
by chance alone.
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3.5. Statistical analysis
The significance of changes in either nucleotide or amino acid frequency was examined by
Chi-square test. Other differences with regard to genetic parameters were assessed for
statistical significance using two-tailed Student’s t-test.

4. Results
4.1. Lack of amplification bias by different primer sets

The potential effect of different primer sets on the amplification of HCV Core/E1 domain
was tested in five serum samples. Direct sequencing of amplicons with the primer sets from
either dataset 2 or 3 showed the complete identity. Over 1935 bp amplicon sequence (387 bp
x 5), the primer set from dataset 1 generated one silent mutation (A→T), indicating a
99.95% match in comparison with the primer sets from datasets 2 and 3. Therefore, the use
of different primer sets did not result in noticeable bias on the amplification of the targeted
domain, allowing valid comparative analysis to be performed based on these three datasets.

4.2. Comparative analysis and Taq DNA polymerase-associated errors
In comparison with dataset 1, the HCC and cirrhosis groups in dataset 2 showed four distinct
nucleotide substitutions at positions 891 (T→G, p<0.0001), 1138 (T→G, p<0.0001), 1161
(G→C, p<0.0001) and 1187 (C→G, p<0.0001). Due to the potential significance of such a
nearly complete sweep-out in HCV strains associated with the end-stage liver disease, we
repeated the experiment in five samples carrying HCV strains with all four substitutions.
Surprisingly, none of these samples showed the initially observed substitutions. We then
conducted additional experiments. First, an additional 25 samples were processed starting
from the step of RNA extraction. Sequence alignment showed the same result, with the lack
of nucleotide substitutions seen in the initial analysis. Instead, there were four alternative
nucleotide substitutions at positions 923, 1084, 1131 and 1226 (Fig. 1). Second, these 30
samples were re-analyzed using a new RT-PCR protocol in which M-MLV reverse
transcriptase and AmpliTaq DNA polymerase were replaced with SuperScript III reverse
transcriptase (Invitrogen) and rTth DNA polymerase, XL (Applied Biosystems), which
contains Deep Vent DNA polymerase with exonuclease activity. This experiment confirmed
the result from the repeated experiment with AmpliTaq DNA polymerase (Fig. 1). Finally,
with the use of AmpliTaq DNA polymerase or rTth DNA polymerase, XL, the PCR step,
consisting of 70 cycles of two rounds, was used to amplify two independent HCV clones
from our previous study.32 Direct amplicon sequencing indicated complete identity to the
cloned HCV sequences (data not shown).

4.3. Genetic and phylogenetic analysis
All genetic and phylogenetic analyses showed similar results with either inclusion (the
sequence being analyzed: 387 bp in length) or exclusion (the sequence being analyzed: 363
bp length) of the codons containing the eight potential PCR-associated errors as described
above. For simplicity, only results generated under 363-bp analytical domain were
presented.

There was no obvious difference between the HCC and cirrhosis groups from dataset 2 in
terms of genetic diversity and Tajima’s D test (Fig. 2). In comparison with the dataset 1,
both HCC and cirrhosis groups from the dataset 2 had higher genetic diversity, especially
with significantly increased dN values (p<0.001) (Fig. 2). Accordingly, the HCC and the
cirrhosis group of dataset 2 had increased dN/dS values, corresponding to Tajama’s D test
that showed the stronger negative values in groups HCC (−1.46) and cirrhosis (−1.35) than
the dataset 1 (−1.25).
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The regression analysis of root-to-tip distance against sampling dates did not support a
clock-like evolution in the ML tree constructed with the datasets 1 and 2 (R2=0.026). In
subsequent MCMC simulation, a relaxed molecular clock (uncorrelated, lognormal) was
then applied. By giving each HCV strain a defined trait, either disease status or sampling
time, BaTS analysis was run in two type of data combinations, HCC/cirrhosis and dataset 1/
dataset 2. The former did not show obvious branch clustering in terms of disease status
(HCC or cirrhosis) in MCMC trees (AI=8, p=0.35; PS=40, p=0.025). When including all
HCV strains from the datasets 1 and 2, tree topologies were significantly associated with the
distribution of qualitative traits, either disease status (AI=12.5, p<0.001; PS=73, p<0.001) or
sampling dates (AI=5.68, p<0.001; PS=35, p<0.001) (Fig. 3).

5. Discussion
Identification of HCC-specific mutations is a challenging endeavor. HCV’s great diversity
makes it difficult to perform a comparative analysis among different HCV genotypes or
subtypes. The existence of ethnically or geographically specific mutations is also a concern.8
More importantly, even if putative HCC-associated mutations are observed, it is not known
if these mutations are responsible for the HCC incidence or a simple result of evolutionary
adaptation. The current study was designed to focus on a single HCV genotype (4a) in a
single geographical region (Egypt). All three datasets have explicit sampling dates, patterns,
and adequate numbers to provide a unique opportunity to explore the possibility of an
epidemiological relationship between HCV mutations and HCC incidence.

Initial comparative analysis identified four statistically significant nucleotide substitutions in
the HCC and cirrhosis groups. However, in repeated experiments, these four mutations were
completely lost with the consistent appearance of alternative four mutations (Fig. 1). In
sequence chromatograms, almost all eight mutations showed single peaks, suggesting that
these mutations are not located in highly variable sites. Experimental contamination is not
supported because all other sites from the same HCV isolates appear the same (Fig. 1).
Under 70 PCR cycles, four putative false mutations over 387-bp domain give an error rate at
1.5 × 10−4 substitutions per base pair, which is well within the range of Taq DNA
polymerase’s misincorporation rate of 2.1 × 10−4 to 2.0 × 10−5 errors per base pair.33–38

Thus the eight nucleotide substitutions observed are most likely not authentic. Under the
same experimental procedure, the appearance on different positions in a non-random pattern
from repeated experiments may be attributable to the batch to batch difference of AmpliTaq
DNA polymerase. Another factor is the subtle alteration of template heterogeneity due to
additional 1-year storage. The role of template heterogeneity contributing to the error rate of
DNA polymerase has been ignored largely.39–41 Because of the complete sequence identity
after 70-cycle PCR upon the use of plasmid DNA as the template, template heterogeneity
may be a more possible factor to explain our observation. Finally, the four nucleotide
mutations from the initial and repeated experiments are also present on the healthy
volunteers from datasets 2 and 3, respectively (Fig. 1). Thus, even assuming a real nature,
these mutations may just be a result of adaptive evolution without having any relationship
with end-stage liver disease, either HCC or cirrhosis.

At the phylogenetic level, BaTS analysis revealed no apparent clustering in terms of their
disease traits in HCC and cirrhosis. However, the inclusion of the dataset 1 (blood donors)
resulted in strong association between disease traits (HCC/Cirrhosis or blood donors) (Fig.
3). Since the dataset 1 were sampled in 1993, such an observation may be largely due to
different sampling dates rather than disease traits. Because of a small number (n=6) of HCV
sequences from blood donors in the dataset 2, a univocal answer may require the analysis
with the inclusion of more contemporaneously collected HCV sequences from patients
without HCC/cirrhosis.
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The HCC group, cirrhosis group and the dataset 1 all have significantly negative Tajima’s D
values, indicating an excess of low-frequency mutations and therefore a positive selection
pressure. Among datasets the HCC group has the strongest negative Tajima’s D value,
corresponding with its highest dN/dS ratio (Fig. 2). Actually, while having similar dS values,
the HCC and cirrhosis have significantly higher dN values than the dataset 1 (p<0.001) (Fig.
2). Taken together, these data suggest a strong evolutionary pressure of HCV in patients
with end-stage liver diseases, which is consistent with previous reports in HCC patients
infected with HCV genotype 1b.8,13 An important implication from this observation is a
theoretically enhanced chance for the detection of putative HCC or cirrhosis-specific
mutations, which requires caution in data interpretation since the mutations identified may
simply be the consequence of adaptation.

It should be noted that our analysis was based on a short HCV domain, the 387-bp partial
Core/E1 region. Comprehensive understanding of HCC-specific mutations and/or strains
may require a full-length HCV genome scanning as well as the availability of adequate
number of samples collected in both simultaneous and longitudinal patterns. In this setting,
the current study represents a proof-of-concept investigation in terms of experimental
approaches and phylogenetic techniques to address this elusive but clinically important
issue.
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Fig. 1.
Alignment of full analytical domain (387 bp) of five representative sequences from each
group. The HCV genotype 4a consensus sequence is shown on the top line. HCC, the HCC
group from dataset 2; Taq and Tth indicate the same HCC samples repeated with either
AmpliTaq DNA polymerase and rTth DNA polymerase, XL, respectively; CHC, chronic
HCV infection without end-stage liver disease. The four nucleotide substitutions from either
initial comparative analysis or the repeated experiments are marked as red and blue,
respectively. Dot indicates nucleotide identity.
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Fig. 2.
Comparisons of intra-group genetic parameters among HCC (n=97), cirrhosis (n=43) and
blood donors of the dataset1 (n=49). The group of chronic HCV infection from the dataset 2
(n=6) and the dataset 3 were not included due to small sample size and restrictive sampling
pattern, respectively. All genetic parameters, except for dN/dS, are expressed as mean values
and standard errors. The dN values from either the HCC group or the cirrhosis group of
dataset 2 were significantly higher than that from dataset 1 (blood donors) (p<0.001).
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Fig. 3.
Maximum clade credibility tree of 195 HCV Core/E1 sequences from the HCC group (red),
cirrhosis group (yellow), chronic HCV infection (blue) of the dataset 1 as well as the blood
donors (black) of the dataset 2. Posterior probability values are shown on major branches.
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