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Abstract

In the present document the use of quaternions as a tool for solv-
ing the attitude control problem for aerial vehicles is presented and
discussed. Its main properties are shown and some of them are also
demonstrated. Moreover, this document details how to solve an im-
portant problem involving quaternions, which is how to obtain a real-
time quaternion measurement from low-cost sensors employing C++
as programming language. MatLab and C++ code is given through
the document. Its performance is also shown including an experiment
with real sensor data.

Furthermore, a quaternion-based attitude control system for aerial
vehicles is developed. The proposal is made up of two interconnected
controllers: an outer loop, which consists of a nonlinear quaternion-
based controller, deals with the kinematic model; the inner loop is
based on the Active Disturbance Rejection Control and deals with
the dynamic model. The stability of each controller is proved and the
global performance is illustrated through several simulations. This con-
troller is particularized for quadrotors, but it can be easily generalized
for any Remotely Piloted Aircraft Systems.

Index terms— quaternion, quadrotor, attitude, ADRC, Wahba, cascade
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Part I

Main report

1 Introduction

This document corresponds to the final project of the following master:
Master en Ingenieŕıa Industrial. Imparted by Universidad Politécnica de

Valencia during the years 2014-2016.

In the present document three important problems involving Remotely
Piloted Aircraft Systems (RPAS) are treated. First, the use of quaternions
as a tool for solving the attitude control problem is presented and discussed.
Its main properties are shown and some of them are also demonstrated.

Second, a quaternion-based attitude control system for aerial vehicles is
developed. The proposal is made up of two interconnected controllers: an
outer loop, which consists of a nonlinear quaternion-based controller and
it deals with the kinematic model; the inner loop, which is based on the
Active Disturbance Rejection Control [23] deals with the dynamic model.
The stability of each controller is proved and the global performance is
illustrated through several simulations. This controller is particularized for
quadrotors but it can be easily generalized for any other kind of RPAS.

Finally, this document also details how to solve an important problem
involving quaternions. The problem is how to obtain a real-time quater-
nion measurement from low-cost sensors employing C++ as programming
language. An algorithm written in MatLab and C++ is given, and its per-
formance is also shown including some experiments with real sensor data.
For this part, a quadrotor platform has been used in order to extract the sen-
sor data. This quadrotor was developed in previous works by Pedro Garćıa
Gil and its team [1–4].

1.1 Motivation and state of the art

The studies related to Remotely Piloted Aircraft Systems (RPAS, or also
called UAVs) has become increasingly important in the last decades. Those
vehicles are undoubtedly helpful when performing some kind of tasks. Spe-
cially, when an on-board pilot is unnecessary, or it is even dangerous. The
RPAS area covers a wide number of different academic fields such as aerody-
namics, control, signal processing or computer science. Any development on
any of these fields could lead to a better performance of the whole system.

The European Union has allowed the use of RPAS systems in different
sectors and applications such as: infrastructure inspection, atmospheric re-
search, topography, management of risks and natural hazards, monitoring
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of wind farms, movie filming, sport photography, environmental monitoring,
and control of illegal hunting among others [5, 6].

The potential that this kind of vehicles offer has promoted the interest
of the European Commission (EC). The EC has developed an strategy in
order to integrate the RPAS into the European market. This integration
has to safeguard the principles of security, privacy, reliability and public
acceptance [7]. Furthermore, the EC contemplates the use of RPAS as an
strategic sector to be developed in the program Horizon 2020 [8], which is a
financial instrument for investment and innovation.

The final objective is the complete integration of the RPAS into the
European airspace [5]. From this point of view, the security is a vital aspect
and the RPAS control systems need to be improved as they need to deal
with changing environments and with unforeseen situations. In general, the
control systems need to be improved in order to guarantee some security
standards and, in this sense, there is still some aspects that need to be
solved.

The interest that the scientific community has in this field can be verified
by the large number of papers and studies that have been published. Also,
there are a large number of regular conferences and mono-graphic studies
involving this area:

� 2015: 3rd Workshop on Research, Education and Development of Un-
manned Aerial Systems. (http://eventegg.com/red-uas-2015/).

� 2015/2016: International Conference on Unmanned Aircraft Systems.
(http://www.uasconferences.com/).

� UAV-g 2015 Conference: International Conference on Unmanned Aerial
Vehicles in Geomatics. (www.uav-g-2015.ca/)

Specifically, there exists two important trending research topics:

� Development of new control strategies which are capable of rejecting
unmodelled external disturbances.

� Development of new techniques of sensor data fusion in order to obtain
robust and high quality measurements.

On the one hand, unmodelled external disturbances are really critical
in this kind of vehicles. They use to fly under changing conditions such as
wind or changes of weight. The on-board control needs to identify those
situations and it needs to act as fast as possible in order to compensate for
those disturbances. If the flight control system is not able to do that, the
security requirements can not be warranted.

On the other hand, sensor fusion techniques are a powerful tool in order
to improve the physical limitations of sensors (like random noise, incorrect
measures, random biases, etc).
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1.2 Objectives

As it has been mentioned. This work has three main objectives:

1. Describe and understand the use of quaternions as a mathematical
tool for the RPAS attitude control.

2. To propose a new control strategy based on quaternions and Active
Disturbance Rejection Control (ADRC). This control strategy will be
able to deal with large external and unmodelled uncertainties.

3. To program a sensor fusion technique in order to get real-time quater-
nion measurements from low-cost sensors.

1.3 Results

At the end of the work it can be said that the three objectives have been
properly completed. A new control scheme for quadrotors has been devel-
oped (objective 2). The main contribution is a cascade control with an
external loop controlling the quadrotor kinematics taking into account the
precise and simple kinematic model based on quaternions. The internal loop,
designed by using the ADRC principles, considers the uncertain dynamic
model of the quadrotor and rejects the external disturbances. Altogether,
it allows a flight control of the quadrotor without singularities. The simula-
tions results are very encouraging. Currently, the practical implementation
of this control structure in a prototype is under development.

As a consequence of the development of this control strategy, a paper
[9] has been accepted for the International Conference on Information and
Automation (ICIA) and it will be published at the beginning of August,
2016.

Furthermore, the actual quadrotor platform has been provided with an
algorithm which is able to provide quaternion measurements at a high fre-
quency (objective 3). This algorithm receives as inputs the measurements
of low-cost gyroscopes, magnetometers and accelerometers and provides a
filtered and robust quaternion measurement.

1.4 Document structure

This document is structured as follows. Sections 2 and 3 corresponds to the
objective 2. In those sections the quaternions are presented as an alterna-
tive to represent the attitude of a rigid body. Its main properties are also
demonstrated. In Section 4 the new control scheme is developed. Some sim-
ulations are also included in order to show the control performance. This
section corresponds to the objective 3. In section 5 the algorithm which
provides quaternion measurements is described. MatLab and C++ code is
also included.
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2 Aerial vehicle attitude measure

The real situation where an automatically controlled aircraft is flying or
moving through the environment can be abstracted and it can be seen from
a pure mathematical point of view. It does not mind what kind of aerial
vehicle we are referring to. This abstraction permits to formulate the control
problem in a general way, and it is necessarily needed to develop controllers
for aerial vehicles.

In this section, the mathematical principles which are necessary to un-
derstand the attitude control problem for aerial vehicles are presented.

2.1 The Inertial, the Body and the Reference frames

The first step is to create a coordinate system which is attached to the aerial
vehicle. This frame is normally refereed as the Body, B, frame. It moves and
rotates with the aerial vehicle and, normally, all the onboard sensors (such
as gyroscopes, accelerometers or magnetometers) express the information in
B. Furthermore, the origin (0, 0, 0) needs to be coincident with the body
gravity center. Figure 1, shows an example of a Body frame attached to a
quadrotor aerial vehicle

Figure 1: Body reference frame attached to a quadrotor aerial vehicle.
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Since the aerial vehicle is moving and rotating in a fixed environment it
is important to define a fixed coordinate frame also. Such frame is called the
Inertial, I, frame. The x-axis of I normally points to the north, the y-axis
points to the east ant the z-axis points down. It is important to fix the
axis with this directions because they are aligned with the principal earth
magnitudes which are going to be measured (for example, the earth gravity
points down, the earth magnetic field points up/down and north, the GPS
measures are referred to north/south-east/west, etc). I can be placed in
any arbitrary position, but it is normally placed in the take off or landing
position.

Figure 2: Inertial and Body references frames.

B and I defines the position and orientation of the aerial vehicle. How-
ever, since the aircraft is considered to be an autonomous (or semiau-
tonomous) vehicle (i.e. it has an on-board control to perform autonomous
flight or autonomous auto-stabilization), another coordinate frame needs to
be defined. This coordinate frame is known as the Reference, R, frame.
The vehicle control algorithm will try to rotate and translate B in order to
make it coincident with R. The remote pilot will change the orientation
and position of R via a remote control station, or via way-points, or via a
trajectory generator, etc.

So from the point of view of the aerial control system, B has to follow an
(apparently) randomly changing reference frame R (in reality the reference
frame changes because the remote pilot changes it, but the on-board control
does not know it). Furthermore the on-board control is able to compute its
own position and orientation with respect to I, and it receives as an input
the position and orientation of R with respect to I.
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Figure 3: The on-board control forces the body frame to follow the reference
frame.

This document treats only the attitude problem. So it is assumed that
the control algorithm does not pay attention to the error in position and it
only follows the orientation of the reference frame. However, the attitude
control is the most important because, in many cases, the position control
needs (beforehand) the attitude control to force position movements.

2.2 Rotation Matrix and Euler angles

Figure 4 shows two different coordinate systems, (⃗i0, j⃗0, k⃗0) and (⃗i1, j⃗1, k⃗1).
So the first problem is how to represent the relative orientation between
them. The rotation matrix, R, contains the information of the relative
orientation between both frames. This matrix is constructed as follows.

i1

j1

k1

i0

j0

k0

Figure 4: Rotated Cartesian coordinate frame.
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R1
0 =

 i⃗1 · i⃗0 i⃗1 · j⃗0 i⃗1 · k⃗0
j⃗1 · i⃗0 j⃗1 · j⃗0 j⃗1 · k⃗0
k⃗1 · i⃗0 k⃗1 · j⃗0 k⃗1 · k⃗0

 =
(
n⃗1 n⃗2 n⃗3

)
(1)

where (·) denotes the dot product and n⃗1, n⃗2, n⃗3 represents the vectors
i⃗0, j⃗0, k⃗0 as seen from the coordinate frame (⃗i1 j⃗1 k⃗1), respectively. R im-
plicitly represents the relative orientation between both subsystems and it
also has the following properties:

� If v0 = (v0,x v0,y v0,z) is a vector expressed in the frame (⃗i0 j⃗0 k⃗0) and

v1 = (v1,x v1,y v1,z) is the same vector in (⃗i1 j⃗1 k⃗1), then v1 = Rv0.

� det(R) = 1

� R−1 = RT

The composition of rotations can be stated from the first property. If
R1

0 is a rotation matrix that transforms the coordinates of v0 from (⃗i0 j⃗0 k⃗0)

to (⃗i1 j⃗1 k⃗1); and if R2
1 transforms the coordinates of v1 from (⃗i1 j⃗1 k⃗1) to

(⃗i2 j⃗2 k⃗2), then R
2
0 = R2

1R
1
0 transforms v0 from (⃗i0 j⃗0 k⃗0) to (⃗i2 j⃗2 k⃗2).

Proof. In fact v1 = R1
0v0 and v2 = R2

1v1 = R2
1R

1
0v0 = R2

0v0.

Although R contains the information about the relative orientation be-
tween two coordinate frames, it does not have an intuitive interpretation.
For example, seeing at the following rotation matrix:

R =

 0.7036 0.7036 −0.0998
−0.7071 0.7071 0
0.0706 0.0706 0.995

 (2)

it is impossible to have an idea about the relative orientation between both
coordinate frames.

This fact motivates to express R as a composition of three elementary
rotations. An elementary rotation is a rotation that occur about one prin-
cipal axis of the coordinate frame. For example, considering (⃗i0 j⃗0 k⃗0) as
the reference frame, and rotating it along k⃗0, the resulting reference frame
(⃗i1 j⃗1 k⃗1) is related to (⃗i0 j⃗0 k⃗0) by an elementary rotation along k⃗0.

Any spatial orientation can be reduced to three consecutive elementary
rotations. For example, Figure 6 shows two consecutive elementary rota-
tions, the first one along k⃗0, and the second one along j⃗1. Each elementary
rotation defines an angle and, therefore, the spatial orientation between two
coordinate frames can be reduced to three angles. Moreover, it can be seen
that there is more than one possibility. For example, we can reach the same
final orientation with a sequence k⃗0, j⃗1 and i⃗2, or with another one (like k⃗0,
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i⃗1 and j⃗2). In fact, one can find at least twelve different sequences to arrive
to the same final position. Each combination defines different angles with a
different order.

i1

j1

k1

i0

j0

k0

�

j2

i2

k2

θ

Figure 5: Two consecutive elementary rotations. The first along k⃗0, and the
second along j⃗1.

In general for aerial vehicles, the sequence is chosen in the following
order: k⃗0, j⃗1 and i⃗2, defining the angles ψ (yaw), θ (pitch), ϕ (roll). Those
angles are known as the Euler angles. In Figure 6 it can be seen the first
two elementary rotations (the first one about k⃗0 and the second one about
j⃗1), the last one would be about i⃗2. Taking the definition of R, it can be
seen that:

R1
0 =

 i⃗1 · i⃗0 i⃗1 · j⃗0 i⃗1 · k⃗0
j⃗1 · i⃗0 j⃗1 · j⃗0 j⃗1 · k⃗0
k⃗1 · i⃗0 k⃗1 · j⃗0 k⃗1 · k⃗0

 =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 (3)

R2
1 =

 i⃗2 · i⃗1 i⃗2 · j⃗1 i⃗2 · k⃗1
j⃗2 · i⃗1 j⃗2 · j⃗1 j⃗2 · k⃗1
k⃗2 · i⃗1 k⃗2 · j⃗1 k⃗2 · k⃗1

 =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (4)

R3
2 =

 i⃗3 · i⃗2 i⃗3 · j⃗2 i⃗3 · k⃗2
j⃗3 · i⃗2 j⃗3 · j⃗2 j⃗3 · k⃗2
k⃗3 · i⃗2 k⃗3 · j⃗2 k⃗3 · k⃗2

 =

1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

 (5)

so if we consider (⃗i0 j⃗0 k⃗0) to be the Inertial frame, I, and considering
(⃗i3 j⃗3 k⃗3) to be the Body frame, B, we can find two intermediate coordi-
nate frames, v1, v2, that permits to get the global rotation as a succession of
three elementary rotations (I → v1 → v2 → B). The total rotation matrix,
RB

I , can be constructed as:
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RB
I = RB

v2R
v2
v1R

v1
I (6)

with (3)-(6) the rotation matrix, RB
I , can be expressed in terms of ψ, θ and

ϕ:

RB
I =

1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1



RB
I =

cos θ cosψ sinϕ sin θ cosψ − cosϕ sinψ cosϕ sin θ cosψ + sinϕ sinψ
cos θ sinψ sinϕ sin θ sinψ + cosϕ cosψ cosϕ sin θ sinψ − sinϕ cosψ
− sin θ sinϕ cos θ cosϕ cos θ


(7)

Equation (7) gives the rotation matrix assuming that we know the angles
ψ, θ, ϕ. Moreover, given ψ, θ, ϕ we can only obtain one (and only one)
rotation matrix. But this not happen with the inverse problem. The inverse
problem is to extract ψ, θ, ϕ from R and, as we are going to see, it does not
have a unique solution.

In fact, we have n1,x = cos θ cosψ, n1,y = cos θ sinψ, n1,z = − sin θ,
n2,z = sinϕ cos θ and n3,z = cosϕ cos θ. Therefore ψ, θ, ϕ can be recon-
structed as follows:

ψ = atan

(
ny,1
nx,1

)
θ = atan

 −nz,1√
n2x,1 + n2y,1

 ϕ = atan

(
nz,2
nz,3

)
(8)

And this problem, if cos θ ̸= 0 has two solutions: ψ, θ, ϕ and ψ+180, θ−
180, ϕ+ 180. Moreover, if cos θ = 0 ↔ θ = ±π/2 then:

RB
I =

 0 sin(ϕ− ψ) cos(ϕ− ψ)
0 cos(ϕ− ψ) − sin(ϕ− ψ)
±1 0 0

 (9)

which means that only ϕ − ψ can be observed. So ψ, θ, ϕ can not be re-
constructed at θ = ±π/2. This is known as the Euler singularity and it
is very important since it will constitute a mathematical singularity in the
kinematic model if we use Euler angles to represent it.

2.3 Quaternions

Quaternions where first proposed by Hamilton in 1844 [35] as an extension of
the imaginary numbers. He realized that complex numbers where a powerful
tool to manage rotations in 2D. Therefore, he supposed that a generalization
of the complex numbers would also result in a good tool to manage rotations
in 3D.
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2.3.1 Complex numbers to manage rotations in 2D

One of the most popular formulas in mathematics is the Euler’s formula:

eθi = cos(θ) + i sin(θ) (10)

being θ ∈ R and i the imaginary unit. The above expression can be proved
as follows:

Proof. The power series expansions of i are:

i0 = 1, i1 = i, i2 = −1, i3 = −i,
i4 = 1, i5 = i, i6 = −1, i7 = −i,

therefore, one can state:

eθi = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+

(iθ)6

6!
+

(iθ)7

7!
+ ...

= 1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+
iθ5

5!
− θ6

6!
− iθ7

7!
+ ...

=

(
1− θ2

2!
+
θ4

4!
− θ6

6!
+ ...

)
+ i

(
θ − θ3

3!
+
θ5

5!
− θ7

7!
+ ...

)
= cos(θ) + i sin(θ)

Equation (10) it is important for three reasons:

1. because it formally express the relationship between the exponential
of a pure imaginary number and the trigonometric functions.

2. because assuming (10) any complex number can be expressed in a
polar form.

Proof.
z = a+ bi = |z| cos(θ) + i|z| sin(θ) = |z|eθi (11)

being θ the angle that a+ bi form in the complex plane.

3. because with (10) the exponential of a general complex number can
be derived in an easy way.

Proof.
ez = ea+bi = eaebi = ea (cos(b) + i sin(b)) (12)
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Figure 6: Imaginary number in the complex plane.

The complex exponential defined by (12) also preserve some interesting
properties which are inherited from the real exponential. For example:

d

dt

(
ezt

)
= zezt (13)

Proof. (13) can be directly proved using the power expansion of the expo-
nential. But here we will prove it in a different way. First lets prove that

d

dt

(
eit

)
= ieit (14)

in fact, (14) can be developed as:

d

dt

(
eit

)
=

d

dt
(cos(t) + i sin(t))

= − sin(t) + i cos(t)

= i(cos(t) + i sin(t))

= ieit

therefore
d

dt

(
ezt

)
=

d

dt

(
e(a+bi)t

)
=

d

dt

(
eatebti

)
=

= aeatebti + bieatebti

= (a+ bi)e(a+bi)t

= zezt

A vector in R2, v = (v1, v2) can be considered as a complex number
v = v1 + iv2 = |v|eθi. If v is rotated an angle △θ, then the new coordinates,
v̄, are given by:

v̄ = |v|e(θ+△θ)i = |v|eθie△θi = ve△θi = vq (15)

12



where
q = e△θi = cos(θ) + i sin(θ) (16)

is the complex exponential of △θi and it can be defined as the rotation
operator. Equation (15) provides an easy way to perform a rotation of a
vector in R2, because the rotation is reduced to a single multiplication of
two complex numbers. Now lets show how this approach can be generalized
to manage rotations in 3D.

2.3.2 Definition of quaternion: sum and product of quaternions

This idea can be extended to 3-dimensional space by adding two imaginary
numbers to the system. The general expression of a quaternion is given by:

q = q0 + q1i+ q2j + q3k (17)

whose algebra is given by the Hamilton’s famous expression

i2 = j2 = k2 = ijk = −1 (18)

which imply that:

ij = k, jk = i, ki = j,
ji = −k, kj = −i, ik = −j

(19)

Note that with (18)-(19), a quaternion can be seen as an hipercomplex
number where the ”real” part is the complex number q0+ q1i and where the
”imaginary” part is another complex number q2 + q3i :

q = q0 + q1i+ (q2 + q3i)j

= q0 + q1i+ q2j + q3ij

= q0 + q1i+ q2j + q3k

The product rule of two quaternions is given by (18):

qp = (q0 + q1i+ q2j + q3k)(p0 + p1i+ p2j + p3k)

= q0p0 − (q1p1 + q2p2 + q3p3) + p0(q1i+ q2j + q3k) + q0(p1i+ p2j + p3k)+

+ (q2p3 − q3p2)i+ (q3p1 − q1p3)j + (q1p2 − q2p1)k

We can define a quaternion as a vector of R4 as follows:

q = q0 + q1i+ q2j + q3k = (q0, q1, q2, q3)
T = (q0, q̄)

T (20)

with q̄ = (q1, q2, q3)
T . Then, the sum and multiplication of two quaternions

can be expressed as:

q + p =

(
q0 + p0
q̄ + p̄

)
(21)

13



qp =

(
q0p0 − q̄T p̄

q0p̄+ p0q̄ + S(q̄)p̄

)
(22)

where

S(q̄) =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 (23)

2.3.3 Quaternion conjugate, norm and inverse

The conjugate of the quaternion (20) is defined as:

q∗ = q0 − q1i− q2j − q3k = (q0, −q̄) (24)

and it has the following properties:

1. (q∗)∗ = q

Proof. (q∗)∗ = (q0, −q̄)∗ = (q0, q̄) = q

2. q + q∗ = 2q0

Proof. q + q∗ = (q0, q̄) + (q0, −q̄) = (2q0, 0) = 2q0

3. q∗q = qq∗

Proof.
q∗q = (q0, q̄)(q0, −q̄)

=

(
q20 + q̄T q̄

q0q̄ − q0q̄ + S(q̄)q̄

)
=

(
q20 + q21 + q22 + q23

0

)
= qq∗

4. (pq)∗ = q∗p∗

Proof.

(pq)∗ =

(
q0p0 − p̄T q̄

−p0q̄ − q0p̄− S(p̄)q̄

)
(25)

q∗p∗ =

(
q0p0 − p̄T q̄

−p0q̄ − q0p̄− S(−q̄)p̄

)
=

(
q0p0 − p̄T q̄

−p0q̄ − q0p̄− S(p̄)q̄

)
= (pq)∗

(26)
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The norm of a quaternion is defined as |q| =
√
qq∗ =

√
q20 + q21 + q22 + q23

and it has the following property:

1. |qp|2 = |q|2|p|2

Proof.

|qp|2 = (qp)(qp)∗ = qpp∗q∗ = q|p|2q∗ = qq∗|p|2 = |q|2|p|2 (27)

The quaternion inverse is defined as:

q−1 =
q∗

|q|2
(28)

and it has the following property:

1. qq−1 = q−1q = 1

Proof.

qq−1 =
qq∗

|q|2
=

|q|2

|q|2
= 1

q−1q =
q∗q

|q|2
=

|q|2

|q|2
= 1

2.3.4 Quaternion exponential

The exponential function of a real number is defined as:

ex =
∞∑
n=0

xn

n!
(29)

with x ∈ R.
Equation (29) also defines the exponential for complex numbers or quater-

nions. As it has been mentioned in section 2.3.1, the Euler’s identity is
proved using (29), and with the Euler identity one can state the general
exponential function of any complex number (equation (12)). Here an addi-
tional step will be made and we will find the general form of the quaternion
exponential. Then we will see how the complex exponential and the real
exponential are particular cases of the quaternion exponential.

In order to get the expression of the quaternion exponential, one could
directly substitute x by a quaternion q = q0 + q1i + q2j + q3k in (29) and
should operate with the rules defined by (18). But if this is difficult even if
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we consider x to be just complex number, trying to directly substitute x by
q and operate this is just a non-viable way.

Instead, let us take a different approach. It is known that if x is substi-
tuted by qt in (29), then it is verified that

d

dt

(
eqt

)
= qeqt (30)

so p(t) = eqt is the solution of the following quaternion differential equation{
ṗ = qp
p(0) = (1, 0, 0, 0)

(31)

and, therefore, the quaternion exponential must take the following form:

p(t) = eqt = eq0t



cos(|q̄|t)
q1

|q̄|
sin(|q̄|t)

q2

|q̄|
sin(|q̄|t)

q3

|q̄|
sin(|q̄|t)


(32)

Proof. If p(t) = (p1(t), p2(t), p3(t), p4(t))
T , then ṗ(t) = (ṗ1(t), ṗ2(t), ṗ3(t), ṗ4(t))

T .
Applying the Laplace transform to ṗ(t) we have that

L{ṗ(t)} (s) = (sp1(s)− 1, sp2(s), sp3(s), sp4(s))
T

= sP (s)− 1

with 1 = (1, 0, 0, 0)T . The quaternion product qp given by (22) can also be
written as:

qp =


q0p0 − q1p1 − q2p2 − q3p3
q0p1 + q1p0 + q2p3 − q3p2
q0p2 − q1p3 + q2p0 + q3p1
q0p3 + q1p2 − q2p1 + q3p0


it can be seen that each element of qp is linear on pi, therefore

L{qp} (s) = qP (s)

so applying the Laplace transform to (31) leads to

L{ṗ(t)} (s) = L{qp} (s)
sP (s)− 1 = qP (s)

(s1− q)P (s) = 1

P (s) = (s1− q)−1
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the quaternion inverse is given by (28). It is easy to see that

P (s) = (s1− q)−1 = (s− q0 − q1i− q2j − q3k)
−1

=
s− q0 + q1i+ q2j + q3k

(s− q0)2 + q21 + q22 + q23

=
s− q0 + q1i+ q2j + q3k

(s− q0)2 + |q̄|2

=



s− q0
(s− q0)2 + |q̄|2

q1
|q̄|

· |q̄|
(s− q0)2 + |q̄|2

q2
|q̄|

· |q̄|
(s− q0)2 + |q̄|2

q3
|q̄|

· |q̄|
(s− q0)2 + |q̄|2


applying the inverse Laplace transformation results in the equation (32):

eqt = L−1 {P (s)} = eq0t



cos(|q̄|t)
q1

|q̄|
sin(|q̄|t)

q2

|q̄|
sin(|q̄|t)

q3

|q̄|
sin(|q̄|t)



If we do u = 1/|q̄| (q1i+ q2j + q3k), the quaternion exponential can be
expressed as:

eq = eq0 (cos(|q̄|) + u sin(|q̄|)) (33)

which is a beautiful generalization of the complex exponential (12). It can
be seen that for the particular case when q2 = q3 = 0, then (33) leads to (12).
Moreover, if q = u is considered as a pure unit quaternion (q0 = 0, |q| = 1),
then it is obtained the generalized Euler identity:

eθu = (cos(θ) + u sin(θ)) (34)

with θ ∈ R.

2.3.5 Quaternion as a rotator operator

If we have an arbitrary vector in the space, x, and we rotate it an angle θ
about an axis u, the new coordinates of the rotated vector are:

x′ = x∥ + x⊥ cos θ + (u× x) sin θ (35)
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Figure 7: Rotation of a vector about an arbitrary axis. (Extrated from [36]).

where x∥ and x⊥ are the components of x which are parallel and perpen-
dicular to u, respectively.

Proof. The vector x can be decomposed into a part x∥ parallel to u and a
part x⊥ perpendicular to u.

x = x∥ + x⊥

where
x∥ = u(∥ x ∥ cos θ) = uuTx

x⊥ = u× x

obviously, the parallel part does not rotate. So the rotation only changes
x⊥. If we create a new orthogonal basis (e1, e2) being

e1 = x⊥

e2 = u× x⊥ = u× x

then the rotated vector can be expressed as

x′
⊥ = e1 cos θ + e2 sin θ = (x⊥) cos θ + (u× x) sin θ

and therefore

x′ = x∥ + x′
⊥ = x∥ + x⊥ cos θ + (u× x) sin θ (36)

The same operation can be performed using quaternions and the general-
ized Euler identity (34). Let us express the unitary axis u as u1i+u2j+u3k,
and the rotation angle as θ. Then, we can build the rotation quaternion:

q = eu(θ/2) = cos(θ/2) + u sin(θ/2) (37)

and if we express the vector x as a pure quaternion, x = x1i + x2j + x3k,
then

x′ = qxq∗ (38)
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Proof. One just need to operate (37)-(38) and it will be found that

x′ = qxq∗ = x∥ + x⊥ cos θ + (u× x) sin θ

So given a vector v we can rotate it about an axis just by applying
(38), which is simply a quaternion multiplication (involving scalar multipli-
cations). So the quaternion encodes the same information as the rotation
matrix.

Equation (38) performs the rotation of the vector. That means that if
we want to rotate a single vector, v, an angle θ about an axis, u, we can
build the rotation quaternion as q = eu(θ/2) and then we can apply (38).
But sometimes is better to codify with the quaternion the rotation of the
whole reference frame and not a single vector. The difference can be seen
in Figure 8, where the quaternion q represents a rotation of θ = 90◦ about
k⃗0. If the quaternion represents a rotation of the coordinate frame, then the
vector ”sees” the opposite rotation. And if we want to represent the vector
in the other reference frame, the equation (38) needs to be changed by

v′ = q∗vq (39)

If we have a vector v0 expressed in the coordinate frame (⃗i0, j⃗0, k⃗0), and
if such coordinate frame is rotated by q0 leading to a second coordinate
frame (⃗i1, j⃗1, k⃗1), then the coordinates of v0 expressed in (⃗i1, j⃗1, k⃗1) are:

v1 = q∗0v0q0

therefore, if (⃗i1, j⃗1, k⃗1) is rotated again by q1 leading to (⃗i2, j⃗2, k⃗2), then
the coordinates of v0 expressed in (⃗i2, j⃗2, k⃗2) are:

v2 = q∗1v1q1 = q∗1q
∗
0v0q0q1 = (q0q1)

∗v0(q0q1) (40)

the quaternion q = (q0q1) represents the global rotation, and it encodes
information of the axis and the angle in order to go from (⃗i0, j⃗0, k⃗0) to
(⃗i2, j⃗2, k⃗2). Equation (40) represents the quaternion version of the compo-
sition of rotations.
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Figure 8: Quaternion as rotation operator. Rotating the vector or the frame.
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3 Derivation of the quadrotor attitude kinematic
model

In this section we derive the attitude kinematics. The kinematics relates
how the body angular velocity change the attitude measure. As it has been
mentioned in Section 2, an aerial vehicle can be interpreted as a coordinate
frame, B, which is rotated with respect to the inertial frame, I. This relative
orientation can be described by the Euler’s angles or by a single quaternion.
The question now is: if we know the instant angular velocity, Ω, of B, can
we know the rate of change (d/dt) of the Euler’s angles or the quaternion?.
This relationship corresponds to the kinematic model of the aerial vehicle
and, in this section, we will derive this expression for each case.

3.1 The Euler-based kinematic model and its singularities

In Section 2 it was shown that between B and I there were two intermediate
frames: v1 and v2. Those intermediate frames exist because the Euler angles
codify three consecutive rotations. The first one, ψ, transforms I to v1
(R → v1). The second one, θ, transforms v1 → v2 and the last one, ϕ,
transforms v2 → B.

The rotation matrix of each frame with respect to its previous is given
by (3)-(5), and the total rotation matrix is given by (7). The relationship
between the Euler angles and the angular velocity, Ω, is not evident because
these quantities are defined in different frames. Ω is defined in B, ϕ is defined
in v2, θ is defined in v1 and ψ is defined in I.

The aforementioned relationship is given by:ϕ̇θ̇
ψ̇

 =

1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) sec(θ) cos(ϕ) sec(θ)

 · Ω (41)

Proof. To prove the above expression we just need to express all the mag-
nitudes in B.

Ω =

ϕ̇0
0

+RB
v2(ϕ)

0

θ̇
0

+RB
v2(ϕ)R

v2
v1(θ)

0
0

ψ̇


=

ϕ̇0
0

+

1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

0

θ̇
0

+

+

1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

0
0

ψ̇
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Figure 9: The body frame, B = (i1, j1, k1), rotates with respect to I =
(i0, j0, k0) with its own angular velocity Ω.

operating we get:

Ω =

1 0 − sin(θ)
0 cos(ϕ) sin(ϕ) cos(θ)
0 − sin(ϕ) cos(ϕ) cos(θ)

ϕ̇θ̇
θ̇


and, inverting the matrix one gets (41).

Note that (41) is not defined in θ = π/2. The singularity remains in
the kinematic model. So one needs to be careful with the singularity if the
control is based on the Euler-based kinematic model.

3.2 The quaternion-based kinematic model

If we have two coordinate frames, B = (i1, j1, k1) and I = (i0, j0, k0), as
depicted in Figure 9. The relative orientation between them can be defined
by a rotation θ about an axis u. This relative orientation can be codified
by a quaternion, q, by means of the quaternion exponential as it has been
mentioned in section 2.3.4:

q = eu
θ
2 = cos

(
θ

2

)
+ u sin

(
θ

2

)

If B is rotating with an angular velocity Ω̄ = Ωxi+Ωyj+Ωzk (expressed
in I), then, the following expression holds:

q̇ =
1

2
Ω̄q (42)

Proof. At time t the relative orientation is described by q(t). After some
time △t we have q(t+△t). This extra rotation is about the instantaneous
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axis Ω̂ = Ω̄/∥Ω̄∥ through an angle △θ = ∥Ω̄∥△t. This change of orientation
can be also described by a quaternion.

△q = cos

(
△θ
2

)
+ Ω̂ sin

(
△θ
2

)
(43)

so, the rotation at t +△t is described by a quaternion sequence: q(t),△q.
Therefore:

q(t+△t) = △qq(t) (44)

So at this point we are able to apply the definition of the time derivative

q̇(t) = lim
△t→0

q(t+△t)− q(t)

△t
(45)

being

q(t+△t)− q(t) =

(
cos

∥Ω̄∥△t
2

+ Ω̂ sin
∥Ω̄∥△t

2

)
q(t)− q(t)

= −2 sin2
∥Ω̄∥△t

4
q(t) + Ω̂ sin

∥Ω̄∥△t
2

(46)

the first term is of higher order than the second one, so it goes to zero. Then
we have:

q̇(t) = lim
△t→0

q(t+△t)− q(t)

△t

= Ω̂ lim
△t→0

sin(∥Ω̄∥△t/2)
△t

q(t)

= Ω̂
∥Ω̄∥
2

cos

(
∥Ω̄∥t
2

)∣∣∣∣
t=0

q(t)

=
1

2
Ω̄(t)q(t)

(47)

Normally, the angular velocity is expressed in B and not in I. In that
case we can do Ω̄ = qΩq∗, and substituting in (47) we have

q̇ =
1

2
qΩ (48)
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4 Quadrotor attitude control

The quadrotor model can be developed using either Euler angles or quater-
nions. Both approaches have been widely studied in the literature over the
last decades. For example, a detailed description of the Euler-based model
and how it is derived from basic physical laws can be found in [12]. How-
ever, it is known that the Euler-based model is strongly non-linear and it
has a singularity in π/2. For those reasons, the quaternion approach has
become increasingly important as it eliminates the singularity and notably
reduces the non-linearities. Many quaternion-based controllers have been
proposed for quadrotors (see [11, 15, 17–22]). That is because quaternions
are an excelent tool for managing 3-D space rotations and they have a direct
application in quadrotor control. Quaternions were first proposed by Hamil-
ton in 1843 and, since then, its algebra and properties has been extensively
developed [13,14,27].

The quadrotor model can be interpreted as a cascade connection between
two subsystems: the dynamic one and the kinematic one. The dynamics
depends on physical parameters and describes how the control inputs (and
other disturbances) change the body angular velocity. The kinematics do not
depend on any physical parameter and simply relates the attitude variation
with the angular velocity [16]. This decomposition suggests that a natural
way to perform control is to develop a cascade control so that one control
loop is designed for each subsystem. The cascade control approach has been
explicitly [11] or implicitly [18, 20, 21] mentioned in the literature and it
is possible as far as the angular velocity and the attitude quaternion are
available measurements.

Three important problems in the quadrotor control are: parameter iden-
tification, non-linearities and external disturbances. Several control schemes
have been proposed to solve these problems, but only a few treat them alto-
gether. For example, a quaternion-based non-linear control law is proposed
in [18] demonstrating exponential convergence, but it is assumed that the
model is perfectly known and it does not take into account any model mis-
match. In [15], the model uncertainties and external disturbances are con-
sidered as an input equivalent disturbance and are compensated, but small
error angles are assumed. In [22], an extended observer is designed to esti-
mate and compensate for a class of time-varying external disturbances and
it is proved to be convergent, but perfect model matching is also assumed.
In [21], a control solution with disturbance rejection where the disturbances
and model mismatches are estimated by a Nonlinear Disturbance Observer
(NDOB) is proposed. Other interesting studies have been also developed.
For instance, in [16], many control schemes based on Sliding Mode Control
(SMC) and Extended State Observer (ESO) (among others) are proposed
for different aerial vehicles. In this document, a simple controller that is ca-
pable of solving the three aforementioned problems is proposed. This control
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scheme is based on the properties of quaternions to manage space rotations
and in some theoretical results of the Active Disturbance Rejection Con-
trol (ADRC) to deal with external disturbances, non-linearities and model
uncertainties.

The ADRC was firstly proposed by Han [23, 24] with the aim of solv-
ing the main disadvantages of traditional PID. It is mainly composed of
three elements: a Tracking-Differentiator (TD), an Extended State Observer
(ESO) and a state-feedback control law. As it was proposed, the ESO and
the feedback control law could be non-linear functions. However, important
theoretical analyses have been developed for the particular case when the
ESO is a reduced-order linear ESO (RLESO), and when the state feedback
is also linear [25]. For that particular case, the input-output stability can
be analyzed by the Xue and Huang’s theorem [26]. In this document, a
RLESO-based linear ADRC (LADRC) is proposed to control the quadrotor
dynamic system.

This section is structured as follows. In Section 4.1, the whole quadrotor
model is introduced and discussed. The proposed control scheme is devel-
oped in Section 4.2. Some simulations are presented in Section 4.3 in order
to illustrate the closed-loop control performance.

4.1 Quadrotor Model

The quadrotor model can be seen as the interconnection of two subsystems:
the dynamic one and the kinematic one. In this document, for control pur-
poses, both subsystems are treated separately in order to develop a specific
controller for each one of them.

4.1.1 Kinematic Model

A quaternion q ∈ R4 is composed of a scalar term q0 ∈ R, a vector part
q̄ ∈ R3, and it is defined by q = (q0, q1, q2, q3)

T = (q0, q̄)
T . As it has

been mentioned in Section 2.3.5, it is well known that the orientation of
two reference frames can be expressed as a single rotation θ along a unitary
axis u ∈ R3. The quaternion encodes information about such rotation.
Specifically, it can be expressed as

q =

(
q0
q̄

)
=

(
cos(θ/2)

sin(θ/2) · u

)
= eu(θ/2) (49)

From (49), it follows that ∥q∥ = 1 and hence q is referred to as a unit
quaternion. Furthermore, it can be seen that −1 ≤ q0 ≤ 1, however it is
certified that (q0, q̄) and (−q0, −q̄) correspond to the same physical point.
So q0 is chosen to be always positive (0 ≤ q0 ≤ 1). In what follows, qji
denotes the quaternion containing the rotation (θ, u) that, applied to the
reference frame i, makes it coincident with the frame j.
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Let us denote the inertial and body-fixed reference frames by I and B,
respectively. In Section 3.2 it has been demonstrated that the quadrotor
kinematics can be written as:

q̇BI =
1

2
qBI ⊗ wb (50)

where wb = (0, Ωb)
T ∈ R4 is a quaternion associated to the body angular

velocity, Ωb, and ⊗ denotes the quaternion product rule which it has been
also defined in Section 2.3.2.

The quaternion product in (50) can be expressed in the following matrix
form:

q ⊗ w =

(
−q̄T

q0 · I3x3 + S(q̄)

)
· Ω (51)

where S(·) is the skew-symmetric operator

S(q̄) =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 (52)

Equation (50) represents the quadrotor kinematic model with respect
to the fixed inertial reference frame, I. However, in order to develop a
more general kinematic model, in this document is assumed that the desired
orientation of the vehicle is given by a feasible trajectory qRI (t) of a virtual
desired reference frame R, which also must satisfy.

q̇RI =
1

2
qRI ⊗ wd (53)

where wd = (0, Ωd)
T , and Ωd(t) is the angular velocity of the desired refer-

ence frame.
The relative orientation error between B and R can be obtained as a

composition of rotations [14,27]:

qBR = (qRI )∗ ⊗ qBI (54)

where (·)∗ denotes the quaternion conjugate. Equation (54) gives qBR which is
a measure of the quadrotor attitude, B, with respect to the desired reference
frame R.

It can be proved, [19], that using (50), (53), (54) and the derivative
product rule, the following differential equation holds:

q̇BR =
1

2
qBR ⊗ w̃ (55)

with w̃ = (0, Ω̃) = wb − (qBR)
∗ ⊗ wd ⊗ qBR.
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Equation (55) represents the complete kinematic model of the quadrotor.
It should be mentioned that in the particular case when the desired reference
is fixed (wd = 0), the model (53) is null and the models (50) and (55) are
equivalent.

In what follows, in order to simplify notation, qBR, q
B
I and qRI are re-

spectively referenced as qe, qb and qd, denoting the error, body and desired
attitudes.

4.1.2 Dynamic Model

The quadrotor rotational dynamics is described by the Newton’s second law,
which is given in its simplest form by

Ω̇b = I−1
cm · τ(t) (56)

where Ωb ∈ R3 is the angular velocity, τ ∈ R3 is the total torque acting on
the vehicle and Icm is the inertia matrix, which is considered to be diagonal.

It is well known that, for a quadrotor, τ(t) can be expressed as the sum of
the torques produced by: the propellers, the Coriolis term, and the gyroscop-
ics and aerodynamics effects [15, 17, 18]. According to this decomposition
τ(t) can be expressed as:

τ(t) =M · u− Ωb × IcmΩb −Ga(t)− τaero(t) + p(t) (57)

whereM = diag{m11,m22,m33} is a matrix relating the torque with the mo-
tors speed, u ∈ R3, and, Ga and τaero are the gyroscopic and aerodynamic
torques, respectively. The term p(t) represents other unknown external dis-
turbances (like wind gusts) and unmodeled dynamics.

The terms Ga and τaero are usually expressed as:

Ga =
∑4

i=1 Ir(Ωb × ez)(−1)i+1wi (58)

τaero(t) = 1/2
(
ρCxW

2
x ρCyW

2
y ρCzW

2
z

)T
(59)

where Ir ∈ R3x3 is the rotors inertia matrix, ez = (0, 0, 1)T , wi ∈ R3 is the
rotors angular velocity and ρ, Ci, Wi,∈ R, i = x, y, z respectively are the air
density, aerodynamic coefficients and the quadrotor velocity with respect to
the air.

Although (57)-(59) provide a complete description of the dynamics, it
should be remarked that none of its terms is accurately known. For example,
the matrix M and τaero depend on aerodynamic coefficients that are very
difficult to model. The term Ga depends on some rotors parameters which
also are unknown. The external disturbances, p(t), are obviously unknown.
Even the Coriolis term is uncertain because it depends on the inertia matrix
which is uncertain too.
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In the light of the arguments raised above, it is of dubious interest to
develop control laws which rely on the accurate knowledge of these param-
eters. Instead, let us use (56)-(57) to rewrite the quadrotor dynamic model
as

Ω̇b(t) = d(t) + f(Ω, t) +Bu(t) (60)

where d(t) = I−1
cmp(t) and B = I−1

cmM = diag{b1, b2, b3}. f(Ω, t) is a lumped
term that contains the rest of the unknown dynamics:

f(Ω, t) = −I−1
cm [Ωb × IcmΩb +Ga(t) + τaero(t)] (61)

The dynamic control should drive the quadrotor (60) to follow a given
reference trajectory, Ωr(t). Therefore, for control design purposes it is help-
ful to define the error model as x1 = Ωb − Ωr. Differentiating x1 leads
to:

ẋ1 = d̃(t) + f(Ω, t) +Bu(t) (62)

where Ω̇r is considered as an unknown disturbance and thus d̃(t) = d(t)−Ω̇r.
The model (62), which retains the information of the certainly known

dynamics, will be used for control design purposes.

4.2 Proposed Control Scheme

The proposed control scheme (as depicted in Figure 10) consists of a cascade
connection between two independent controllers, which are developed next.

Ωr
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control

Ωb

qb

T
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to
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kinematic
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Figure 10: Proposed control scheme

4.2.1 Kinematic Loop

The outer loop consists of a non-linear quaternion-based control law that
solves the general attitude kinematic control problem. It takes qd, wd, qb
as inputs, and generates a reference angular velocity, Ωr, for the dynamic
control system. The pure attitude kinematic control problem neglects the
system dynamics, that is, it is assumed that Ωb tracks Ωr instantly (Ωb =
Ωr). This problem can be stated as:

29



Problem 1: Given a solid (B), in an arbitrary initial orientation, which
can be rotated with an angular velocity Ωb satisfying (50), and a given a
desired reference frame (R) which freely rotates satisfying (53); find a control
law Ωb(qb, qd,Ωd) such that the error between them (55) is driven to qe =
(1, 0, 0, 0).

Theorem 1. If measures qb, qd, and Ωd (or q̇d) are available, the follow-
ing control law solves the Problem 1 and the attitude error, qe, is exponen-
tially convergent to (1, 0, 0, 0):

wd′ = (qe)
∗ ⊗ wd ⊗ qe = (0, Ωd′)

T

Ωb = −kkq̄e +Ωd′
(63)

Proof. As wb = (0, Ωb)
T and wd′ = (qe)

∗ ⊗ wd ⊗ qe = (0, Ωd′)
T , then wb −

wd′ = (0, Ωb − Ωd′)
T = (0, Ω̃)T . Therefore Ω̃ = Ωb − Ωd′ . In order to to

demonstrate that the system (55) is convergent to (1, 0, 0, 0)T the following
Lyapunov candidate function is considered:

V = (1− qe,0)
2 + (q̄e)

T q̄e ≥ 0 (64)

Where V = 0 if, and only if, qe,0 = 1 and q̄e = 0. With the quaternion
product matrix representation (51), and model (55) its time-derivative takes
the form:

V̇ = (1− qe,0) (q̄e)
T Ω̃ + (q̄e)

T (qe,0I3 + S(q̄e))Ω̃

= (q̄e)
T Ω̃

Taking Ω̃ = −kkq̄e:
V̇ = −kk (q̄e)T q̄e ≤ 0 (65)

So under Ω̃ = −kkq̄e ⇔ Ωb = −kkq̄e + Ωd′ , it can be concluded that
the system is asymptotically stable. Now, lets prove the exponential con-
vergence. Since 0 ≤ qe,0 ≤ 1 and ∥q∥ = 1, V and V̇ can be expressed
as:

V = 2(1− qe,0) ≤ 2 (66)

V̇ = −kk(1− q2e,0) (67)

with equations (66)-(67) the Lyapunov function can be written in the form:

V̇ = −kkV + kk
V 2

4
= −kkV + g(V )

g(V ) is upper bounded by (kk/2)V in the region V ≤ 2, so:

V̇ = −kkV + g(V ) ≤ −kkV +
kk
2
V

≤ −kk
2
V

30



Therefore

V (t) ≤ V (0) · e−
(

kk
2
·t
)

(68)

and the exponential convergence is demonstrated.

Remark 1. The control action produced by (63) will be used as the
reference input for the dynamic control system. In order to make this con-
nection achievable, the dynamic loop needs to be faster (high bandwidth)
than the kinematic loop. So control parameters needs to be chosen for that
purpose. If this condition is satisfied, the dynamic loop will force Ωb → Ωr

sufficiently fast in order to assure Ωb ≈ Ωr.

4.2.2 Dynamic loop

The inner loop consists of a complete LADRC structure that takes the out-
put of the kinematic controller (Ωr) and the angular velocity measurement
(Ωb) as inputs, and generates the motors speed, u. The controller consists
of a a RLESO, a new proposed TD valid for first-order systems and a linear
feedback (Figure 11). It is proved next that the LADRC drives (62) to zero
rejecting external disturbances and model uncertainties.

Let us define B̄ = diag{b̄1, b̄2, b̄3} as an estimation of B. Since B, B̄
are diagonal, the system (62) can be decoupled by each axis. Therefore
the design of the LADRC can be reduced to a single axis, the results being
equal for the other two. For the axis i = x, y, z and including the unknown
disturbances as an extended state, the model (62) becomes:

ẋ1,i = x2,i + b̄iui
ẋ2,i = hi(Ωb,i, ui, t)
ym,i = x1,i = Ωb,i − Ωr,i

(69)

where x1,i ∈ R and x2,i = d̃i(t)+fi(Ωb,i, t)+(bi−b̄i)ui ∈ R being hi(Ωb,i, ui, t)
its time derivative.

Since ym,i = x1,i is available, only the estimation of x2,i is needed. So
the following RLESO [26] will be used:{

ż2,i = −βz2,i − β2x1,i − βb̄iui
x̂2,i = z2,i + βx1,i

(70)

whose characteristic polynomial is (s + β) being β > 0 the bandwidth of
the RLESO. The initial condition must be chosen to force x̂2,i(0) = 0, so:
z2,i(0) = −βx1,i(0).

The control law is designed to track the following exponential-convergent
system:

ẋ∗1,i = −kdx∗1,i (71)
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Figure 11: Block diagram of the LADRC structure.

being kd > 0 the feedback control gain.
For that purpose u is chosen to carry out the feedback linearization:

ui =
−kdx1,i − x̂2,i

b̄i
(72)

The main purpose of the TD is to act as a filter for the inputs in order to
reduce the input noise and to avoid overshoots in the control actions [23]. For
this work, the proposed TD is based on a system of the form ẋ = u, |u| < r
where u needs to be chosen such x(t) → xref (t) being xref the TD input.
For that purpose the following TD system is proposed:(

v̇1
v̇2

)
=

(
0 0
0 −β

)(
v1
v2

)
+

(
1 0
0 β

)(
uTD

Ω̇r,i

)
(73)

where v1 = Ω′
r,i, v2 = Ω̇′

r,i and the control action is chosen as uTD =
ξ(−kd(v1−Ωr,i)+v2, r), being ξ(x1, x2) a saturation function which returns
x1 if |x1| < |x2| or |x2|sign(x1) if |x1| ≥ |x2|.

Therefore, the TD receives as inputs the non-processed Ωr,i, Ω̇r,i and pro-
vides a filtered version Ω′

r,i, Ω̇
′
r,i satisfying that Ω′

r,i → Ωr,i and |uTD| ≤ r.
It is important to note that since Ωr,i may be non-continuous, it can be
no differentiable and Ω̇r,i may no exist so (73) needs to be implemented
in its discrete version, where Ω̇r,i can be always computed as Ω̇r,i(k) ≈
1
h(Ωr,i(k)− Ωr,i(k − 1)) being h the time period.

For the considered LADRC structure, the Xue and Huang’s theorem
assures the closed-loop stability if three assumption are fulfilled. Now, these
assumptions are analyzed for the quadrotor dynamic system considered.

A1: The discontinous points of d̃(t) represented as {ti}∞1 , ti < ti+1, are
all first class and there exist positive constants w1, w2, w3 such that:

sup
∀t

|d̃(t)| ≤ w1

sup
∀t ̸={ti}∞1

| ˙̃d(t)| ≤ w2

inf
∀i

{ti+1 − ti} ≥ w3
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A2: Ωb, B, B
−1 are bounded.

A3: The model error mismatch satisfies, for i = x, y, z.:

bi/b̄i ∈ [w4, w5] ⊂ (0, ∞)

If A1-A3 holds, then:
Theorem 2. (Xue and Huang [26]). For an initial condition |x1,i(0)| ≤

ρ̃0, there exist positives w
∗, ρ̃, η∗i , i = 1, 2, 3 which are dependent on ρ̃0, kd, wj , j =

1, 2, 3, 4, 5 and the boundedness of Ωb, such that the closed-loop system com-
posed of (69)-(72) satisfies ∀β ∈ [w∗, ∞]

sup
∀t

∥x1,i(t)∥ ≤ ρ̃

sup
∀t

∥∥x1,i(t)− x∗1,i(t)
∥∥ ≤ η∗1 max

{
ln(β)

β
,
1

β

}
∥x̂2,i(t)− x2,i(t)∥ ≤ η∗2

β
∀t∈

[
tj+η∗3 max

{
ln(β)

β
,0
}
,tj+1

)
(74)

Remark 2. Note that A1-A2 always hold in most quadrotor platforms.
Furthermore, since bi > 0 by definition, choosing b̄i > 0 assures A3 and,
therefore, the stability is guaranteed. The error between the system (69)
and the model reference (71) can be reduced by increasing β or kd.

Remark 3. The produced control action, ui, can be limited by smooth-
ing the input reference, Ω′

r. This can be done through the parameter r.

4.3 Simulation Results

To get a better insight into the proposal some simulations are presented. The
non-linear quadrotor model has been introduced accordingly to (60) with
B = diag(13.5, 13.5, 7). The disturbance term, f(Ωb, t), has been introduced
as in (61) where all the ”unknown” coefficients has been approximately
chosen to represent a real quadrotor.

4.3.1 Inner control loop

For the LADRC design an estimation of B is needed. This estimation has
been set to B̄ = diag(1, 1, 1) which represents a considerable modeling er-
ror. The feedback gain (71)-(72) is taken as kd = 5, and the observer (70)
bandwith β = 50. The TD (73) limitation parameter has been chosen to be
r = 1.

Figure 12 shows a comparison between the system (62) response, x1,i,
and the reference model (71), x∗1,i, when the system initial state is x1,i =
x∗1,i = −1.

In Figure 13, the TD (73) performance can be seen. The control system
will receive Ω′

r which is a smoothed version of the step Ωr. Therefore,
overshoots and high values in the control actions will be avoided.
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Figure 13: TD performance when a step is introduced to the system.

The whole dynamic system step response can be seen in Figure 14 where
the step reference value is Ωr = (1.25, 1, 0.75)T (rad/sec). It is important
to remark that three LADRC has been simulated in parallel to control the
three axis (i = x, y, z) of the quadrotor. As it is shown, the effect of the TD
on Ωb is present and, as a consequence, the control actions are well limited
as depicted in the middle plot. The third plot shows the total disturbance
in each axis and its estimation.
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Figure 15: Simulation of the pure kinematic control loop under (63).

4.3.2 Outer control loop

The pure kinematic closed-loop system has been simulated under (63) with
kk = 5. As it has been said, this ignores the system dynamics and it is
assumed that Ωb = Ωr. The results can be seen in Figure 15 where the tra-
jectory has been generated doing Ωd = sin(2t)(1, 1, 1)T and the initial condi-
tions have been set to qd(0) = (1, 0, 0, 0), qb(0) = (0.06, 0.48, 0.84, −0.24),
which corresponds to an initial attitude error of θ = 173.12 ◦.

Figure 16 shows the same simulation as in Figure 15 but the dynamics
has been considered. That means that the LADRC dynamic loop has been
incorporated to drive the angular velocity of the quadrotor, Ωb, in order
to follow Ωr. For this simulation, the LADRC parameters have been set
to: kd = 5, β = 50, r = 10. It can be seen how the assumption Ωr ≈ Ωd

approximately holds.
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Figure 16: Simulation of the global proposed control scheme.
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5 Obtaining quaternion measurements from sen-
sor observations

This section aims to solve an important problem involving quaternions,
which is how to obtain a real-time quaternion measurement from low-cost
sensors and employing C++ as programming language. This work is partic-
ularized for a quadrotor, but it can be generalized to any Remotely Piloted
Aircraft Systems (RPAS). The only restriction is that the RPAS needs to
be equipped with a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis
magnetometer.

Getting an accurate quaternion measurement is a problem which can
be divided into two steps. The first one is to get the attitude quaternion
from of the earth gravity and the earth magnetic field projections. This
problem is referred as the problem of attitude determination from vector
observations (also known as Wahba’s problem) [29, 30]. The second step is
to improve the quaternion measure by filtering techniques. For that purpose,
it is very common to design observers based on the kinematic model (48)
which greatly enhance the quality of the quaternion measure. Figure 17
shows a block diagram of the whole estimation process.

Magnetometer

Accelerometer

m=(mx,my,mz)

a=(ax,ay,az)

q
u
a
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n

e
s
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m
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q=(q0,q1,q2,q3)

Gyroscope
w=(wx,wy,wz)

F
il
te
r

q=(q0,q1,q2,q3)

Figure 17: Quaternion estimation form sensor data. Block diagram.

It is important to remark that the magnetometer needs to be calibrated
in the three axis and also needs to be placed far enough from potential
magnetic disturbances (motors, high currents,...), which could degrade the
local earth magnetic field.

This Section is structured as follows. First, as a 3-axis calibrated mag-
netometer is needed, in Section 5.1 an easy and accurate technique to carry
out the calibration with MatLab is explained. In Section 80 the Wahba’s
problem of attitude determination from vector observations is presented.
Also, the Davenport’s solution (also known as Davenport’s q-Method) is
explained. With the Davenport’s q-method we will be able to estimate the
quaternion measure from earth gravity and magnetic field projections. In
Section 5.3, a non-linear observer based on the kinematic model is presented
as a way of filtering the quaternion measure and estimating the gyroscope
biases. In Section 5.4, a MatLab and C++ code implementing the Dav-
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enport’s q-Method and the non-linear observer is given. The C++ code is
based on the Eigen library which greatly simplifies working with matrices
and quaternions. Finally, in section 5.5, some experimental results are pre-
sented in order to show the performance of the whole quaternion estimation
algorithm. Computational costs are also analyzed.

5.1 3-D magnetometer calibration

The magnetic field measures, as well as acceleration, needs to be normalized
to fit an unitary sphere centered at zero. By default, the magnetometer
raw measurements fit a 3-D ellipsoid (as the one depicted in Figure 18).
Additionally, the ellipsoid is not centered at zero and could be also rotated.

Figure 18: Ellipsoid.

If mraw = (mraw
x ,mraw

y ,mraw
z )T is the magnetic raw data coming from

the sensor, and m = (mx,my,mz)
T is the calibrated data which fits a unit

sphere, the relationship between them is given by:

m = E ·RT · (mraw − offset) (75)

where the offset is the position of the ellipsoid center, R is the rotation
matrix associated its principal axes, and E = diag(e1, e2, e3) is a scaling
factor in each axis.

In order to perform the calibration we need to find the values of E, R
and the offset. Here, for that purpose, a post-processing technique will be
used. That is, a big set of raw data points will be extracted from the aerial
vehicle via a .txt file and those points will be used to get the parameters by
least squares approximation.

In order to get an accurate calibration, the measurements needs to be
taken in all the possible 3-D orientations. So the vehicle needs to be rotated
in all directions when the data is being sampled. Figure 19 shows an example
of magnetic data acquisition.
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Figure 19: 3-D raw magnetic data acquisition.

5.1.1 MatLab code to get the calibration parameters

Here it is shown how to get the calibration parameters using MatLab and
its ellipsoid fit function [28].

1 %% Load magnet data . Saved as . txt f i l e
2 l oad Magnet ca l ib ra t i on Data
3 % Loads 3 ve c to r s : mx raw , my raw , mz raw .
4 % = 3−ax i s raw magnetometer reads .
5

6 %% Least squares e l l i p s o i d f i t t i n g
7 [ o f f s e t , radio , R, v , ch i2 ] = e l l i p s o i d f i t ( [ mx raw my raw

mz raw ] ) ; % ”help e l l i p s o i d f i t ” f o r more d e t a i l s
8

9 o f f s e t % E l l i p s o i d cente r .
10 R % Rotation matrix . We need to change the order o f columns in

R in order to get the h igher va lue s in the d iagona l .
11 E = diag ( [ 1 / rad io (1 ) 1/ rad io (2 ) 1/ rad io (3 ) ] ) % Sca l i ng f a c t o r .
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As an example, with the acquired data in Figure 19, and running the
MatLab code shown above, the obtained parameters are:

offset =
(
0.4045 −0.5655 0.0772

)T
(76)

R =

−0.9550 0.2965 −0.0109
0.2966 0.9529 −0.0641
0.0086 0.0644 0.9979

 (77)

radio =
(
165.75 163.69 148.84

)T
(78)

E =

0.006 0 0
0 0.0061 0
0 0 0.0067

 (79)

where the radio is the magnitude of the three ellipsoid axes.

5.1.2 Applying calibration parameters to magnet raw data

The following MatLab code (which is easy to implement in C++) applies
the calibration given by (75).

1 %% Load magnet data . Saved as . txt f i l e
2 l oad Magnet ca l ib ra t i on Data
3 % Loads 3 ve c to r s : mx raw , my raw , mz raw .
4 % = 3−ax i s raw magnetometer reads .
5

6 %% Correc t ion parameters
7 o f f s e t = [ 0 . 4 045 −0.5655 0 . 0 7 7 2 ] ;
8 R = [−0.9550 0 .2965 −0 . 0 1 0 9 ; . . .
9 0 .2966 0 .9529 −0 . 0 6 4 1 ; . . .

10 0 .0086 0 .0644 0 . 9 9 7 9 ] ;
11 E = diag ( [ 0 . 0 0 6 0 .0061 0 . 0 0 6 7 ] ) ;
12

13 %% Correc t ing data
14 f o r i =1:1 : s i z e (mx raw , 1 ) % The c a l i b r a t i o n i s app l i ed to a l l

po in t s
15 % Center ing the e l l i p s o i d at zero .
16 m(1 , i ) = mx raw( i ) − o f f s e t (1 ) ;
17 m(2 , i ) = my raw( i ) − o f f s e t (2 ) ;
18 m(3 , i ) = mz raw ( i ) − o f f s e t (3 ) ;
19

20 % Applying the i nv e r s e r o t a t i on .
21 m( : , i ) = R’*m( : , i ) ;
22

23 % Esca l ing axes to get a sphere .
24 m( : , i ) = E*m( : , i ) ;
25 end

The results can be seen in Figure 20, where all the points mraw have
been transformed to fit a unitary sphere.
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Figure 20: 3-D calibrated magnetic data.

5.2 Wahba’s problem

The unit vectors of the earth gravity, a = (ax, ay, az), and the calibrated
magnetic field, m = (mx,my,mz), contain information about the body atti-
tude. The question is if there is any way to determine the complete quadro-
tor attitude using these measurements. In fact, this is a famous problem
which was proposed in 1965 by Grace Wahba [29]. The Wahba’s problem
states that if we have a set of i measurable vectors (for example the grav-
ity and the earth magnetic field, or others) and, bi is the measurement of
the vector i in the body frame, and ri is the expected value in some ref-
erence frame; the problem is to find an orthogonal matrix R, satisfying
det(R) = +1, that minimizes the following loss function:

L(R) =
1

2

∑
i

ai|bi −Rri|2 (80)

where ai > 0 are weighting factors.
Note that R is the rotation matrix representing the body attitude with

respect to the reference frame, and |bi −Rri| is the error between the mea-
sured vector and the expected value. For example, the expected value of the
earth gravity in the inertial frame, I, is a = (0, 0, 1)T . If we measure a =
(0.707, 0.707, 0)T is because the body frame, B, is in a different orientation.
So we need to find the matrix R that makes R·(0, 0, 1)T ≈ (0.707, 0.707, 0)T .
The loss function (80) can also be written as:

L(R) = λ0 − tr(RBT ) (81)
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with
λ0 =

∑
i

ai (82)

and
B =

∑
i

aibir
T
i (83)

so finding the minimum of L(R) is equivalent to find the maximum of
tr(RBT ).

Problem (80)-(83) is a general problem and, depending on the aircraft
hardware, different kind of vectors bi, ri can be used. It is known that, at
least, two vectors are needed to solve it. So, for the quadrotor case, b1 and
b2 needs to be chosen as b1 = a, b2 = m. The expected values of a and b in
the inertial reference frame are r1 = (0, 0, 1)T , r2 = (0.401, 0, 0.916)T

5.2.1 Solution: Davenport’s q-Method

Many solutions have been proposed to Wahba’s problem [30], but Daven-
port’s solution is the unique which is useful due to its computational effi-
ciency.

He rewrited the rotation matrix in terms of a unit quaternion:

q =

(
cos(θ/2)

r̄ · sin(θ/2)

)
=

(
q0
qv

)
=

(
q0 q1 q2 q3

)T
(84)

R(q) = (q23 − |qv|2)I + 2qvq
T
v − 2q3[qv×] (85)

With such representation, as R(q) is a homogeneous quadratic function
of q, the trace can be written as:

tr(RBT ) = qTKq (86)

being

K =

(
S − Itr(B) z

zT tr(B)

)
(87)

S = B +BT (88)

z =
∑
i

aibi × ri =

B23 −B32

B31 −B13

B12 −B21

 (89)

The quaternion representing the optimal attitude which minimizes L(R)
is the eigenvector of K corresponding to the largest eigenvalue. That is, the
solution of:

Kqopt = λmaxqopt (90)

So finding the attitude which best fits with the measurements a, m is
reduced to find an eigenvector of a matrix. Unless many forms have been
proposed [30] to solve (90) in a recursive way (easy to program), here, in
section 5, it will be directly solved by means of Eigen C++ library.
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5.3 Improving measurement: Including gyroscopes

Equation (90) gives the optimal quaternion measure according to the infor-
mation contained in a and m. However, during flight, the motors generates
vibrations and, therefore, a and m are normally measurements with high
levels of noise. Thus, q would be also corrupted by noise.

In order to improve the quality of this measure, the gyroscopes informa-
tion can be used to filter it. But gyros are neither a perfect measure. They
are corrupted by biases that could cause estimation errors if they are not
taken into account.

For those reasons here it is proposed a non-linear observer based on the
quaternion kinematic model (48) which uses the quaternion measure gener-
ated by (90) and the gyroscopes in order to estimate the ”true” quaternion
attitude and the gyros biases.

5.3.1 Propagation of the quaternion-based kinematic model

As it has been mentioned, the quaternion-based kinematic model is given
by the following equation:

˙q(t) =
1

2
q(t)w(t) (91)

where q = (q0 q1 q2 q3)
T is the attitude quaternion, w = (0, Ω) = (0, Ωx, Ωy, Ωz)

T

is the quaternion associated with the angular velocity, Ω. The quaternion
product rule can is given by:

qp =


q0p0 − q1p1 − q2p2 − q3p3
q0p1 + q1p0 + q2p3 − q3p2
q0p2 − q1p3 + q2p0 + q3p1
q0p3 + q1p2 − q2p1 + q3p0

 (92)

Equation (91) can be used to propagate the attitude quaternion. For
that purpose, it is important to know what is the solution q(t) of (91). In
order to find the solution, let us state the following three lemmas:

Lemma 1. (Quaternion exponential (32)) The time-invariant quater-
nion differential equation q̇ = aq, with a = (a0 a1 a2 a3)

T = cte and the
initial condition q(0) = (1 0 0 0)T , has as unique solution q(t) = eat, being
eat the quaternion exponential function defined by:

eat =



ea0t cos(āt)

ea0t
a1

ā
sin(āt)

ea0t
a2

ā
sin(āt)

ea0t
a3

ā
sin(āt)


(93)

ā =
√
a21 + a22 + a23 (94)
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Lemma 2. If Φ(t) is the solution of the time-variant differential equation
q̇ = qa(t) with the initial condition (1 0 0 0)T ; then q(t) = q0Φ(t) is the
solution of q̇ = qa(t) with the initial condition q0.

Lemma 3. For the kinematic model (91), and considering w(t) = w =

cte, the exact solution is given by q(t) = q(t0) · e
1
2

∫ t
t0

wdt
= q(t0) · e

1
2
w(t−t0).

Proof. The proofs of the three Lemmas can be found in [32].

Note that the gyroscopes provide measures of Ω with a given period, T .
So for t ∈ [tk, tk+1), the equation (91) can be approximated as:

q̇ ≈ q · wk (95)

being wk constant in t ∈ [tk, tk+1). Therefore, by Lemmas 1-3, the following
recursive propagation law for the attitude quaternion can be proposed:

qk+1 ≈ qk · e
1
2
wkT (96)

Remark 1. Note that the equality is not strictly certain because the
gyroscopes only provide discrete information which is retained via a Zero
Order Hold (ZOH). So, during t ∈ (tk, tk+1) it is assumed that wk ≈ w(t).

Remark 2. If we had exact measures of wk we could estimate the
quaternion measures only with the gyroscopes. But the gyroscopes have
biases and, therefore, the recursive law (96) is not convergent. For that
purpose we need to construct an observer.

5.3.2 Non-linear observer

In [33,34] a non-linear observer based on (91) which is capable of estimating
the gyro biases (and it is proved to be exponentially convergent) was pro-
posed. In this document this observer will be employed in order to filter the
measure provided by (90).

Let us define q as the unit quaternion measure coming from (90), q̂ as
the unit observed quaternion, and q̃ = (q̂)∗ ·q = (q̃0 q̃)

T as the error between
them. The angular velocity measured by the gyroscopes, Ωg is corrupted by
biases. So it can be written as:

Ωg = Ω+ δΩ (97)

being Ω the true angular velocity and δΩ the true bias which is assumed to
be constant.

Therefore, the observed angular velocity, Ω̂, is defined as:

Ω̂ = Ωg − δ̂Ω (98)

where δ̂Ω is the observed bias.
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With the aforementioned definitions, the observer can be written as:

˙̂q =
1

2
q · (q̃)∗ ·

(
0

Ω̂ + k sign(q̃0)q̃

)
· q̃ (99)

˙̂
δΩ = −1

2
sign(q̃0)q̃ (100)

with k > 0.
If measures of q and Ωg are available at the same instant, and considering

the Lemmas 1-3, the following approximate recursive law can be stated in
order to implement the observer (99)-(100):

q̂k = q̂k−1 · e
T
2
rk−1 (101)

δ̂k,Ω = δ̂k−1,Ω − T

2
sign(q̃k−1,0)q̃k−1 (102)

q̃k = (q̂k)
∗ · qk (103)

Ω̂k = Ωk,g − δ̂k,Ω (104)

rk = (q̃k)
∗ ·

(
0

Ω̂k + k · sign(q̃k,0)q̃k

)
· q̃k (105)

5.4 Programming the quaternion estimator

In this section, a code example for the quaternion estimator described in
Sections 80-5.3 is given. This code is first given in MatLab language in
order to get a first insight, then a C++ version employing Eigen library is
also given. For the C++ code, computational costs are also analyzed.

5.4.1 MatLab code

The following MatLab code gets the quaternion measure, q, by the Daven-
port’s q-method (described in Section 80). The measures a, m are supposed
to be loaded from a file, and m is also supposed to be calibrated in the three
axis as it has been shown in Section 5.1.

1 l oad data % Load obse rvat i on data .
2 % Gives a ( i , : ) =(ax ( i ) , ay ( i ) , az ( i ) )
3 % m( i , : ) =(mx( i ) ,my( i ) ,mz( i ) )
4 % w( i , : ) =(wx( i ) ,wy( i ) ,wz( i ) )
5

6 %% I n i t i a l i z a t i o n s
7 b1 = [0 0 1 ] ’ ;
8 %expected a c e l e r a t i o n in the I n e r t i a l r e f e r e n c e frame
9 b2 = [ 0 . 4 0 0 . 9 1 6 ] ’ ;

10 %expected normal ized magnetic f i e l d in the I n e r t i a l r e f e r e n c e
frame

11 a1 = 1 ; a2 = 1 ;
12 %weighing f a c t o r s
13
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14 %% Get quatern ion measure from vecto r ob s e rva t i on s
15 q = ze ro s ( s i z e ( t , 1 ) , 4 ) ;
16 f o r i =1:1 : s i z e ( t , 1 )
17 % obse rvat i on ve c to r s
18 r1 = a ( i , : ) ’ ;
19 r2 = m( i , : ) ’ ;
20 % quatern ion measure
21 q ( i , : ) = Davqmethod ( r1 , r2 , b1 , b2 , a1 , a2 ) ;
22 end

1 % Gives the quatern ion measure from acce l e romete r and
magnetometer ob s e rva t i on s .

2 %
3 % inputs : r i , bi , a i ; i =1 ,2.
4 % return : observed quatern ion
5

6 f unc t i on [ qobs ] = Davqmethod ( r1 , r2 , b1 , b2 , a1 , a2 )
7

8 B = a1*b1* r1 ’ + a2*b2* r2 ’ ; % ge t t i n g B matrix
9

10 % assembl ing K matrix
11 S = B + B’ ;
12 z = [B(2 , 3 )−B(3 , 2 ) ;B(3 , 1 )−B(1 , 3 ) ;B(1 , 2 )−B(2 , 1 ) ] ;
13 K = [ S − eye (3 , 3 ) * t r a c e (B) z ; z ’ t r a c e (B) ] ;
14

15 % ge t t i ng the maximum e igenva lue and i t s a s s o c i a t ed
e i g enve c t o r

16 [V,D] = e i g s (K) ;
17 f o r j =1:1 :4
18 landa ( j ) = D( j , j ) ;
19 end
20 f o r j =1:1 :4
21 i f (D( j , j ) == max( landa ) )
22 q (1 ) = V(4 , j ) ;
23 q (2 ) = −V(1 , j ) ; % We want the conjugated a t t i t ud e
24 q (3 ) = −V(2 , j ) ; % ( from i n e r t i a l to body )
25 q (4 ) = −V(3 , j ) ;
26 end
27 end
28

29 % q and −q r ep r e s en t the same phy s i c a l a t t i t ud e .
30 % We chose 0<= q <= 1
31 i f ( q (1 )<0)
32 q = −q ;
33 end
34

35 qobs = q ;
36

37 end

Next, this code is extended in order to incorporate the observer described
in Section 4. For that purpose the following functions need to be defined:
quaternion multiplication (qmult), quaternion conjugate (qconj ), quaternion
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exponential (qexp):

1 % Quaternion mu l t i p l i c a t i o n . r = q*p
2 f unc t i on [ r ] = qmult (q , p)
3 r (1 ) = q (1) *p (1) − q (2 ) *p (2) − q (3 ) *p (3) − q (4 ) *p (4) ;
4 r (2 ) = q (1) *p (2) + q (2) *p (1) + q (3) *p (4) − q (4 ) *p (3) ;
5 r (3 ) = q (1) *p (3) − q (2 ) *p (4) + q (3) *p (1) + q (4) *p (2) ;
6 r (4 ) = q (1) *p (4) + q (2) *p (3) − q (3 ) *p (2) + q (4) *p (1) ;
7 end

1 % Quaternion conjugate . con j q = (q ) *
2 f unc t i on [ con j q ] = qconj ( q )
3 con j q = [ q (1 ) −q (2 ) −q (3 ) −q (4 ) ] ;
4 end

1 % Quaternion exponent i a l .
2 f unc t i on [ eq ] = qexp (q )
3 sigma = q (1) ;
4 w1 = q (2) ;
5 w2 = q (3) ;
6 w3 = q (4) ;
7 exp q = ze ro s (1 , 4 ) ;
8

9 a = sq r t (w1ˆ2 + w2ˆ2 + w3ˆ2) ;
10 exp q (1 ) = exp ( sigma ) * cos ( a ) ;
11

12 i f ( a˜=0)
13 exp q (2 ) = exp ( sigma ) *(w1/a ) * s i n ( a ) ;
14 exp q (3 ) = exp ( sigma ) *(w2/a ) * s i n ( a ) ;
15 exp q (4 ) = exp ( sigma ) *(w3/a ) * s i n ( a ) ;
16 e l s e
17 exp q (2 ) = 0 ;
18 exp q (3 ) = 0 ;
19 exp q (4 ) = 0 ;
20 end
21

22 eq = exp q ;
23 end

With these functions, the complete MatLab code implementing the Dav-
enport’s q-method and the observer is:

1 l oad data % Load obse rvat i on data .
2 % Gives a ( i , : ) =(ax ( i ) , ay ( i ) , az ( i ) )
3 % m( i , : ) =(mx( i ) ,my( i ) ,mz( i ) )
4 % w( i , : ) =(wx( i ) ,wy( i ) ,wz( i ) )
5 % T = sen so r s per iod
6

7 %% I n i t i a l i z a t i o n s
8 b1 = [0 0 1 ] ’ ; %expected a c e l e r a t i o n in the I n e r t i a l r e f e r e n c e

frame
9 b2 = [ 0 . 4 0 0 . 9 1 6 ] ’ ; %expected normal ized magnetic f i e l d in the

I n e r t i a l r e f e r e n c e frame
10 a1 = 1 ; a2 = 1 ; %weighing f a c t o r s
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11 k = 4 ; %observer gain .
12

13 hat q ( 1 , : ) = [ 1 0 0 0 ] ; %i n i t i a l va lue o f hat q
14 hat b ( 1 , : ) = [ 0 0 0 ] ; %i n i t i a l va lue o f hat b
15 r = [ 0 0 0 0 ] ’ ; %i n i t i a l va lue o f r
16 t i l d e q = [1 0 0 0 ] ; t i l d e q o = t i l d e q (1 ) ; b t i l d e q = t i l d e q

( 2 : 4 ) ; %i n i t i a l va lue o f t i l d e q
17 q ( 1 , : ) = [ 1 0 0 0 ] ; %i n i t i a l va lue q
18

19 %% Get quatern ion measure from vecto r ob s e rva t i on s
20 f o r i =2:1 : s i z e ( t , 1 )
21 % obse rvat i on ve c to r s
22 r1 = a ( i , : ) ’ ;
23 r2 = m( i , : ) ’ ;
24 Omega g = gyr ( i , : ) ;
25

26 % quatern ion measure
27 q ( i , : ) = Davqmethod ( r1 , r2 , b1 , b2 , a1 , a2 ) ;
28

29 % Observer
30 hat q ( i , : ) = qmult ( hat q ( i −1 , : ) , qexp (T/2* r ) ) ;
31 %observed quatern ion
32 hat b ( i , : ) = hat b ( i −1 , : ) − T/2* s i gn ( t i l d e q o ) * b t i l d e q ;
33 %observed gyro b ia s
34

35 t i l d e q = qmult ( qconj ( hat q ( i , : ) ) , q ( i , : ) ) ;
36 t i l d e q o = t i l d e q (1 ) ;
37 b t i l d e q = t i l d e q ( 2 : 4 ) ;
38 hat Omega = Omega g − hat b ( i , : ) ;
39 r = qmult ( qconj ( t i l d e q ) , qmult ( [ 0 [ hat Omega + k* s i gn (

t i l d e q o ) * [ b t i l d e q ] ] ] , t i l d e q ) ) ;
40 end

5.4.2 Eigen library

Eigen [31] is an open-source library which is very interesting if we need to
work with matrices in C++. It supports all matrix sizes, from fixed-size to
dynamic-size. It also supports all kind of numeric types such as: integers,
complex or quaternions.

Furthermore, it has a very large number of functions for matrix decom-
position or geometry features. It has been developed for several years, so it
is fast and reliable. The main benefit is that you can operate with matrices
in C++ as in MatLab.

It can be included in any project as a header. In [31] all the information,
examples and tutorial are given. In order to program the algorithm in C++
we will use the Eigen facilities.
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5.4.3 C++ code

This is the C++ code that reads the sensors and computes the quaternion
attitude measure.

1 /** I n i t i a l i z a t i o n s */
2 s t a t i c Vector3 f b1 (0 , 0 , 1 ) , // g l oba l frame expected

a c e l e r a t i o n
3 b2 ( 0 . 4 , 0 , 0 . 9 1 6 ) ; // g l oba l frame expected

magnetic f i e l d
4

5 s t a t i c f l o a t a1 = 1 , //weigh f o r acce l e romete r
6 a2 = 1 ; //weigh f o r magnetometer
7

8 s t a t i c f l o a t k = 4 ; //non−l i n e a r obse rver gain
9

10

11 /** Sensors read ing */
12 gyrx = (IMUMPU−>Get gyrx ( ) ) ; // rad/ s
13 gyry = (IMUMPU−>Get gyry ( ) ) ;
14 gyrz = (IMUMPU−>Get gyrz ( ) ) ;
15

16 ax = (IMUMPU−>Get accx ( ) ) − X ACEL OFFSET; // g/g
17 ay = (IMUMPU−>Get accy ( ) ) − Y ACEL OFFSET;
18 az = (IMUMPU−>Get accz ( ) ) ;
19

20 i f (Magnet−>NewMeas ( ) == true ) {
21 r2 = Magnet−>GetMeasure ( ) ;
22 }
23

24 /** Assembling ve c to r s */
25 r1 << ax , ay , az ;
26 r2 << magX, magY, magZ ;
27 w gyr << gyrx , gyry , gyrz ;
28

29 /** Davenports q−method */
30 q meas = Dav qmethod ( r1 , r2 , b1 , b2 , a1 , a2 ) ;
31

32 /** Non−l i n e a r obse rver */
33 aux q = q obs ;
34 aux b = b ia s ob s ;
35

36 q obs = aux q*qexp ( vect2q (Ts/2* q2vect ( a ) ) ) ;
37 b i a s ob s = aux b − Ts/2* e p s i l o n e r r * s i gn ( e t a e r r ) ;
38

39 w = w gyr − b i a s ob s ;
40 q e r r = qua t e r r o r ( q meas , q obs ) ;
41 e t a e r r = q e r r .w( ) ;
42 e p s i l o n e r r = q e r r . vec ( ) ;
43

44 w quat .w( ) = 0 ;
45 w quat . vec ( ) = w + k* e p s i l o n e r r * s i gn ( e t a e r r ) ;
46 a = q e r r *w quat* q e r r . i n v e r s e ( ) ;
47
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48 i f ( q obs .w( ) < 0) {
49 q a t t .w( ) = −q obs .w( ) ;
50 q a t t . vec ( ) = −q obs . vec ( ) ;
51 }
52

53 e l s e {
54 q a t t = q obs ;
55 }
56

57 /** q a t t = quatern ion a t t i t ud e */

In what follows, all the functions that have been used in the previous
code are developed.

1 Vector4 f EQ: : q2vect ( Quaternionf q ) {
2 Vector4 f quat ;
3 Vector3 f q v ;
4

5 quat (0 ) = q .w( ) ;
6 q v = q . vec ( ) ;
7

8 quat (1 ) = q v (0) ;
9 quat (2 ) = q v (1) ;

10 quat (3 ) = q v (2) ;
11

12 re turn quat ;
13 }
14

15 Quaternionf EQ: : vect2q ( Vector4 f v ) {
16 Quaternionf q ;
17 Vector3 f v 3 ;
18

19 q .w( ) = v (0) ;
20 v 3 (0 ) = v (1) ;
21 v 3 (1 ) = v (2) ;
22 v 3 (2 ) = v (3) ;
23 q . vec ( ) = v 3 ;
24

25 re turn q ;
26 }

1 Quaternionf EQ: : qexp ( Quaternionf q , char f l a g ) {
2

3 Quaternionf exp q ;
4 Vector3 f vect , exp v ;
5 f l o a t sigma , exp sigma , w, sinw ;
6

7 sigma = q .w( ) ;
8 vect = q . vec ( ) ;
9

10 w = vect . norm ( ) ;
11 sinw = s in (w) ;
12 exp sigma = exp ( sigma ) * cos (w) ;
13
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14 i f (w != 0) {
15 exp v (0 ) = exp ( sigma ) *( vect (0 ) /w) * sinw ;
16 exp v (1 ) = exp ( sigma ) *( vect (1 ) /w) * sinw ;
17 exp v (2 ) = exp ( sigma ) *( vect (2 ) /w) * sinw ;
18 }
19

20 e l s e {
21 exp v (0 ) = 0 ;
22 exp v (1 ) = 0 ;
23 exp v (2 ) = 0 ;
24 }
25

26 exp q .w( ) = exp sigma ;
27 exp q . vec ( ) = exp v ;
28

29 re turn exp q ;
30

31 }

1 Quaternionf EQ: : Dav qmethod ( Vector3 f r1 , Vector3 f r2 , Vector3 f b1 ,
Vector3 f b2 , f l o a t a1 , f l o a t a2 ) {

2

3 s t a t i c Vector3 f Z ;
4 s t a t i c Vector4 f e i genva lue s , e i g v e c t o r ;
5 s t a t i c Matr ix3f B, S ;
6 s t a t i c Matr ix4f K, e i g env e c t o r s ;
7 s t a t i c f l o a t eig max ;
8

9 B = a1*b1* r1 . t ranspose ( ) + a2*b2* r2 . t ranspose ( ) ;
10 S = B + B. t ranspose ( ) ;
11 Z << (B(1 , 2 )−B(2 , 1 ) ) , (B(2 , 0 )−B(0 , 2 ) ) , (B(0 , 1 )−B(1 ,0 ) ) ;
12

13 K << (S − (B. t r a c e ( ) *MatrixXf : : I d en t i t y (3 , 3 ) ) ) , Z ,
14 Z . t ranspose ( ) , B. t r a c e ( ) ;
15

16 Se l fAd jo in tE igenSo lve r<Matrix4f> e i g e n s o l v e r (K) ;
17 i f ( e i g e n s o l v e r . i n f o ( ) != Success ) {
18 abort ( ) ;
19 cout << ”Eigenvalue e r r o r ! . ” << endl ;
20 }
21

22 e i g enva lu e s = e i g e n s o l v e r . e i g enva lu e s ( ) ;
23 e i g env e c t o r s = e i g e n s o l v e r . e i g env e c t o r s ( ) ;
24

25 eig max = e i g enva lu e s . maxCoeff ( ) ;
26

27 i n t j =0;
28 whi le ( j<4){
29 i f ( e i g enva lu e s ( j ) == eig max ) {
30 e i g v e c t o r (0 ) = e i g env e c t o r s (3 , j ) ;
31 e i g v e c t o r (1 ) = −e i g env e c t o r s (0 , j ) ;
32 e i g v e c t o r (2 ) = −e i g env e c t o r s (1 , j ) ;
33 e i g v e c t o r (3 ) = −e i g env e c t o r s (2 , j ) ;
34 }
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35 j++;
36 }
37

38 i f ( e i g v e c t o r (0 ) < 0) {
39 e i g v e c t o r (0 ) = −e i g v e c t o r (0 ) ;
40 e i g v e c t o r (1 ) = −e i g v e c t o r (1 ) ;
41 e i g v e c t o r (2 ) = −e i g v e c t o r (2 ) ;
42 e i g v e c t o r (3 ) = −e i g v e c t o r (3 ) ;
43 }
44

45 re turn vect2q ( e i g v e c t o r ) ;
46

47 }

1 Quaternionf EQ: : qua t e r r o r ( Quaternionf q1 , Quaternionf q2 ) {
2 Vector4 f q e r ro r , auxq1 ;
3 Matrix4f K;
4 Quaternionf e r r ;
5

6 auxq1 << q1 . vec ( ) , q1 .w( ) ;
7

8 K << q2 .w( ) *MatrixXf : : I d en t i t y (3 , 3 ) − crossp mat ( q2 . vec ( ) ) ,
−q2 . vec ( ) ,

9 q2 . vec ( ) . t ranspose ( ) ,
q2 .w( ) ;

10

11

12 q e r r o r = K*auxq1 ;
13

14 e r r .w( ) = q e r r o r (3 ) ;
15 e r r . vec ( ) (0 ) = q e r r o r (0 ) ;
16 e r r . vec ( ) (1 ) = q e r r o r (1 ) ;
17 e r r . vec ( ) (2 ) = q e r r o r (2 ) ;
18

19 re turn e r r ;
20

21 }

1 Matrix3f EQ: : crossp mat ( Vector3 f v ) {
2

3 Matrix3f aux ;
4

5 aux << 0 , −v (2 ) , v (1 ) ,
6 v (2 ) , 0 , −v (0 ) ,
7 −v (1 ) , v (0 ) , 0 ;
8

9 re turn aux ;
10

11 }
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5.5 Results, experimental validation

In order to illustrate (and validate) the quaternion estimator described
above, an experiment has been done rotating the quadrotor around a known
axis. The sensors raw data has been saved in a .txt file. The Matlab codes
described in Section 5 will be applied to this raw data in order to see the
quaternion estimator performance.

First of all, it is important to define clearly which are the quadrotor
axis. These axis are defined by the IMU orientation, so it is important to
orientate precisely the IMU in order to fit with the desired quadrotor axis
(body frame, B). Figure 21 shows the quadrotor x-y axis according to the
data that will be presented next. The z-axis is pointing down in order to
form an orthogonal Cartesian coordinate system.

Figure 21: Quadrotor axis in a X-controlled platform.

The following experiment has been done: The quadrotor has been ro-
tated θ ≈ −90◦ around the axis r (defined in Figure 21). This axis is given
by its unitary vector u =

√
2/2 · (1, 1, 0) ≈ (0.707, 0.707, 0). Therefore the

expected quaternion at the final orientation is:

q =

(
cos(θ/2)
u sin(θ/2)

)
≈


0.707
−0.5
−0.5
0

 (106)

the expected quaternion (106) will be used to validate the results.
Figure 22 shows the raw sensor data that has been extracted after per-

forming the experiment. The first plot depicts the 3-axis accelerometer mea-
surements. The middle plot shows the uncalibrated magnetometer reads,
and the third plot shows the gyroscopes readings. As the rotation has been
performed around the r axis, which is rotated 45◦, we have that Ωx ≈ Ωy

and Ωz ≈ 0.
The first step is to apply (75) with the obtained parameters (76)-(79)

to the magnetometer raw measurements in order to get the calibrated data
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Figure 22: Sensor raw data extracted from the quadrotor.
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which is valid for the quaternion estimator algorithm. This can be seen in
Figure 23, where the first plot depicts the raw measurements and the second
plot represents the calibrated data.
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Figure 23: Magnetic (raw and calibrated) measurements.

At this point, the algorithm described in Sections 80-5.3 can be applied to
estimate the attitude quaternion. Figure 24 shows the quaternion measure
given by the Davenport’s q-method, q, Once the measure q has been filtered
by the observer, we get q̂. q and q̂ has been calculated with the previous data
and running the MatLab code presented in section 5. It can be seen how
the quaternion measure provided by the Davenport’s q-method is noisy due
to the fact that the inputs a and m are also noisy. However, the observed
quaternion, q̂, is a clean measure free of noise. Note that q̂ ≈ (0.707 −0.5 −
0.5 0)T which is the expected quaternion (106) from the experiment, so the
algorithm is validated.

The observer also estimates the gyroscope biases, δ̂Ω, which are shown
in Figure 25.
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Figure 24: Quaternion measure and observed quaternion.
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Figure 25: Gyroscope biases estimation.
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6 Conclusions

In the present document, the properties of quaternions to manage 3-D space
rotations have been analyzed. Quaternions have been demonstrated to be a
very powerful tool for that purpose as they avoid the Euler singularity.

Furthermore, the combination between the use of quaternions and the
ADRC principles lead to a very simple RPAS flight control which is valid
in the full attitude range. As it has been shown, the ADRC philosophy
shows that there is no need to have an accurate mathematical model of the
aircraft. Also, high external disturbances (like wind gusts) will be rapidly
compensated by the ADRC.

In this document it has been also shown that an accurate quaternion
measure can be obtained with low-costs sensors. Choosing the appropriate
algorithm is crucial for that purpose.
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Part II

Budget

7 Budget

7.1 Introduction

The present document aims to estimate the total costs associated with the
project: development of a quaternion-based quadrotor control system based
on disturbance rejection. The project has been divided into three stages:

1. Study of the State of the Art. (Code: SSA)

2. Development of the Control Strategy. (Code: DCS)

3. Programming the Quaternion Estimator. (Code: PQE)

In what follows, the costs associated with each stage are going to be calcu-
lated. For that purpose, all the developed activities will be identified and
they will be listed. Then, all the costs associated with each activity will be
estimated.

7.2 Summary of activities
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7.3 Costs of labour force

7.4 Costs of equipments

7.5 Other costs
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7.6 Unit costs
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7.7 Total costs
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