
VLSI algorithms and
architectures for

non-binary-LDPC decoding

September, 2016

Author: Jesús Omar Lacruz Jucht

Thesis supervisor: Javier Valls Coquillat
Thesis supervisor: Francisco García Herrero





Abstract

This thesis studies the design of low-complexity soft-decision Non-Binary Low-
Density Parity-Check (NB-LDPC) decoding algorithms and their corresponding
hardware architectures suitable for decoding high-rate codes at high throughput
(hundreds of Mbps and Gbps).

In the first part of the thesis the main aspects concerning to the NB-LDPC codes
are analyzed, including a study of the main bottlenecks of conventional soft-
decision decoding algorithms (Q-ary Sum of Products (QSPA), Extended Min-
Sum (EMS), Min-Max and Trellis-Extended Min-Sum (T-EMS)) and their cor-
responding hardware architectures. Despite the limitations of T-EMS algorithm
(high complexity in the Check Node (CN) processor, wiring congestion due to
the high number of exchanged messages between processors and the inability to
implement decoders over high-order Galois fields due to the high decoder complex-
ity), it was selected as starting point for this thesis due to its capability to reach
high-throughput.

Taking into account the identified limitations of the T-EMS algorithm, the sec-
ond part of the thesis includes six papers with the results of the research made
in order to mitigate the T-EMS disadvantages, offering solutions that reduce the
area, the latency and increase the throughput compared to previous proposals
from literature without sacrificing coding gain. Specifically, five low-complexity
decoding algorithms are proposed, which introduce simplifications in different
parts of the decoding process. Besides, five complete decoder architectures are de-
signed and implemented on a 90nm Complementary Metal-Oxide-Semiconductor
(CMOS) technology. The results show an achievement in throughput higher than
1Gbps and an area less than 10 mm2. The increase in throughput is 120% and
the reduction in area is 53% compared to previous implementations of T-EMS,
for the (837,726) NB-LDPC code over GF(32). The proposed decoders reduce
the CN area, latency, wiring between CN and Variable Node (VN) processor and
the number of storage elements required in the decoder. Considering that these
proposals improve both area and speed, the efficiency parameter (Mbps / Million

iii



NAND gates) is increased in almost five times compared to other proposals from
literature.

The improvements in terms of area allow us to implement NB-LDPC decoders
over high-order fields which had not been possible until now due to the high-
complexity of decoders previously proposed in literature. Therefore, we present the
first post-place and route report for high-rate codes over high-order fields higher
than Galois Field (GF)(32). For example, for the (1536,1344) NB-LDPC code over
GF(64) the throughput is 1259Mbps occupying an area of 28.90 mm2. On the
other hand, a decoder architecture is implemented on a Field Programmable Gate
Array (FPGA) device achieving 630 Mbps for the high-rate (2304,2048) NB-LDPC
code over GF(16). To the best knowledge of the author, these results constitute
the highest ones presented in literature for similar codes and implemented on the
same technologies.

September, 2016

Jesús Omar Lacruz
jlacruz@ula.ve

iv

mailto:jlacruz@ula.ve


Resumen

En esta tesis se aborda el estudio del diseño de algoritmos de baja complejidad
para la decodificación de códigos de comprobación de paridad de baja densidad
no binarios (NB-LDPC) y sus correspondientes arquitecturas apropiadas para de-
codificar códigos de alta tasa a altas velocidades (cientos de Mbps y Gbps).

En la primera parte de la tesis los principales aspectos concernientes a los códi-
gos NB-LDPC son analizados, incluyendo un estudio de los principales cuellos
de botella presentes en los algoritmos de decodificación convencionales basados
en decisión blanda (QSPA, EMS, Min-Max y T-EMS) y sus correspondientes ar-
quitecturas hardware. A pesar de las limitaciones del algoritmo T-EMS (alta
complejidad en el procesador del nodo de chequeo de paridad (CN), congestión en
el rutado debido al intercambio de mensajes entre procesadores y la incapacidad
de implementar decodificadores para campos de Galois de orden elevado debido
a la elevada complejidad), éste fue seleccionado como punto de partida para esta
tesis debido a su capacidad para alcanzar altas velocidades.

Tomando en cuenta las limitaciones identificadas en el algoritmo T-EMS, la se-
gunda parte de la tesis incluye seis artículos con los resultados de la investigación
realizada con la finalidad de mitigar las desventajas del algoritmo T-EMS, ofre-
ciendo soluciones que reducen el área, la latencia e incrementando la velocidad
comparado con propuestas previas de la literatura sin sacrificar la ganancia de
codificación. Especificamente, cinco algoritmos de decodificación de baja comple-
jidad han sido propuestos, introduciendo simplificaciones en diferentes partes del
proceso de decodificación. Además, arquitecturas completas de decodificadores
han sido diseñadas e implementadas en una tecnologia CMOS de 90nm consigu-
iéndose una velocidad mayor a 1Gbps con un área menor a 10 mm2, aumentando
la velocidad en 120% y reduciendo el área en 53% comparado con previas imple-
mentaciones del algoritmo T-EMS para el código (837,726) implementado sobre
campo de Galois GF(32). Las arquitecturas propuestas reducen el área del CN,
latencia, número de mensajes intercambiados entre el nodo de comprobación de
paridad (CN) y el nodo variable (VN) y el número de elementos de almacenamiento
en el decodificador. Considerando que estas propuestas mejoran tanto el área como

v



la velocidad, el parámetro de eficiencia (Mbps / Millones de puertas NAND) se ha
incrementado en casi cinco veces comparado con otras propuestas de la literatura.

Las mejoras en términos de área nos ha permitido implementar decodificadores NB-
LDPC sobre campos de Galois de orden elevado, lo cual no habia sido posible hasta
ahora debido a la alta complejidad de los decodificadores anteriormente propuestos
en la literatura. Por lo tanto, en esta tesis se presentan los primeros resultados
incluyendo el emplazamiento y rutado para códigos de alta tasa sobre campos
finitos de orden mayor a GF(32). Por ejemplo, para el código (1536,1344) sobre
GF(64) la velocidad es 1259 Mbps ocupando un área de 28.90mm2. Por otro lado,
una arquitectura de decodificador ha sido implementada en un dispositivo FPGA
consiguiendo 660 Mbps de velocidad para el código de alta tasa (2304,2048) sobre
GF(16). Estos resultados constituyen, según el mejor conocimiento del autor, los
mayores presentados en la literatura para códigos similares implementados para
las mismas tecnologías.

September, 2016

Jesús Omar Lacruz
jlacruz@ula.ve

vi

mailto:jlacruz@ula.ve


Resum

En esta tesi s’aborda l’estudi del disseny d’algoritmes de baixa complexitat per a
la descodificació de codis de comprovació de paritat de baixa densitat no binaris
(NB-LDPC), i les seues corresponents arquitectures per a descodificar codis d’alta
taxa a altes velocitats (centenars de Mbps i Gbps).

En la primera part de la tesi els principals aspectes concernent als codis NB-
LDPC són analitzats, incloent un estudi dels principals colls de botella presents
en els algoritmes de descodificació convencionals basats en decisió blana (QSPA,
EMS, Min-Max i T-EMS) i les seues corresponents arquitectures. A pesar de les
limitacions de l’algoritme T-EMS (alta complexitat en el processador del node de
revisió de paritat (CN), congestió en el rutat a causa de l’intercanvi de missatges
entre processadors i la incapacitat d’implementar descodificadors per a camps de
Galois d’orde elevat a causa de l’elevada complexitat), este va ser seleccionat com
a punt de partida per a esta tesi degut a la seua capacitat per a aconseguir altes
velocitats.

Tenint en compte les limitacions identificades en l’algoritme T-EMS, la segona
part de la tesi inclou sis articles amb els resultats de la investigació realitzada
amb la finalitat de mitigar els desavantatges de l’algoritme T-EMS, oferint solu-
cions que redueixen l’àrea, la latència i incrementant la velocitat comparat amb
propostes prèvies de la literatura sense sacrificar el guany de codificació. Especí-
ficament, s’han proposat cinc algoritmes de descodificació de baixa complexitat,
introduint simplificacions en diferents parts del procés de descodificació. A més,
s’han dissenyat arquitectures completes de descodificadors i s’han implementat
en una tecnologia CMOS de 90nm aconseguint-se una velocitat major a 1Gbps
amb una àrea menor a 10 mm2, augmentant la velocitat en 120% i reduint l’àrea
en 53% comparat amb prèvies implementacions de l’algoritme T-EMS per al codi
(837,726) implementat sobre camp de Galois GF(32). Les arquitectures proposades
redueixen l’àrea del CN, la latència, el nombre de missatges intercanviats entre el
node de comprovació de paritat (CN) i el node variable (VN) i el nombre d’elements
d’emmagatzemament en el descodificador. Considerant que estes propostes mil-
loren tant l’àrea com la velocitat, el paràmetre d’eficiència (Mbps / Milions de

vii



portes NAND) s’ha incrementat en quasi cinc vegades comparat amb altres pro-
postes de la literatura.

Les millores en termes d’àrea ens ha permès implementar descodificadors NB-
LDPC sobre camps de Galois d’orde elevat, la qual cosa no havia sigut possible
fins ara a causa de l’alta complexitat dels descodificadors anteriorment proposats
en la literatura. Per tant, nosaltres presentem els primers reports després de
l’emplaçament i rutat per a codis d’alta taxa sobre camps finits d’orde major
a GF(32). Per exemple, per al codi (1536,1344) sobre GF(64) la velocitat és
1259 Mbps ocupant una àrea de 28.90 mm2. D’altra banda, una arquitectura
de descodificador ha sigut implementada en un dispositiu FPGA aconseguint 660
Mbps de velocitat per al codi d’alta taxa (2304,2048) sobre GF(16). Estos resultats
constitueixen, per al millor coneixement de l’autor, els millors presentats en la
literatura per a codis semblants implementats per a les mateixes tecnologies.

September, 2016

Jesús Omar Lacruz
jlacruz@ula.ve

viii

mailto:jlacruz@ula.ve


Acknowledgments

Firstly, i want to thank my advisor Dr. Javier Valls for let me embark in this
PhD project, give me the confidence and support during these years, even when
it seems really hard to finish it.

Besides, my deeply gratitude to Dr. Francisco Garcia for his brilliant ideas that
help me to develop the works presented in this thesis. More than an advisor he
and Javier are good friends.

Secondly, I have to thank all the staff of GISED, specially to Dr. Maria Jose Canet
for her invaluable help improving the quality of the papers and this manuscript.
Moreover, to my lab partners Julian, Ferran and Joan Marc for the good moments
we share all these years.

Thanks to Universidad de Los Andes in Venezuela, to give me the chance to
improve my quality as university professor, giving me the financial support during
the major part of the PhD program.

Finally i would like to thank my parents for their encouragement words in the
distance. To you, Ori, you came into my life at the right time to give me your love
and support to finish this project.

ix





Contents

Abstract iii

Resumen v

Resum vii

Acknowledgments ix

Contents xi

List of Figures xv

List of Tables xxi

Acronyms xxiii

Preface 1

1 State of the art of non-binary low-density parity-check codes 9
1.1 LDPC codes and decoding process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Decoding schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Decoding architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

xi



Contents

1.5 NB-LDPC decoding algorithms and architectures. . . . . . . . . . . . . . . . . . 18

1.5.1 Trellis Extended Min-Sum Algorithm . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Frame Error Rate (FER) Performance . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.7 Conclusions of the state of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Simplified Trellis Min-Max Decoder Architecture for NB-LDPC
Codes 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Trellis Extended Min-Sum Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Simplified Trellis Min-Max Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Frame Error Rate Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Check Node Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Architecture for the Complete Decoder . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.1 Decoder Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.2 Decoder Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.3 Decoder Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.4 Decoder Complexity and Implementation Results . . . . . . . . . . . . . . . . 48

2.6 Comparisons With Other NB-LDPC Decoders. . . . . . . . . . . . . . . . . . . . 49

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 One Minimum Only Trellis Decoder for NB-LDPC Codes 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Trellis - Extended Min-Sum algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 One Minimum Only Trellis Decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Estimators for the second minimum value . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 Statistical analysis of the different estimators. . . . . . . . . . . . . . . . . . . 60

3.3.3 Frame Error Rate Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 OMO T-EMS and OMO T-MM Hardware Architectures . . . . . . . . . . . . . 63

3.4.1 Check Node Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.2 Complete decoder architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xii



Contents

4 Reduction of complexity for NB-LDPC decoders with com-
pressed messages 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Non-binary LDPC message passing . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Compressed Non-Binary Message-Passing (CNBMP) . . . . . . . . . . . . . . . 76

4.4 Hardware impact of CNBMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 A 630 Mbps Non-Binary LDPC Decoder for FPGA 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Basis on NB-LDPC codes and T-MM decoding algorithm . . . . . . . . . . . . 83

5.3 Proposed Decoder Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Check-node architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.2 Top-level decoder architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 High-performance NB-LDPC decoder with reduction of mes-
sage exchange 93

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Trellis Min-Max decoding algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Modified Trellis Min-Max Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3.1 Reformulation of Trellis Min-Max Algorithm . . . . . . . . . . . . . . . . . . . 99

6.3.2 Reduction of replicated information in check-to-variable exchanged mes-
sages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.3 Modified Trellis Min-Max algorithm . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 NB-LDPC Decoder Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4.1 CN architecture for mT-MM algorithm . . . . . . . . . . . . . . . . . . . . . . 109

6.4.2 Top-level decoder architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.3 Decoder implementation results and comparisons . . . . . . . . . . . . . . . . 115

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Reduced-complexity NB-LDPC decoder for high-order GF based
on T-MM algorithm 119

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xiii



Contents

7.2 T-MM decoding algorithm with compressed messages . . . . . . . . . . . . . . . 123

7.3 T-MM algorithm with reduced set of messages . . . . . . . . . . . . . . . . . . . 125

7.3.1 Reduction of the CN-to-VN messages . . . . . . . . . . . . . . . . . . . . . . . 126

7.3.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3.3 Generation of the set I∗(a′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4 Check Node architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.5 Top-level decoder architecture and complexity comparison. . . . . . . . . . . . 138

7.5.1 Decoder implementation results and comparisons . . . . . . . . . . . . . . . . 139

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8 Discussion and conclusions 143
8.1 Summary of the main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2 Analysis of results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.3 Comparison with other works from literature . . . . . . . . . . . . . . . . . . . . 153

8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.4.1 Objective 1: reduction of area and latency of Check Node (CN) processors 156

8.4.2 Objective 2: reduction of the number of messages exchanged between pro-
cessors in NB-LDPC decoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.4.3 Objective 3: implementation of high-performance decoders for Galois fields
larger than 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.4.4 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.5 Future Research Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

xiv



List of Figures

1 Software simulation model . . . . . . . . . . . . . . . . . . . . . . . 3

2 Key points of the improvements presented in each chapter of the
manuscript. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 (a) Example of a LDPC code parity-check matrix. (b) Tanner graph
representation for the matrix in (a) . . . . . . . . . . . . . . . . . . 10

1.2 (a) Example of a NB-LDPC code parity-check matrix. (b) Tanner
graph corresponding to the matrix in (a) . . . . . . . . . . . . . . . 11

1.3 Simplified block diagram for the system model . . . . . . . . . . . 11

1.4 Detail of a Tanner graph used to show the nomenclature of the
exchanged messages between nodes in NB-LDPC decoding algorithms. 12

1.5 Example of horizontal layered schedule message exchange . . . . . 14

1.6 Example of a fully-parallel decoder for the code of Fig. 1.2 . . . . 15

1.7 Example of a serial decoder for the code of Fig. 1.2. It requires
dv = 2 VN processors. . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.8 Example of a partial parallel decoder . . . . . . . . . . . . . . . . . 17

1.9 Forward Backward example . . . . . . . . . . . . . . . . . . . . . . 22

1.10 Example of the set Qm,n(a) and ∆Qm,n(a) including the extra col-
umn ∆Q(a). q = 8 and dc = 4 in this example. . . . . . . . . . . . 24

1.11 (a) Example of paths taken into account to compute the ∆Q(α0)
reliability. (b) Example for the ∆Q(α1) reliability. . . . . . . . . . 25

1.12 FER performance for QSPA, EMS, Min-Max and T-EMS decoding
algorithms for the (837,726) NB-LDPC code over GF(32) . . . . . 27

xv



List of Figures

1.13 FER performance for T-EMS algorithm quantifying the LLR values.
The test code is the (837,726) NB-LDPC code over GF(32). . . . . 28

1.14 Fixed point analysis for the T-EMS algorithm. The test code is the
(837,726) NB-LDPC code over GF(32). Layered schedule and 15
decoding iterations are used for all cases. . . . . . . . . . . . . . . 29

2.1 Key points of the improvements presented in this chapter. . . . . . 31

2.2 FER of (837,726) NB-LDPC over GF (32) under AWGN channel.
Layered schedule is used for all algorithms. λ = 0.375 for T-EMS
algorithm and λ = 0.5 for TMM algorithm. . . . . . . . . . . . . . 40

2.3 Proposed top level check node structure. . . . . . . . . . . . . . . . 41

2.4 Architecture for extra column extraction. Example for generation
of message ∆Q(α0) over GF (8). . . . . . . . . . . . . . . . . . . . . 42

2.5 Output message generation in delta domain. Example for symbol α0 43

2.6 Top level decoder architecture based on the horizontal layered schedule 46

2.7 Permutation network implemented for GF (8) . . . . . . . . . . . . 47

3.1 Key points of the improvements presented in this chapter. . . . . . 53

3.2 Histograms for the different estimators of min2(a). The γp value
was set to 1.125. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Histograms showing the error distribution of different estimators of
min2(a). The γp value was set to 1.125. . . . . . . . . . . . . . . . 60

3.4 Second minimum estimation based on a radix-2 one-minimum finder.
Example for an eight inputs tree. . . . . . . . . . . . . . . . . . . . 61

3.5 FER performance for the (837,726) NB-LDPC code over GF(32)
with AWGN channel. Layered schedule is applied to all algorithms.
λ = 0.5 for TEMS and OMO T-EMS algorithms. γp = 1.125 for
OMO T-EMS algorithm. γp = 1.5 for OMO T-MM algorithm. . . . 64

3.6 FER performance for the (837,726) NB-LDPC code over GF(32)
with AWGN channel for the estimators of the second minimum
value. γp = 1.125 for OMO T-EMS algorithm. . . . . . . . . . . . . 65

xvi



List of Figures

3.7 FER performance for the (2212,1896) NB-LDPC code over GF (4)
with AWGN channel. Layered schedule is applied to all algorithms.
λ = 0.5 for T-EMS and OMO T-EMS algorithms. γp = 2.5 for
OMO T-EMS algorithm. λ = 0.75 for MM and OMO T-MM algo-
rithms. γp = 1.125 for OMO T-MM algorithm. . . . . . . . . . . . 66

3.8 Check node top architecture for T-EMS algorithm (a). Proposed
OMO T-EMS/ OMO T-MM check node architecture (b). . . . . . 66

4.1 Key points of the improvements presented in this chapter. . . . . . 71

4.2 i) Check node without CNBMP ii) Check node with CNBMP . . . 78

4.3 i) Layered architecture of a NB-LDPC decoder without CNBMP.
RAMmemory from this architecture hasM addresses of size dc×q×
Qb ii) Layered architecture of a NB-LDPC decoder with CNBMP.
RAM memory from this architecture has M addresses of size 3 ×
q ×Qb + 2× q × log2(dc) . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Key points of the improvements presented in this chapter. . . . . . 81

5.2 FER-BER performance of T-MM algorithm for the (2304,2048) NB-
LDPC code over GF(16), with AWGN channel and BPSK modulation. 85

5.3 Check-node top-level architecture . . . . . . . . . . . . . . . . . . . 87

5.4 Decompression Network for CN output messages. Example for GF(8). 88

5.5 Top-level proposed decoder architecture . . . . . . . . . . . . . . . 89

6.1 Key points of the improvements presented in this chapter. . . . . . 93

6.2 Example of CN input messages in normal domain (upper size). Mes-
sages in delta domain and organized in trellis way including the
extra column ∆Q(a) (bottom size). Example for GF(4) and dc = 5. 101

6.3 Mean values for each reliability in the ordered set ∆Q(a). The code
used is the (837,726) NB-LDPC code over GF(32). . . . . . . . . . 103

6.4 Number of bits exchanged from CN to VN varying the GF order.
Dashed lines corresponds to T-MM and solid lines to mT-MM. Cir-
cle mark corresponds to dc = 36 and Triangle mark to dc = 8.
w = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xvii



List of Figures

6.5 Number of bits exchanged from CN to VN varying the CN degree.
Dashed lines corresponds to T-MM and solid lines to mT-MM. Cir-
cle mark corresponds to q = 64 and Triangle mark to q = 16. w = 6.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6 Frame-error-rate simulation for the (837,726) NB-LDPC code over
GF(32), BPSK modulated and assuming AWGN channel . . . . . . 107

6.7 Frame-error-rate simulation for the (2304,2048) NB-LDPC code
over GF(16), BPSK modulated and assuming AWGN channel . . . 107

6.8 Frame-error-rate simulation for the (1536,1344) NB-LDPC code
over GF(64), BPSK modulated and assuming AWGN channel . . . 108

6.9 Extra-Column processor. Example for GF(8) and symbol α0 . . . 110

6.10 Proposed check-node block diagram . . . . . . . . . . . . . . . . . 111

6.11 Top-level proposed decoder architecture . . . . . . . . . . . . . . . 113

6.12 Proposed Decompression Network. Example for GF(4) . . . . . . . 114

6.13 Decoder timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1 Key points of the improvements presented in this chapter. . . . . . 119

7.2 Mean values for each reliability in the set ∆Q(a). The values were
arranged in the x axis. The code under test is the (837,726) NB-
LDPC code over GF(32). . . . . . . . . . . . . . . . . . . . . . . . 128

7.3 Bit Error Rate performance for our proposal varying the L param-
eter compared to T-MM algorithm. The code under test is the
(837,726) NB-LDPC code over GF(32). 15 decoding iterations and
floating point model are considered in all cases except for the last
curve where 8 iteration and 6 bits are employed. . . . . . . . . . . 129

7.4 Bit Error Rate performance for our proposal with different values of
L compared to T-MM algorithm. The test code is the (1536,1344)
NB-LDPC code over GF(64). 15 decoding iterations and floating
point model are considered for both algorithms . . . . . . . . . . . 130

7.5 Example of the sets ∆Qm,n(a) and I(a) for GF(8) and dc = 4 . . . 131

7.6 Proposed check-node block diagram . . . . . . . . . . . . . . . . . 134

7.7 (a) First stage of the proposed L-min finder. (b) Circuit to extract
the j-th minimum value. Example for four inputs. . . . . . . . . . 135

xviii



List of Figures

7.8 Circuit to generate the set I∗(a′) . . . . . . . . . . . . . . . . . . . 136

7.9 Circuit to generate the set E∗(a′) . . . . . . . . . . . . . . . . . . . 137

7.10 Proposed decompression network circuits. (a) Circuit to generate
the set I∗(a). (b) Circuit to generate the set R∗m,n(a), an example
with GF(4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.1 Graphical comparison of the CN area for all the proposals included
in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.2 Graphical comparison of the memory bits required for all the pro-
posals included in this thesis . . . . . . . . . . . . . . . . . . . . . 149

8.3 Graphical comparison of the decoder area for all the proposals in-
cluded in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.4 Graphical comparison of the achieved throughput for all the pro-
posals included in this thesis . . . . . . . . . . . . . . . . . . . . . 151

8.5 Graphical comparison of the efficiency parameter for all the propos-
als included in this thesis . . . . . . . . . . . . . . . . . . . . . . . 153

xix





List of Tables

2.1 Complexity analysis for the proposed decoder. For the (N=837,K=726)
NB-LDPC code over GF (32) . . . . . . . . . . . . . . . . . . . . . 49

2.2 Comparison of the proposed NB-LDPC layered decoder with other
works from literature. For the NB-LDPC code (837,726) over GF (32) 50

3.1 Statistical properties of the different m̂in2(a) estimators after I = 1
and I = 15 decoding iterations. . . . . . . . . . . . . . . . . . . . . 62

3.2 CN complexity comparisons. For the (837,726) NB-LDPC code over
GF(32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Comparison of the proposed NB-LDPC layered decoders to other
works from literature. For the (837,726) NB-LDPC code over GF(32) 70

4.1 Comparison of the proposed NB-LDPC layered decoder with other
works from literature . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Minimum number of bits required to be exchanged from CN to VN
processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Comparison of the proposed NB-LDPC decoder with other works
implemented in FPGA devices from literature . . . . . . . . . . . . 90

5.3 ASIC implementation of the proposed NB-LDPC decoder for the
(2304,2048) NB-LDPC code over GF(16) . . . . . . . . . . . . . . . 91

6.1 Number of bits exchanged from CN to VN processor after reduction
of the replicated information . . . . . . . . . . . . . . . . . . . . . 102

xxi



List of Tables

6.2 Comparison between multiple proposals from literature to reduce
the number of messages exchanged from CN to VN . . . . . . . . . 105

6.3 Experimental results to select the appropriate scaling value γ, op-
timized for Eb/N0 = 4.3dB . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Implementation results for the proposed mT-MM algorithm. 90nm
CMOS process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 Comparison of the proposed NB-LDPC layered decoder with other
works from literature, for the NB-LDPC code (837,726) over GF(32) 117

7.1 Number of bits required to be exchanged from CN to VN processor 126

7.2 Possible candidates for the I∗(a′4) reliability . . . . . . . . . . . . . 132

7.3 Adders required to implement the circuit from Fig 7.7.a . . . . . . 136

7.4 Synthesis results for the proposed CN architecture . . . . . . . . . 137

7.5 Implementation results for the (1536,1344) NB-LDPC code over
(GF(64) in a 90nm CMOS process. . . . . . . . . . . . . . . . . . . 139

7.6 Comparison of the proposed NB-LDPC layered decoder with other
works from literature, for the (837,726) NB-LDPC code with GF(32)142

8.1 Main benefits of each proposal presented in this thesis . . . . . . . 147

8.2 NB-LDPC codes used to perform comparisons between the propos-
als included in the manuscript . . . . . . . . . . . . . . . . . . . . . 148

8.3 Latency of all the proposals for the (837,726) NB-LDPC code over
GF(32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.4 Comparison of the works from this manuscript with other proposals
from literature, for the (837,726) NB-LDPC code with GF(32) . . 154

xxii



Acronyms

ASIC Application Specific Integrated Circuit.

AWGN Additive White Gaussian Noise.

BER Bit Error Rate.

BPSK Binary Phase Shift Keying.

CMOS Complementary Metal-Oxide-Semiconductor.

CN Check Node.

CNBMP Compressed Non-Binary Message Passing.

EMS Extended Min-Sum.

FER Frame Error Rate.

fp floating point.

FPGA Field Programmable Gate Array.

GF Galois Field.

GSL GNU Scientific Library.

HD hard-decision.

LDPC Low-Density Parity-Check.

LLR Log-Likelihood Ratio.
xxiii



Acronyms

m-TMM modified Trellis Min-Max.

NB-LDPC Non-Binary Low-Density Parity-Check.

NCG Net Coding Gain.

OMO One - Minimum - Only.

PRNG Pseudo-Random Number Generator.

QC Quasi-cyclic.

QSPA Q-ary Sum of Products.

RC-TMM Reduced Complexity Trellis Min-Max.

SD Soft-Decision.

SNR Signal-to-Noise Ratio.

T-EMS Trellis-Extended Min-Sum.

T-MM Trellis Min-Max.

UUT Unit Under Test.

VHDL Very High Speed Integrated Circuit Hardware Description Language.

VLSI Very Low Scale Integration.

VN Variable Node.

xxiv



Preface

Communication and storage systems demand for high-speed information exchange
between transmitter and receiver nodes. At these high-speed information rates,
channel impairments become more harmful as well as the inherent non-linearities
of the electronic components, which reduce the reliability of the received infor-
mation. To overcome this situation and provide more reliable communications,
efficient channel coding techniques are required [1]. In the last two decades, Low-
Density Parity-Check (LDPC) codes [2] have been successfully included in numer-
ous standards such as DVB-S2 [3], IEEE 802.16e [4] and IEEE 802.11n [5], among
others. The main reasons for their success are that their performance are close to
the channel capability for long codewords and that they can be decoded with low-
complexity algorithms based on belief propagation, which make them suitable for
practical applications where high-speed and low area are important constraints.

LDPC codes defined over a GF GF(q = 2p), with p > 1, were analyzed in [6]
as an extension of binary LDPC codes. These codes perform better than their
binary counterparts for codes with low and medium codeword length. Addition-
ally, they improve the burst error-correction capability and work in conjunction
with high-order modulation schemes (16QAM, 64QAM, 256QAM) [7, 8]. Nowa-
days, NB-LDPC codes have been considered strong candidates to be used in the
100Gbps optical transport system [9, 10]. These systems require Soft-Decision
(SD) decoding strategies that provide 10dB of Net Coding Gain (NCG) at a BER
= 10−15, with a maximum overhead of 20% and code rate higher than 0.8.

NB-LDPC codes are strong candidates to be used in other important applications
such as flash memory devices [11]. The NB-LDPC coding scheme is suitable for
this application due to the constant increase in capacity, the use of multi-level
NAND cells and the requirement of high-rate codes.

Besides the previous applications, NB-LDPC codes have been studied to be used
in space communications [12, 13], where burst error correction capability and high
coding gain are important issues.

1



Preface

Despite the multiple advantages of NB-LDPC codes over another coding schemes,
they can not still be practically implemented because the state-of-the-art hardware
implementations are far from offering high-throughput and high-rate decoders with
reasonably low area.

This work is focused on reducing the complexity of SD decoding algorithms suitable
for high-rate NB-LDPC codes, without sacrificing the coding gain of conventional
algorithms such as EMS [14] and Min-Max [15]. The high-speed architectures
derived from this low-complexity algorithms are also part of this job.

Objectives

The starting point of this thesis is the results obtained during the realization of
my Master Degree thesis, where a complete decoder architecture based on the
T-EMS algorithm was implemented. In that work, the main bottlenecks for the
implementation of T-EMS were identified. The first one is the high complexity of
the CN processor, which increases the latency and limits the throughput, especially
for high-order Galois fields. The second bottleneck is the high density of wires that
exchange information between CN and VN processors, due to the transportation
of the full set of q messages. This congestion increases the decoder area and also
reduces the achieved throughput.

The main objective of this thesis is to develop low-complexity algorithms and
architectures for Very Low Scale Integration (VLSI) implementation of high-speed
SD NB-LDPC decoders suitable for high-rate codes over high-order Galois fields.
The emphasis is placed on the reduction of both bottlenecks, previously mentioned,
that limit the performance of current NB-LDPC decoder architectures. Therefore,
the specific objectives of this thesis are:

• Objective 1: To propose low-complexity decoding algorithms and their corre-
sponding decoder architectures to simplify and reduce the complexity of the
CN processor, with the goal of reducing the area and increase the throughput
compared to the existing approaches from literature without compromising
the coding gain.

• Objective 2: To develop solutions to reduce the number of messages ex-
changed between processors in NB-LDPC decoders with the aim of reducing
the wiring congestion that usually appear on decoder implementations.

• Objective 3: To formulate a EMS- based algorithm that allows the imple-
mentation of high-performance decoders for Galois fields larger than 32.

2



Methodology

The methodology followed to meet the objectives of this thesis includes the next
steps:

• Bibliography review of the state-of-the-art decoding algorithms. Analysis of
the most efficient decoder architectures in terms of area and throughput, and
detection improvements.

• Development of a software communication system model using C/C++ lan-
guage that includes the components in Fig. 1. The method used to test
the algorithms is through Montecarlo simulation, where the non-binary mes-
sage is constructed using uniform random number generation. Next, this
message is encoded (using the generator matrix) and modulated in Binary
Phase Shift Keying (BPSK). For each modulated message the noise pattern
is changed using Additive White Gaussian Noise (AWGN) generators1. The
received signal is demodulated and the soft information is used to obtain the
Log-Likelihood Ratio (LLR) which is the input of the decoding algorithm
under test. The decoder receives the LLR values and then, applies the it-
erative message exchange to estimate the codeword. Finally, the estimated
codeword is compared to the transmitted one to check if the decoding is
successful or there is a decoding failure.

Figure 1: Software simulation model

• Analysis of the Frame Error Rate (FER)/BER performance of the proposed
algorithms, and comparison to the state-of-the-art proposals from literature.
Measurement of the possible performance loss introduced by our proposal
and adjustment in the parameters of the algorithm in order to minimize
these losses.

• Analysis of the iterative decoding algorithm with finite precision, after the
validation of its floating-point model. To this end, a finite precision model
is included in the software simulator and then Montecarlo simulations are
performed (Fig. 1). The objective is to find the best fixed-point parameters

1The AWGN model included in GNU Scientific Library (GSL) is used to make all the simu-
lations required to validate each algorithm at low Bit Error Rate (BER) values. The standadard
C/C++ Pseudo-Random Number Generator (PRNG) can not be employed because its short
period length would affect the validation process

3



Preface

to establish a balance between performance loss, compared to the floating-
point model, and required area.

• Design of the decoder architecture applying the results of the finite precision
analysis and taking into account the next hardware constraints: area, latency
and decoding throughput.

• Early estimation of the gate count of the design and comparison to other
proposals from literature. Modifications in the architecture, in the quanti-
zation scheme or in the algorithm are made when the area of the design or
the estimated latency do not accomplish requirements.

• Description of the hardware architecture using Very High Speed Integrated
Circuit Hardware Description Language (VHDL) and functional verification
before implementing the design. The verification is performed following the
steps listed below:

1. Generation of the input and output vectors using the software finite
precision model.

2. Description of a testbench in VHDL to validate the proposed design
at functional level using Modelsim simulator. The Unit Under Test
(UUT) will receive the input test vectors, process them and then it
will generate the output values which are compared to the output test
vectors (obtained using the software finite precision model).

• Implementation of the design for FPGA and Application Specific Integrated
Circuit (ASIC) technologies considering the particular characteristics of each
one of them. For FPGA implementation Xilinx tools are used and Cadence
tools are employed for ASIC implementation. Once implementation is com-
pleted, the area results are compared to the estimations made during the
design process and to other proposals from literature. After implementation,
new simulations are made to ensure that the design fits with the software
simulation model. If any constraint is not meet or there is some malfunction,
the previous steps are applied again to redesign the decoder. Therefore, the
design process is iterative.

Contributions

The contributions made during the realization of this research are summarized in
the following list:

1. Five NB-LDPC decoding algorithms were proposed, two of them (Trellis
Min-Max (T-MM) and Compressed Non-Binary Message Passing (CNBMP))
do not introduce any performance loss compared to previous proposals from

4



literature. The remaining three algorithms introduce a negligible perfor-
mance loss less than 0.1dB for the high-rate codes under test.

2. Five decoding architectures were coded in VHDL and implemented in a
90nm CMOS technology and, moreover, post place and route results were
presented. Besides, the architectures designed were implemented for three
different high-rate codes with GF(16), GF(32) and GF(64). For the three
codes the achieved throughput was higher than 1Gbps, being the highest
compared to other proposals from literature for codes with similar charac-
teristics to the best knowledge of the author.

3. One decoding architecture based on the CNBMP approach was implemented
in a FGPA device for the (2304,2048) NB-LDPC code with GF(16) achieving
630 Mbps, the highest throughput for FPGA based decoder architectures
compared to other proposals from literature.

4. The first post-place and route report for a high-rate decoding architecture
with GF(64) was presented. The decoding algorithm was the Reduced Com-
plexity Trellis Min-Max (RC-TMM) which introduces simplifications over
the T-MM algorithm that saves a considerably amount of area for codes
over high-order fields.

5. All the proposed decoding architectures applied parallel processing of mes-
sages, thus low latency is achieved in all of them (less than 4 µs).

6. Since the proposals presented in this manuscript improve both area and
throughput, the efficiency parameter (Mbps / Million NAND gates) was
greatly increased in almost six times compared to the T-EMS approach pre-
vious to this thesis.

The results got during the realization of this thesis have been published in five
international journals. Furthermore, an international conference paper have been
presented. Chapter 2 to 7 include the publications derived from this thesis.

• International journals:

1. Chapter 2: Jesús O. Lacruz, Francisco Garcia-Herrero, David De-
clercq, Javier Valls, “Simplified Trellis Min-Max Decoder Architecture
for Non-Binary Low-Density Parity-Check Codes”. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, Vol. 23, No. 9, pp.
1783-1792, Sept. 2015.

2. Chapter 3: Jesús O. Lacruz, Francisco García-Herrero, David De-
clercq, Javier Valls, “One Minimum Only Trellis Decoder for Non-
Binary Low-Density Parity-Check Codes”. IEEE Transaction on Cir-

5



Preface

cuits and Systems-I: Regular Papers, Vol. 62, No. 1, pp. 177-184, Jan.
2015.

3. Chapter 4: Jesús O. Lacruz, Francisco Garcia-Herrero, Javier Valls,
“Reduction of Complexity for Nonbinary LDPC Decoders With Com-
pressed Messages”. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 23, No. 11, pp. 2676-2679, Nov. 2015.

4. Chapter 6: Jesús O. Lacruz, Francisco Garcia-Herrero, María José
Canet, Javier Valls, “High-performance NB-LDPC decoder with reduc-
tion of message exchange”. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 24, No. 5, pp. 1950-1961, May 2016.

5. Chapter 7: Jesús O. Lacruz, Francisco Garcia-Herrero, María José
Canet, Javier Valls, “Reduced-complexity Non-Binary LDPC decoder
for high-order Galois fields based on Trellis Min-Max algorithm”. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 24,
No. 8, pp. 2643-2653, Aug. 2016.

• International Conferences:

1. Chapter 5: Jesús O. Lacruz, Francisco Garcia-Herrero, María José
Canet, Javier Valls, Asunción Perez-Pascual, “A 630 Mbps Non-Binary
LDPC Decoder for FPGA”. IEEE International Symposium on Circuits
& Systems (ISCAS) 2015, pp. 1989-1992. Lisbon-Portugal. May, 2015

Thesis Structure

This thesis is presented as a compilation of publications. Chapter 1 includes the
basis of NB-LDPC codes, schedules, hardware architectures and soft-decision de-
coding algorithms. Chapters from 2 to 7 include the compilation of publications
product of this thesis. The articles have been organized in chronological order
just as the research was made. The structure of these chapters is the one com-
monly used for papers, ie, state-of-the-art and related works, presentation of the
proposed approach, BER/FER performance of the algorithm, proposed hardware
implementation, results and comparison to related works and, finally, the conclu-
sions.

To ease the identification of the improvements made in each paper, we include
in the corresponding chapter a figure as the one in Fig. 2, where the decoder
characteristics that were improved in each paper are highlighted. Therefore, if
the algorithm complexity was reduced, the “Check Node” is highlighted. If the
latency was decreased, the discontinuous lines crossing the “Check Node”, that
represent the pipeline of the architecture are highlighted. In case of the reduction

6



of the messages exchanged, the wires connecting the corresponding blocks are
emphasized. Similar treatment was done for the memory, area and throughput
improvements. In cases where the proposal is suitable for high-order Galois fields,
“GF(q) ↑↑” is highlighted.

Figure 2: Key points of the improvements presented in each chapter of the manuscript.

The starting point of the research made in this thesis is the T-EMS algorithm from
[16]. T-EMS offers the possibility of the parallel processing of messages in the
decoder, which allows the design of high-speed decoders with higher throughput
compared to previous proposals from literature. The first implementation of this
algorithm, also made by this author [17], achieved a throughput of 484Mbps in
a 90nm CMOS process after synthesis results for the (837,726) NB-LDPC code
over GF(32). This previous work allowed the identification of bottlenecks in both
algorithm and hardware architecture of T-EMS, and set the bases of this thesis.

Chapter 2 introduces simplifications over the T-EMS algorithm and decoder ar-
chitecture. Specifically, the way to derive the check-node output messages in
T-EMS was simplified. On the other hand, the reliability of the output mes-
sages was computed with min-max operators, and this reduces the width of the
decoder data-path. This simplification of T-EMS was named Trellis Min-Max al-
gorithm (T-MM). Additionally, a complete decoder architecture for the (837,726)
NB-LDPC code over GF(32) was proposed. It achieves a throughput 660Mbps
and an area of 14.75 mm2.

Chapter 3 includes further simplifications over the CN processor compared to the
proposal presented in Chapter two. Estimators for the second-most reliable value
for the check-node input messages were presented. This estimators avoids the use
of two-minimum finders in the check-node processors of NB-LDPC decoders. A
complete hardware architecture was also presented, which achieves 818 Mbps of

7



Preface

throughput with an area of 16.10 mm2. The increase in throughput is about 24%
compared to the results achieved in Chapter 2.

Chapter 4 presents a method to reduce the quantity of messages exchanged be-
tween CN and VN processors. The number of storage elements in the decoder
was also reduced. The performance of T-MM or T-EMS algorithms was kept since
there is no information loss. The achieved throughput was 981 Mbps requiring an
area of 10.6 mm2. The increase in throughput is 20% and the reduction in area is
about 34% compared to the results from Chapter 3.

The work from Chapter 5 includes implementation details for the proposal from
Chapter 4, describing the CN and VN architectures thoroughly. Furthermore,
the design was particularized and optimized for FPGA using the (2304,2048) NB-
LDPC code over GF(16). It achieved 630 Mbps of throughput, the highest for
FPGA implementation compared to previous proposals.

An algorithm which reduces the number of messages exchanged between processors
in NB-LDPC decoders was proposed in Chapter 6. The results from Chapter 4
and 5 were used to derive this new algorithm. The reduction of messages causes
a performance loss that is negligible compared to T-MM algorithm (Chapter 2).
The achieved throughput was 1.08 Gbps and the area 8.97 mm2, outperforming
the results of the paper from Chapter 4 in 10% and 19% for throughput and area,
respectively.

Finally, a new method to reduce the number of messages exchanged between pro-
cessors in NB-LDPC decoders is included in Chapter 7. This reduction of messages
allows a great decrease in the complexity of the CN processor compared to the
architecture from Chapter 2, whose application was limited for codes with field or-
ders higher than GF(32) due to its complexity. The implementation of the design
for the (837,726) NB-LDPC code over GF(32) achieved a throughput (1.07 Gbps)
and area (9.8mm2) are very similar to the results from Chapter 6. Additionally,
we included the first post place & route results for a high-rate code over GF(64).
The achieved throughput was 1.26 Gbps with an area of 28.9mm2 for the high-rate
(1536,1344) NB-LDPC code over GF(64).

To analyze the contributions of this thesis, Chapter 8 includes a discussion of
the main results achieved during this research. First, each proposal is analyzed
individually; secondly, the impact of each proposal in the objectives of the thesis is
studied. Next, a comparison between the starting-point [17] and the final results
achieved during this thesis is made. The improvement in throughput is about
120%, whereas the reduction in area (measured in terms of NAND gates) is about
53%. Furthermore, this chapter includes the conclusions derived from the thesis
and the future research lines.

8



Chapter 1

State of the art of non-binary
low-density parity-check codes

This chapter summarizes the background necessary to understand the following
chapters and the state of art of the Non-Binary Low-Density Parity-Check (NB-
LDPC) decoding algorithms and architectures. It includes 1st) the basis of the
NB-LDPC codes and their iterative decoding mechanism; 2nd) the nomenclature
to formulate the decoding algorithms; 3rd) the schedules used in the decoding
process; 4th) the different architectural options suitable to implement the decoders;
and finally, 5th) the algorithms and architectures to compute the check node, with
the emphasis placed in the Trellis Extended Min-Sum algorithm, which is the
starting point of this thesis.

1.1 LDPC codes and decoding process

LDPC codes are linear block codes characterized by a parity-check matrix H. The
term low-density means that H is sparse, with just a few non-zero elements. If
the elements in H belong to the set {0, 1}, the code is said to be binary. LDPC
codes were first investigated by Gallager [18] during his doctoral studies. His work
was ignored due to the complexity of the decoding process and due to technology
limitations in those years, until MacKay and Neal rediscovered them in 1995 [19].
LDPC codes can also been characterized by a bipartite graph called Tanner graph
[20], where two kind of nodes are distinguished: the ones called VN, related to
each column of H, and the others called CN, which correspond to each row of
H. LDPC codes are decoded iteratively by means of message-passing algorithms
between VN and CN and vice versa. Fig. 1.1 shows an example of a parity-check
matrix (a), and its corresponding Tanner graph (b). The decoding process is the

9



Chapter 1. State of the art of non-binary low-density parity-check codes

following: i) bit reliability values are passed from VN to CN, where parity-check
equations are solved; ii) messages based on the incoming reliability values are sent
back to the VNs, where each node is updated. The process is repeated iteratively
until all parity-check equations are satisfied or a maximum number of iterations
(iter) is reached.

LDPC decoding algorithms usually include an early stopping criterion that consists
on verifying if all parity-check equations are fulfilled with the tentative codeword c̃.
If that condition is reached, c̃ is a valid codeword and the decoder stops, otherwise
a new iteration starts.

Figure 1.1: (a) Example of a LDPC code parity-check matrix. (b) Tanner graph
representation for the matrix in (a)

LDPC codes can be regular or irregular. The first ones contain the same number
of non-zero elements in all the columns of H (dc) and the same number of non-zero
elements in all the rows (dv). In the second ones the columns and/or rows do not
necessarily have the same number of non-zero elements. In this thesis, without
loss of generality and for the sake of simplicity, we only consider regular LDPC
codes. The CN degree (dc) refers to the number of non-zero elements per row in
H. In the same way, the VN degree (dv) corresponds to the number of non-zero
elements per column in H. In the example of Fig. 1.1 dc = dv = 2.

NB-LDPC codes were first studied by Davey and MacKay [6], emerging as a nat-
ural extension of the binary ones. Similar to the binary case, NB-LDPC codes
are characterized by a parity-check matrix whose non-zero elements, hm,n, belong
to a Galois field GF(q = 2p), with p > 1, being p = 1 the binary case, as in the
example of Fig. 1.1.

Fig. 1.2.a includes an example of a non-binary parity-check matrix with the non-
zero elements from GF(22). In the non-binary case, the Tanner graph is modified
to include the non-zero H elements in the edge that connects the nodes. In the
literature, some authors [14, 16, 21] include intermediate nodes between CN and
VN in the Tanner graph, denominated permutation nodes, which include the cor-
responding non-zero H values. These nodes perform the multiplication of the

10



1.2 Nomenclature

symbols coming from the VN and the corresponding non-zero H value. The sym-
bols from CN to VN are multiplied by the corresponding non-zero H element.

Figure 1.2: (a) Example of a NB-LDPC code parity-check matrix. (b) Tanner graph
corresponding to the matrix in (a)

1.2 Nomenclature

Let us define m = [m1,m2, . . . ,mK ] as the message to be coded, where each
elementmi ∈GF(q) andK = N−GFrank(H)1. The codeword c = [c1, c2, . . . , cN ]
is obtained by means of c = m ·G, where G, with dimensions K ×N , is the code
generator matrix which must accomplish G ·HT = 0. y = [y1, y2, . . . , yN ] is the
sequence at the receiver side, being y = c + e, where e is the GF representation
of the noise introduced by the communication channel, assumed as AWGN. The
received sequence is used to calculate the LLR values, which serve as input for most
of the NB-LDPC decoding algorithms. LLRs are obtained by means of Ln(a) =
log[P (cn = zn|yn)/P (cn = a|yn)], where usually a normalization is made to ensure
that all the values are non-negative, L′n(a) = |Ln(a)−Ln(zn)|, being zn the hard-
decision symbol associated to the highest reliability. So, for each symbol n in the
received sequence y, the LLR forms the set Ln = [Ln(0), Ln(1), . . . , Ln(q − 1)].
Fig. 1.3 includes a simplified block diagram for the system model including the
nomenclature used and the cardinality of each set.

Figure 1.3: Simplified block diagram for the system model

1GFrank(·) denotes the number of linearly independent equations of a matrix, using GF
arithmetic

11



Chapter 1. State of the art of non-binary low-density parity-check codes

This thesis is focused on soft-decision decoders where the reliability values from
the received sequence y, used to calculate the LLR, are updated in an iterative way
based on their own reliability and the ones from their neighbors. In a general case,
each VN exchanges with its connected CNs all the LLR values updated during a
decoding iteration. This set of messages is denoted as Qm,n(a) ∀ a ∈ GF(q)
and n ∈ M(n), whereM(n) refers to the set of CNs connected to a VN n. In a
similar way, after the CN processing, the CNs send the updated reliability values
Rm,n(a) ∀ a ∈ GF(q) and m ∈ N (m) to their connected VNs. N (m) refers
to the set of VNs connected to a CN m. Based on the incoming set of updated
reliability values Rm,n(a) and the channel LLR values, each VN calculates the a
posteriori information, which is used to obtain the tentative decoded codeword c̃.
Fig. 1.4 includes a scheme of the message exchanged between nodes in a Tanner
graph.

Figure 1.4: Detail of a Tanner graph used to show the nomenclature of the exchanged
messages between nodes in NB-LDPC decoding algorithms.

1.3 Decoding schedules

There are two main methods to update the nodes during the iterations of the
decoding process of an LDPC code: flooding and layered schedules. Flooding
schedule uses the so-called two-phase node update, which consists on: a) first, all
CN equations are solved by calculating the output reliabilities Rm,n(a); b) then,
the Qn(a) values of all VNs are computed solving for all VNs. The process is
repeated until all parity-check equations are solved or a maximum number of iter-
ations is reached. Algorithm 1 includes the general steps when flooding schedule is
used to decode NB-LDPC codes. As explained before, the set Qm,n(a) is initialized
with the channel information at the beginning of the decoding process. Function
φ updates the Rm,n(a) values, using the set Qm,n(a). The CN output messages
and the channel information are employed to derive an updated version of the set

12



1.3 Decoding schedules

Algorithm 1: Flooding schedule
Inicialization:

Q
(0)
mn(a) = Ln(a) , t = 1

Main Loop:
while t ≤ iter do

CN Update:
1 R

(t)
mn(a) = φ

(
Q

(t−1)
mn (a) ∈ N (m)

)

VN Update:
2 Q

(t)
mn(a) = Ln(a) +

∑
m′∈M(n)\mR

(t)
m′n(a)

Tentative Decoding:
3 Q

(t)
n (a) = Ln(a) +

∑
m′∈M(n)R

(t)
m′n(a)

4 c̃n = arg min
(
Q

(t)
n (a)

)
∀ a ∈ GF(q)

5 if c̃×HT = 0 then break

6 t = t+ 1

end

Output: c̃ = [c̃1, c̃2, . . . , c̃N ]

Qm,n(a) to be used in the next iteration. At the end of each decoding iteration,
the total VN information Qn(a) is calculated to obtain the tentative codeword c̃.

Layered schedule was originally proposed in the context of binary LDPC codes
[22]. Despite this, the concepts are totally applicable for the non-binary case. The
method consists on updating the nodes by steps, in a serial fashion. There are two
ways to perform layered schedule: vertical (column) schedule and horizontal (row)
schedule. In column layered schedule, one VN is processed at a time, then its
connected CNs are updated. The steps are repeated until all VNs are processed.
The horizontal schedule is the dual process since one CN is considered and then
all its connected VNs are updated. Both ways of layered schedule are equivalent
and achieve similar correction capability. In this thesis we only consider horizontal
layered schedule since it fits better with the algorithms that are proposed. In this
manuscript the terms layered schedule and horizontal layered schedule are used
indistinctly.

The non-binary Tanner graph from Fig. 1.2.b is simplified in Fig. 1.5, omitting
the non-zero coefficients of H in GF(2p), to show an example of how the horizontal
scheduling performs the decoding process. First CN {1} is considered (Fig. 1.5.a),
then VNs {1, 2} are updated (Fig. 1.5.b). Secondly, CN {2} is processed (Fig.

13



Chapter 1. State of the art of non-binary low-density parity-check codes

1.5.c) and then VNs {2, 4} are updated (Fig. 1.5.d). The process is repeated until
all CNs are processed.

Figure 1.5: Example of horizontal layered schedule message exchange

Algorithm 2 includes the basic steps to implement an horizontal layered schedule
decoder. Similar to the flooding schedule from Algorithm 1, function φ represents
the specific CN processing algorithm, which uses as input the set Qm,n(a) incoming
from its associated VNs. In order to avoid the use of GF-multipliers and, thus,
to simplify the CN processing, the set of messages are permuted before the CN
processing and inverse-permuted after it. The permutations are done using the
non-zero H elements hm,n.

One important advantage of the layered schedule is that the decoding algorithms
require less iterations to converge compared to the flooding schedule [22]. The
reason for the faster convergence is that each message in Rm,n(a) is calculated
using updated information from its connected VNs.

14



1.4 Decoding architectures

Algorithm 2: Horizontal layered schedule
Inicialization:

Q
(0)
n (a) = Ln(a), t = 1

Main Loop:
while t ≤ Iter do

for l = 1 to M do
1 Qmn(a) = Q

(t−1)
n (hmna)−R(t−1)

mn (a)

2 R
(t)
mn(a) = φ (Qmn(a))

3 Q
(t)
n (h−1mna) = R

(t)
mn(a) +Qmn(a)

end

4 c̃n = arg min
(
Q

(t)
n (a)

)

5 if c̃×HT = 0 then break
6 t = t+ 1

end
Output: c̃ = [c̃1, c̃2, . . . , c̃N ]

1.4 Decoding architectures

Depending on how many rows of the parity-check matrix are processed at a time,
the decoding architectures can be classified into three basic groups: fully parallel,
serial and partial parallel.

A fully parallel decoder processes all the rows of H at a time. This kind of decoders
includes one CN processor per row and one VN processor per column. This kind
of implementation is also called “two-phase decoder”, since in one phase all the CN
processors work and in the next one all the VN processors compute the incoming
messages.

Figure 1.6: Example of a fully-parallel decoder for the code of Fig. 1.2

15



Chapter 1. State of the art of non-binary low-density parity-check codes

Fully parallel architectures are associated with flooding schedule since it allows the
processing of all rows in H at the same time. These architectures can achieve high
decoding speeds for short codes at the expense of larger area and they usually ex-
hibit wiring congestion due to the high density of connections between processors,
and this limits the maximum frequency. The throughput of fully parallel decoders
is obtained using Eq. (1.1). fclk corresponds to the operating clock frequency of
the decoder, iter the number of iterations for the algorithm, segCN and segV N
correspond to the latency in the CN processor and VN processor respectively. In
most cases, the CN involves the major computational load, therefore, the number
of clock cycles per phase is limited by the CN.

Throughputfp =
N × p× fclk

iter × (segCN + segV N )
(1.1)

The throughput can be almost duplicated by means of processing two codewords
at a time. While the CNs process one codeword, the VNs perform computations
over the other one.

To the best author’s knowledge, just few works in literature [23, 24] have presented
parallel NB-LDPC decoder implementations for short codes. For high-rate codes
with medium codeword length, parallel implementations are still non-viable, due to
the large area consumed and the routing congestion (that dramatically reduces the
throughput). Hence, these architectures are no suitable for practical applications.

Serial based decoder architectures process one row of H at a time. They use
a unique CN processor and interconnection networks for the message exchanges.
Therefore, the required area is the lowest at the expense of penalizing the achiev-
able throughput of the decoder. These decoders can be used with flooding or
layered schedule, but are commonly used with the latter due to the advantages of
this schedule seen on Section 1.3. An example of a serial decoder architecture is
presented on Fig. 1.7, where it can be seen that dv VN processors are required to
process one row of H. Besides, it requires memories to store the CN-to-VN and
VN-to-CN messages and interconnection networks to route the messages.

The throughput of the serial architecture can be defined by means of Eq. (1.2),
where X represents the number of times that the pipeline stages of the decoder
must be emptied per iteration to avoid memory conflicts.

Throughputserial =
N × p× fclk

it× (M + (segCN + segV N )×X)
(1.2)

Due to the high complexity of the CN processor, most of the published implemen-
tations of NB-LDPC decoders use this kind of architecture with the aim of finding
a balance between area and throughput.

16



1.4 Decoding architectures

Figure 1.7: Example of a serial decoder for the code of Fig. 1.2. It requires dv = 2 VN
processors.

Finally, partial parallel decoders include more than one CN processor to increase
the throughput compared to serial implementations without requiring the area
of the fully parallel ones. The number of rows processed in parallel is selected
taking into account the requirements of area and, on the other hand, the memory
conflicts.

An example of a partial parallel decoder structure is shown on Fig. 1.8. The
example corresponds to the Tanner graph from Fig. 1.2.b, implementing two CN
processors. For the graph from Fig. 1.2.b, three VN processors are required to
process the messages coming from the two CN processors. In general, the number
of VNPs will depend on the particular H matrix that defines the LDPC code.

Figure 1.8: Example of a partial parallel decoder

When layered schedule is applied, the number of rows that can be processed in
parallel can be maximized using parity-check matrices composed by circulant sub-
matrices. This is only possible if the submatrices are of degree one (dc = 1 and
dv = 1). An example of this kind of matrices is presented in Fig. 1.1.a, where H
is formed by four circulant sub-matrices with individual dimensions 4× 4.

This kind of Quasi-cyclic (QC) NB-LDPC codes allow us to process in parallel a
maximum of QC check nodes, without losing the advantages of applying layered

17



Chapter 1. State of the art of non-binary low-density parity-check codes

schedule and avoiding memory access conflicts, being QC the size of each circulant
sub-matrix.

1.5 NB-LDPC decoding algorithms and architectures

In this thesis we only consider soft-decision decoding algorithms since they offer
the highest coding gain. However, there are hard-decision (HD) solutions recently
proposed in literature that have reduced the existing gap between HD and SD
decoding algorithms for high-rate codes [25, 26].

Generally, SD decoding algorithms process the CN input messages, Qm,n(a), using
a general function as the one from Eq. 1.3, where Θ and ρ represent generic
functions that depend on the particular algorithm used to decode the NB-LDPC
code. The common functions are product, sum, min and max. Depending on
which combination of functions is used in the decoding algorithm, the complexity
in the decoder increases or decreases.

Rm,n(a) = Θ{ ρ [ Qm,n(a) ] } (1.3)

On the other hand, there are two ways to solve the CN equations: serial or parallel.
Serial computation of the CN equations is usually done by means of a recursive al-
gorithm called forward-backward. Parallel computation in the CN is implemented
by processing the CN input messages using a trellis structure. Both techniques to
compute the CN output messages will be explained in detail later in this chapter.

When MacKay and Davey studied NB-LDPC codes, they introduced a general-
ization of the belief propagation decoding algorithm for LDPC codes based on
high-order fields. They called it QSPA and it was defined originally in the proba-
bility domain [6].

In this algorithm, messages passing from VN to CN, Qm,n(a), correspond to the
conditional probability that the symbol zn is equal to the symbol a ∈ GF(q),
given the information obtained from the set of CNs M(n) \ m. Messages are
calculated using (1.4), where fm,n is chosen such that Qm,n(a1)+Qm,n(a2)+ · · ·+
Qm,n(aq) = 1 and Pn(a) corresponds to the prior probabilities of the nth received
symbol zn for each a1, a2, . . . , aq GF(q) symbol[27].

Qm,n(a) = fm,nPn(a)
∏

m′∈M(n)\m
Rm′,n(a) (1.4)

18



1.5 NB-LDPC decoding algorithms and architectures

On the other hand, messages from CN to VN are obtained using (1.5).

Rm,n(a) =
∑

zn=a

P (sn = 0|z, zn = a) ·
∏

n′∈N (m)\n
Qm,n′(a) (1.5)

As can be seen on Eq. 1.5, the generic function Θ is implemented as an addition
and the ρ function involves a product over all the combinations of the CN input
messages Qm,n(a), to calculate the sets of output messages Rm,n(a).

In order to reduce the complexity of the original QSPA, new versions of the algo-
rithm, in the frequency [28] and logarithmic domains [29], were proposed simpli-
fying the CN calculations without introducing any performance loss compared to
the algorithm from [6]. Even with these simplifications, hardware implementations
were limited to short codes with Galois field orders lower than GF(16).

A recent proposal from literature is the one from [30], which introduces a trellis-
based log-QPSA algorithm. This algorithm makes use of the configuration sets
introduced in [14] to reduce the number of exchanged messages between VN and
CN processor to nm � q and, at the same time, to reduce the number of operations
in the CN processor. The performance loss, compared to QSPA, is controlled by
means of the nm parameter.

As an extension of the Min-Sum algorithm defined for binary LDPC decoders,
the EMS decoding algorithm was proposed in [14]. It requires only additions and
comparisons in the CN processing. Based on a reduced set of nm � q messages,
this algorithm allows hardware implementations over high-order Galois fields due
to the reduction in the complexity of the CN [31]. In this case, compared to
the generic CN function (1.3), Θ is replaced by the maximum (max) operator
and ρ is implemented by means of additions. The resultant function to obtain
the CN output messages is included in (1.6), where conf(nm, nc) corresponds to
the configuration set [14] defined as the set of nm symbols with higher reliability
that differs in at most nc symbols from the zero-order configuration, meeting the
parity-check equation2.

Rm,n(a) = max
a′ ∈ conf(nm,nc)

∑

n′ ∈ N (m)\n
Qm,n′(a

′) (1.6)

The max operator is used when the highest reliability is associated with the high-
est magnitude, otherwise, the min operator is selected. EMS is a sub-optimal
algorithm that introduces a performance loss compared to QSPA. One of the main
reasons for the degradation in the performance is due to an overestimation of the

2Zero-order configuration corresponds to the combination of symbols with the highest relia-
bility that meet the parity-check equation

19



Chapter 1. State of the art of non-binary low-density parity-check codes

messages Rm,n(a) [14]. An approach to reduce the performance loss is the use of
a scaling factor or offset in the messages at the VN.

There is a proposal in the literature that further reduces the complexity of the EMS
algorithm from [14]. The authors called it Simplified Min-Sum Algorithm (SMSA)
[32] as their proposal reduces the complexity during the CN processing by means
of the selection of a smaller set of incoming messages with higher reliability, which
reduces the number of possible configuration sets involved in the computation
of the CN output messages. They also propose an architecture that considerably
increases the throughput compared to previous proposals from literature. Even so,
the proposal from [32] is still far from being suitable for high-speed applications due
to its inherent serial processing at the CN, which limits the maximum achievable
decoding speed.

More recently, in [24] a fully parallel chip implementation based on the truncated
EMS algorithm was proposed. This work truncates the least significant reliability
values, keeping only the nm most reliable ones (nm � q). They implement a
decoder for a short code over GF(64) achieving more than 1Gbps of throughput.
Extrapolating their results for longer codes with higher rate, it would exhibit
prohibitive chip area due to the fully-parallel implementation strategy. On the
other hand, the throughput is limited due to the use of forward-backward metrics
for the CN processing.

With the aim of eliminating the data-path growing in the CN output compared to
the EMS algorithm, in [15] min-max algorithm is presented. The author proposes
the implementation of the ρ function from (1.3) using the max operator instead
of the sum from Eq. (1.6). Since no addition is made during the CN processing,
there is no increase in the data-path width, in contrast with the use of Eq. (1.6).
The CN update equation is modified as shown in Eq. (1.7), where it is assumed
that the Qm,n(a) reliabilities are normalized with respect to the hard-decision
symbol, therefore, Θ function is replaced by the minimum (min) operator. Eq.
(1.7) also considers the q full set of reliability values. Furthermore, in [15] the
author introduces a method to reduce the number of possible combinations to be
analyzed, reducing the complexity of Eq. (1.7).

Rm,n(a) = min
an′ |an+

∑
n′∈N(m)\n a

′
n=0

max
n′ ∈ N (m)\n

Qm,n′(a
′
n) (1.7)

The performance loss of min-max algorithm compared to QSPA is slightly higher
than the one offered by EMS with the proper scaling or offset value.

Since the min-max algorithm was proposed [15] numerous works have been pre-
sented in literature with the aim of reduce its complexity that would allow the
implementation of high-speed decoders. Two of these works are the ones from
[33, 34]. The one in [33] introduces a modified shuffle (vertical layered) scheduled

20



1.5 NB-LDPC decoding algorithms and architectures

decoder that reduces the complexity of the CN processor. The work from [34]
presents a CN processor based on treating the CN messages in a trellis fashion.
The complexity of the entire decoder was reduced compared to previous proposals
from literature. The performance loss compared to the original min-max can be
controlled depending of the number of messages taken into account in the CN
processor. On the other hand, the throughput is limited since no parallel compu-
tations are made to process the trellis in the CN.

More recently, an approach based on the min-max algorithm has been presented
in [23]. The authors proposed a method to reduce considerably the number of
messages exchanged between CN and VN and vice versa. When it is required, the
dismissed messages are approximated using a linear interpolation method. They
implemented a fully-parallel decoder for short codes over high-order fields. Similar
to the work from [24], the decoder may suffer from wiring congestion when uses
codewords with medium to long lengths and/or high-rate codes with large check-
node degree.

Most of the proposals previously mentioned use forward-backward metrics to de-
rive the CN output messages in the decoder, so next, we include a short explanation
of the algorithm. The forward-backward approach requires two matrices, F and
B, to store the intermediate results which are combined in a new matrix M in a
final step.

Consider the example from Fig. 1.9, where for the sake of simplify the explanation,
the non-zero H are taken as α0 = 1. The CN input messages are shown in Fig.
1.9.a being q = 4 and dc = 3. The F matrix is filled serially column by column,
where the first one (starting from the leftmost one) is a copy of the first column of
the CN input messages (Qm,1). The second column is filled with the combination
of Qm,2 and the first column of F (F1). The combination is computed following
the rules of the particular algorithm implemented in the decoder. For the case
of this example we use min-max. As an example, equations (1.8) and (1.9) show
how the elements F1(0) and F1(α0) are calculated. The rest of elements in F are
calculated in a similar way. It is important to remark that calculating the elements
of the column i, requires that the elements of the column i− 1 have to be already
computed. Therefore, it is a recursive process that is slower when the CN degree
gets higher.

F2(0) = min





max{F1(0), Qm,2(0)} = 3
max{F1(α0), Qm,2(α0)} = 10
max{F1(α1), Qm,2(α1)} = 12
max{F1(α2), Qm,2(α2)} = 6





= 3 (1.8)

21



Chapter 1. State of the art of non-binary low-density parity-check codes

Figure 1.9: Forward Backward example

F2(α0) = min





max{F1(0), Qm,2(α0)} = 10
max{F1(α0), Qm,2(0)} = 3
max{F1(α1), Qm,2(α2)} = 12
max{F1(α2), Qm,2(α1)} = 7





= 3 (1.9)

In a similar way, the matrix B is processed. In this case, the last column (B3 in
the example of Fig. 1.9.c) is filled with the column Qm,3. The rest of columns
are computed in a way similar to the F matrix but filling the columns from left to
right. For example, the element B2(α1) is calculated as shown in Eq. (1.10).

B2(α1) = min





max{B3(0), Qm,2(α0)} = 14
max{B3(α0), Qm,2(0)} = 12
max{B3(α1), Qm,2(α2)} = 8
max{B3(α2), Qm,2(α1)} = 10





= 8 (1.10)

Finally, to process the elements of the matrix M, matrices F and B are required.
In this case, the rule of combination is that to fill elements in the column i, the
i − 1 and i + 1 column of F and B, respectively, are required. For the first and

22



1.5 NB-LDPC decoding algorithms and architectures

last column of M, M1 = B2 and Mdc = Fdc−1. For example, for the case in Fig.
1.9.d, the element M2(α2) is calculated as shown in Eq. (1.11).

M2(α2) = min





max{F1(0),B3(α2)} = 5
max{F1(α0),B3(α1)} = 8
max{F1(α1),B3(α0)} = 12
max{F1(α2),B3(0)} = 14





= 5 (1.11)

Due to the data dependency, a total of 3 × dc − 4 clock cycles are required to
calculate the three matrices. This number of clock cycles can be reduced to dc− 1
if the calculation of M starts immediately when the required values from F and
B are available. This reduction in the latency comes with an increase in the
hardware area. To further reduce the latency other approaches to derive the CN
output messages must be employed.

1.5.1 Trellis Extended Min-Sum Algorithm

Trellis Extended Min-Sum (T-EMS) [35, 16] was presented as a new computation
method for the EMS algorithm, treating the messages in the CN processor in a
trellis structure. This fact allows the parallel processing of messages, which is the
main drawback of other proposals from literature. The basic steps for T-EMS are
presented in Algorithm 3.

Algorithm 3: T-EMS Algorithm
Input: Qm,n , zn = arg mina∈GF (q)Qm,n(a) ∀ n ∈ N (m)

for j = 1→ dc do
1 ∆Qm,nj

(ηj = a+ znj
) = Qm,nj

(a)

end
2 β =

∑dc
j=1 znj

∈ GF (q)

3 ∆Q(a) = minη′j(a)∈conf(nr,nc)

∑dc
j=1 ∆Qm,nj (η′j(a)), a ∈ GF (q)

for j = 1→ dc do
4 ∆Rm,nj (a+ η′j(a)) = min(∆Rm,nj (a+ η′j(a)),∆Q(a)−∆Qm,nj (η′j(a)))

5 Rm,nj (a+ β + znj ) = λ ·∆Rm,nj (a), a ∈ GF (q)

end
Output: Rm,n

As a difference with the proposal from [14], which processes a reduced set of
nm < q messages, T-EMS algorithm works with the full set of q reliabilities.
On the other hand, the algorithm assumes that the reliabilities are normalized
in such a way that the most reliable symbol zn corresponds to a value of zero

23



Chapter 1. State of the art of non-binary low-density parity-check codes

(highest reliability), being all reliabilities non-negative values. Previous to the
computation of the CN output messages, the algorithm requires a transformation
of the Qm,n(a) messages to the so-called “delta domain” (Step 1), where the set
Qm,n(a) is reordered in a way that the most reliable symbol corresponds to the
α−∞ symbol once is transformed.

Step 2 involves the syndrome (β) calculation. It is obtained adding, in a GF
domain, all tentative hard-decision symbols zn.

Messages in delta domain can be interpreted as organized in a trellis, where the
rows are the GF symbols sorted by their exponent and each column (each stage of
the trellis) corresponds to one of the dc CN input messages, as shown in Fig 1.10.a.
To enable the parallel computation of CN output messages, an extra column is
added to the trellis and it is filled with the reliability of the syndrome, obtained
using Step 3 of Algorithm 3. It can be seen in Step 3 that the addition of the
reliability values ∆Qm,n(a) is made for the set of symbols η′j(a) which is selected
to be within the configuration set conf(nr, nc). This is done to reduce the possible
combination of symbols to only the ones that ensure the highest possible reliability
for the ∆Q(a) value.

The configuration set conf(nr, nc) selects the set of at most nc most reliable
symbols per row of the trellis. From this reduced set of nc × (q − 1) symbols it
selects the combination of them that produces at most nr deviations from the
hard-decision path, fulfilling the parity-check equation for each symbol a.

From all the possible combinations of symbols deviating at most nr times from
the hard-decision path, the selected one ensures the highest reliability i.e. the one
with the minimum numerical value.

Figure 1.10: Example of the set Qm,n(a) and ∆Qm,n(a) including the extra column
∆Q(a). q = 8 and dc = 4 in this example.

In Fig. 1.10 an example of the set of CN input messages Qm,n(a) and the ones
after the transformation to the delta domain is presented. The example considers
GF(8) and dc = 4. The hard-decision symbols are z = [α2, α0, α5, α2] and the

24



1.5 NB-LDPC decoding algorithms and architectures

syndrome is β = α2 + α0 + α5 + α2 = α4. In the delta-domain set ∆Qm,n(a) we
include the extra column ∆Q(a). The values of ∆Q(a) are calculated using Step
3 of Algorithm 3 considering nr = 2 and nc = 1. As an example, next we explain
the procedure used to calculate the values of ∆Q(α0) and ∆Q(α1).

First of all, since nc = 1, only the most reliable symbol per row of the trellis is
considered to build possible paths by making deviations from the hard-decision
one. These values are marked on the set ∆Qm,n(a) in Fig. 1.10.b rounding them
using dashed squares. To select the most reliable value for ∆Q(α0), three possible
paths are considered. They are shown in Fig. 1.11.a: i) the one-deviation path
passing through the coordinates (α0, 0); (0, 1); (0, 2) and (0, 3) with reliability
equal to 2+0+0+0=2. ii) a two-deviation path passing through (α6, 0); (0, 1);
(α2, 2) and (0, 3) with reliability 4+0+26+0 = 30. iii) another two-deviation path
passing through (α5, 0); (0, 1); (0, 2) and (α4, 3) with reliability 30+0+0+3=33.
The two-deviation path passing through the symbols α1 and α3 is neglected since
it would deviate twice at the same column of the trellis (it is not shown in Fig.
1.11.a). To select the most reliable value for ∆Q(α0), the one with the minimum
value (highest reliability) is chosen. Therefore, the value 2 obtained by the one-
deviation path is selected.

(a) (b)

Figure 1.11: (a) Example of paths taken into account to compute the ∆Q(α0) reliability.
(b) Example for the ∆Q(α1) reliability.

For the ∆Q(α1) value a similar procedure is applied (Fig. 1.11.b). In this case, the
possible paths are: i) the one-deviation path passing through the coordinates (0, 0);
(α1, 1); (0, 2) and (0, 3) with reliability equal to 0+10+0+0=10. ii) a two-deviation
path passing through (α0, 0); (α3, 1); (0, 2) and (0, 3) with reliability 2+1+0+0 =
3. iii) another two-deviation path passing through (0, 0); (0, 1); (α2, 2) and (α4, 3)
with reliability 0+0+26+3=29. The one with the highest reliability is selected,
so, ∆Q(α1) = 1 passing through the coordinates (α0, 0); (α3, 1); (0, 2) and (0, 3).
The two-deviation path passing through the symbols α5 and α6 is not taken into
account since it deviates more than once at the same column of the trellis. The
rest of values for the extra column ∆Q(a) are obtained in a similar way to the
ones explained in the example.

25



Chapter 1. State of the art of non-binary low-density parity-check codes

Output messages in delta-domain are calculated using Step 4 of Algorithm 3.
According to [16], the set ∆Rm,n(a) is initialized with the lowest reliability (max-
imum value of the quantization scheme) and the set η′j(a) corresponds to the rows
(symbols) which conform the most reliable path for each symbol a. Therefore, the
positions where no deviations were made are directly filled with the corresponding
∆Q(a) reliability. After computing all j and a values, there are some positions in
the ∆Rm,n(a) set that are not filled using Step 4. These positions correspond to
the ones where deviations are made. Two different cases can be distinguished : i)
in the one-deviation cases, the second minimum of the corresponding row can be
used to fill the empty space; ii) when two o more deviations are made in a row of
the trellis, the empty spaces are filled either with the first minimum or the second
one depending if the first minimum is in the corresponding column [16].

Step 5 performs inverse transformation from delta to normal domain over the set
∆Rm,n(a). It must be noted that the syndrome β is used adding it to the hard-
decision symbols. On the other hand, an scaling value λ is commonly used to
improve the FER performance.

Analyzing the implementation results from [17], where a T-EMS based decoder
is presented, we conclude that the parallel trellis-based processing in the CN is
the best solution for high-rate codes over high-order Galois fields. This is the
main reason to use it as starting point to develop the solutions presented in this
manuscript.

1.6 Frame Error Rate (FER) Performance

Fig. 1.12 includes the FER performance of the algorithms shortly discussed in
this part of the manuscript. The code under test is the quasi-cyclic (837,726) NB-
LDPC code over GF(32) constructed using the methods described in [36]. BPSK
modulation and AWGN channel are assumed. The maximum number of iterations
for all algorithms is 15.

QSPA algorithm offers the highest coding gain for the high-rate code under test at
the expenses of the highest complexity for the CN processor, as explained before.
EMS and T-EMS introduce 0.05dB of performance loss compared to QSPA at FER
= 10−4. Min-Max algorithm introduces 0.05dB of performance loss compared to
EMS and T-EMS algorithms (almost 0.1dB compared to QSPA).

In terms of hardware complexity, a direct implementation of the QSPA algorithm
involves products which increase considerably the area and introduce extra latency
making it non practical for applications that demand high-speed and reasonable
area. On the other hand, with EMS and Min-Max the products are replaced by
adders and comparisons, respectively. These operations have a smaller cost in

26



1.6 Frame Error Rate (FER) Performance

3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6

10−5

10−4

10−3

10−2

10−1

100

Eb/No(dB)

F
E
R

QSPA
EMS
Min-Max
T-EMS

Figure 1.12: FER performance for QSPA, EMS, Min-Max and T-EMS decoding algo-
rithms for the (837,726) NB-LDPC code over GF(32)

terms of hardware resources which compensate the performance loss compared to
the QPSA.

With T-EMS the latency in the CN is reduced due to the parallel computation
of messages in the CN, avoiding the use of the forward-backward algorithm which
limits the maximum achievable throughput, as explained before. The gain in
throughput is higher than the growth in area, compared to conventional imple-
mentations of EMS. Additionally, the coding gain is maintained (Fig. 1.12). Thus,
the potential of this algorithm for high-speed applications is clear.

Since one of the objectives in this manuscript is the design of hardware architec-
tures to implement the proposed decoding algorithms, it is important to establish
the way how the finite precision analysis is carried out for the T-EMS algorithm,
since it is the starting point for the proposals included in this manuscript.

First of all, we consider the case where the LLR values are quantized but the mes-
sages inside the decoder have full precision. This analysis is useful to understand
how the quantized input affects the FER performance of the decoding algorithm.
Fig. 1.13 includes the FER analysis for the high-rate (837,726) NB-LDPC code

27



Chapter 1. State of the art of non-binary low-density parity-check codes

over GF(32). The format r.s means that for a data-path of r bits, s bits represent
the fractional part.

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/No (dB)

F
E
R

T-EMS (fp)
LLR 4.0
LLR 5.1
LLR 6.2
LLR 7.3

Figure 1.13: FER performance for T-EMS algorithm quantifying the LLR values. The
test code is the (837,726) NB-LDPC code over GF(32).

The selection of the quantization model is a compromise between area (memory
resources) and performance. The 4-bit LLRs introduce a performance loss of
0.15dB in the FER compared to a floating point (fp) LLR representation. This
loss is unacceptable if we take into account that it will increase when the entire
decoder data-path is quantized. On the other hand, with 6.2 and 7.3 formats, the
performance loss is almost negligible, but at a expense of more memory resources.
A good choice is the format 5.1, which introduces a performance loss of only 0.06dB
compared to the fp implementation.

The next step in the finite precision analysis is the study of the number of bits
required for the data-path taking into account the data growth in the decoder.
For the T-EMS algorithm, Step 3 is the only one where the message values are
increased. As can be seen in the following chapters, considering nr = 2 implies
that only two reliability values are added, therefore, increasing only one bit is
enough for the CN implementation.

28



1.6 Frame Error Rate (FER) Performance

In the VN processor the messages from the associated CNs and the LLRs are
accumulated in each decoding iteration. There are some factors that make that
the number of required bits in the data-path does not increase a lot compared to
the LLR values.

• CN output messages are usually scaled by a λ < 1 value.

• Messages Rmn(a) are formed considering only the most reliable CN input
messages, which are the ones with the lower magnitudes.

In Fig. 1.14 we show the results of the finite precision analysis for T-EMS algorithm
considering a format of 5.1 for the LLR values. If we do not consider any increase
in the data-path width, the FER performance is greatly degraded inducing an early
error-floor. On the other hand, increasing only one bit in the data-path compared
to the quantized LLR, a performance loss of 0.07dB is introduced compared to the
fp version of the algorithm.

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/No(dB)

F
E
R

T-EMS (fp)
LLR (5.1), Decoder (5.1)
LLR (5.1), Decoder (6.1)
LLR (5.1), Decoder (7.1)

Figure 1.14: Fixed point analysis for the T-EMS algorithm. The test code is the
(837,726) NB-LDPC code over GF(32). Layered schedule and 15 decoding iterations are
used for all cases.

29



Chapter 1. State of the art of non-binary low-density parity-check codes

1.7 Conclusions of the state of the art

In this chapter the basis of LDPC codes are presented, including the nomenclature
and the advantages of the non-binary LDPC codes compared to the binary ones.
The decoding schedules have been analyzed concluding that the layered one is a
good choice to accomplish the objectives proposed in this manuscript thanks to
the higher convergence speed compared to the flooding schedule and, on the other
hand, its inherent good coupling with quasi-cyclic parity-check matrices.

The most common soft-decision decoding algorithms were briefly introduced (QSPA,
Min-Sum, min-max), including the CN update equations and main drawbacks of
each one of them. We also included a more detailed description of the Trellis
Min-Sum algorithm, since it was selected as the starting point to develop the con-
tributions of this thesis due to its inherent parallel processing of messages which
can potentially increase the decoding speed compared to other proposals from
literature.

Making use of parallel computation of messages (trellis) it is possible to achieve
high decoding speeds at the expense of an increase in the area of the CN processor.
Therefore, after analyzing the decoding architectures (full parallel, partial parallel
and serial) we conclude that it is inviable to implement more than one CN processor
working in parallel for high-rate and medium to large code lengths, due to the
increase in area and to avoid possible wiring congestion due to the exchange of
messages between processors.

Finally, a FER performance analysis for the high-rate code under test was included
to establish comparisons between the algorithms described in this chapter. Besides,
we include a summarized finite-precision analysis for the T-EMS algorithm.

30



Chapter 2

Simplified Trellis Min-Max Decoder
Architecture for Non-Binary
Low-Density Parity-Check Codes

Figure 2.1: Key points of the improvements presented in this chapter.

In this chapter, the paper “Simplified Trellis Min-Max Decoder Architecture for
Non-Binary Low-Density Parity-Check Codes” is presented. This research takes
the T-EMS algorithm from [16] as starting point to develop a new simplified
algorithm, where the complexity is decreased improving the latency in the CN
processor and also the maximum achieveable throughput, compared to previous
proposals from literature.

31



Chapter 2. Simplified Trellis Min-Max Decoder Architecture for NB-LDPC Codes

Abstract: Non-binary Low-Density Parity-Check (NB-LDPC) codes have
become an efficient alternative to their binary counterparts in different sce-
narios such as: moderate codeword lengths, high order modulations and burst
error correction. Unfortunately, the complexity of NB-LDPC decoders is still
too high for practical applications, especially for the check node processing,
which limits the maximum achievable throughput. Although a great effort
has been made in the recent literature to overcome this disadvantage, the
proposed decoders are still away from high speed implementations for high
order fields. In this paper, a simplified Trellis Min-Max (TMM) algorithm
is proposed, where the check node messages are computed in a parallel way
using only the most reliable information. The proposed check node algo-
rithm is implemented using an horizontal layered schedule. The overall de-
coder architecture has been implemented in a 90 nm CMOS process for a
(N=837,K=726) NB-LDPC code over GF(32), achieving a throughput of 660
Mbps at 9 iterations based on post layout results. This decoder increases
hardware efficiency compared to the existing recent solutions for the same
code.

Index terms: Layered decoder, message passing algorithm, nonbinary low-
density parity-check (NB-LDPC), trellis - min-max (TMM).

2.1 Introduction

Non-binary low-density parity-check (NB-LDPC) codes have become an interest-
ing alternative to their binary counterparts for applications requiring small to
moderate codeword lengths and large rates. The main limitation of a wider use
of NB-LDPC codes is that the complexity of the decoder limits the maximum
throughput that can be achieved with their hardware implementations.

NB-LDPC are lineal block codes characterized by a sparse parity check matrix
H with M rows and N columns. Each non-zero element hm,n of H belongs to
the Galois field GF (q = 2p). In this paper we only consider regular NB-LDPC
codes with constant row weight dc and column weight dv. NB-LDPC codes can
also be characterized by a bipartite graph called Tanner Graph[20], where two
types of nodes can be differentiated, the ones representing the rows of the parity
check matrix called check nodes (CN) and the ones that represent the columns
in H, called variable nodes (VN). Decoding algorithms for NB-LDPC codes use
iterative message exchange between CNs and VNs and vice-versa to estimate the
most reliable codeword from the noisy received sequence.

Different decoding algorithms have been proposed since the Q-ary Sum Product
algorithm (QSPA) [6]. The complexity of QSPA is too large to be suitable for
hardware implementations, and several approaches such as FFT-SPA[28], log-SPA

32



2.1 Introduction

and max-log-SPA [29], were proposed to overcome its limitations. These solutions
reduce the complexity of the check node processing equations without introduc-
ing any performance loss. In [14] an approximation of QSPA, called Extended
Min-Sum (EMS), has been proposed, where the complexity of the check node is
reduced considerably involving only comparisons and additions. Later, the Min-
Max algorithm was proposed [15], which uses comparisons to compute the maxi-
mum reliability values instead of additions, unlike the EMS algorithm. This new
solution helps preventing the growth of the data length of the decoder without
introducing any performance loss with respect to the EMS algorithm.

On the other hand, EMS and Min-Max algorithms still suffer from a bottleneck at
the check node caused by the use of forward-backward metrics for the extraction
of check to variable messages. In [35] the Trellis Extended Min-Sum (T-EMS)
has been introduced, for computing the combination of the most reliable messages
while avoiding the use of forward-backward metrics and, as a consequence, in-
creasing the degree of parallelism. The decoder presented in [35] was improved
in [16] where an extra column is added to the original trellis with the purpose of
generating in a parallel way the check to variable messages. This algorithm allows
to derive higher throughput architectures. The main drawback of the approach
presented in [16] is that requires a lot of area in its proposed structure, reducing
the overall efficiency of the decoder.

To further improve the T-EMS efficiency, we propose in this paper a simplification
of this algorithm, by building the extra column of the trellis and generating the
output messages of the check node using only the most reliable information. The
extra column information and two most reliable messages are computed to generate
the check to variable messages in a efficient way improving both area and latency
of the decoder. Additionally, for each configuration path, we define the path
reliability using the maximum value instead of aggregating the symbol reliabilities.
For this reason we named our algorithm Trellis Min-Max (TMM). The simplified
check node algorithm is implemented using an horizontal layered scheduling which
establishes a compromise between overall area of the decoder and latency.

To show the efficiency of the proposed NB-LDPC decoder on codes over high order
Galois fields, a (N=837,K=726) NB-LDPC code over GF(32) has been selected.
This code has been used in many preceding papers and serves then as a benchmark
for comparing different implementations of NB-LDPC decoders. To the best of
our knowledge, the proposed architecture based on TMM achieves 110% higher
efficiency (Mbps/Million Gates) than the most efficients decoder proposed in liter-
ature [34, 16], for the same code. Moreover, the proposed design has lower latency
and higher throughput than any proposed NB-LDPC decoder.

The rest of the paper is organized as follows: in Section II we recall the princi-
ples of the T-EMS algorithm. The proposed TMM algorithm and its check node
architecture are presented in Section III. Section IV describes the overall layered

33



Chapter 2. Simplified Trellis Min-Max Decoder Architecture for NB-LDPC Codes

decoder architecture and the synthesis and post layout results. Finally, Section V
includes comparisons with others proposed decoders and conclusions are outlined
in Section VI.

2.2 Trellis Extended Min-Sum Algorithm

A NB-LDPC code is defined by its parity check matrix H with M rows and N
columns. Each non-zero element hm,n of H belongs to a Galois field GF (q = 2p),
which is often chosen as a field with characteristic 2, i.e. when the field order is a
power of 2 [14, 37]. An NB-LDPC code can be either regular, that is with constant
row weight dc and column weight dv, or irregular, when the row and/or column
weights differ. For ease of presentation of the equations and of the algorithm, we
consider in this paper constant row and column weights, but our algorithm can be
trivially generalized to irregular LDPC codes.

Let N (m) (M(n)) be the set of variable nodes (check nodes) connected to a check
node (variable node) m (n). Let Qm,n(a) and Rm,n(a) be the messages from
variable node to check node and from check node to variable node respectively.
For a symbol value a ∈ GF (q), Qm,n(a) represents the a-th entry in vector Qm,n
and measures the extrinsic reliability of symbol n being equal to a, seen from the
check-node m. Accordingly, Ln(a) denotes the channel information for symbol n
and Qn(a) its a posteriori information.

Let c = c1, c2, · · · , cN and y = y1, y2, · · · , yN be the transmitted codeword and
received noisy symbol sequence respectively. The log-likelihood ratio (LLR) for
each received symbol is obtained as Ln(a) = log[P (cn = zn|yn)/P (cn = a|yn)]
where zn is the symbol associated to the highest reliability. The previous definition
ensures that all messages Ln(a) are non-negative and that the smaller the value,
the more reliable the message.

We present in Algorithm 4 the T-EMS check node decoding unit where the first
step consists in the delta domain transformation of input messages which are
denoted by ∆Qm,n(ηj), being ηj = a + znj

the delta domain index. This trans-
formation ensures that the most reliable messages are always in the first index of
∆Qm,n(ηj) and the rest of the symbols are reordered and considered as deviations
of the most reliable one, according to step 1. Step 2 involves the computation
of check node syndrome β using the most reliable symbol zn for each check node
incoming message. For the syndrome computation, all nonzero elements of H are
taken as α0 = 1 thanks to the pre-processing of the incoming messages outside of
the node, as will be explained in later sections.

Step 3 makes use of the configuration sets originally proposed in [14] with the
aim of building the output messages by just using the most reliable information.
conf(nr, nc) is defined as the configuration set composed of the most reliable paths

34



2.2 Trellis Extended Min-Sum Algorithm

Algorithm 4: T-EMS Algorithm
Input: Qm,n , zn = arg mina∈GF (q)Qm,n(a) ∀ n ∈ N (m)

for j = 1→ dc do
1 ∆Qm,nj

(ηj = a+ znj
) = Qm,nj

(a)

end
2 β =

∑dc
j=1 znj ∈ GF (q)

3 ∆Q(a) = minη′j(a)∈conf(nr,nc)

∑dc
j=1 ∆Qm,nj (η′j(a)), a ∈ GF (q)

for j = 1→ dc do
4 ∆Rm,nj (a+ η′j(a)) = min(∆Rm,nj (a+ η′j(a)),∆Q(a)−∆Qm,nj (η′j(a)))

5 Rm,nj (a+ β + znj ) = λ ·∆Rm,nj (a), a ∈ GF (q)

end
Output: Rm,n

that satisfy the parity check equation. Each of these paths can be formed by the
most reliable nr messages for a symbol a deviating at most nc times from the zero-
order configuration [14, 38]. These combinations are usually named indifferently
paths or configurations. Implementation of the step 3 requires the reordering of
the delta messages in a trellis fashion considering all the dc incoming messages
as stages of the trellis and the reliability for each GF symbol ηj as the index per
trellis stage, and the computation of an extra column ∆Q(a). ∆Q(a) is calculated
by adding the reliability values of conf(nr, nc) with the highest reliability (mini-
mum value). Hereinafter, we only consider the case when nr = 2 and nc = 2 for
T-EMS algorithm. In this case combinations with the two most reliable symbols
are analyzed to build the extra column reliability. This means that combinations
of min1-min1, min1-min2, min2-min1, min2-min2 must be analyzed (and combi-
nations with the rest of corresponding messages are avoided) to extract the paths
with higher reliability that deviate at most 2 times from the most reliable path.
min1 and min2 represent the first and second most reliable messages respectively
i.e. minimum values. In addition, for the same path, no more than one reliability
from the same stage of the trellis is considered [16].

Output messages in delta domain ∆Rm,nj
(a) are generated subtracting the relia-

bility of configurations to the information collected in the extra column of trellis
∆Q(a) (step 4 of Algorithm 4). When more than one configuration is associated
to the same output message value, the minimum path metric is considered. The
use of an extra column in the trellis allows to compute the output messages in
parallel, which reduces the data dependency between the dc elements involved in
the check node and hence improves the overall throughput of the decoder.

35



Chapter 2. Simplified Trellis Min-Max Decoder Architecture for NB-LDPC Codes

Last step of T-EMS algorithm involves the inverse transformation from the delta
domain to the normal domain, using the hard decision symbols zn and the syn-
drome value β. Before the inverse transformation, a scaling factor λ can be applied
to outgoing check node messages to improve the performance of the decoding al-
gorithm.

Although very appealing in terms of throughput, the implementation of step 3
requires many computations in parallel, which increases the overall complexity of
the decoder. This is especially true when high order fields and large check node
degree dc are considered. In the next section, we introduce several simplifica-
tions to Algorithm 4, greatly reducing the complexity of the check node unit and
improving both latency and area of the global decoder architecture.

2.3 Simplified Trellis Min-Max Algorithm

In the T-EMS, the output message calculation (Step 4 of Algorithm 4) involves
q × dc subtractions and also q × dc minimum finders (min finders) which becomes
the bottleneck of the check node processing. Taking into account this drawback,
we propose a simplified algorithm which reduces considerably the processing load
of the check node messages (it avoids the use of subtractions and minimum finder)
without inducing any performance loss.

2.3.1 Algorithm Description

The modified algorithm introduces a copy of the extra column reliability ∆Q(a)
on the corresponding output message entry ∆Rm,nj (a), when the configuration
path has no deviation at column j for symbol a. On the other hand, when a given
configuration is build with a deviation in column j, we have two choices: a) if the
configuration path for symbol a has only one deviation, output reliability is filled
with the second most reliable value for the corresponding trellis index (second
minimum); or b) if the configuration path is build with more than one deviation,
the output message is filled with the highest reliability in the corresponding trellis
index (first minimum).

The simplification mentioned in the last paragraph takes advantage from the fact
that only configurations with the most reliable message from each trellis index
are taken into account. This reduces the possible paths by a factor of four with
respect to taking configurations with the two most reliable messages for each trellis
index. As a consequence, only combinations of min1-min1 messages are considered
leaving out combinations of min1-min2, min2-min1 and min2-min2. Although this
simplification results in a large reduction of the number of considered paths to build
the output messages, we did not see any performance loss on the NB-LDPC codes
we used for the simulations.

36



2.3 Simplified Trellis Min-Max Algorithm

As explained in Section 2.2, the extra column ∆Q(a) contains the paths formed
by the most reliable combination of symbols (Step 3 of Algorithm 4). On the
other hand, messages ∆Qmn(a) ∀ a 6= 0 can be treated as deviations from the
most reliable symbol, so ∆Q(a) is the estimation of distance from the most re-
liable configuration when a 6= 0. Although this distance between configurations
is theoretically computed using sums of the local reliability in the trellis, it has
been proposed in the Min-Max algorithm [15] to use the maximum value of the
considered path as an alternative measure of distance. We also make use of this
idea in our algorithm design, and propose the use of the maximum operator in-
stead of the addition to compute the extra column ∆Q(a) reliability. Making use
of the maximum value to measure distances prevents the data length growth as-
sociated to the summation, introducing an important area reduction due to the
parallel processing of the trellis algorithm. In (2.1) the modifications made on step
3 of Algorithm 4 are presented, converting the T-EMS on T-Min-Max algorithm
(TMM).

∆Q(a) = min
η′j(a)∈conf(nr,nc)

{
max

j=1→dc

(
∆Qm,nj

(η′j(a))
)}

, a ∈ GF (q) (2.1)

The complete description of the proposed TMM algorithm is presented in Algo-
rithm 5, where step 3 of Algorithm 4 has been split into two basic tasks. In step 3
of Algorithm 5 function ψ extracts the two most reliable messages for each sym-
bol a ∈ GF (q) (considering the two most reliable symbols those having the least
magnitude). First and second minimum are denoted as m1(a) and m2(a). The ψ
function also extracts the position of the most reliable message (m1col(a)), so it can
take values from one to dc. Step 4 of Algorithm 5 involves the processing of the
trellis extra column reliability using information related to the most reliable sym-
bol m1(a). The configuration set conf(nr, nc) from Algorithm 4 [16] includes the
set of symbols η′j(a) which contains information about all nodes through which
pass the configuration. In this approach we redefined the configuration set to
conf∗(nr, nc), where the difference is that η′k(a) only retains information from the
nc columns where deviations from the zero-order configuration are made instead
of keeping information from all nodes. This simplified storage of configuration sets
implies that k can take values from one to nc, and lead to a significant area gain.
In the rest of paper, we will keep the same constraints for the decoder design, and
restrict to the case in which only configurations with the most reliable message for
each symbols a (nr = 1) and a maximum of two deviations (nc = 2) are considered.

Additionally, in the TMM algorithm, when ∆Q(a) is formed by only one devia-
tion, the corresponding η′1(a) and η′2(a) will have the same values. This situation
contributes to simplifications in the hardware implementation of Algorithm 5 as
we will see in next sections.

37



Chapter 2. Simplified Trellis Min-Max Decoder Architecture for NB-LDPC Codes

Algorithm 5: Simplified TMM Algorithm
Input: Qm,n , zn = arg mina∈GF (q)Qm,n(a) ∀ n ∈ N (m)

for j = 1→ dc do
1 ∆Qm,nj

(ηj = a+ znj
) = Qm,nj

(a)

end
2 β =

∑dc
j=1 znj ∈ GF (q)

3 [m1(a),m1col(a),m2(a)] = ψ{∆Qm,ni(a)
∣∣∣
dc

i=1
}

4 ∆Q(a) = minη′k(a)∈conf∗(1,2)

{
maxk=1,2 (m1(η′k(a)))

}

for j = 1→ dc do
5 if η′1(a) 6= j or η′2(a) 6= j then

∆Rm,nj
(a) = ∆Q(a)

else if η′1(a) = η′2(a) then
∆Rm,nj

(a) = m2(a)
else

∆Rm,nj (a) = m1(a)
end

6 Rm,nj
(a+ β + znj

) = λ ·∆Rm,nj
(a), a ∈ GF (q)

end
Output: Rm,n

Step 5 of Algorithm 5 presents a simplified way to obtain delta domain output
messages using a simple assignation of ∆Q(a), m1(a) or m2(a) depending only on
the deviation information from η′k(a). If no deviation for the most reliable path is
made on column j for symbol a, then extra column information ∆Q(a) is directly
assigned to the corresponding output message ∆Rm,nj

(a). On the other hand,
if any deviation is made for column j and the corresponding path is build with
only one deviation, then the second most reliable message for symbol a (m2(a))
is assigned to the corresponding output message. In the case of paths formed by
more than one deviation, m1(a) is assigned to the output message.

Step 6 of Algorithm 5 depicts the transformation of delta domain messages to the
normal domain, including a scaling factor λ to improve the performance of the
decoder in the waterfall region. The scaling factor value λ is selected among the
possible hardware friendly values that do not increase the area of the decoder.

38



2.4 Check Node Architecture

2.3.2 Frame Error Rate Performance

For testing the performance of our simplified TMM algorithm, simulations were
conducted for a (N=837,K=726) NB-LDPC code over GF (25) where H is gener-
ated using the methods in [36], with dc = 27 and dv = 4, and using transmission
over BPSK modulation and AWGN channel. We compare the TMM to the QSPA
[6], and the recently published Relaxed Min-Max (RMM) [34] and T-EMS algo-
rithms [17]. On Fig. 2.2, we show the frame error rate (FER) simulation results
for a layered scheduling.

The TMM algorithm in floating point (fp) simulation was made to be compared to
T-EMS and QPSA performance. The configuration set parameters are nr = 1 and
nc = 2 for the TMM algorithm although for T-EMS algorithm nr = 2, nc = 2 were
used. For T-EMS algorithm the optimum λ was selected and 15 iterations (it) for
the iterative decoding were used. For T-MM approach, λ value was set to 0.5, since
this value don’t requires extra hardware for implementation purposes. Despite this,
using the optimum λ value the performance of T-EMS of T-MM approach are very
similar. In Fig. 2.2 we can see that the TMM has a negligible performance loss of
0.05dB compared to the T-EMS, despite the proposed simplifications.

As for the comparison with the QSPA algorithm [6], it can be seen that the TMM
algorithm has only 0.2 dB of performance loss, which is a reasonable loss if we
take into account the huge complexity reduction of TMM.

The quantized version of the TMM algorithm was also simulated where 6 bits (6b)
has been used for the datapath of the decoder. The cases with 9 and 15 iterations
were considered for the iterative decoding. The case with 15 iterations has 0.05
dB of performace loss with respect to fp implementation with the same number of
iterations.

The proposed quantized approach with 9 iterations was compared with RMM [34].
For RMM algorithm 5 bits are used for the datapath and the number of iterations
are set to 15. In Fig. 2.2 we can see that both algorithms perform equally, but
the reduced number of iterations and the TMM specific features improve a lot the
throughput and latency compared to [34], as we will see in the next sections.

2.4 Check Node Architecture

In this section, the design of the check node unit based on TMM algorithm is
explained. The check node architecture is presented in Fig. 2.3, where parallel
processing is adopted to generate the output messages Rm,n(a).

The first step in the check node processing requires transformation from the nor-
mal domain to the delta domain. This delta domain transformation is made using

39



Chapter 2. Simplified Trellis Min-Max Decoder Architecture for NB-LDPC CodesIEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 4

of configuration sets implies that k can take values from one
to nc, and lead to a significant area gain. In the rest of paper,
we will keep the same constraints for the decoder design, and
restrict to the case in which only configurations with the most
reliable message for each symbols a (nr = 1) and a maximum
of two deviations (nc = 2) are considered.

Additionally, in the TMM algorithm, when ∆Q(a) is formed
by only one deviation, the corresponding η′1(a) and η′2(a) will
have the same values. This situation contributes to simplifica-
tions in the hardware implementation of Algorithm 2 as we
will see in next sections.

Step 5 of Algorithm 2 presents a simplified way to obtain
delta domain output messages using a simple assignation of
∆Q(a), m1(a) or m2(a) depending only on the deviation
information from η′k(a). If no deviation for the most reliable
path is made on column j for symbol a, then extra column
information ∆Q(a) is directly assigned to the corresponding
output message ∆Rm,n j(a). On the other hand, if any deviation
is made for column j and the corresponding path is build with
only one deviation, then the second most reliable message
for symbol a (m2(a)) is assigned to the corresponding output
message. In the case of paths formed by more than one
deviation, m1(a) is assigned to the output message.

Step 6 of Algorithm 2 depicts the transformation of delta
domain messages to the normal domain, including a scaling
factor λ to improve the performance of the decoder in the
waterfall region. The scaling factor value λ is selected among
the possible hardware friendly values that do not increase the
area of the decoder.

B. Frame Error Rate Performance
For testing the performance of our simplified TMM al-

gorithm, simulations were conducted for a (N=837,K=726)
NB-LDPC code over GF(25) where H is generated using
the methods in [12], with dc = 27 and dv = 4, and using
transmission over BPSK modulation and AWGN channel. We
compare the TMM to the QSPA [2], and the recently published
Relaxed Min-Max (RMM) [9] and T-EMS algorithms [13]. On
Fig. 1, we show the frame error rate (FER) simulation results
for a layered scheduling.

The TMM algorithm in floating point (fp) simulation was
made to be compared to T-EMS and QPSA performance. The
configuration set parameters are nr = 1 and nc = 2 for the
TMM algorithm although for T-EMS algorithm nr = 2, nc = 2
were used. For T-EMS algorithm the optimum λ was selected
and 15 iterations (it) for the iterative decoding were used. For
T-MM approach, λ value was set to 0.5, since this value don’t
requires extra hardware for implementation purposes. Despite
this, using the optimum λ value the performance of T-EMS of
T-MM approach are very similar. In Fig. 1 we can see that the
TMM has a negligible performance loss of 0.05dB compared
to the T-EMS, despite the proposed simplifications.

As for the comparison with the QSPA algorithm [2], it
can be seen that the TMM algorithm has only 0.2 dB of
performance loss, which is a reasonable loss if we take into
account the huge complexity reduction of TMM.

The quantized version of the TMM algorithm was also sim-
ulated where 6 bits (6b) has been used for the datapath of the

3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No (dB)

FE
R

QSPA (15 it - fp)
T-EMS (15 it - fp)
TMM (15 it - fp)
TMM (15 it - 6b)
TMM (9 it - 6b)
RMM (15 it - 5b)

Fig. 1. FER of (837,726) NB-LDPC over GF(32) under AWGN channel.
Layered schedule is used for all algorithms. λ = 0.375 for T-EMS algorithm
and λ = 0.5 for TMM algorithm.

decoder. The cases with 9 and 15 iterations were considered
for the iterative decoding. The case with 15 iterations has 0.05
dB of performace loss with respect to fp implementation with
the same number of iterations.

The proposed quantized approach with 9 iterations was
compared with RMM [9]. For RMM algorithm 5 bits are used
for the datapath and the number of iterations are set to 15. In
Fig. 1 we can see that both algorithms perform equally, but the
reduced number of iterations and the TMM specific features
improve a lot the throughput and latency compared to [9], as
we will see in the next sections.

IV. CHECK NODE ARCHITECTURE

In this section, the design of the check node unit based on
TMM algorithm is explained. The check node architecture is
presented in Fig. 2, where parallel processing is adopted to
generate the output messages Rm,n(a).

The first step in the check node processing requires transfor-
mation from the normal domain to the delta domain. This delta
domain transformation is made using a permutation network
similar to the one proposed in [14]. This network requires
q · log2(q) multiplexors of two inputs to perform the delta
domain transformation of each input vector message Qm,n.
Therefore, the check node requires dc permutation networks
where multiplexors are addressed by tentative hard decision
symbols zn. The same structure is used for inverse transforma-
tion to normal domain applied to output messages ∆Rm,n(a),
where instead of addressing multiplexors using tentative hard
decisions symbols, zn + β sum is applied. The check node
syndrome β is calculated adding all dc tentative hard decision
symbols. This is performed by means of a GF adder in a tree
structure fashion.

Figure 2.2: FER of (837,726) NB-LDPC over GF (32) under AWGN channel. Layered
schedule is used for all algorithms. λ = 0.375 for T-EMS algorithm and λ = 0.5 for TMM
algorithm.

a permutation network similar to the one proposed in [39]. This network requires
q · log2(q) multiplexors of two inputs to perform the delta domain transforma-
tion of each input vector message Qm,n. Therefore, the check node requires dc
permutation networks where multiplexors are addressed by tentative hard deci-
sion symbols zn. The same structure is used for inverse transformation to normal
domain applied to output messages ∆Rm,n(a), where instead of addressing multi-
plexors using tentative hard decisions symbols, zn + β sum is applied. The check
node syndrome β is calculated adding all dc tentative hard decision symbols. This
is performed by means of a GF adder in a tree structure fashion.

The next step of the check node processing involves the implementation of the
function ψ, which extracts the two most reliable messages for each symbol a ∈
GF (q). This function is implemented using a 2-min finder tree structure where
also the position of the first minimum is extracted [40]. Only q−1 cells are required
to implement all ψ functions, because in delta domain messages the most reliable
symbols remains on ηj = 0 in the delta domain and their magnitudes are equal to
zero. Each ψ function requires dc inputs because of the processing based on the
trellis reordering of the delta messages. The approach followed to implement the

40



2.4 Check Node Architecture

Figure 2.3: Proposed top level check node structure.

ψ function is the tree structure proposed on [40] since it provides a good tradeoff
between area and latency.

Extra column reliability ∆Q(a) are generated using configurations composed by
the most reliable message of each symbol a ∈ GF (q) as explained in Section
2.3. The architecture designed for building the extra column is presented in Fig.
2.4. As an example, ∆Q(α0) is obtained for GF (8). The entire cell is similar
for all GF (q) symbols except for the reordering networks in the left side of Fig.
2.4, which are particularized for each GF (q) symbol. Since a maximum of two
deviations have been considered in the check node implementation, symbols are
wired in a way that the GF sum of the symbols, in conjunction with symbol a,
meet the parity check equation. For each symbol a ∈ GF (q), there are q/2 − 1
pair of symbols such that the result of the addition is the symbol a. For example,
in Fig. 2.4, the corresponding pair of symbols are α1 + α3, α2 + α6 and α4 + α5.
Since the paths with only one deviation have been also considered, the reliability
values corresponding to symbol a (symbol α0 on Fig. 2.4) is passed to the block in
charge of finding the most reliable path for the corresponding symbol a (“1 mind
find” block of Fig. 2.4).

Once the symbols have been wired, the maximum of the corresponding reliabilities
is derived. Next, a validation process is made, in which the reliability arising from
the same trellis stage are discarded, since only deviations from different stage are
taken into account. The method used for discarding invalid reliabilities is through
comparing the origin of the most reliable messages for a symbol a. If the source

41



Chapter 2. Simplified Trellis Min-Max Decoder Architecture for NB-LDPC Codes

Figure 2.4: Architecture for extra column extraction. Example for generation of mes-
sage ∆Q(α0) over GF (8).

trellis stage of both reliabilities is the same, then the maximum value for the
quantization scheme is assigned to the corresponding “1 min finder” input.

When one and two deviations are considered, the one minimum finder must have
q/2 inputs and three outputs which correspond to the reliability for the symbol a
of the extra column and the two more outputs that correspond to the trellis stage
where deviations were made, called d1(a) and d2(a). For generating the path info
for extra column ∆Q(a), the “1 min find” outputs d1(a) and d2(a), with dlog2 dce
bits each, are passed through two binary to one hot converters. The outputs of
the converters are combined using an OR gate to obtain a unique signal of dc bits,
which contains the total information of the trellis stages where deviations were
made. Each bit of this signal is used as a control signal for the output message
generation (step 5 of Algorithm 5) in conjunction with the signal m1/m2 sel. This
signal contains information about the number of deviations taken in each path
(one or two deviations).

Once the extra column reliabilities have been obtained, the output messages in
delta domain must be generated. The process for building the output messages
∆Rm,n(a) has been greatly simplified with respect to the approach presented in
[17].

42



2.4 Check Node Architecture

Figure 2.5: Output message generation in delta domain. Example for symbol α0

In [17] ∆Rm,n(a) generation is performed by subtracting from the extra column
∆Q(a) the contribution of symbols in which deviations were taken. On the other
hand, when more than one configuration corresponds to the same output message
value, the minimum value is considered as explained in Section 2.2. As can be
seen, the output message generation requires minimum finders and subtractions
that increase hardware requirements, and limit the maximum throughput.

The proposed simplified structure for the output message generation is presented
in Fig. 2.5. In it dc + 1 multiplexors of two inputs are only needed to obtain
the output messages for each symbol a. The structure presented in Fig. 2.5
implements step 5 of Algorithm 5, where each ∆Rm,n(a) message takes its value
from m1(a), m2(a) or ∆Q(a) depending on the control signals obtained during
extra column generation. The scaling factor (λ) applied to the output messages
can be incorporated in the input messages to the multiplexors shown in Fig. 2.5.
The multiplexors used for the output message generation and for the delta domain
inverse transformation can reduce the width of datapath depending on the scaling
factor value. As an example, for λ = 0.5 (value used for generation of FER curves
on Fig. 2.2), these multiplexors can reduce in one bit the datapath. This has an
important impact in the area saving since parallel processing has been adopted in
this design.

In the following section, the TMM check node unit is integrated with the rest
of the blocks, that depicts the entire decoder architecture based on a non-binary
layered scheduling.

43



Chapter 2. Simplified Trellis Min-Max Decoder Architecture for NB-LDPC Codes

Algorithm 6: Layered schedule for proposed decoder

Input: Ln(a) = log[P (cn=zn|yn)
P (cn=a|yn) ]

Inicialization:
Q

(1)
n (a) = Ln(a), R

(0)
mn(a) = 0, t = 1

Main Loop:
while t ≤MaxIter do

for m = 1 to M do
1 Q

′ (t)
mn (a) = Q

(t)
n (hmna)−R(t−1)

mn (a)

2 Q
′ (t)
mn = min

{
Q
′ (t)
mn (a)

}
∀ a ∈ GF (q)

3 Q
(t)
mn(a) = Q

′ (t)
mn (a)−Q′ (t)mn

4 R
(t)
mn(a) = TMM

{
Q

(t)
mn(a) ∈ N (m)

}

5 Q
(t+1)
n (h−1mna) = R

(t)
mn(a) +Q

(t)
mn(a)

end
6 t = t+ 1

end

Output: c̃n = arg min
(
Q

(t)
n (a)

)
∀ a ∈ GF (q)

2.5 Architecture for the Complete Decoder

In this section the top level design of the NB-LDPC decoder, which includes the
CN proposed in Section 2.3, is presented. The proposed decoder has been designed
for QC-NB-LDPC codes over GF (q) constructed using the methods included in
[36], where H is formed by (q − 1) × (q − 1) circulant sub-matrices that can be
composed of zero elements or cyclic shifted identity matrix with non-zero elements
from GF (q).

2.5.1 Decoder Schedule

For the proposed decoder, horizontal layered schedule is adopted due to its inherent
hardware efficiency. This schedule requires less decoding iterations to achieve a
desired performance compared to the flooding schedule. In Algorithm 6 the layered
schedule for the proposed decoder is presented, where the check node processor
corresponds to the simplified TMM (Algorithm 5). The decoding process starts
loading the channel information Ln(a) on the variable nodes memories Qn(a) and

44



2.5 Architecture for the Complete Decoder

then the iterative message passing algorithm continues with steps 1 to 3 until the
maximum iteration number (MaxIter) is reached.

Implementation of the simplified TMM, in the same way as T-EMS, requires pro-
cessing the check node incoming and outgoing messages avoiding GF multipliers
inside the check node processor, similar to the one proposed in [39] for the flooding
schedule. In this paper we address this idea for the horizontal layered schedule. To
do this, in step 1 messages Qn(a) are permuted depending on the corresponding
nonzero H element hmn to obtain Qn(hmna). The permuted VN messages and
the last iteration check node outgoing messages R(t−1)

mn (a) are processed to obtain
Q′mn(a) which correspond to the outgoing VN messages.

Steps 2 and 3 involve normalization of the VN outgoing messages. This process is
necessary to ensure the numerical stability of the algorithm and, on the other hand,
guarantees that all messages are positive and the most reliable symbol of each
message has an associated reliability value equal to zero. Moreover, normalization
avoids the growth of the decoder datapath.

Step 5 involves the check node processor where simplified TMM has been used.
Check node outgoing and incoming messages Rmn(a) and Qmn(a) are used for the
Qn(a) message update on step 3 of Algorithm 6. In this step, inverse permutation
of Qn(a) messages have to be done before processing of a new row of H. The
decoding process stops when the maximum number of iterations is reached, then
the output codeword c̃ is formed by the most reliable symbols associated to the
VN messages Qn(a).

2.5.2 Decoder Architecture

The block diagram of the complete architecture for the proposed decoder is shown
in Fig. 2.6, where the datapath for each one of the dc inputs in the check node is
presented. Since the decoder addresses the case of quasi-cyclic NB-LDPC codes
build from [36], the Qn(a) messages can be grouped on sets with q − 1 messages.
In total, assuming w quantification bits for the messages, dc memories with q − 1
positions of q · w bits are required for Qn(a). Only one message is read and one
is written in the same clock cycle from each memory during the processing of one
row of H.

Blocks P and P−1 in Fig. 2.6 perform direct and inverse permutation of messages
Qn(a) as can be seen in steps 1 and 3 of Algorithm 6, respectively. The permu-
tations are implemented using multiplexor networks as the ones presented in Fig.
2.7 for the block P over GF (8). For the block P−1 the only differences are the
connections between multiplexors. Each network requires (q − 1) · log2(q) multi-
plexors of w bits. For the entire decoder 2 · dc networks are required to implement
the blocks P and P−1.

45



Chapter 2. Simplified Trellis Min-Max Decoder Architecture for NB-LDPC Codes

Figure 2.6: Top level decoder architecture based on the horizontal layered schedule

Block N in Fig. 2.6 implements the normalization included in steps 2 and 3 of
Algorithm 6. This block includes a one minimum finder which searches the most
reliable value to derive Q′mn(a) as explained before. In our approach, we take
advantage of the one minimum finder to obtain the most reliable symbol of each
Q′mn(a) message using the position to recover the minimum. The recovered symbol
is used as input for the check node (zn). On the other hand, the same symbol
corresponds to the estimated hard decision symbol c̃n at the end of the decoding
process.

To generate the last iteration information for the outgoing check node messages
R

(t−1)
mn (a), it is necessary to include shift registers (SRL) that synchronize with

the permuted VN messages. The decoder requires dc shift registers with M stages
and q · w bits per register.

The incoming check node messages Qmn(a) also require passing through a SRL for
synchronizing them with Rmn(a) messages (to add them correctly due to pipeline
stages used in the decoder). For this purpose dc SRL are required.

46



2.5 Architecture for the Complete Decoder

Figure 2.7: Permutation network implemented for GF (8)

LLR of the received sequence is initially stored in “LLR Mem.” memories (Fig.
2.6) and then extracted to be loaded on VN memories (Qn(a)) when the decoding
process starts. dc memories are required with q− 1 positions and q ·w bits each of
them. To store the output codeword (c̃n), dc memories are also included, each of
them with q−1 positions of p bits each one. On addition to these memories, parity
check matrix nonzero coefficients hmn need to be stored. Due to the structure of
H, only the coefficients of the first row of each circulant sub-matrix need to be
saved. For doing this dc small memories with dv elements of p bits are added.

2.5.3 Decoder Timing

The decoding process starts loading the channel information on Qn(a) memories,
this process consumes q−1 clock cycles. At the same time c̃n is taken out of Qn(a)
memories and stored on “Code Out Mem.”, as can be seen in Fig. 2.6. This last
process requires that the permutation block P and the subtractor do not modify
the Qn(a) messages. Control signals are included to this end.

47



Chapter 2. Simplified Trellis Min-Max Decoder Architecture for NB-LDPC Codes

One decoding iteration starts processing q−1 rows of H, one at a time. Then, the
decoder adds seg clock cycles for emptying the pipeline, where seg corresponds
to the number of pipeline stages of the decoder. After that, the next q − 1 rows
of H can be processed and seg additional clock cycles are required. The process
continues until all the M rows of H are processed. In total, one decoding iteration
spends (M/(q − 1)) ∗ ((q − 1) + seg) = M + seg · dv clock cycles, considering
that each circulant matrix has q − 1 rows as explained in first paragraph of this
section. After that a new decoding iteration begins, until the maximum number
of iterations finishes (MaxIter).

The throughput of the decoder can be obtained applying (2.2) where q − 1 clock
cycles are added for loading the channel information for a new decoding process
and the output codeword is estimated.

Throughput =
fclk[MHz] ·N · p

MaxIter · (M + dv · seg) + (q − 1)

[
Mb

s

]
(2.2)

2.5.4 Decoder Complexity and Implementation Results

As it has been explained before, the decoder was implemented for a (N=837,K=726)
NB-LDPC code over GF (32), with parity check matrix H and parameters dc = 27
and dv = 4. The check node processor is based on simplified TMM, thus the CN
design is entirely combinational logic and has an equivalent area of 135K NAND
gates, using w = 6 bits for the datapath. Additionally, 10 pipeline stages have been
used in the decoder to increase the maximum frequency of the decoder requiring
31K registers. The registering points have been selected to balance the critical
path, to this ends the segmentation points are: 1) at the output of the P block
(Fig.2.6); 2) inside the N block (Fig.2.6) that normalizes the incoming messages
at the check node; 3) at the input of the check node processor (Fig.2.6); 4) at the
output of the normal domain to delta domain converter (Fig. 2.3); 5) in the third
stage of the two minimum finder (Fig.2.3); 6) at the output of the two minimum
finder (Fig.2.3); 7) in the second stage of the one minimum finders (Fig.2.4); 8)
at the output of the extra column reliability values calculation (Fig.2.4); 9) at the
output of the check node processor (Fig.2.6); 10) at the output of the P−1 block
(Fig.2.6).

Outside the check node, the permutation networks P and P−1 need 76K NAND
gates, and the normalization blocks (N) uses 58.2K NAND gates. The logic re-
sources of the decoder implementation are summarized in Table 2.1. VHDL was
used for the description of the hardware. Cadence RTL Compiler was used for the
synthesis and SOC encounter for place and route of the design employing a 90nm
CMOS process of nine layers with standard cells and operating conditions of 25oC
and 1.2V.

48



2.6 Comparisons With Other NB-LDPC Decoders

Table 2.1: Complexity analysis for the proposed decoder. For the (N=837,K=726)
NB-LDPC code over GF (32)

Logic Gates
(NAND) Memory bits

Check Node 222K 31K
Permutations
(P and P−1) 76K -

Normalization (N) 58.2K -
Add/Sub 46.7K -
Qn(a) - 160.7K

R
(t−1)
mn (a) - 535.7K

LLR mem - 133.9K
Code Out mem - 4.1K

Qmn(a) - 51.8K
Total 402.9K 917.2K

After routing, the maximum frequency achieved is 238 MHz and the total area of
the decoder is 16.12 mm2 with a core occupation of 70%.

Since one iteration of the decoding algorithm takes M + dv · seg clock cycles and
considering 10 pipeline stages, 164 clock cycles per iteration are needed. On the
other hand, to achieve the same performance as the approach proposed in [34], as
shown in Fig. 2.2, 9 iterations are required for the proposed decoding algorithm
which implies that the entire iterative decoding takes 1476+31=1507 clock cycles,
where q− 1 additional clock cycles are added for the channel information loading.
The proposed decoder achieves a throughput of 660 Mbps using (2.2), which is
very much higher than all existing solutions from the SoA, as shown in the next
section, except from the T-EMS [16, 17].

As can be seen, the proposed decoder has low latency without using excessive
logic resources, even when higher order Galois fields have been considered. This
advantage makes the proposed decoder suitable for high speed communications
systems, where latency is an important requirement.

2.6 Comparisons With Other NB-LDPC Decoders

The proposed decoder has been compared to the most efficient NB-LDPC decoder
designs. Table 2.2 summarizes the results of different architectures found in litera-
ture. Results included in Table 2.2 are computed considering that all the memory
bits were implemented as RAM memories, in which one bit of memory is equiv-
alent to 1.5 NAND gates [32, 34, 30]. However, the number of equivalent NAND
gates that we obtained based on the layout area after the place and route report

49



Chapter 2. Simplified Trellis Min-Max Decoder Architecture for NB-LDPC Codes

Table 2.2: Comparison of the proposed NB-LDPC layered decoder with other works
from literature. For the NB-LDPC code (837,726) over GF (32)

Algorithm
Simplify-

MS
[32]

Trellis
Max-log
QSPA
[30]

Min-
Max
[33]

RMM
[34]

T-EMS
[17]

Simplified
TMM
[This

Proposal]

Report Synthesis Post-
layout Synthesis Synthesis Synthesis Post-

layout
Technology 180 nm 90 nm 130 nm 180 nm 90 nm 90 nm
Quantization

(w) 5 bits 7 bits 5 bits 5 bits 6 bits 6 bits

NAND
Count 1.29M 8.51M 2.1M 871K 2.75M 1.78M

fclk (MHz) 200 250 500 200 250 238
Iterations 15 5 15 15 12 9
Latency
(clock
cycles)

12995 4460 28215 12675 2160 1507

Throughput
(Mbps) 64 223 64 66 484 660

Throughput
(Mbps) 90

nm
149 223 107 154 484 660

Efficiency
90 nm

(Mbps/M-
gates)

115.5 26.2 50.9 176.8 176 371.3

Area
(mm2) - 46.18 - - - 16.12

(16125908µm2) and the core occupation (70%), using the libraries of our CMOS
process, is (0.7× 16125908µm2)/3.136µm2 = 3.599M NAND gates 1. This is due
to the fact that the memory bits for R(t−1)

mn (a) (535.7K), the check node (31K)
and the Qmn(a) (51.8K) were implemented as registers which have an equivalent
area of 4.5 NAND gates instead of 1.5 NAND gates, because we do not have fully
customized memories for these sizes.

Since the decoders of table 2.2 are implemented under different CMOS technolo-
gies, we scale the technology to show results over a 90 nm CMOS process using
first order approximations [41] based on the ratio of the maximum achievable fre-
quency for the different processes. To this end, the scaling factors used to deriving
the comparisons presented in Table 2.2 are 1.66 and 2.33 for 130nm/90nm and
180nm/90nm scaling respectively. Note that, we compare different algorithms

1The equivalent area of a NAND gate is 3.136µm2.

50



2.7 Conclusions

under the same performance, so each one has a different number of iterations. Ef-
ficiency is calculated dividing the normalized throughput (for 90 nm technology)
over area ratio (Millions of NAND gates).

Considering that only the approach presented in [30] includes post layout results,
only comparisons with [30] can be made for the total decoder area given in mm2.
The TMM outperforms by a factor of four compared to the one presented in [30].
On the other hand, our approach has three times higher throughput and fourteen
times more efficiency than the decoder in [30].

Comparing our decoder to the approach presented in [32], we can see that the first
one has more than eight times less latency, more than six times higher throughput
and three times higher efficiency, although our decoder requires 37% more logic
elements (NAND gates).

In [33], the authors have presented a very efficient implementation of the Min-Max
decoder. Our solution outperforms it in area (17% less NAND gates), latency (al-
most 20 times lower), throughput (almost 10 times higher) and efficiency (almost
7.5 times higher). The Min-Max decoder has also been modified to improve its
hardware efficiency in [34]. Although the TMM requires twice the area occu-
pied by the decoder presented in [34], our approach is more than two times more
efficient in term of throughput-over-area ratio. In addition, our TMM decoder
shows eight times less latency than [34], which makes it suitable for high speed
implementations.

Finally, a Trellis EMS decoder was presented [17], where the authors introduce a
low latency decoder achieving 484 Mbps of throughput. Thanks to the simplifica-
tions presented in this paper, our proposed decoder outperforms [17] in area (54%
less), latency (43% less), throughput (36% higher) and efficiency (more than two
times higher), under the same FER performance.

2.7 Conclusions

In this paper we have presented a simplified Trellis Min-Max algorithm which
improves both area and latency with respect to the most efficient decoders included
in literature for high order fields. The outgoing check node messages are calculated
in a parallel way using only the most reliable symbols, reducing the overhead of the
CN by a factor of four compared to the T-EMS decoder. Using the layered schedule
with the proposed check node algorithm reduces the required maximum number
of iterations to achieve a desired performance. The improvements proposed in this
paper on the hardware implementation of the T-EMS, including the replacement
of the addition by a maximum operator (to derive the TMM algorithm) intends
to keep the feature of a very high speed implementation, but with a maximum
hardware complexity reduction.

51





Chapter 3

One Minimum Only Trellis
Decoder for Non-Binary
Low-Density Parity-Check Codes

Figure 3.1: Key points of the improvements presented in this chapter.

In this chapter, the paper “One Minimum Only Trellis Decoder for Non-Binary
Low-Density Parity-Check Codes” is presented. This research takes as starting
point the T-MM algorithm and decoder architecture from the previous chapter
and the T-EMS approach in its simplified version using the results from [42]. The
research was focused in the reduction of complexity in the CN processor by means
of a novel approach to avoid the use of two-minimum finders to compute the

53



Chapter 3. One Minimum Only Trellis Decoder for NB-LDPC Codes

two most reliable messages. Since these blocks are characterized by high-latency
networks avoiding them improve both latency and achieved throughput reducing
the CN complexity. Fig. 3.1 summarizes the key points that were improved in the
derived paper.

Abstract: A one minimum only decoder for Trellis-EMS (OMO T-EMS) and
for Trellis-Min-max (OMO T-MM) is proposed in this paper. In this novel
approach, we avoid computing the second minimum in messages of the check
node processor, and propose efficient estimators to infer the second minimum
value. By doing so, we greatly reduce the complexity and at the same time
improve latency and throughput of the derived architectures compared to the
existing implementations of EMS and Min-max decoders. This solution has
been applied to various NB-LDPC codes constructed over different Galois
fields and with different degree distributions showing in all cases negligible
performance loss compared to the ideal EMS and Min-max algorithms. In
addition, two complete decoders for OMO T-EMS and OMO T-MM were
implemented for the (837,726) NB-LDPC code over GF(32) for comparison
proposals. A 90 nm CMOS process was applied, achieving a throughput of
711 Mbps and 818 Mbps respectively at a clock frequency of 250 MHz, with an
area of 19.02mm2 and 16.10mm2 after place and route. To the best knowledge
of the authors, the proposed decoders have higher throughput and area-time
efficiency than any other solution for high-rate NB-LDPC codes with high
Galois field order.

Index terms: NB-LDPC, OMO T-EMS, OMO T-MM, Check node process-
ing, low-latency, VLSI design

3.1 Introduction

Since the first non-binary low-density parity-check (NB-LDPC) decoder architec-
ture was proposed for the Q-ary Sum-of-Product algorithm (QSPA) [6], hardware
designers have been working to derive solutions that allow the use of NB-LDPC
codes in a wide range of communication and storage systems. Good error cor-
rection, high throughput and small area remain the challenge of any NB-LDPC
decoder designer.

Extended Min-Sum (EMS) [14] and Min-Max (MM) [15] algorithms were proposed,
with the aim of reducing the complexity involved in the check node processor,
which is the bottleneck of QSPA algorithm. Although the decoding process is
simplified by means of using forward-backward for the extraction of check-to-
variable messages, these metrics penalize the maximum throughput achievable
when they are implemented in hardware.

54



3.1 Introduction

To avoid the use of forward-backward, in [35] the Trellis Extended Min-Sum (T-
EMS) was proposed. With T-EMS, the degree of parallelism is increased using only
combinations of the most reliable Galois field (GF) symbols to compute the check-
to-variable messages. The decoder presented in [35] was outperformed in [16] where
an extra column is added to the original trellis with the purpose of generating the
check-to-variable messages in a parallel way. The main drawback of the approach
presented in [16] is that requires a lot of area and pipeline stages, reducing the
overall efficiency of the decoder. In [17] the hardware implementation of a T-
EMS decoder is described, reaching the highest throughput found in literature.
Previous trellis-based proposals, such as the ones from [43], [44] and [45], applied
partial-parallel decoding as a way to obtain the output messages in the check node
processor.

In [34] a decoder architecture named Relaxed Min-Max (RMM) is proposed. RMM
makes an approximation for the second minimum calculation and hence, generates
the check-to-variable messages with less complexity. The main drawbacks for this
approach are: i) the check node output messages are derived serially, reducing
the overall throughput of the decoder and increasing latency; and ii) the proposed
approach suffers of an early degradation in the error floor region, due to the way
of deriving the second minimum.

In this paper, we introduce a novel second minimum approximation based on
the statistical analysis of the check node messages named as One Minimum Only
(OMO) decoder. The motivation to perform this approximation is that the two-
minimum finder duplicates the critical path and increases the complexity of the
check node processor. In addition to the second minimum estimator proposed in
[34], we analyze two other estimators: one based on a slight modification of the one-
minimum finder, and a last one which linearly combines the first two estimators,
and showed the best performance in simulations. The proposed OMO decoder
can be applied to both T-EMS and Trellis Min-max obtaining OMO T-EMS and
OMO T-MM decoders respectively. By avoiding the use of two-minimum finders
[40] in the check node, we were able to reduce both area and latency of the check
node update without introducing any performance loss compared to the original
EMS or Min-max algorithms.

The OMO T-EMS and OMO T-MM check node architectures have been imple-
mented and included in a layered scheduling decoder. A 90nm CMOS process has
been employed and a (837,726) NB-LDPC code over GF(32) has been chosen to
show the efficiency of our approach for high order fields and high rate codes. The
OMO T-EMS and OMO T-MM decoders achieve 100% and 159% higher efficiency
(Mbps / Million Gates) compared to the most efficient decoder found in literature
[34] respectively, with about 30% less latency and 40% higher throughput than the
solution from [17] depending on whether EMS or Min-max version is implemented.

55



Chapter 3. One Minimum Only Trellis Decoder for NB-LDPC Codes

The rest of the paper is organized as follows: in Section 3.2 we introduce the
nomenclature and the main concepts of T-EMS algorithm. The proposed ap-
proach for the second minimum estimation of T-EMS algorithm, OMO T-EMS, is
presented in Section 3.3, including and analysis of performance for different NB-
LDPC codes and showing that can be extended to Min-max algorithm without loss
of generality. Section 3.4 includes the hardware implementation of the proposed
check node and the overall decoder. Moreover, synthesis and post place and route
results of the design and comparisons with other architectures are also included.
Finally, conclusions are outlined in Section 6.5.

3.2 Trellis - Extended Min-Sum algorithm

NB-LDPC codes are characterized by a sparse parity check matrix H where each
non-zero element hm,n belongs to Galois field GF (q = 2p). We consider regular
NB-LDPC codes with constant row weight dc and column weight dv. Decoding
algorithms for NB-LDPC codes use iterative message exchange between two types
of nodes called check nodes (CN) (M rows of H) and variable nodes (VN) (N
columns of H).

Let N (m) (M(n)) be the set of VN (CN) connected to a CN (VN) m (n). Let
Qm,n(a) and Rm,n(a) be the edge messages from VN to CN and from CN to VN
for each symbol a ∈ GF (q) respectively. Ln(a) denotes the channel information
and Qn(a) the a posteriori information.

Let c = c1, c2, · · · , cN and y = y1, y2, · · · , yN be the transmitted codeword and
received symbol sequence respectively, with y = c + e and e is the error vector
introduced by the communication channel. The log-likelihood ratio (LLR) for
each received symbol is obtained as Ln(a) = log[P (cn = zn|yn)/P (cn = a|yn)]
ensuring that all values are non-negative where zn is the symbol associated to the
highest reliability.

Trellis Extended Min-Sum (T-EMS) algorithm [35] presents a way of implementing
the original EMS algorithm [14], avoiding the use of the forward-backward met-
rics and increasing the degree of parallelism of the CN. Algorithm 7 includes the
original T-EMS CN algorithm, where the first and fifth steps perform the trans-
formation of incoming messages (Qm,n) from “normal” to delta domain (N→ ∆)
and from delta domain to normal domain (∆→ N) for the CN outgoing messages
(Rm,n) respectively. For the N→ ∆ transformation, syndrome β of the CN must
be obtained (Step 2 of Algorithm 7) using the incoming tentative hard decision zn
for each CN message.

The extra column (∆Q(a)) calculation is derived on step 3 using the configuration
sets originally proposed in [14], with the aim of building the output messages using
only the most reliable information. The configuration set conf(nr, nc) is defined

56



3.2 Trellis - Extended Min-Sum algorithm

Algorithm 7: T-EMS Algorithm
Input: Qm,n , zn = arg mina∈GF (q)Qm,n(a) ∀ n ∈ N (m)

for j = 1→ dc do
1 ∆Qm,nj

(ηj = a+ znj
) = Qm,nj

(a)

end
2 β =

∑dc
j=1 znj ∈ GF (q)

3 ∆Q(a) = minη′j(a)∈conf(nr,nc)

∑dc
j=1 ∆Qm,nj (η′j(a)), a ∈ GF (q)

for j = 1→ dc do
4 ∆Rm,nj (a+ η′j(a)) = min(∆Rm,nj (a+ η′j(a)),∆Q(a)−∆Qm,nj (η′j(a)))

5 Rm,nj (a+ β + znj ) = λ ·∆Rm,nj (a), a ∈ GF (q)

end
Output: Rm,n

as the set of at most nr symbols that satisfy the parity equation, deviating at
most nc times from the combination (path) of symbols with the highest reliability.
Considering only the case when nr = 1 and nc = 2, the extra column ∆Q(a) is
built with the combination of the most reliable messages for each GF(q) symbol
i.e. with the minimum value message, min1(a).

Once the ∆Q(a) values are derived, the outgoing CN messages in delta domain
∆Rm,n, are generated in Algorithm 7 using step 4 which provides all the values
for extrinsic CN outgoing messages. For the intrinsic values, min1(a) and min2(a)
are used as it is explained in detail in [16].

It is important to remark that the min1(a) values are used for both, ∆Q(a) and
∆Rm,n(a) generation while min2(a) is only used to compute ∆Rm,n(a) (in the
case of nr = 1 and nc = 2). Additionally, the extraction of the position of the first
minimum is also required (min1pos(a)), since this information is used to derive
the path for each extra column value in the trellis. However, the two minimum
values must be processed using a two-minimum finder before the extra column
calculation. This two-minimum finder increases the critical path for min1(a) due
to the min2(a) extraction.

In next section we propose a novel approach to approximate the second minimum,
which at the same time that reduces the critical path to get the first minimum,
achieves an accurate estimation of the second one without degrading the perfor-
mance of the original T-EMS and Min-max algorithms.

57



Chapter 3. One Minimum Only Trellis Decoder for NB-LDPC Codes

3.3 One Minimum Only Trellis Decoder

As shown in Section 3.2, the two-minimum finder represents an important part of
the CN architecture. On the other hand, the hardware architectures to implement
the minimum finder processor [40] introduce the same delay for both min1(a) and
min2(a), which is not optimal for EMS and Min-max algorithms.

This observation is our principal motivation for creating a novel check node ar-
chitecture which approximates the computation of the second minimum, reducing
the delay for the first one and hence improving the latency and the throughput of
the decoder as it can be seen in next sections. Our proposed approach has been
tested on multiple NB-LDPC codes with different GF(q) and degree distribution,
showing in all cases a negligible performance loss compared with the T-EMS and
Min-max algorithms. In order to simplify the description of our proposal, we will
focus on T-EMS, however, this method can be directly derived to Min-max algo-
rithm without any loss of generality. However, we will provide performance and
implementation results of this new solution for both EMS and Min-max decoders.

In the rest of the section, different estimators of the second minimum values are
considered, and a statistical analysis of their distribution compared to the true
second minimum is made. The analysis is done for the (837,726) NB-LDPC code
over GF(32), where H is generated using the methods proposed in [36], with
circulant sub-matrices of size (q−1)× (q−1). However, other codes with different
GF and degree distribution have been tested obtaining the same behavior.

3.3.1 Estimators for the second minimum value

A first natural solution for the estimation ofmin2 is to make use of a scaled version
of the first minimum min1, described in equation (3.1):

min′′2(a) = min1(a)× γp (3.1)

This approximation has been already proposed in [34]. However, by just applying
equation (3.1) the value of the minimum is usually underestimated if we apply a
γp value that mimics as much as possible the behavior of EMS or Min-max in the
waterfall region 1. As it can be seen in Fig.3.2, where we draw the distributions
of the true min2(a) and their proposed estimators, the value of min′′2(a) is on
average smaller than the real min2(a), which leads to an important performance
degradation in the error floor region.

1γp is selected as the mean value of the ratio between min2(a) and min1(a). γp =
min2(a)/min1(a)

58



3.3 One Minimum Only Trellis Decoder

A second possible estimator makes advantage of a re-use of the hardware archi-
tecture. Using a radix-2 one-minimum finder is possible to determine an early
estimation for the second minimum. In Fig. 3.4, a one-minimum tree finder is
presented. In the figure, we include an extra multiplexor in the last stage, that
allows extracting the looser term, denoted min′′′2 (a). By doing so and just using
an extra multiplexor, this term can be used as an early estimator of the second
minimum, which represents an upper-bound on the true minimum value. If the
true min2(a) value is located in the other half part of the tree that min1(a) (dc/2
branches of the minimum tree finder not connected to min1(a)), then we obtain
min′′′2 (a) = min2(a). In the other cases, min′′′2 (a) > min2(a). Hence, the re-
sultant value corresponds to an provable upper bound on the true min2(a). A
systematic over-estimation of the second minimum value could lead also to perfor-
mance degradation of the complete decoder, and we propose to combine min′′2(a)
and min′′′2 (a) in order to get an estimator with a better statistical behavior.

0 10 20 30 40
0

0.5

1

·107

Value

T
im

es

min2(a)

min1(a)× γp
min′′′2 (a)

min∗2(a)

Figure 3.2: Histograms for the different estimators of min2(a). The γp value was set
to 1.125.

As we will demonstrate with a statistical analysis in the next section, bothmin′′2(a)
andmin′′′2 (a) are biased estimators, one over-estimating the true second minimum,
and the other one under-estimating the true second minimum. We therefore pro-
pose in this paper to combine those two estimators, by using a linear combination
of the two preceding estimators, in the following way:

min∗2(a) =
min′′2(a) +min′′′2 (a)

2
=
min1(a)× γp +min′′′2 (a)

2
(3.2)

59



Chapter 3. One Minimum Only Trellis Decoder for NB-LDPC Codes

−15 −10 −5 0 5 10 15
0

0.5

1

1.5

·108

Value

T
im

es

min2(a)−min′′2 (a)
min2(a)−min′′′2 (a)

min2(a)−min∗2(a)

Figure 3.3: Histograms showing the error distribution of different estimators ofmin2(a).
The γp value was set to 1.125.

Compared to the real min2(a) values, min∗2(a) presents a similar behavior in the
histogram shown in Fig. 1 which implies that the proposed estimation has similar
statistical behavior than the exact min2(a) values.

The operations involved to implement (3.2) can be performed after min1(a) and
min′′′2 (a) values are obtained (using the hardware structure in Fig. 3.4). Therefore,
the second minimum estimation can be made at the same time that ∆Q(a) values
are obtained, to finally calculate check-to-variable output messages.

In the next section, we analyze the statistical behavior of each of the three proposed
estimators.

3.3.2 Statistical analysis of the different estimators

In Fig. 3.3, we plot the distributions of the difference between the proposed es-
timators, m̂in2(a) being defined following one of the equations (3.1)-(3.2), and
the true minimum, i.e. p

(
min2(a)− m̂in2(a)

)
. We performed this analysis by

computing for each iteration and for different Eb/N0 values the difference between
the real second minimum at the check node and each one of the estimators. The
information for this analysis is computed based on all the M check nodes of the
parity check matrix.

60



3.3 One Minimum Only Trellis Decoder

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Figure 3.4: Second minimum estimation based on a radix-2 one-minimum finder. Ex-
ample for an eight inputs tree.

From the shape of the distributions, we can see that m̂in2(a) = min′′2(a) seems to
be biased and skewed to the positive values of the difference, which means that not
onlymin′′2(a) under-estimates the true minimum, but also that the difference is not
symmetric around its bias. Of course, as it was expected for m̂in2(a) = min′′′2 (a),
which represents a upper bound on the true second minimum, we get the opposite
behavior, as the distribution of min2(a)−min′′′2 (a) is left biased and skewed. In
order to better measure the performance of each estimator, we have computed
the first four cumulants of the distributions p

(
min2(a)− m̂in2(a)

)
, and reported

their values in Table 3.1 after 1 and 15 decoding iterations. The first cumulant
of the distribution is the mean, and measures the bias of the estimator, a value
of zero indicating that the estimator is unbiased. The second cumulant is the
square-root of the variance, which indicates the spread of the estimator around
the mean value. The third cumulant is the skewness, and is a measure of the
symmetry of the distributions. A zero skewness indicates that an estimator does
not favor positive or negative difference with the true value min2(a). Finally, the
fourth cumulant, called the kurtosis is a measure of the flatness of the tails of the
distribution. A low value of the kurtosis indicates that very large outliers values
of the difference with the true minimum do not appear with high probability. The
kurtosis value for a Gaussian distribution is equal to 3.

61



Chapter 3. One Minimum Only Trellis Decoder for NB-LDPC Codes

Table 3.1: Statistical properties of the different m̂in2(a) estimators after I = 1 and
I = 15 decoding iterations.

p (min2 −min′′2) p (min2 −min′′′2 ) p (min2 −min∗2)

mean
(I = 1/I = 15) 1.70 / 2.09 -1.74 / -1.67 -0.07/0.16

σ
(I = 1/I = 15) 2.94 / 2.65 2.83 / 2.74 2.04 / 1.92

Skewness
(I = 1/I = 15) 1.17 / 1.09 -0.11 / -0.25 -0.0011 / -0.0025

Kurtosis
(I = 1/I = 15) 4.51 / 4.18 5.82 / 5.71 4.05 / 3.99

As we can see from those tables, min′′2(a) typically tends to under-estimates the
true min2(a) value, since both the mean and the skewness are positive, while
min′′′2 (a) over-estimates the true min2(a) value, since both the mean and the
skewness are negative (which was expected as min′′′2 (a) is actually an upper bound
of min2(a)). As we can see, the third estimator that we propose, namely min∗2(a),
is a better estimation than the other 2, with respect to all statistics. First it is
practically unbiased at the first iteration, although a slight positive bias seems
to appear at iteration 15. The skewness is almost zero, which tells us that, on
average, the decoder will under-estimate or over-estimate the min2 with the same
frequency. Finally, both the variance and the kurtosis of p (min2(a)−min∗2(a))
are the minimum among the three estimators, which indicates that values very
different than the true minimum will appear less often with min∗2(a) than with
the other two estimators. With respect to those indicators, min∗2(a) is a better
estimator of min2 than min′′2(a) or min′′′2 (a). We will confirm in the next section
that min∗2(a) also provides the maximum gain in error correction performance for
the overall LDPC decoder.

3.3.3 Frame Error Rate Performance

To prove the correct behavior of the proposed OMO T-EMS and OMO T-MM al-
gorithms, we performed Frame Error Rate (FER) simulations for NB-LDPC codes
with different degree distributions and Galois field values, from GF(4) to GF(32),
assuming transmission over Binary Phase Shift Keying (BPSK) modulation and
Additive White Gaussian Noise (AWGN) channel. In this subsection we only in-
clude the performance for two different codes, the (837,726) NB-LDPC code over
GF(32) with dc = 27 and dv = 4 and the (2212,1896) NB-LDPC code over GF(4)
with dc = 28 and dv = 4. For the rest of the codes we obtained similar results.
We compare the proposed OMO T-EMS and OMO T-MM approaches to T-EMS
[17] and Relaxed Min-Max (RMM) algorithms [34].

62



3.4 OMO T-EMS and OMO T-MM Hardware Architectures

Fig. 3.5 shows the frame error rate (FER) simulation results of the (837,726) NB-
LDPC code. For this code, the proposed OMO T-EMS algorithm in its floating
point version (fp) achieves the same performance as T-EMS algorithm without
any performance loss. Both algorithms use 15 iterations (it) and a scaling factor
λ = 0.5. In addition, the OMO T-MM algorithm has a coding gain of 0.12dB
compared to the RMM from [34]. Comparing the quantized version of OMO T-
EMS algorithm to RMM algorithm, OMO T-EMS algorithm with 7 bits (7b) for
the datapath and 9 iterations achieves the same performance as RMM [34] with
5 bits for the datapath and 15 iterations, so the proposed approach requires less
iterations than the method from [34] to achieve the same performance. For the
quantized version of the OMO T-MM the performance with 6 bits (6b) and 8
iterations achieves the same than the RMM decoder.

On Fig. 3.6, we have plotted the performance of the T-EMS decoder with 15
iterations, and for all the approximations of the second minimum discussed in
this paper. The curve labeled T-EMS uses the exact computed value of min2.
As we can see, the fact that min′′2 and min′′′2 do not estimate accurately the
second minimum has indeed an impact on the overall decoder performance, and
especially in the error floor region, where a strong early flattening appears for
both approximations (especially for min′′2). On the other hand, our proposed
approximation min∗2 has absolutely no performance loss compared to the T-EMS
with the exact minimum computation, both in the waterfall and the error floor
regime. It results that the complexity gains provided by the OMO-T-EMS comes
at no performance loss, at least for the codes that we simulated.

In Fig. 3.7, simulations for the (2212,1896) NB-LDPC show a negligible perfor-
mance loss of 0.03dB for a FER = 10−7 comparing T-EMS to OMO T-EMS. The
same happens when we compare Min-max algorithm to OMO T-MM, just a neg-
ligible difference of 0.04dB is introduced by the approximation. The γp values in
all simulations are adjusted using the mean of the ratio min2/min1 as we said
before.

3.4 OMO T-EMS and OMO T-MM Hardware
Architectures

In this section the hardware architectures for the proposed OMO T-EMS and
OMO T-MM are introduced. Since the main contribution of this paper focuses in
the CN processing, first we detail the implementation results for the OMO T-EMS
and OMO T-MM CN architectures comparing them to other existing solutions.
Finally, we present the results for the complete decoders with horizontal layered
schedule.

63



Chapter 3. One Minimum Only Trellis Decoder for NB-LDPC Codes

3.8 4 4.2 4.4 4.6

10−7

10−5

10−3

10−1

Eb/No (dB)

F
E
R

OMO T-EMS (9it-7b)
MM [15] (15it-fp)
OMO T-MM (15it-fp)
OMO T-MM (8it-6b)
RMM [34] (15it-5b)

Figure 3.5: FER performance for the (837,726) NB-LDPC code over GF(32) with
AWGN channel. Layered schedule is applied to all algorithms. λ = 0.5 for TEMS and
OMO T-EMS algorithms. γp = 1.125 for OMO T-EMS algorithm. γp = 1.5 for OMO
T-MM algorithm.

3.4.1 Check Node Architecture

In Fig. 3.8.a the original T-EMS hardware structure [17] is included, while the
proposed OMO T-EMS CN structure is presented in Fig. 3.8.b. It can be observed
that the main advantage of our approach is to avoid the use of two-minimum
finders and apply one-minimum finders, reducing the total complexity and the
delay for the min1(a) values, introducing the novel second-minimum estimation.
To do this approximation, the block labeled “min∗2(a) Processor” is responsible
to implement the Eq. (3.2). The min∗2(a) Processor does not introduce any
additional delay since the processing is made at the same time that the ∆Q(a)
values are computed. Moreover, it is important to remark that the OMO decoding
technique can be directly implemented for a Min-max decoder obtaining the same
advantages.

For both OMO T-EMS and OMO T-MM algorithms, the row-wise search of the
most reliable messages min1(a) implies that the one-minimum finder must have dc
inputs and includes an extra multiplexor in the last stage to extract the min′′′2 (a)
values as shown in Fig. 3.4. For the CN q − 1 one-minimum finders are required,
each one formed by (dc− 1) w-bit comparators and (dc×w) 2-input multiplexors,
where w is the number of bits for the datapath. On the other hand, compared
with the two-minimum finders [40], the critical path is reduced by half due to the

64



3.4 OMO T-EMS and OMO T-MM Hardware Architectures

3.8 4 4.2 4.4 4.6

10−7

10−5

10−3

10−1

Eb/No (dB)

F
E
R

T-EMS [17] (15it-fp)
min′′2 (a) (15it-fp)
min′′′2 (a) (15it-fp)
OMO T-EMS (15it-fp)

Figure 3.6: FER performance for the (837,726) NB-LDPC code over GF(32) with
AWGN channel for the estimators of the second minimum value. γp = 1.125 for OMO
T-EMS algorithm.

reduction of the hardware spent on the second minimum computation, which will
impact greatly on the obtained throughput.

To make a fair comparison with the two-minimum finder used in conventional
designs, we must add extra resources to implement (3.2), which reduce to 2×(q−1)
w-bit adders for the one-minimum finders. This value is calculated considering that
the implementation of (3.1) and (3.2) need only two additional adders.

On the other hand, a conventional two-minimum finder [40] requires 2× dc w-bit
comparators and 3 × dc × w 2-input multiplexors. Considering the same num-
ber of equivalent gates for an adder and a comparator (w bits both of them),
the two-minimum finder has three times more multiplexors and two times more
comparators than the one minimum finder plus the second minimum estimation
implementing (3.2).

For the N → ∆ and ∆ → N transformation, the approach used is similar to the
one proposed in [39], requiring 2× q× p× dc ×w 2-input multiplexors to perform
both transformations. The check node’s syndrome β is calculated adding all dc
tentative hard decision symbols zn by means of a GF(q) adder in a tree structure
fashion needing p× (dc− 1) XOR gates.

The extra column values are generated using a configuration processor similar to
the one proposed in [17] using (q − 1)× (q/2− 1) w-bit adders or comparators to

65



Chapter 3. One Minimum Only Trellis Decoder for NB-LDPC Codes

3.4 3.6 3.8 4 4.2 4.4 4.6

10−7

10−5

10−3

10−1

Eb/No (dB)

F
E
R

T-EMS [17] (15it-fp)
MM [15] (15it-fp)
OMO T-EMS (15it-fp)
OMO T-MM (15it-fp)

Figure 3.7: FER performance for the (2212,1896) NB-LDPC code over GF (4) with
AWGN channel. Layered schedule is applied to all algorithms. λ = 0.5 for T-EMS and
OMO T-EMS algorithms. γp = 2.5 for OMO T-EMS algorithm. λ = 0.75 for MM and
OMO T-MM algorithms. γp = 1.125 for OMO T-MM algorithm.

(a)

(b)

Figure 3.8: Check node top architecture for T-EMS algorithm (a). Proposed OMO
T-EMS/ OMO T-MM check node architecture (b).

66



3.4 OMO T-EMS and OMO T-MM Hardware Architectures

Table 3.2: CN complexity comparisons. For the (837,726) NB-LDPC code over GF(32)

Architecture Datapath Logic Gates
(NAND)

Memory
(bits)

Relaxed Min-Max[34] 5 bits 152594 52080
T-EMS

(nr = 2, nc = 2) [17] 6 bits 304260 -

OMO T-EMS
(nr = 1, nc = 2) 7 bits 190780 -

OMO T-MM
(nr = 1, nc = 2) 6 bits 165700 -

generate the tentative extra column values depending on whether EMS or Min-max
check node is implemented. To select the most reliable value, q − 1 one minimum
finders are required, each one formed by (q/2−1) w-bit comparators and (q/2×w)
2-input multiplexors. To compute the path info, (q−1)(2×dlog dce+(q/2−1)×w)
2-input multiplexors, (q−1)(dlog dce) XOR gates and (q−1)(dlog dce−1) OR gates
are implemented.

The resources required for the CN implementation of OMO T-EMS and OMO
T-MM are summarized in Table 3.2 and compared with the approaches from [34]
and [17]. VHDL was used for the description of the hardware and the total gate
account was derived after synthesis using Cadence RTL Compiler. The hardware
implementation was performed for the (837,726) NB-LDPC code over GF (32),
with dc = 27 and dv = 4.

As it can be observed, although the CN in [34] has less NAND gates than our
proposals, their CN requires to store intermediate messages due to the serial pro-
cessing, increasing the gate account of the CN to 230714 NAND gates (considering
that storing one bit of RAM memory is equivalent in terms of area to 1.5 NAND
gates [32, 34, 30]). Hence, our proposals requires at most 18% less logical resources
than the CN presented in [34], even considering that we use two extra bits.

For T-EMS decoder presented in [17] we did not provide separate results for the CN
architecture, however we obtained these results considering the main differences
with our new proposal. The CN from [17] needs about four times more hardware
than our OMO approaches for the extra column values computation due to the
use of the first and second minimum for the extraction of the extra column values.
As we can see in Table 3.2 OMO T-EMS and OMO T-MM require 37% less logical
resources than [17].

67



Chapter 3. One Minimum Only Trellis Decoder for NB-LDPC Codes

3.4.2 Complete decoder architecture

The proposed CN architecture has been included in an horizontal layered schedule
decoder (with one CN cell (Fig. 3.8) and dc VN units. Each VN processor includes
dual-port memories that store the LLR values (Qn(a)) and avoid adding extra
latency. On the other hand, due to the layered schedule, a shift register is required
to store the “last iteration” CN output information (Rm,n(a)).

Since, only one CN cell is implemented in the decoder, M clock cycles are required
to complete one decoding iteration. This value is increased due to the pipeline
stages (k) introduced in the decoder (k × dv clock cycles are added) with the
aim of achieving the desired clock frequency (fclk). As after processing one entire
circulant sub-matrix the pipeline registers must be empty before processing a new
one, reducing the logical path of the decoder has a great impact in the maximum
throughput achieved by the decoder (Eq. (3.3)). Finally, q − 1 additional clock
cycles are required to load the LLR values and output the estimated codeword of
the decoder.

Throughput =
fclk[MHz]×N × p

it× (M + dv × k) + (q − 1)

[
Mb

s

]
(3.3)

With OMO T-EMS we reduce the critical path of the CN, so we only require 8
pipeline stages to achieve a clock frequency of fclk = 250MHz after place and
route with Cadence SOC encounter tools and employing a 90 nm CMOS library in
which the area of a NAND gate is 3.13µm2. The total area of the decoder is 19.02
mm2 with a core occupation of 60% and a gate account of (19.02×0.6)/3.13 = 3.6
Million of NAND gates.

For OMO T-MM the number of pipeline stages is 8 and the maximum clock fre-
quency is fclk = 250MHz. The total area is 16.10 mm2 with a core occupation of
70% and a gate account of (16.1× 0.7)/3.13 = 3.6 Million NAND gates.

It is important to remark that the library used to implement both OMO T-EMS
and OMO T-MM do not include optimized RAM memories, so each bit of RAM
is implemented as a register, and hence, the area for the memories is about three
times larger. Due to this, the total number of equivalent NAND gates is overesti-
mated compared to the results found in literature that always assume optimized
memories. For this reason we include in Table 3.3, for comparison purposes, the
equivalent number of NAND gates assuming that each bit of RAM is implemented
with and area of 1.5 NAND gates.

To achieve the same performance as in [34] and [17], our OMO T-EMS approach
requires only 9 decoding iterations, as can be seen in Fig. 3.5, therefore the total
latency of the decoder is 1435 clock cycles, which corresponds to a throughput of
729 Mbps (3.3). For the OMO T-MM 1279 clock cycles are required to get the

68



3.4 OMO T-EMS and OMO T-MM Hardware Architectures

same FER performance as RMM or T-EMS, so a maximum throughput of 818
Mbps is reached.

OMO T-EMS and OMO T-MM decoders have been compared to the most efficient
NB-LDPC decoder designs to the best knowledge of the authors. The results of
the comparisons have been included in Table 3.3, where we have scaled the results
in [34] to include all throughput results over 90 nm CMOS process [41].

The throughput of both OMO T-EMS and OMO T-MM decoders is higher than
any decoder proposed in literature for high order fields and high rate NB-LDPC
codes (see Table 3.3), because of the improvements made at the check node pro-
cessor.

Our approaches require in the worst case (OMO T-EMS) less than half area than
[30] and achieve at least 3.2 times higher throughput, so our most complex solution
is 13 times more efficient. 2

On the other hand, the decoder presented in [34] has been considered since it was
the most efficient one until now and it uses (3.1) as a method to approximate
the second minimum, which gives benefits in terms of area but introduces early
performance degradation (Fig. 3.5). Despite this, OMO T-EMS has 8.8 times less
latency than [34] achieving 4.75 times higher throughput with a decoder 49.7%
more efficient in terms of area over throughput (for a 90 nm CMOS process). On
the other hand, OMO TMM has 61.2% higher efficiency than [34] with 9.9 times
less latency and 5.3 times higher throughput.

Finally, our OMO T-EMS approach has been compared against the T-EMS de-
coder presented in [17]. Making use of the novel approach for the second minimum
estimation, the latency is reduced on 33% with respect to [17] with an increment
in throughput of 50%. The area was also reduced in 25%, so the efficiency is 50%
higher.

Is important to remark that the proposed approach is focused on high-rate NB-
LDPC codes. However, efficient NB-LDPC decoders suitable for lower rate codes
have been proposed in the literature [23, 46]. These architectures make a parallel
processing of messages.

2Note that [30] is the only proposal that also provides post place and route results.

69



Chapter 3. One Minimum Only Trellis Decoder for NB-LDPC Codes

Table 3.3: Comparison of the proposed NB-LDPC layered decoders to other works from
literature. For the (837,726) NB-LDPC code over GF(32)

Algorithm T-Max-log
QSPA [30]

RMM
[34]

T-EMS
[17]

OMO T-EMS /
OMO T-MM

Report Post-layout Synthesis Synthesis Post-layout
Technology 90 nm 180 nm 90 nm 90 nm

Quantization (w) 7 bits 5 bits 6 bits 7 bits / 6 bits
Gate Count
(NAND) 8.51M 871K 2.75M 2.07M / 1.79M

fclk (MHz) 250 200 250 250
Iterations 5 15 12 8

Latency (clock
cycles) 4460 12675 2160 1435 / 1279

Throughput (Mbps) 223 66 484 729 / 818
Throughput (Mbps)

90 nm 223 154 484 729 / 818

Efficiency 90 nm
(Mbps/M-gates) 26.2 176.8 176 352 / 456

Area (mm2) 46.18 - - 19.02 / 16.10

3.5 Conclusions

In this paper a new method to estimate the second minimum value in message of
the check node processor of NB-LDPC decoders is proposed. This solution avoids
the use of two-minimum finders, greatly reducing the check node complexity. The
simplifications applied to the T-EMS and T-MM algorithms reduce latency and
area with respect to the original proposal, without introducing any significant per-
formance loss. The proposed check node architecture was included in a complete
decoder with layered schedule achieving 729 Mbps of throughput after place and
route on a 90nm CMOS process for OMO T-EMS and 818 Mbps for OMO T-MM.
The designed decoder nearly doubles the efficiency of the best solutions found in
literature for high order fields and high rate codes.

70



Chapter 4

Reduction of complexity for
Non-binary LDPC decoders with
compressed messages

Figure 4.1: Key points of the improvements presented in this chapter.

In this chapter, the paper “Reduction of complexity for Non-binary LDPC de-
coders with compressed messages” is presented. This research is focused in the
reduction of the number of messages exchanged between CN and VN processors.
In addition, the memory used to store the information from the last iteration was
greatly reduced compared to previous proposals from literature. The improve-
ments shown in this paper allow a great area reduction and an increase in the

71



Chapter 4. Reduction of complexity for NB-LDPC decoders with compressed messages

achieved throughput. Fig. 4.1 summarizes the key points that were improved in
the derived paper.

Abstract: In this paper a method to compress the messages between the
check nodes and the variable nodes is proposed. This method is named as
compressed non-binary message-passing (CNBMP). The CNBMP reduces
the number of messages exchanged between one check node and the con-
nected variable nodes from dc × q to 5 × q, and its application has a high
impact in the performance of the decoder: the storage and routing area is re-
duced and the throughput is increased. Unlike other methods, the CNBMP
does not introduce any approximation or modification in the information and
the processed operations are exactly the same as the original decoders, hence,
no performance degradation is introduced. To demonstrate its advantages,
an architecture applying this CNBMP to the Trellis Min-max algorithm was
derived showing that most of the storage resources were also reduced from
dc × q to 5× q. This architecture was implemented for a (837,726) NB-LDPC
code using a 90nm CMOS technology reaching a throughput of 981Mbps with
an area of 10.67mm2, which is 3.9 more efficient than the best solution found
in literature.

Index terms: LDPC codes, decoding, non-binary, hardware implementation,
high-throughput

4.1 Introduction

The two main bottlenecks of non-binary low-density parity-check (NB-LDPC) de-
coder architectures are the storage resources and the maximum throughput. Re-
gardless their significant benefits, such as a better behaviour in the error floor
region and a more robust correction for burst errors, NB-LDPC codes cannot
compete with their binary counterparts in terms of complexity or throughput/area
efficiency.

Several alternatives to the original Q-ary Sum-of-Product algorithm (QSPA) [6]
were proposed during this last decade in order to keep the best correction per-
formance possible and reduce complexity. The most remarkable ones are the Ex-
tended Min-Sum (EMS) [14] and Min-Max (MM) [15] algorithms, which reduced
the complexity of the check node processor and the storage resources. However,
a parallel implementation of these algorithms was prohibitive in terms of wiring
between check node and variable node processors and arithmetic resources. For
this reason all the architectures derived from these two algorithms applied the
forward-backward metrics, which consist in a serial computation of the check node
information. All the decoders based on the forward-backward suffer from a very

72



4.2 Non-binary LDPC message passing

large number of clock cycles per iteration, limiting the maximum throughput to a
few Mbps [39].

In order to increase the degree of parallelism keeping the same error correction, a
new version of the EMS algorithm named as Trellis-EMS (T-EMS) was proposed
in [16]. This method allowed hardware designers to implement a fully parallel
check node in a layered architecture [17]. This implementation did not sacrifice
efficiency in terms of throughput/area compared to other serial implementations
based on trellis [34] and increased throughput more than three times. Further
improvements were introduced with the Trellis Min-max (TMM) in [42]. Despite
this, the decoder from [42] required 14.7mm2 of area with a 90nm CMOS process
and reached a throughput of 660Mbps, which is far from the results of modern
binary LDPC decoders for the same technology (9.6mm2, 45.42Gbps) [47]. While
the binary architectures just exchange a number of messages equal to the degree
of the check node (dc) between check node and variable node, non-binary decoders
require q times more wires/connections; and the same happens for the memories
and registers, which are about the 80% of the decoder’s area.

In this brief a method to reduce the number of messages exchanged in non-binary
decoders between the check node and the variable node is introduced. This method
does not vary the computation of the decoding algorithm nor reduces the informa-
tion transferred between nodes, so it does not introduce any performance degrada-
tion. This proposal compresses the information transmitted in the message passing
reducing the size of the messages from dc × q to 5× q. This has a great impact in
both area and throughput specially for high rate codes. As an example, an imple-
mentation for the same code as in [42] and [34] achieves 981Mbps of throughput
with an area of 10.6mm2 for a 90nm CMOS process.

The rest of the paper has four sections. Section II includes a summary of the
NB-LDPC message-passing of the decoding algorithms. Section III describes the
proposal of this work. Section IV shows the impact of the new message-passing in a
hardware implementation and compares the results to other existing architectures.
Section V outlines the conclusions.

4.2 Non-binary LDPC message passing

Let H be theM×N parity check matrix with coefficients hi,j ∈ GF (q) that defines
an (N ,K) NB-LDPC code. N (m) andM(n) are described as the sets that consist
of all the non-zero elements of a row m (check node) and a column n (variable
node) respectively. The size of the sets N (m) andM(n) are the degree of check
node (dc) and the degree of variable node (dv). The dc and dv degrees represent the
number of messages that each check node and variable node receive respectively.
The set of messages from check node to variable node are denoted as R and the

73



Chapter 4. Reduction of complexity for NB-LDPC decoders with compressed messages

set of messages from variable node to check node are Q. Each of these messages
consists of q elements, due to the fact of performing operations over GF(q). The
method to compute each of these sets depends on the decoding algorithm applied.
The algorithms that provide a better performance with lower complexity are T-
EMS and T-MM, which have a different processing at the check node but share the
same operations at the variable node. To a better understanding of the message-
passing between check node and variable node, a short explanation of the basics
operations performed in the check node is included next, for more details about
the different decoding processes we refer to [16] and [42].

In addition, to perform a parallel processing of the check node we will assume
delta domain [16], [17] messages as inputs and outputs at the check node.

Let 4Q be the set of dc messages from the variable node in delta domain defined
as:

4Q = {4Qm,n} , n ∈ N (m) , m ∈M (4.1)

Each element 4Qm,n includes the likelihood of being the symbol αx ∈ GF (q),
x = {−∞, 0, 1, . . . , q − 2}:

4Qm,n = {Qm,n(α−∞),Qm,n(α0), . . . ,Qm,n(αq−2)} (4.2)

The output messages of the check node in the delta domain are also of length dc:

4R = {4Rm,n} , n ∈ N (m) , m ∈M (4.3)

The likelihood of each symbol to accomplish the parity check equation of the check
node is defined as:

4Rm,n = {4Rm,n(α−∞),4Rm,n(α0), . . . ,4Rm,n(αq−2)} (4.4)

To compute the reliability of each one of the q symbols in a single message, the
check node update equations consider the combinations of the most reliable input
messages. If only the two most reliable messages per symbol are considered the
update rules for the check node follow the next conditions:

74



4.2 Non-binary LDPC message passing

i) If the input likelihood of the symbol αx for the edge {m,n} is not the most
reliable for αx nor is considered to compute other αy output message, 4Rm,n(αx)
is equal to the most reliable value Qm,n0

(αx):

4Rm,n(αx) = {min(Qm,n0(αx),Qm,n0(αy) +Qm,n0(αz))},
αy + αz = αx,∀αy, αz ∈ GF (q)

↔ [Qm,n(αx) 6= Qm,n0
(αx)]

∧
[Qm,n0

(αx) +Qm,n0
(αz) 6= 4Rm,n(αy)],

αx + αz = αy,∀αy, αz ∈ GF (q)

(4.5)

Being Qm,n0
(αx) and Qm,n1

(αx):

Qm,n0
(αx) ≤ Qm,n1

(αx) ≤ Qm,n(αx) , ∀n ∈ N (m) \ {n0, n1} (4.6)

ii) If the input likelihood of the symbol αx for the edge {m,n} is the most reliable
for αx, 4Rm,n(αx) takes the value of the second more reliable message:

4Rm,n(αx) = {Qm,n1
(αx)} ↔ [Qm,n(αx) = Qm,n0

(αx)] (4.7)

iii) If the input likelihood of the symbol αx for the edge {m,n} is involved in the
output reliability of αy, 4Rm,n(αx) takes the value of the most reliable message
Qm,n0

(αx):

4Rm,n(αx) = {Qm,n0(αx)}
↔ [Qm,n0(αx) +Qm,n0(αz)

= 4Rm,n(αy)], αx + αz = αy,∀αy, αz ∈ GF (q)

(4.8)

To reduce the number of operations at the check node and share results a set that
includes common computation was proposed in [16], and defined as:

Pm = {Pm(α−∞),Pm(α0), . . . ,Pm(αq−2)} , m ∈M (4.9)

Where each element from the set Pm includes the two most reliable input values
from αx:

Pm(αx) = {Pm0(αx) = Qm,n0(αx),Pm1(αx) = Qm,n1(αx)} (4.10)

75



Chapter 4. Reduction of complexity for NB-LDPC decoders with compressed messages

Based on the set Pm an extra set is computed in [16]. This set includes the values
from 4Rm,n(αx) in equation (4.5). The set is defined as follows:

Em = {Em(α−∞), Em(α0), . . . , Em(αq−2)} , m ∈M (4.11)

Em(αx) = {min(Qm,n0
(αx),Qm,n0

(αy) +Qm,n0
(αz))}

(αy + αz = αx ∈ GF (q))
∧

(Qm,n0
(αy) +Qm,n0

(αz) < Qm,n0
(αa) +Qm,n0

(αb)),

αa + αb = αx, ∀ αa, αb ∈ GF (q)\{αy, αz}
(4.12)

Regardless the definition of the extra set the output messages of the check node
are 4Rm,n, which is a set of size q × dc.

4.3 Compressed Non-Binary Message-Passing (CNBMP)

With the aim of reducing the size of the sets that conform the messages shared be-
tween check node and variable node we propose a new ordering of the information.
With these new sets the number of information exchanged between check node and
variable node is reduced considerably and the set 4Rm,n is easily derived at the
variable node. We name this method Compressed Non-Binary Message-Passing
(CNBMP).

First we define the set Cm as follows:

Cm = {Cm(α−∞),Cm(α0), . . . ,Cm(αq−2)} , m ∈M (4.13)

Cm(αx) = {Nx′(m)} (4.14)

Each Nx′(m) element contains the index n of the edge {m,n} for the symbol αx
in which 4Rm,n is not updated following equation (4.5):

Nx′(m) = {n0} ↔ [(αx ∈ GF (q))
∧

(Qm,n0
(αx)

= Em(αx))]
∨

[(αx + αz = αy,∀αy, αz ∈ GF (q))
∧

(Qm,n0
(αx) +Qm,n0

(αz) = Em(αy))]

(4.15)

76



4.4 Hardware impact of CNBMP

Considering that the sets Em and Pm are computed the message 4Rm,n can be
recovered at the variable node following the next equations:

4Rm,n(αx) = Em(αx) , n ∈ N (m)\Nx′(m) (4.16)

4Rm,n(αx) = Pm1
(αx)↔ Pm0

(αx) = Em(αx) , n ∈ Nx′(m) (4.17)

4Rm,n(αx) = Pm0
(αx)↔ Pm0

(αx) 6= Em(αx) , n ∈ Nx′(m) (4.18)

It is important to remark that: i) whether CNBMP is applied or not the sets
Pm and Em are computed because of computational efficiency [16], so we are not
adding any extra operation; and ii) it can be demonstrated that the value of the
messages 4Rm,n are exactly the same applying equations (4.5) to (4.8) or (4.16)
to (4.18), so in terms of error correction performance we can claim that CNBMP
is equivalent to the original T-EMS or T-MM algorithms as it does not include
any approximation.

Note that applying the CNBMP the output information of the check node is con-
formed by the set Em that contains q elements and the sets Cm and Pm that
contain 2 × q elements each one. So in total the cardinality of the output infor-
mation is 5× q, unlike previous proposals found in literature.

To sum up, the check node with the CNBMP does not compute equations (4.5)
to (4.8), but equations (4.16) to (4.18). In addition, the message passing consists
of the sets Cm, Pm and Em, not of 4Rm,n, which is of size dc × q, as shown in
Fig.4.2.

4.4 Hardware impact of CNBMP

The first improvement for the hardware architectures of NB-LDPC decoders is the
reduction of the wiring. According to the implementation reports, the maximum
frequency of the decoder is not limited by the depth of the logic gates, but for the
length of the wiring and the routing congestion. So, if we apply CNBMP, the wires
between both check node and variable node processors will be reduced and hence,
routing congestion will be mitigated. The reduction is λ = (dc × q × Qb)/(3 ×
q × Qb + 2 × q × dlog2(dc))e) (Fig.4.3), assuming that the messages at the check
node are quantized with Qb bits and that the set Cm requires dlog2(dc)e bits to
represent the indexes n. As it is shown next with this reduction of the routing
there is an improvement in the maximum frequency.

77



Chapter 4. Reduction of complexity for NB-LDPC decoders with compressed messages

i)

ii)

Figure 4.2: i) Check node without CNBMP ii) Check node with CNBMP

Table 4.1: Comparison of the proposed NB-LDPC layered decoder with other works
from literature

Algorithm MS
[32]

T-QSPA
[30]

MM
[33]

MM
[34]

T-EMS
[17]

T-MM
[42]

T-MM
CNBMP

Report (nm) Syn.
(180)

Layout
(90)

Syn.
(130)

Syn.
(180)

Syn.
(90)

Layout
(90)

Syn/Layout
(90)

Quantization
(Qb)

5 bits 7 bits 5 bits 5 bits 7 bits 6 bits 6 bits

Gate Count
(NAND) 1.29M 8.51M 2.1M 871K 2.75M 3.28M 0.9M /

1.25M
fclk (MHz) 200 250 500 200 250 238 333 / 300
Throughput
(Mbps) 64 223 64 66 484 660 1089 / 981

Throughput
(Mbps) 90

nm
149 223 107 154 484 660 1089 / 981

Efficiency 90
nm (Mbps /
M-gates)

115.5 26.2 50.9 176.8 176 201 1210 /
784.8

Area (mm2) - 46.18 - - 19 14.75 10.4 /
10.6

The second improvement is in terms of storage resources. To perform the layered
schedule the decoder requires the storage, in registers or memories, of the infor-
mation from the check node in the previous iteration, in order to compute the

78



4.4 Hardware impact of CNBMP

i)

ii)

Figure 4.3: i) Layered architecture of a NB-LDPC decoder without CNBMP. RAM
memory from this architecture hasM addresses of size dc×q×Qb ii) Layered architecture
of a NB-LDPC decoder with CNBMP. RAM memory from this architecture has M
addresses of size 3× q ×Qb + 2× q × log2(dc)

extrinsic information. Therefore, M addresses of depth equal to the size of the
output messages from the check node are required. As it is previously explained,
the number of the output messages without CNBMP is dc × q×Qb and the num-
ber with CNBMP is equal to 3× q ×Qb + 2× q × dlog2(dc)e, so the reduction in
storage resources is also λ (Fig.4.3). Note that applying CNBMP will be specially
advantageous for high rate codes, where dc is very large. However, even with low
and medium rate codes there will be significant improvements, as far as the only
requirement to get some complexity reduction is that dc > 5. To de-compress
the messages at the variable node comparators and multiplexors implement the
conditions from equations (4.16) to (4.18) to select whether Em(αx) or Pm0(αx)
and Pm1(αx) is applied to update 4Rm,n(αx).

In Table 4.1 we include the hardware results of the best architectures for NB-LDPC
decoding and the results of our layered T-MM decoder with CNBMP. The code
under test is for all the decoders the (N=837,K=726) NB-LDPC code over GF (32),

79



Chapter 4. Reduction of complexity for NB-LDPC decoders with compressed messages

with dc = 27 and dv = 4 [36]. Cadence RTL Compiler was used for the synthesis
and SOC encounter for place and route of the design employing a 90nm CMOS
process of nine layers with standard cells and operating conditions of 25oC and
1.2V. Compared with a conventional implementation of T-MM algorithm, CNBMP
decoder improves the requirements of area due to the reduction of storage resources
in the check-node, in a layered schedule. On the other hand, the clock frequency
is increased owing to the reduction of the wiring congestion and the core area in
general. Additionally, we eliminate some pipeline stages in the decoder thanks to
the reduction in the complexity of the check-node processor and hence the critical
path is also reduced. These facts contribute to increment the overall throughput
of the decoder.

If we compare this work to the most efficient architectures found in literature [34]
and [42], we can see that the maximum frequency is increased in 50% and 26%
respectively due to the reduction of the routing congestion. On the other hand,
area is about 43% larger than the decoder from [34] and 3 times smaller than
the one in [42]. After applying the CNBMP the area of storage resources (RAM
memories and registers) is reduce from 80% (2.2 × 106 NAND gates) of the total
area in [?] to 50% (0.62× 106 NAND gates). About the throughput, the CNBMP
proposal is 1.48 times faster than the T-MM decoder in [42] and 14.8 times faster
than the Min-max from [34]. In terms of efficiency Throughput/Area the decoder
with CNBMP is 3.9 times more efficient than [34] and [42]. For the gate count,
we consider the equivalence of one bit of RAM equals to 1.5 NAND gates and one
register equals to 4.5 NAND gates.

Finally, if we compare CNBMP to the binary LDPC decoder from [47], which
has a gate count of 3.4 millions of equivalent NAND gates and a throughput of
45.42Gbps for a code with a similar rate and half codeword length in terms of bits
((2048, 1723) LDPC code), CNBMP has 2.72 times less gates and reaches 17.46
times less throughput1. So, in terms of Throughput/Area efficiency, our non-
binary decoder is 6.32 times less efficient than the binary one. Even not reaching
the efficiency of a binary decoder, with CNBMP we reduce the difference to less
than q, which is a good step forward compared to solutions like the one in [8] that
has 2× q times lower efficiency..

4.5 Conclusions

In this paper a new message-passing definition is proposed for NB-LDPC decoders.
This method reduces the number of the messages exchanged between check node
and variable node, simplifying the routing of the derived hardware architectures
and saving a big percentage of storage resources. Moreover, the new message
passing does not modify the processing of the information at the decoder, keeping
the same error correction performance as the original message-passing.

80



Chapter 5

A 630 Mbps Non-Binary LDPC
Decoder for FPGA

Figure 5.1: Key points of the improvements presented in this chapter.

In this chapter, the paper “A 630 Mbps Non-Binary LDPC Decoder for FPGA”
is included. This paper shows implementation details for the approach presented
in Chapter IV. The base algorithm is the T-MM from [42] and the design is par-
ticularized for a FPGA device. The results show an important reduction in the
area and an increase in throughput compared to other proposals implemented in
FPGA devices. Fig. 5.1 summarizes the key points that were improved in the
derived paper.

81



Chapter 5. A 630 Mbps Non-Binary LDPC Decoder for FPGA

Abstract: A high-speed non-binary LDPC decoder based on Trellis Min-Max
algorithm with layered schedule is presented. The proposed approach com-
presses the check-node output messages into a reduced set, decreasing the
number of messages sent to the variable node. Additionally, the memory re-
sources from the layered architecture are reduced. The proposed decoder was
implemented for the (2304,2048) NB-LDPC code over GF(16) on a Virtex-7
FPGA and in a 90 nm CMOS process. Our implementation outperforms
state-of-the-art NB-LDPC decoder implementations for both technologies,
achieving a throughput of 630 and 965 Mbps, respectively.

5.1 Introduction

Non-Binary Low-Density Parity-Check (NB-LDPC) codes emerge as alternative
to their binary counterparts in scenarios where short/medium codeword length
codes and better performance at high signal-to-noise ratios (SNR) are required.
Additionally, they improve burst error correction capability, especially with high
order Galois fields. On the other hand, the main drawbacks of NB-LDPC codes
are: i) the high complexity of their check-node (CN); ii) the large amount of area
spend on storage (RAM memories and registers); and iii) the routing congestion
that limits the overall decoding throughput.

NB-LDPC codes were first investigated by Davey and MacKay [6], as an extension
of binary LDPC codes. Since then, great efforts have been made to reduce the
complexity of the original Q-ary Sum-of-Product Algorithm (QSPA) [6]. Extended
Min-Sum (EMS) [14] and Min-Max [15] algorithms were proposed as approxima-
tions of the QSPA [6], reducing considerably the CN complexity. However, EMS
and Min-Max algorithms are unable to reach high throughput because of the use
of forward-backward (FB) metrics on the CN processor.

Recently, Trellis EMS (T-EMS) algorithm [16] [17] was proposed. It enables the
parallel processing of messages at the CN and increases the throughput in com-
parison with decoders that use FB metrics. The main disadvantage of T-EMS
algorithm is that the CN complexity is still high due to the parallel processing
and, thus, it leads to a large area decoder. Simplified Trellis Min-Max (T-MM) al-
gorithm [42] was proposed with the aim of reducing the CN complexity of T-EMS
algorithm without compromising the decoding performance. Despite the advan-
tages of T-MM compared with its predecessors, the area required is still high due
to thelarge amount of storage elements, specially when layered schedule is applied.

In this paper we propose a NB-LDPC decoder architecture for T-MM algorithm
which requires many less memory elements than the conventional implementation
of this algorithm. The main idea is to minimize the messages exchanged between
CN and VN processors. Thus, we remove any redundant information and only

82



5.2 Basis on NB-LDPC codes and T-MM decoding algorithm

keep the minimum set of values required to reconstruct all the messages at the VN
processor. The proposed decoder architecture is implemented on a Virtex-7 FPGA
for a (2304,2048) NB-LDPC code over GF(16) [10]. It needs 83% less memory
resources in comparison with a conventional implementation of T-MM algorithm
[42] without introducing any performance loss. The throughput achieved is 630
Mbps, outperforming state-of-the-art NB-LDPC decoders implemented on FPGA
devices [44][48][49].

The rest of the paper is organized as follows: Section II reviews the basis of T-MM
algorithm, in Section III the check node and the top-level decoder architecture are
derived and implementation results for FPGA and ASIC are presented. Finally,
conclusions are outlined in Section IV.

5.2 Basis on NB-LDPC codes and T-MM decoding
algorithm

NB-LDPC codes are linear block codes defined by a sparse parity-check matrix H
withM rows and N columns, where each non-zero element hm,n belongs to Galois
field GF (q = 2p). We consider regular NB-LDPC codes with constant row weight
dc and column weight dv. Each row (column) of H is associated to a check node
CN (variable node VN). Qm,n(a) and Rm,n(a) denote the exchanged messages
from VN to CN and from CN to VN for each symbol a ∈ GF (q), respectively.
N (m) andM(n) denote the sets of non-zero elements per row and column in H,
respectively.

Trellis Min-Max (T-MM) algorithm [42] calculates the output CN reliabilities by
organizing the ∆Qm,n(a) messages in a trellis and including an extra column
∆Q(a) which enables the parallel processing in the CN processor. ∆Qm,n(a)
is the delta domain information defined as ∆Qm,n(a + zn) = Qm,n(a), where
zn ∀ n ∈ N (m) are the tentative hard-decision symbols.

In order to represent the trellis in a CN, the reliability information is organized
in a matrix with the GF symbols in its rows and the n ∈ N (m) in its columns.
Therefore, once the delta domain is applied, the most reliable symbols are located
in the first row of the trellis, which is the hard-decision path. T-MM requires the
computation of the two most reliable messages per row in ∆Qm,n(a). The most
reliable values, m1(a), are used to compute the extra column values using (5.1).

∆Q(a) = min
a′∈conf∗(1,2)

{
max (m1(a′))

}
(5.1)

conf∗(1, 2) [42] includes all possible sets of at most two symbols a′ among the
m1(a) set, which deviate at most twice from the hard-decision path in the trellis.

83



Chapter 5. A 630 Mbps Non-Binary LDPC Decoder for FPGA

The set of symbols a′ must satisfy the parity check equation for each symbol
a ∈ GF (q).

Each ∆Q(a) value from (5.1) is obtained from the set m1(a′), searching one or
two symbols (a∗1 and a∗2) that ensure the highest reliability (minimum value) for
∆Q(a). If only one symbol is selected, then the corresponding ∆Q(a) value is
said to be a one-deviation path, otherwise, is considered to be a two-deviation
path. For each a ∈ GF(q), the set of one or two symbols that ensures the highest
reliability is denoted as a∗ to distinguish it from the rest of a′ possible sets. ∆Q(a)
value is chosen from the maximum between the m1(a∗1) and m1(a∗2) values.

CN output messages ∆Rm,n(a) are obtained using ∆Q(a), m1(a), m1(a) column
index (m1col(a)) and the second most reliable values m2(a). The following algo-
rithm is applied:

for j = 1→ dc do

if m1col(a
∗
1) 6= j or m1col(a

∗
2) 6= j then

∆Rm,nj (a) = ∆Q(a)

else if m1col(a
∗
1) = m1col(a

∗
2) then

∆Rm,nj (a) = m2(a)

else

∆Rm,nj (a) = m1(a)

end for

Finally, conversion to the normal domain is performed as follows: Rm,n(a + β +
zn) = λ ·∆Rm,n(a), where β is the CN’s syndrome and λ is a scaling value that
improves the error-correction performance of the algorithm.

The frame error rate (FER) and bit error rate (BER) performance for the T-MM
algorithm are presented in Fig. 5.2, where the (2304,2048) NB-LDPC code over
GF(16) is used. The fixed-point model, which quantizes the input messages with
5 bits (w = 5b), introduces a performance loss of less than 0.05dB compared to
the floating-point (fp) model. This code will be considered in the rest of the paper
to show the implementation results of the proposed approach.

84



5.3 Proposed Decoder Architecture

3.7 3.9 4.1 4.3 4.5 4.7

10−9

10−7

10−5

10−3

10−1

Eb/No(dB)

F
E
R
/
B
E
R

T-MM (fp-10 it) (FER)
T-MM (5b-10 it) (FER)
T-MM (fp-10 it) (BER)
T-MM (5b-10 it) (BER)

Figure 5.2: FER-BER performance of T-MM algorithm for the (2304,2048) NB-LDPC
code over GF(16), with AWGN channel and BPSK modulation.

5.3 Proposed Decoder Architecture

T-MM algorithm [42] and the preceding T-EMS approach [16][17] require the ex-
change of q×dc messages from CN to VN. This amount of messages causes wiring
congestion in the derived decoder architectures and, at the same time, increases
the memory requirements of the decoder, especially when high-order fields (q > 8)
and high-rate NB-LDPC codes are considered in the design. In this paper, we
propose a new architecture for T-MM algorithm, which takes advantage of the re-
dundancy in the output messages from the CN, to reduce the size of the messages
exchanged with VN processors.

5.3.1 Check-node architecture

CN output (∆Rm,n(a)) contains dc messages per GF(q) symbol. Among them,
there are dc − 1 or dc − 2 messages equal to ∆Q(a), depending if the number of
deviations made from the hard-decision path in the extra column calculation (5.1)
is one or two, respectively. The rest of messages are equal to m2(a) or m1(a),
respectively.

In this paper we propose an architecture that exchanges only the minimum amount
of information from CN to VN. Let’s define E(a) as the set of messages corre-
sponding to the extrinsic information sent to the VN processor. The E(a) values

85



Chapter 5. A 630 Mbps Non-Binary LDPC Decoder for FPGA

compress the m1(a) and m2(a) list of values in a unique set, using the following
rule: if a ∆Q(a) value is obtained from one deviation, E(a) = m2(a), otherwise,
E(a) = m1(a).

On the other hand, the reliability values from ∆Q(a) are the most repeated in the
exchanged messages from CN to VN. This set represents the intrinsic information
obtained during the CN processing. We will refer to ∆Q(a) as I(a) in the rest of
the paper. However, I(a) and E(a) do not include all the necessary information to
generate all q× dc CN outputs messages in the T-MM algorithm [42]. In addition
to I(a) and E(a), the index of the minimums involved in the calculation of the set
I(a) is also required to know the positions where E(a) values must be used at the
VN processor instead of I(a). Taking into account that at most two symbols are
used to derive each one of the I(a) values, the deviation information is split into two
sets P1(a) and P2(a), where each value of the sets requires dlog dce bits to define
the position of the minimum involved to derive I(a). Finally, the updated hard-
decision symbols (z∗n) are required to construct the output CN messages (Rm,n(a)).
z∗n is obtained by adding the hard-decision symbols zn to the syndrome value β as
z∗n = zn+β ∀ n ∈ N (m). These symbols are used in the delta-to-normal domain
conversion at the VN processor.

Table 5.1 summarizes the minimum information to be exchanged to the VN proces-
sor in terms of bits, and also the numerical results for the (2304,2048) NB-LDPC
code over GF(16), where H is constructed following the methods in [10] [36]. In
this code, dc = 36, dv = 4 and the number of bits for the quantized messages are
w = 5.

Table 5.1: Minimum number of bits required to be exchanged from CN to VN processor

Number of bits

Generic
(2304,2048) NB-LDPC code, GF(16)

Proposed Conventional

I(a) (q − 1)× w 75 bits -
E(a) (q − 1)× w 75 bits -
z∗n dc × p 144 bits -

P1(a) (q − 1)× dlog dce 96 bits -
P2(a) (q − 1)× dlog dce 96 bits -
Rm,n(a) q × dc × w - 2880 bits

Total 486 bits 2880 bits

On the other hand, the T-MM based decoder architecture in [42] exchanges 2880
bits (q × dc ×w) from CN to VN for the target code and w = 5. So, our proposal
reduces the total wiring connections in 83% compared to [42]. It is important to

86



5.3 Proposed Decoder Architecture

remark that this reduction in the amount of information exchanged between CN
and VN does not introduce any performance loss compared to T-MM algorithm
[42] since no approximations are made in the message processing, just compression
of the information is performed.

The top-level CN architecture is presented in Fig. 5.3. Parallel processing is
adopted to handle the input messages Qm,n(a) and the tentative hard decision
symbols zn through all the CN blocks.

Figure 5.3: Check-node top-level architecture

5.3.2 Top-level decoder architecture

The CN architecture presented in Section 5.3.1 is included in a decoder with hori-
zontal layered schedule. Layered improves the convergence of the T-MM algorithm
and, at the same time, the area of the entire decoder is considerably lower than
the required by a fully parallel one.

Besides the above commented benefits, another important advantage comes from
the fact that the layered schedule requires to store the CN output messages from
one iteration to be used in the next one. Since the proposed decoder implements
only one CN processor, the messages from the last iteration can be stored using
shift registers with M stages, which reduces the number or registers required. The
implementation of a conventional CN processor with q×dc output messages would
require q× dc×w×M registers (737280 for the target code). On the other hand,
our proposal only requires M × [2(q−1)× (w+dlog dce)+dc×p] registers (121344
for the same code) to store the messages from the last iteration. This means a
reduction of 83% in the use of registers compared to a conventional implementation
of T-MM algorithm.

The VN processor requires a decompression network to build the CN output mes-
sages. Thus, the messages listed in Table 5.1 are converted to the q× dc messages
needed to perform the operations in the VN processor. The following operations
must be performed to generate all the messages:

87



Chapter 5. A 630 Mbps Non-Binary LDPC Decoder for FPGA

for j = 1→ dc do

if P1(a) 6= j or P2(a) 6= j then

Out(a+ z∗j ) = I(a)

else

Out(a+ z∗j ) = E(a)

end for

The proposed network is detailed in Fig. 5.4, where an example for GF(8) is used.
In total, dc decompression networks are required to generate all q × dc values.

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

Figure 5.4: Decompression Network for CN output messages. Example for GF(8).

The top-level decoder architecture is presented in Fig. 5.5, where the Check Node
Processor is the one from Fig. 5.3 and the blocks labeled as DN are the decompres-

88



5.3 Proposed Decoder Architecture

sion network from Fig. 5.4. The blocks labeled as P and P−1 are the permutation
and inverse permutation networks responsible of rotating the messages according
to the hm,n non-zero values of H. The SR block is the shift register that stores
the CN output messages from one iteration to be used in the next one. The “VN

Figure 5.5: Top-level proposed decoder architecture

mem” block is the memory required to store the processed messages during the
decoding operation according to the layered schedule. The depth of the required
memories fits with the size of the circulant sub-matrices which form H [10][36].
In the case of the target code, the size of the circulant sub-matrices is QC = 64,
which allows us to implement efficiently the memories in LUTs instead of BRAMs.
The same conclusions are derived for the memories used to store the channel LLR
values “LLR mem”.

The decoder architecture from Fig. 5.5 was implemented on a Virtex-7 FPGA
device for the target code and the results are presented in the last column of
Table 5.2. Under the best knowledge of the authors, Table 5.2 includes the best
decoder architectures found in the literature which report implementation results
for FPGA devices. We include the ones that achieve higher throughput, though
each one implements different algorithms and considers different NB-LDPC codes.
Our decoder significantly outperforms, in terms of throughput, the best decoder
found in the literature for Min-Max algorithm implemented in FPGA [44]. In the
case of the decoders proposed in [48] and [49], the throughput achieved is in the
order of hundred on Mbps for GF(32). On the other hand, these algorithms exhibit
considerable performance loss (between 0.7 - 1.2 dB), when compared against T-
MM algorithm and it is important to remark that the decoding performance of
this kind of algorithms do not improve when the number of iterations is increased.
In addition, the NB-LDPC code used in this paper has the highest rate and the
longest code length when compared against the others proposals presented in Table
5.2.

89



Chapter 5. A 630 Mbps Non-Binary LDPC Decoder for FPGA

Table 5.2: Comparison of the proposed NB-LDPC decoder with other works imple-
mented in FPGA devices from literature

Algorithm Min-Max
[44] IHRB [48] M-GBFDA

[49]
T-MM

[This Work]

Code (744,653)
GF(32)

(403,226)
GF(32)

(837,723)
GF(32)

(2304,2048)
GF(16)

Code length
(bits) 3720 2015 4185 9216

rate 0.88 0.56 0.86 0.89
Device Virtex-2 Virtex-5 Virtex-6 Virtex-7

Slice LUT 47341 7841 29965 81644
Slice

Registers 44659 529 21632 51995

BRAM 180 56 112 8
fclk (MHz) 106 117.6 222 226
Iterations 15 25 20 10
Throughput
(Mbps) 9.30 90.68 267 630.4

The proposed decoder achieves a throughput of 630 Mbps, the highest for a NB-
LDPC decoder implemented in a FGPA device. This throughput is calculated
as

Throughput =
fclk[MHz] ·N · p

It · (M + dv · seg) + (QC)

[
Mb

s

]
,

where It represents the number of iterations and seg is the number of pipeline
stages used in the decoder. In the proposed decoder, seg = 17, dv = 4 and
It = 10.

The decoder from [42] is, under the best knowledge of the authors, the most
efficient decoder implementation for ASIC reported in the literature. We include
in Table 5.3 the ASIC implementation results for the decoder from [42] and for
our proposed approach for the GF(16) NB-LDPC code used through this paper.
A 90 nm CMOS process with standard cells and operating conditions of 25oC and
1.2 V were used. It can be seen from Table 5.3 that our proposal outperforms
the decoder from [42] in gate count and area in 48% and 38%, respectively, while
the throughput achived is similar in both cases. These results confirm that the
proposed decoder is suitable for FPGA and ASIC implementations.

90



5.4 Conclusions

Table 5.3: ASIC implementation of the proposed NB-LDPC decoder for the (2304,2048)
NB-LDPC code over GF(16)

[42] [This work]
Report Post-layout Post-layout

Gate Count
(NAND) 1882 K 975 K

fclk (MHz) 330.8 333.3
Throughput
(Mbps) 957.5 964.7

Area (mm2) 16.84 10.49

5.4 Conclusions

We propose a NB-LDPC decoder which outperforms state-of-the-art implementa-
tions on both FPGA and ASIC technologies. Our approach presents an imple-
mentation for T-MM algorithm that greatly reduces the number of connections
between check node and variable node processors and the memory requirements in
a layered schedule, compared with a conventional implementation of T-MM based
decoders.

91



Chapter 5. A 630 Mbps Non-Binary LDPC Decoder for FPGA

92



Chapter 6

High-performance NB-LDPC
decoder with reduction of message
exchange

Figure 6.1: Key points of the improvements presented in this chapter.

In this chapter, the paper “High-performance NB-LDPC decoder with reduction
of message exchange” is included. This research uses the results from the paper
presented in Chapter 4 as starting point to develop a modified version of the T-
MM algorithm (m-TMM) that further reduces the number of exchanged messages,
compared to the results presented in Chapter 4. This reduction of messages lower

93



Chapter 6. High-performance NB-LDPC decoder with reduction of message exchange

the number of storage elements in the decoder. Fig. 6.1 summarizes the key points
that were improved in the derived paper.

Abstract: This paper presents a novel algorithm based on Trellis Min-Max
for decoding NB-LDPC codes. This decoder reduces the number of mes-
sages exchanged between check node and variable node processors, which de-
creases the storage resources and the wiring congestion and, thus, increases
the throughput of the decoder. Our Frame Error Rate (FER) performance
simulations show that the proposed algorithm has a negligible performance
loss for high-rate codes with GF(16) and GF(32), and a performance loss
smaller than 0.07dB for high-rate codes over GF(64). Additionally, a layered
decoder architecture is presented and implemented on a 90nm CMOS process
for the following high-rate NB-LDPC codes: (2304, 2048) over GF(16), (837,
726) over GF(32) and (1536, 1344) over GF(64). In all cases the achieved
throughput is higher than 1Gbps.

Index terms: NB-LDPC, Layered Schedule, Check node processing, High
Speed, high rate, VLSI design

6.1 Introduction

LDPC codes have been adopted by numerous communication standards such as
DVB-S2 [3], IEEE 802.16e [4] and IEEE 802.11n [5], among others. Good error
rate performance, low complexity decoders and high-rate decoding are some of the
advantages of implementing LDPC codes over other error correction schemes.

Binary LDPC codes suffer from error correction degradation for short/medium
codeword lengths. On the other hand, an effect called error floor appears with high
Signal-to-Noise Ratio (SNR). This effect limits the error correction performance, so
some additional processing is required to avoid it. Non-Binary LDPC (NB-LDPC)
codes, defined over Galois Fields GF(q = 2p) with p > 1, were first investigated
by Davey and MacKay [6] as an extension of binary LDPC codes, where p = 1.
These codes emerge as an alternative to their binary counterparts to overcome the
weaknesses shown by binary LDPC codes. Additionally, they improve the burst
error correction capability, especially with high order Galois fields, and offer the
possibility to be used in conjunction with high-order modulation schemes (16QAM,
64QAM, 256QAM), reducing the complexity in both the encoder and the decoder
[7, 8]. Unfortunately, NB-LDPC codes have some drawbacks: i) high complexity
of their check-node (CN); ii) large amount of area spent on storage elements (RAM
memories and registers); and iii) routing congestion that limits the overall decoding
throughput. From their appearance till now, many efforts have been put into
mitigating these problems.

94



6.1 Introduction

The first algorithm proposed to decode NB-LDPC codes was the Q-ary Sum-of-
Product Algorithm (QSPA) [6], which was developed as a generalization of the
Sum-of-Product Algorithm (SPA) for binary LDPC codes. Further improvements
such as FFT-SPA[28], log-SPA and max-log-SPA[29], were proposed to reduce the
complexity of the CN processing equations without introducing any performance
loss. More recently, a trellis based implementation for QPSA (T-Max-log-QSPA)
[30] was proposed, offering a solution that increases the throughput with respect to
previous solutions based on QPSA. Its main drawback is that the required area is
prohibitive for real applications in communications and storage systems. Extended
Min-Sum (EMS) [14] and Min-Max [15] algorithms were presented as approxima-
tions of the QSPA [6], so that they reduce considerably the CN complexity, which
only requires additions and/or comparisons. Additionally, EMS and Min-Max
algorithms utilize forward-backward (FB) metrics to derive the CN output mes-
sages. These metrics involve serial computations which limit the throughput of
the derived hardware architectures [15, 32].

Trellis Extended Min-Sum (T-EMS) algorithm was proposed [16, 17] with the aim
of enabling parallel processing of the messages in the CN. The input messages are
organized in a trellis structure, while the output messages are generated in parallel
by means of an extra column included in the trellis. Trellis Min-Max (T-MM)
algorithm in [42] adapts the idea of T-EMS to Min-Max algorithm. One Minimum
Only TMM (OMO-TMM) [50] is an approximation of T-MM that reduces the
complexity of the CN by obtaining only one minimum and estimating the second
one. All these algorithms [16, 17, 42, 50] exchange q×dc reliability values between
CN and VN processors. This amount of exchanged messages is large enough to
cause wiring congestion and this limits the maximum throughput, especially for
high-rate NB-LDPC codes and high order Galois fields. Additionally, in decoder
architectures with layered schedule, the CN output messages are stored to be used
in the next iteration. So, the required memory, which is the main part of the area
in NB-LDPC decoder architectures [34, 42, 50], is too high.

Other proposals from literature [51, 52, 31, 23, 30, 24] exchange a minor number
of messages between CN and VN and vice versa. This fact, reduces the wiring
congestion and the required memory resources, but implies the use of some kind
of algorithm to generate the non-exchanged messages. Moreover, these approaches
introduce a non-negligible performance loss that depends on the Galois Field order
and the size of the reduced set.

In this paper we propose the modified T-MM algorithm (mT-MM) that reduces
the number of check-to-variable messages taking advantage of the replicated in-
formation in the output messages from the CN in T-MM algorithm. The original
idea comes from [53], where we proposed a method to compress the messages be-
tween CN and VN for NB-LDPC message-passing decoders. As the messages are
not modified, this method does not introduce any performance loss. In [54] we
particularize the proposal in [53] to T-MM algorithm, and we detail a hardware

95



Chapter 6. High-performance NB-LDPC decoder with reduction of message exchange

architecture for the CN processor and for a decoder with layered schedule. In
this paper we extend the work in [54], and present a modification of the T-MM
algorithm that allow us to reduce even more the number of exchanged messages.
The CN output messages are split in two arrays: one that compresses the extrinsic
information and another which represents the intrinsic one. Based on statistical
analysis we found that reducing the size of the intrinsic information from q to
only two elements introduces a negligible performance loss for high-rate LDPC
codes over GF(16) and GF(32) and a performance loss smaller than 0.07dB for
high-rate NB-LDPC codes over GF(64), compared to T-MM algorithm [42]. Ad-
ditionally, we present a high-throughput architecture for the entire decoder (with
layered scheduled), which includes the mT-MM algorithm in the CN processor,
and compare our implementation results for 90nm CMOS technology with other
state-of-the-art decoder architectures.

The rest of the paper is organized as follows: Section II includes the basis of
NB-LDPC codes and T-MM algorithm. The proposed modified Trellis Min-Max
algorithm (mT-MM) is presented in Section III. Section IV includes the hardware
implementation of the mT-MM algorithm and its inclusion in a full decoder. Com-
parison with other proposals from literature are also devised. Finally, conclusions
are presented in Section V.

6.2 Trellis Min-Max decoding algorithm

NB-LDPC codes are linear block codes defined by a sparse parity-check matrix
H with M rows and N columns, where each non-zero element hm,n belongs to
a Galois field GF(q = 2p). A bipartite graph is commonly used to represent in
a graphical way NB-LDPC codes. In this graph, the nodes called variable nodes
(VN) represent the N columns of H and the nodes called check nodes represent
the M rows of H. For the sake of simplicity, in this paper we consider regular NB-
LDPC codes where the number of VN (CN) connected to a CN (VN) is constant
and equal to dc (dv). Despite this, the approach presented in this paper is perfectly
applicable to irregular NB-LDPC codes including the appropriate control signals
to avoid possible memory access conflicts. In the same way, N (m) (M(n)) denote
the set of VN (CN) connected to a CN m (VN n), therefore, the cardinality of the
set corresponds to dc (dv). Qmn(a) and Rmn(a) denote the exchanged messages
from VN to CN and from CN to VN for each symbol a ∈ GF(q), respectively.

Let c = c1, c2, · · · , cN be the transmitted codeword over a binary input AWGN
channel and y = y1, y2, · · · , yN the received symbol sequence, with y = c + e,
being e the error vector introduced by the noisy communication channel. Ln(a)
corresponds to the a priori information from the communication channel obtained
by means of the log-likelihood ratio (LLR) as Ln(a) = log[P (cn = zn|yn)/P (cn =
a|yn)]. All the LLR values are non-negative, and the hard-decision symbol zn is

96



6.2 Trellis Min-Max decoding algorithm

the GF symbol associated to the highest reliability. Qn(a) is the a posteriori in-
formation which is updated as the message passing decoding algorithm progresses.

The CN operations solve the parity check equations, based on the messages from
the VN (Qmn(a)), and updates the reliability values for each GF symbol a. In this
paper we propose an algorithm for the CN to do these tasks (described in Section
6.3), which is based on Trellis Min-Max (T-MM) algorithm [42]. T-MM algorithm
offers a good trade-off between coding gain and decoding complexity compared to
other proposals from literature.

The basic steps to implement the CN processor of the T-MM algorithm [42] are
presented in Algorithm 8. Step 1 involves normal-to-delta domain transformation
using the input messages and the hard decision symbols. This transformation
ensures that the reliabilities corresponding to the hard-decision symbols zn are
related to the GF symbols α−∞, simplifying the rest of the steps in T-MM algo-
rithm. Step 2 obtains the syndrome β by adding all hard-decision symbols. Step
3 calculates the first and second most reliable messages (minimum values), m1(a)
and m2(a), by means of the function ψ, which also extracts the position of m1(a),
m1col(a). Step 4 computes the extra column of the trellis, ∆Q(a), which collects
the reliability of the most reliable path for each GF symbol a.

conf∗(nr, nc) [42] is the configuration set which selects the possible paths con-
formed by the nr symbols with higher reliability value. From all the possible
paths, the ones that deviate at most nc times from the hard-decision are selected.
From this reduced set of possible paths, the one chosen for the corresponding
∆Q(a) value is the one that ensures the highest reliability (minimum value). In
this paper we consider the case where nr = 1 and nc = 2. So, only the most
reliable messages are considered (First minimum set m1(a)) and only one and two
deviations paths are taken into account.

Finally, the CN output messages are generated in two steps. First (Step 5 in Algo-
rithm 8), each row of ∆Rm,n(a) is filled with the corresponding ∆Q(a) reliability,
except for the columns that correspond to the stage in the trellis where devia-
tions from the hard-decision path are made. In cases where only one deviation is
made, the empty column is filled with the reliability of the second most reliable
symbol m2(a). In those cases where two deviations are made, empty columns are
filled with the m1(a) reliability. Second (Step 6), conversion from delta to normal
domain is required for the CN output messages, where β is used to correct the
tentative hard-decision symbols. Additionally, a scaling factor λ is used to improve
the performance and convergence rate of T-MM algorithm.

97



Chapter 6. High-performance NB-LDPC decoder with reduction of message exchange

Algorithm 8: T-MM Algorithm [42]
Input: Qmn , zn = arg mina∈GF(q)Qmn(a) ∀ n ∈ N (m)

for j = 1→ dc do
1 ∆Qmnj

(ηj = a+ znj
) = Qmnj

(a)

end
2 β =

∑dc
j=1 znj ∈ GF(q)

3 [m1(a),m1col(a),m2(a)] = ψ{∆Qmni
(a)
∣∣∣
dc

i=1
}

4 ∆Q(a) = minη′k(a)∈conf∗(1,2)

{
maxk=1,2 (m1(η′k(a)))

}

for j = 1→ dc do
5 if m1(η′1(a)) 6= ∆Qmnj (a) and m1(η′2(a)) 6= ∆Qmnj (a) then

∆Rmnj
(a) = ∆Q(a)

else if η′1(a) = η′2(a) then
∆Rmnj

(a) = m2(a)
else

∆Rmnj (a) = m1(a)
end

6 Rmnj
(a+ β + znj

) = λ ·∆Rmnj
(a), a ∈ GF(q)

end
Output: Rmn

6.3 Modified Trellis Min-Max Algorithm

This section is organized as follows: in Section 6.3.1 we reformulate T-MM algo-
rithm to introduce some variables required to explain how replicated information
is reduced and that are used in the definition of the proposed modified T-MM
algorithm. Section 6.3.2 extends the explanation of the algorithm proposed in [54]
taking as a reference the algorithm reformulated in Section 6.3.1 and also includes
an analogy with binary LDPC decoders. Finally, Section 6.3.3 defines the new
algorithm (modified T-MM, mT-MM), which is based on an statistical analysis,
and gives FER performance results for high-rate NB-LDPC codes over GF(16),
GF(32) and GF(64).

98



6.3 Modified Trellis Min-Max Algorithm

6.3.1 Reformulation of Trellis Min-Max Algorithm

In this section we reformulate the Trellis Min-Max Algorithm (Algorithm 8) as a
first step to define our proposal. As can be seen in Algorithm 9, steps 4 and 5 are
the ones reformulated. The function ψ′ in Step 4 obtains which path in the trellis
was used to obtain ∆Q(a), that is, the most reliable path. Considering that a
maximum of two deviations is evaluated, the function returns the two GF symbols
that define this path, η∗1(a) and η∗2(a). If the path used to obtain ∆Q(a) has only
one deviation from the hard-decision path, the function ψ′ equals η∗2(a) to η∗1(a).
On the other hand, Step 5 calculates ∆Rmn(a), which is equaled to ∆Q(a), the
first minimum of ∆Qmn(m1(a)) or its second minimum (m2(a)), depending on the
deviation information (η∗1(a) and η∗2(a)). For a symbol a, if the most reliable path
does not deviate at column j (m1col(η

∗
1(a)) 6= j and m1col(η

∗
2(a)) 6= j) the extra

column information ∆Q(a) is assigned to the output ∆Rmn(a). On the other
hand, two different updates can be performed at the columns where deviations
from the most reliable path are made: (i) if this path has only one deviation,
the second minimum m2(a) is assigned to ∆Rm,n(a); (ii) if this path has two
deviations, m1(a) is assigned to the output.

Fig. 6.2 includes an example of trellis with GF(4) and dc = 5. It shows the CN in-
put messages before (Qmn(a)) and after (∆Qmn(a)) delta domain transformation.
The hard-decision symbols are z = {α1, α0, 0, α0, 0}. After the normal-to-delta
domain transformation, the reliabilities ∆Qmn(a) in the first row of the trellis are
equal to 0. The minimum value per row (per GF symbol a) of ∆Qmn(a) is en-
closed by a dotted box, so, the most reliable path for a GF symbol a must include
only these boxes. In Fig. 6.2 the most reliable path for the symbol α2 is shown
in red color (α2 = α0 + α1) . This path is most reliable (reliability equal to the
maximum between 5 and 10) than the path that makes only one deviation (reli-
ability equal to 17), so ∆Q(α2) = 10. In a similar way, the most reliable paths
for the symbols α0 and α1 are built, but in these cases, with only one deviation
from the hard decision path (∆Q(α0) = 5 and ∆Q(α1) = 10). For symbol α2, the
new variables defined in Algorithm 9 are η∗1(α2) = α0 and η∗2(α2) = α1. Thus,
m1col(η

∗
1(α2)) = 1, m1col(η

∗
2(α2)) = 2, ∆Rmn1(α2) = ∆Rmn2(α2) = m1(α2) = 17

and ∆Rmn3(α2) = ∆Rmn4(α2) = ∆Rmn5(α2) = ∆Q(α2) = 10.

6.3.2 Reduction of replicated information in check-to-variable
exchanged messages

For a better understanding of our proposal, an analogy with binary LDPC decoders
is established. In [55] a decoder architecture for binary LDPCs is proposed. In this
architecture the messages are compressed in a similar way to which we propose here
for the non-binary case. Instead of sending an individual message to each neighbor
VN, a CN sends the same message to all its connected VNs, which includes the
first minimum, the second minimum, the position of the first minimum and the

99



Chapter 6. High-performance NB-LDPC decoder with reduction of message exchange

Algorithm 9: Reformulated Trellis Min-Max Algorithm
Input: Qmn

zn = arg mina∈GF(q)Qmn(a) ∀ n ∈ N (m)

1 ∆Qmn(a+ zn) = Qmn(a)

2 β =
∑dc
j=1 znj

∈ GF(q)

3 [m1(a),m1col(a),m2(a)] = ψ{∆Qmni
(a)
∣∣∣
dc

i=1
}

4 ∆Q(a) = minη′k(a)∈ conf∗(1,2)

{
max (m1(η′k(a)))

}

[η∗1(a), η∗2(a)] = ψ′(minη′k(a)∈ conf∗(1,2)

{
max (m1(η′k(a)))

}
)

for j = 1→ dc do
5 if m1col(η

∗
1(a)) 6= j and m1col(η

∗
2(a)) 6= j then

∆Rm,nj (a) = ∆Q(a)
else if m1col(η

∗
1(a)) = m1col(η

∗
2(a)) then

∆Rmnj
(a) = m2(a)

else
∆Rmnj

(a) = m1(a)
end

6 Rmnj
(a+ β + znj

) = λ ·∆Rmnj
(a), a ∈ GF(q)

end
Output: Rmn

sign (that depends on the syndrome value). In this way, the routing congestion is
reduced.

In the non-binary case, the T-MM algorithm behaves in a similar way. Step 5
in Algorithm 9 generates the CN output messages in delta domain. For each GF
symbol a:

∆Rmn(a) = ∆Q(a) ∀ n ∈ N (m) \ {m1col(η
∗
1(a)),m1col(η

∗
2(a))} (6.1)

In (6.1),m1col(η
∗
1(a)) andm1col(η

∗
2(a)) are the positions of the symbols that ensure

the highest reliability of ∆Q(a) (Step 4 of Algorithm 9). Let us consider the case
where the highest reliability path in ∆Q(a) was built performing only one deviation
from the hard-decision path. In this particular case, the exclusion set is reduced
to only one position and η∗1(a) = η∗2(a). Therefore, ∆Q(a) is equal to m2(a) and

100



6.3 Modified Trellis Min-Max Algorithm

Figure 6.2: Example of CN input messages in normal domain (upper size). Messages
in delta domain and organized in trellis way including the extra column ∆Q(a) (bottom
size). Example for GF(4) and dc = 5.

(6.1) can be rewritten as (6.2), which corresponds to the generalization of the CN
output message of binary Min-Sum LDPC decoders to the non-binary ones.

∆Rmn(a) =





m1(a) ∀ n ∈ N (m) \ {m1col(a)}

m2(a) ∀ n ∈ {m1col(a)}
(6.2)

Although (6.2) is a particular case of (6.1) in T-MM algorithm, it is useful to
remark that ∆Q(a) plays the role of the intrinsic information from the binary
Min-Sum. For the extrinsic messages we define a set E(a) (6.3) which includes the
m1(a) or m2(a) reliabilities depending on the number of deviations (1 or 2) from
the hard-decision path.

E(a) =

{
m2(a) if m1col(η

∗
1(a)) = m1col(η

∗
2(a))

m1(a) otherwise (6.3)

Exchanging the sets E(a) and ∆Q(a) instead of Rmn(a) from the CN to the VN,
the cardinality of the messages is reduced from q × dc to 2× (q − 1).

101



Chapter 6. High-performance NB-LDPC decoder with reduction of message exchange

Following with the analogy with binary Min-Sum-based LDPC decoders, the ex-
trinsic information related to the syndrome (sign values) is also sent to the VN
processor. In the non-binary case, these extrinsic syndromes are obtained as
z∗n = zn + β ∀ n ∈ N (m). This increments the amount of information sent
to the VN in dc p-bits values.

Finally, to reconstruct the q × dc messages at the VN processor it is necessary
to send the positions where deviations were made to obtain the ∆Q(a) values.
These positions are included in a set P (a) which contains 2× (q − 1) dlog dce-bits
elements.

In terms of bits, the total among of information exchanged from CN to VN is
2×(q−1)×(w+dlog dce)+dc×p bits, where w is the number of bits used to represent
the reliability of messages in the decoder. This information has been detailed in
Table 6.1 for each set exchanged from CN to VN. In this way, the information sent
is only reorganized (not modified), so we do not have any performance loss with
respect to T-MM.

Table 6.1: Number of bits exchanged from CN to VN processor after reduction of the
replicated information

Set Number of bits

∆Q(a) (q − 1)× w
E(a) (q − 1)× w
z∗n dc × p
P (a) 2× (q − 1)× dlog dce
Total 2×(q−1)×(w+dlog dce)+dc×p

6.3.3 Modified Trellis Min-Max algorithm

In this section we propose a new definition of the CN output messages (based on
Section 6.3.2) that allow us to reduce the exchanged messages from CN to VN even
more. This new definition keeps only a minimum amount of values from ∆Q(a)
(the most reliable ones) and obtains the rest using an approximation function.

First, a statistical analysis for the set ∆Q(a), a ∈ GF(q) was done in order to find
its mean value. Using a software model for a NB-LDPC decoder based on T-MM
algorithm, we obtained ∆Q(a) for all the M rows of H when decoding 106 noisy
sequences (for Eb/N0 = 4.3dB). Then, we ordered each set ∆Q(a) from lower
to higher value and obtained the mean value of the ordered sets ∆Q(a) (∆Q(a)).
The results of the analysis are presented in Fig. 6.3. We used the (837,726) NB-
LDPC code over GF(32), with degree distribution dc = 27, dv = 4 built using the
methods presented in [36]. Besides, we replicated the analysis for NB-LDPC codes

102



6.3 Modified Trellis Min-Max Algorithm

with different degree distributions and Galois Field orders and we obtained the
same conclusions. As can be seen in Fig. 6.3, there is a big increase of mean value
from one ∆Q(a) index to the next for the first indexes, however, this increase
is lower for the rest of indexes. Based on this observation, we propose to keep
only the first minimum, ∆Qm1, and the second minimum, ∆Qm2, from the set
∆Q(a) ∀ a ∈ GF(q) \α−∞. Storing only a limited set of values from ∆Q(a), the
exchanged information between CN and VN is reduced.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 5

from the set ∆Q(a) ∀ a ∈ GF(q) \ α−∞. Storing only a
limited set of values from ∆Q(a), the exchanged information
between CN and VN is reduced.

0 5 10 15 20 25 30
0

5

10

Ordered ∆Q index

M
ea

n
V

al
ue

∆Q(a)

∆Q∗(a)

Fig. 2. Mean values for each reliability in the ordered set ∆Q(a). The code
used is the (837,726) NB-LDPC code over GF(32).

At the VN processor, we propose to approximate the rest
q − 3 ∆Q(a) values using (4), where am1 and am2 are the
GF symbols corresponding to ∆Qm1 and ∆Qm2, respectively.
As the second most reliable value, ∆Qm2, is updated at
each iteration, the distance between it and the values ∆Q(a)
approximated using (4) is kept. So, it is expected that the
fixed scaling factor γ is greater than one, to ensure that the
reliabilities of the approximated values of ∆Q(a) will not be
lower than ∆Qm2.

∆Q(a) = γ ×∆Qm2 ∀ a ∈ GF(q) \ {α−∞, am1, am2}
(4)

The value of the scaling factor γ from (4) is obtained as
follows. First, we calculate the mean value of the entire set
∆Q∗(a) = ∆Q(a) ∀ a ∈ GF(q) \{α−∞, am1, am2}, named
as ∆Q∗(a) in Fig. 2. Then, we obtain the initial value of
γ dividing ∆Q∗(a) by the mean value of ∆Qm2 (∆Qm2).
In Fig. 2, ∆Q∗(a) = 7.097 and ∆Qm2 is ∆Qm2 = 3.697,
thus the initial value for γ is 1.9198. Finally, we adjust the
initial value chosen for γ by means of frame error-rate (FER)
simulations, optimized for Eb/N0 = 4.3dB.

Taking into account the modifications presented above and
the definitions made in III-B, Algorithm 3 describes the modi-
fied Trellis Min-Max (m-TMM) decoding algorithm. Function
ψ
′′

is a modified version of the ψ function from Algorithm
1 which also extracts the position (GF symbol) of the second
minimum.

We include in Table II the number of bits exchanged
between CN and VN for our proposal and for other works from
literature. The rightmost column includes numerical results for
the (837,726) NB-LDPC code over GF(32) [26] with degree
distribution (dc = 27, dv = 4). We consider the same number
of quantization bits for all proposals (w = 6 bits) and we
set nm = 16 and nv = 5 according to [19, 21, 22, 27] as
they propose for their codes. The work from [15] exchanges
a full set of messages which turns into a higher number
of bits at the CN output. As can be seen, proposals from
[19, 22, 27] eliminate the q-dependence, exchanging only a
fraction nm < q of the reliabilities. This proposals maintain a
strong dependence on the CN degree dc, which penalizes for
high-rate NB-LDPC codes. The work from [21] reduces even
more the fraction of output messages at the CN compared to
previous proposals from literature, being nv < nm < q. This

Algorithm 3: Modified Trellis Min-Max Algorithm
Input: Qmn

zn = arg mina∈GF(q)Qmn(a) ∀ n ∈ N (m)

1 ∆Qmn(a+ zn) = Qmn(a)

2 β =
∑dc
j=1 znj

∈ GF(q)

3 [m1(a),m1col(a),m2(a)] = ψ{∆Qm,ni
(a)
∣∣∣
dc

i=1
}

4 ∆Q(a) = minη′k(a)∈ conf∗(1,2)

{
max (m1(η′k(a)))

}

[η∗1(a), η∗2(a)] =
ψ′(minη′k(a)∈ conf∗(1,2)

{
max (m1(η′k(a)))

}
)

5 [∆Qm1, am1,∆Qm2, am2] = ψ′′{∆Q(a)
∣∣∣
αq−2

a=α0
}

6 E(a) =

{
m2(a) if m1col(η

∗
1(a)) = m1col(η

∗
2(a))

m1(a) otherwise

7 z∗n = zn + β ∀ n ∈ N (m)

Output:





∆Qm1, am1,∆Qm2, am2

E(a)
z∗n
P (a) = { m1col(η

∗
1(a)),m1col(η

∗
2(a)) }

TABLE II
COMPARISON BETWEEN MULTIPLE PROPOSALS FROM LITERATURE TO
REDUCE THE NUMBER OF MESSAGES EXCHANGED FROM CN TO VN

Proposal Number of bits

(q = 2p =
32, dc = 27,
w = 6,
nm = 16,
nv = 5)

[15] q × dc × w 5184 bits
[19, 22, 27] nm × dc × w 2592 bits

[21] nv × dc × w 810 bits
[23] 2×(q−1)×(w+dlog dce)+dc×p 817 bits

This work 2× (q − 1)× dlog dce+ (q +
1)× w + (dc + 2)× p 653 bits

reduction is offered at the cost of some error-correction degra-
dation and the need of including real-multipliers at the VN for
the message approximation. The work from [23] exchanges a
fixed number of sets and the size of each set depends of q
and dc without introducing any performance loss compared to
[15]. Finally, we propose in this work a cardinality reduction
of the set ∆Q(a) to only two elements, reducing the total
among of bits exchanged to the VN compared to the others
proposals from Table II as can be seen in the example from
its rightmost column for the high-rate NB-LDPC code over
GF(32).

In terms of complexity, the CN processor of Algorithm 3
has less computational load than the one of 2 because it does
not compute q×dc output messages. So, the number of wires
between CN and VN is also reduced.

Fig. 3 and Fig. 4 compare the amount of bits exchanged
from CN to VN in a conventional implementation of T-MM

Figure 6.3: Mean values for each reliability in the ordered set ∆Q(a). The code used
is the (837,726) NB-LDPC code over GF(32).

At the VN processor, we propose to approximate the rest q − 3 ∆Q(a) values
using (6.4), where am1 and am2 are the GF symbols corresponding to ∆Qm1 and
∆Qm2, respectively. As the second most reliable value, ∆Qm2, is updated at each
iteration, the distance between it and the values ∆Q(a) approximated using (6.4)
is kept. So, it is expected that the fixed scaling factor γ is greater than one, to
ensure that the reliabilities of the approximated values of ∆Q(a) will not be lower
than ∆Qm2.

∆Q(a) = γ ×∆Qm2 ∀ a ∈ GF(q) \ {α−∞, am1, am2} (6.4)

The value of the scaling factor γ from (6.4) is obtained as follows. First, we
calculate the mean value of the entire set ∆Q∗(a) = ∆Q(a) ∀ a ∈ GF(q) \
{α−∞, am1, am2}, named as ∆Q∗(a) in Fig. 6.3. Then, we obtain the initial
value of γ dividing ∆Q∗(a) by the mean value of ∆Qm2 (∆Qm2). In Fig. 6.3,
∆Q∗(a) = 7.097 and ∆Qm2 is ∆Qm2 = 3.697, thus the initial value for γ is 1.9198.
Finally, we adjust the initial value chosen for γ by means of frame error-rate (FER)
simulations, optimized for Eb/N0 = 4.3dB.

Taking into account the modifications presented above and the definitions made
in 6.3.2, Algorithm 10 describes the modified Trellis Min-Max (m-TMM) decoding
algorithm. Function ψ

′′
is a modified version of the ψ function from Algorithm 8

which also extracts the position (GF symbol) of the second minimum.

We include in Table 6.2 the number of bits exchanged between CN and VN for
our proposal and for other works from literature. The rightmost column includes

103



Chapter 6. High-performance NB-LDPC decoder with reduction of message exchange

Algorithm 10: Modified Trellis Min-Max Algorithm
Input: Qmn

zn = arg mina∈GF(q)Qmn(a) ∀ n ∈ N (m)

1 ∆Qmn(a+ zn) = Qmn(a)

2 β =
∑dc
j=1 znj

∈ GF(q)

3 [m1(a),m1col(a),m2(a)] = ψ{∆Qm,ni
(a)
∣∣∣
dc

i=1
}

4 ∆Q(a) = minη′k(a)∈ conf∗(1,2)

{
max (m1(η′k(a)))

}

[η∗1(a), η∗2(a)] = ψ′(minη′k(a)∈ conf∗(1,2)

{
max (m1(η′k(a)))

}
)

5 [∆Qm1, am1,∆Qm2, am2] = ψ′′{∆Q(a)
∣∣∣
αq−2

a=α0
}

6 E(a) =

{
m2(a) if m1col(η

∗
1(a)) = m1col(η

∗
2(a))

m1(a) otherwise

7 z∗n = zn + β ∀ n ∈ N (m)

Output:





∆Qm1, am1,∆Qm2, am2

E(a)
z∗n
P (a) = { m1col(η

∗
1(a)),m1col(η

∗
2(a)) }

numerical results for the (837,726) NB-LDPC code over GF(32) [36] with degree
distribution (dc = 27, dv = 4). We consider the same number of quantization
bits for all proposals (w = 6 bits) and we set nm = 16 and nv = 5 according to
[52, 44, 24, 23] as they propose for their codes. The work from [42] exchanges a full
set of messages which turns into a higher number of bits at the CN output. As can
be seen, proposals from [52, 44, 24] eliminate the q-dependence, exchanging only a
fraction nm < q of the reliabilities. This proposals maintain a strong dependence
on the CN degree dc, which penalizes for high-rate NB-LDPC codes. The work
from [23] reduces even more the fraction of output messages at the CN compared
to previous proposals from literature, being nv < nm < q. This reduction is
offered at the cost of some error-correction degradation and the need of including
real-multipliers at the VN for the message approximation. The work from [53]
exchanges a fixed number of sets and the size of each set depends of q and dc
without introducing any performance loss compared to [42]. Finally, we propose
in this work a cardinality reduction of the set ∆Q(a) to only two elements, reducing
the total among of bits exchanged to the VN compared to the others proposals

104



6.3 Modified Trellis Min-Max Algorithm

Table 6.2: Comparison between multiple proposals from literature to reduce the number
of messages exchanged from CN to VN

Proposal Number of bits (q = 2p = 32, dc = 27,
w = 6, nm = 16, nv = 5)

[42] q × dc × w 5184 bits
[52, 44, 24] nm × dc × w 2592 bits

[23] nv × dc × w 810 bits
[53] 2×(q−1)×(w+dlog dce)+dc×p 817 bits

This work 2× (q − 1)× dlog dce+ (q + 1)×
w + (dc + 2)× p 653 bits

p

bits

2 3 4 5 6 7 8
0

2000

4000

6000

Figure 6.4: Number of bits exchanged from CN to VN varying the GF order. Dashed
lines corresponds to T-MM and solid lines to mT-MM. Circle mark corresponds to dc = 36
and Triangle mark to dc = 8. w = 6.

from Table 6.2 as can be seen in the example from its rightmost column for the
high-rate NB-LDPC code over GF(32).

In terms of complexity, the CN processor of Algorithm 10 has less computational
load than the one of 9 because it does not compute q × dc output messages. So,
the number of wires between CN and VN is also reduced.

Fig. 6.4 and Fig. 6.5 compare the amount of bits exchanged from CN to VN
in a conventional implementation of T-MM with our proposal, varying the field
order (p) or the CN degree (dc), respectively. In all cases, the proposed approach
outperforms conventional T-MM in terms of exchanged bits. The differences are
considerably higher when the field order and/or the check node degree is increased.
This has a great impact on the area of a decoder that uses a layered schedule, as
will be seen in Section 6.4.

Fig. 6.6 shows the FER performance of the proposed modified Trellis Min-Max
(mT-MM) decoding algorithm (floating-point and fixed-point versions (6 bits)) for

105



Chapter 6. High-performance NB-LDPC decoder with reduction of message exchange

dc

bits

4 8 12 16 20 24 28 32 36
0

1000

2000

3000

Figure 6.5: Number of bits exchanged from CN to VN varying the CN degree. Dashed
lines corresponds to T-MM and solid lines to mT-MM. Circle mark corresponds to q = 64
and Triangle mark to q = 16. w = 6.

the (837,726) NB-LDPC code over GF(32), with 15 iterations and γ = 2.0 (ap-
proximated to be hardware-friendly value). It also includes the performance of
the floating-point T-MM algorithm [42] with 15 iterations for performance com-
parison purposes. As can be seen, our proposed algorithm introduces a negligible
performance loss of 0.01dB with respect to T-MM (floating-point versions).

Fig. 6.6 also shows the FER performance of other algorithms from the literature
(SMSA [32], T-Max-log-QSPA [30], RMM [34] and OMO-TMM [50]) that will
be used in Section 6.4.3 to compare their implementation results under the same
performance. The number of iterations of each algorithm is adjusted to obtain a
performance similar to [34] with 15 iterations, that is, a FER approximately equal
to 10−6 for Eb/N0 = 4.55dB.

Fig. 6.7 and Fig. 6.8 show FER performance results for the (2304,2048) NB-
LDPC code over GF(16) (dc = 36, dv = 4) and the (1536,1344) NB-LDPC code
over GF(64) (dc = 24, dv = 3), respectively. Both NB-LDPC codes are constructed
based on the methods from [36]. The algorithms analysed are T-MM and mT-MM.
The results show that mT-MM has a performance loss of 0.05dB for the code in
Fig. 6.7 and 0.07dB for the code in Fig. 6.8 with respect to T-MM. Thus, the
proposed mT-MM algorithm achieves good FER performance results for several
GF orders and different degree distributions.

Table 6.3 summarizes the parameters needed to adjust the initial value for the
scaling value γ (∆Q∗(a) and ∆Qm2), as well as the hardware-friendly value of γ
(γHF ) chosen to generate the FER curves from Fig. 6.6, Fig. 6.7 and Fig. 6.8.

106



6.4 NB-LDPC Decoder ImplementationIEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 6

p

bits

2 3 4 5 6 7 8
0

2000

4000

6000

Fig. 3. Number of bits exchanged from CN to VN varying the GF order.
Dashed lines corresponds to T-MM and solid lines to mT-MM. Circle mark
corresponds to dc = 36 and Triangle mark to dc = 8. w = 6.

dc

bits

4 8 12 16 20 24 28 32 36
0

1000

2000

3000

Fig. 4. Number of bits exchanged from CN to VN varying the CN degree.
Dashed lines corresponds to T-MM and solid lines to mT-MM. Circle mark
corresponds to q = 64 and Triangle mark to q = 16. w = 6.

with our proposal, varying the field order (p) or the CN
degree (dc), respectively. In all cases, the proposed approach
outperforms conventional T-MM in terms of exchanged bits.
The differences are considerably higher when the field order
and/or the check node degree is increased. This has a great
impact on the area of a decoder that uses a layered schedule,
as will be seen in Section IV.

Fig. 5 shows the FER performance of the proposed modified
Trellis Min-Max (mT-MM) decoding algorithm (floating-point
and fixed-point versions (6 bits)) for the (837,726) NB-
LDPC code over GF(32), with 15 iterations and γ = 2.0
(approximated to be hardware-friendly value). It also includes
the performance of the floating-point T-MM algorithm [15]
with 15 iterations for performance comparison purposes. As
can be seen, our proposed algorithm introduces a negligible
performance loss of 0.01dB with respect to T-MM (floating-
point versions).

Fig. 5 also shows the FER performance of other algorithms
from the literature (SMSA [12], T-Max-log-QSPA [9], RMM
[17] and OMO-TMM [16]) that will be used in Section
IV-C to compare their implementation results under the same
performance. The number of iterations of each algorithm is
adjusted to obtain a performance similar to [17] with 15
iterations, that is, a FER approximately equal to 10−6 for
Eb/N0 = 4.55dB.

Fig. 6 and Fig. 7 show FER performance results for the
(2304,2048) NB-LDPC code over GF(16) (dc = 36, dv = 4)
and the (1536,1344) NB-LDPC code over GF(64) (dc =
24, dv = 3), respectively. Both NB-LDPC codes are con-
structed based on the methods from [26]. The algorithms

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No(dB)

F
E

R

T-MM [15] (15 it-fp)
T-MM [15] (9 it-6b)
RMM [17] (15it-5b)
mT-MM (15 it-fp), γ = 2.0

mT-MM (15 it-6b), γ = 2.0

mT-MM (8 it-6b), γ = 2.0

T-Max-Log-QSPA [9] (5 it-7b)
SMSA [12] (15 it-5b)
OMO T-MM [16] (8 it-6b)

Fig. 5. Frame-error-rate simulation for the (837,726) NB-LDPC code over
GF(32), BPSK modulated and assuming AWGN channel

4 4.2 4.4 4.6 4.8 5
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/No(dB)

F
E

R

T-MM (15 it-fp)
mT-MM (15 it-fp), γ = 2.0

mT-MM (15 it-6b), γ = 2.0

mT-MM (10 it-6b), γ = 2.0

Fig. 6. Frame-error-rate simulation for the (2304,2048) NB-LDPC code over
GF(16), BPSK modulated and assuming AWGN channel

analysed are T-MM and mT-MM. The results show that mT-
MM has a performance loss of 0.05dB for the code in Fig. 6
and 0.07dB for the code in Fig. 7 with respect to T-MM.
Thus, the proposed mT-MM algorithm achieves good FER
performance results for several GF orders and different degree
distributions.

Table III summarises the parameters needed to adjust the
initial value for the scaling value γ (∆Q∗(a) and ∆Qm2),
as well as the hardware-friendly value of γ (γHF ) chosen to
generate the FER curves from Fig. 5, Fig. 6 and Fig. 7.

IV. NB-LDPC DECODER IMPLEMENTATION

In this section we describe the architecture designed to
implement the proposed mT-MM Algorithm (Section III-C).

Figure 6.6: Frame-error-rate simulation for the (837,726) NB-LDPC code over GF(32),
BPSK modulated and assuming AWGN channel

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 6

p

bits

2 3 4 5 6 7 8
0

2000

4000

6000

Fig. 3. Number of bits exchanged from CN to VN varying the GF order.
Dashed lines corresponds to T-MM and solid lines to mT-MM. Circle mark
corresponds to dc = 36 and Triangle mark to dc = 8. w = 6.

dc

bits

4 8 12 16 20 24 28 32 36
0

1000

2000

3000

Fig. 4. Number of bits exchanged from CN to VN varying the CN degree.
Dashed lines corresponds to T-MM and solid lines to mT-MM. Circle mark
corresponds to q = 64 and Triangle mark to q = 16. w = 6.

with our proposal, varying the field order (p) or the CN
degree (dc), respectively. In all cases, the proposed approach
outperforms conventional T-MM in terms of exchanged bits.
The differences are considerably higher when the field order
and/or the check node degree is increased. This has a great
impact on the area of a decoder that uses a layered schedule,
as will be seen in Section IV.

Fig. 5 shows the FER performance of the proposed modified
Trellis Min-Max (mT-MM) decoding algorithm (floating-point
and fixed-point versions (6 bits)) for the (837,726) NB-
LDPC code over GF(32), with 15 iterations and γ = 2.0
(approximated to be hardware-friendly value). It also includes
the performance of the floating-point T-MM algorithm [15]
with 15 iterations for performance comparison purposes. As
can be seen, our proposed algorithm introduces a negligible
performance loss of 0.01dB with respect to T-MM (floating-
point versions).

Fig. 5 also shows the FER performance of other algorithms
from the literature (SMSA [12], T-Max-log-QSPA [9], RMM
[17] and OMO-TMM [16]) that will be used in Section
IV-C to compare their implementation results under the same
performance. The number of iterations of each algorithm is
adjusted to obtain a performance similar to [17] with 15
iterations, that is, a FER approximately equal to 10−6 for
Eb/N0 = 4.55dB.

Fig. 6 and Fig. 7 show FER performance results for the
(2304,2048) NB-LDPC code over GF(16) (dc = 36, dv = 4)
and the (1536,1344) NB-LDPC code over GF(64) (dc =
24, dv = 3), respectively. Both NB-LDPC codes are con-
structed based on the methods from [26]. The algorithms

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No(dB)

F
E

R

T-MM [15] (15 it-fp)
T-MM [15] (9 it-6b)
RMM [17] (15it-5b)
mT-MM (15 it-fp), γ = 2.0

mT-MM (15 it-6b), γ = 2.0

mT-MM (8 it-6b), γ = 2.0

T-Max-Log-QSPA [9] (5 it-7b)
SMSA [12] (15 it-5b)
OMO T-MM [16] (8 it-6b)

Fig. 5. Frame-error-rate simulation for the (837,726) NB-LDPC code over
GF(32), BPSK modulated and assuming AWGN channel

4 4.2 4.4 4.6 4.8 5
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/No(dB)

F
E

R

T-MM (15 it-fp)
mT-MM (15 it-fp), γ = 2.0

mT-MM (15 it-6b), γ = 2.0

mT-MM (10 it-6b), γ = 2.0

Fig. 6. Frame-error-rate simulation for the (2304,2048) NB-LDPC code over
GF(16), BPSK modulated and assuming AWGN channel

analysed are T-MM and mT-MM. The results show that mT-
MM has a performance loss of 0.05dB for the code in Fig. 6
and 0.07dB for the code in Fig. 7 with respect to T-MM.
Thus, the proposed mT-MM algorithm achieves good FER
performance results for several GF orders and different degree
distributions.

Table III summarises the parameters needed to adjust the
initial value for the scaling value γ (∆Q∗(a) and ∆Qm2),
as well as the hardware-friendly value of γ (γHF ) chosen to
generate the FER curves from Fig. 5, Fig. 6 and Fig. 7.

IV. NB-LDPC DECODER IMPLEMENTATION

In this section we describe the architecture designed to
implement the proposed mT-MM Algorithm (Section III-C).

Figure 6.7: Frame-error-rate simulation for the (2304,2048) NB-LDPC code over
GF(16), BPSK modulated and assuming AWGN channel

6.4 NB-LDPC Decoder Implementation

In this section we describe the architecture designed to implement the proposed
mT-MM Algorithm (Section 6.3.3). Additionally, we include the top level design

107



Chapter 6. High-performance NB-LDPC decoder with reduction of message exchangeIEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 7

3.8 4 4.2 4.4 4.6 4.8
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No(dB)

F
E

R

T-MM (15 it-fp)
mT-MM (15 it-fp), γ = 2.5

mT-MM (15 it-6b), γ = 2.5

mT-MM (8 it-6b), γ = 2.5

Fig. 7. Frame-error-rate simulation for the (1536,1344) NB-LDPC code over
GF(64), BPSK modulated and assuming AWGN channel

TABLE III
EXPERIMENTAL RESULTS TO SELECT THE APPROPRIATE SCALING VALUE

γ , OPTIMIZED FOR Eb/N0 = 4.3dB

NB-LDPC code ∆Q∗(a) ∆Qm2 γ γHF

(2304,2048) GF(16) 6.259 3.0612 2.0446 2

(837,726) GF(32) 7.097 3.697 1.9198 2

(1536,1344) GF(64) 8.392 3.084 2.7211 2.5

Additionally, we include the top level design of a NB-LDPC
decoder which uses a layered schedule. The proposed decoder
is designed for quasi-cyclic NB-LDPC codes over GF(q)
constructed applying the methods in [26], where H is formed
by QC x QC circulant sub-matrices. These sub-matrices can
be composed of zero elements or a cyclic shifted identity
matrix with non-zero elements from GF(q). In this way, the
number of rows and columns in H is M = QC × dv and
N = QC × dc, respectively.

A. CN architecture for mT-MM algorithm

Parallel processing is adopted in the CN processor, so its
latency is kept low and this increases the overall throughput,
as will be seen in next section. The main characteristic of the
proposed mT-MM Algorithm is to move part of the complexity
of the CN processor to the VN processor. In this way,
the number of exchanged messages between them and also
the storage resources of the decoder are reduced. Therefore,
the CN architecture presented in this section requires less
functional blocks than a conventional implementation of T-
MM algorithm [15].

Next, the hardware required to perform Algorithm 3 is
detailed. Fig. 9 shows the block diagram for the top-level CN
architecture, where each block corresponds to a step in the
mT-MM algorithm.

Step 1, that is, Normal-to-Delta domain transformation is
made by means of dc permutation networks which follow the

structure introduced in [28]. Each one requires q×log(q) w-bit
MUXES. CN syndrome (Step 2) is obtained using GF-adders
in a tree structure ((dc − 1)× p XOR gates).

Function ψ (Step 3) is implemented using a tree-based two
minimum finder [29], modified to also extract the position of
the first minimum [14]. In total q − 1 two-minimum finders
with dc inputs are required. Each one is implemented with
2× dc w-bit comparators and 3× dc w-bit MUXES.

The extra column values, ∆Q(a), and the correspond-
ing path information (Step 4) are generated using only the
most reliable values m1(a) and their corresponding positions
m1col(a). A maximum of two deviations from the hard
decision path is considered, so, the most reliable path for each
value in the set ∆Q(a) is chosen among a maximum of q/2
possible paths (for example, the possible paths for the GF
symbol α0 and GF(8) are α0, α1 α3, α2 α6, α4 α5). Since the
possible paths are different for each value of ∆Q(a) (for each
GF symbol), a custom wired network is required for each one
of the q−1 processors used to generate all ∆Q(a) values. As
an example, the processor for the GF symbol α0 and GF(8) is
presented in Fig. 8. The SAT block from Fig. 8 excludes paths
deviating more than once in the same stage of trellis. That is,
when it detects more than one m1(a) in the same path coming
from the same column of the trellis, it assigns the maximum
value (minimum reliability) to the one-minimum finder input.

Fig. 8. Extra-Column processor. Example for GF(8) and symbol α0

Step 5 is implemented as a single two minimum finder
with q − 1 inputs as shown in Fig. 8. It selects the first and
second minimum values of the set ∆Q(a) (∆Qm1 and ∆Qm2,
respectively) and their position (GF symbol), am1 and am2.
It receives as inputs the outputs of the q − 1 extra-column
processors to extract the two most reliable (minimum) values.

The computation of the set E(a) (Step 6) requires (q − 1)
dlog(dc)e-bit comparators and (q − 1) w-bit MUXES. With
this hardware we distinguish paths with one (E(a) = m2(a))
and two deviations (E(a) = m1(a)) from the hard-decision
path, for each GF(q) symbol.

Finally, the calculation of the extrinsic syndromes (Step 7),
z∗n, requires dc XOR gates.

As can be seen in Fig. 9, some blocks do not depend
on others, so they can be processed in parallel to the rest
of blocks. This is the case of the CN syndrome calculation
(Step 2), β, and the extrinsic syndromes calculation (Step 7),

Figure 6.8: Frame-error-rate simulation for the (1536,1344) NB-LDPC code over
GF(64), BPSK modulated and assuming AWGN channel

Table 6.3: Experimental results to select the appropriate scaling value γ, optimized for
Eb/N0 = 4.3dB

NB-LDPC code ∆Q∗(a) ∆Qm2 γ γHF

(2304,2048) GF(16) 6.259 3.0612 2.0446 2

(837,726) GF(32) 7.097 3.697 1.9198 2

(1536,1344) GF(64) 8.392 3.084 2.7211 2.5

of a NB-LDPC decoder which uses a layered schedule. The proposed decoder is
designed for quasi-cyclic NB-LDPC codes over GF(q) constructed applying the
methods in [36], where H is formed by QC x QC circulant sub-matrices. These
sub-matrices can be composed of zero elements or a cyclic shifted identity matrix
with non-zero elements from GF(q). In this way, the number of rows and columns
in H is M = QC × dv and N = QC × dc, respectively.

108



6.4 NB-LDPC Decoder Implementation

6.4.1 CN architecture for mT-MM algorithm

Parallel processing is adopted in the CN processor, so its latency is kept low and
this increases the overall throughput, as will be seen in next section. The main
characteristic of the proposed mT-MM Algorithm is to move part of the complexity
of the CN processor to the VN processor. In this way, the number of exchanged
messages between them and also the storage resources of the decoder are reduced.
Therefore, the CN architecture presented in this section requires less functional
blocks than a conventional implementation of T-MM algorithm [42].

Next, the hardware required to perform Algorithm 10 is detailed. Fig. 6.10 shows
the block diagram for the top-level CN architecture, where each block corresponds
to a step in the mT-MM algorithm.

Step 1, that is, Normal-to-Delta domain transformation is made by means of dc
permutation networks which follow the structure introduced in [39]. Each one
requires q × log(q) w-bit MUXES. CN syndrome (Step 2) is obtained using GF-
adders in a tree structure ((dc − 1)× p XOR gates).

Function ψ (Step 3) is implemented using a tree-based two minimum finder [40],
modified to also extract the position of the first minimum [17]. In total q − 1
two-minimum finders with dc inputs are required. Each one is implemented with
2× dc w-bit comparators and 3× dc w-bit MUXES.

The extra column values, ∆Q(a), and the corresponding path information (Step
4) are generated using only the most reliable values m1(a) and their corresponding
positions m1col(a). A maximum of two deviations from the hard decision path is
considered, so, the most reliable path for each value in the set ∆Q(a) is chosen
among a maximum of q/2 possible paths (for example, the possible paths for the
GF symbol α0 and GF(8) are α0, α1 α3, α2 α6, α4 α5). Since the possible paths are
different for each value of ∆Q(a) (for each GF symbol), a custom wired network
is required for each one of the q − 1 processors used to generate all ∆Q(a) values.
As an example, the processor for the GF symbol α0 and GF(8) is presented in Fig.
6.9. The SAT block from Fig. 6.9 excludes paths deviating more than once in the
same stage of trellis. That is, when it detects more than one m1(a) in the same
path coming from the same column of the trellis, it assigns the maximum value
(minimum reliability) to the one-minimum finder input.

Step 5 is implemented as a single two minimum finder with q− 1 inputs as shown
in Fig. 6.9. It selects the first and second minimum values of the set ∆Q(a)
(∆Qm1 and ∆Qm2, respectively) and their position (GF symbol), am1 and am2.
It receives as inputs the outputs of the q − 1 extra-column processors to extract
the two most reliable (minimum) values.

The computation of the set E(a) (Step 6) requires (q−1) dlog(dc)e-bit comparators
and (q − 1) w-bit MUXES. With this hardware we distinguish paths with one

109



Chapter 6. High-performance NB-LDPC decoder with reduction of message exchange

Figure 6.9: Extra-Column processor. Example for GF(8) and symbol α0

(E(a) = m2(a)) and two deviations (E(a) = m1(a)) from the hard-decision path,
for each GF(q) symbol.

Finally, the calculation of the extrinsic syndromes (Step 7), z∗n, requires dc XOR
gates.

As can be seen in Fig. 6.10, some blocks do not depend on others, so they can
be processed in parallel to the rest of blocks. This is the case of the CN syn-
drome calculation (Step 2), β, and the extrinsic syndromes calculation (Step 7),
z∗n. Additionally, the E(a) calculation (Step 6) and the two-minimum finder (Step
5) can be processed at the same time. This reduces the total latency of the CN
architecture.

As it will be explained in Section 6.4.2, the VN processor uses z∗n, E(a), P (a),
∆Qm1, ∆Qm2, am1 and am2 to build Rmn in Algorithm 9. So, the total among of
information exchanged from CN to VN is (q − 1) × (w + 2× dlog dce) + dc × p +
2× p+ 2× w bits, where w is the number of bits used to represent the reliability
of messages in the decoder.

6.4.2 Top-level decoder architecture

In this Section we explain how the CN architecture for the mT-MM algorithm from
Section 6.4.1 is included in a complete decoder with horizontal layered schedule.
This schedule improves the convergence of the decoding algorithm in comparison
with the flooding one. In this way, the number of iterations is reduced and hence
the throughput is improved. On the other hand, the area of the resulting decoder
is considerably lower than the one required by a fully parallel implementation.

110



6.4 NB-LDPC Decoder Implementation

Figure 6.10: Proposed check-node block diagram

In Algorithm 11 the layered schedule for the proposed decoder is presented, where
mT-MM is the CN processor which implements Algorithm 10, and DN is the
decompression network from Algorithm 12. The VN processor uses the DN blocks,
which generate Rmn by using the information given by the mT-MM CN processor.

Algorithm 12 details the operations required to reconstruct Rmn, that is, the entire
set of q × dc messages that goes from CN to VN processors. The decompression
network (DN) has as input the reduced set of messages coming from the CN.

The complete block diagram for the proposed decoder is presented in Fig. 6.11. As
can be seen, there is only one check node processor and one VN processor, which
processes one row of H per clock cycle. Layered schedule requires to store the CN
output messages from one iteration to be used in the next one. This is done by
means of a shift register withM stages (SR in Fig. 6.11). The implementation of a
conventional CN processor with q×dc output messages would require q×dc×w×M
registers. Our proposal only requiresM×[(q−1)×(w+2×dlog dce)+dc×p+2×w]
registers to store the messages from the last iteration. This reduces the storage
elements following the behavior presented in Fig. 6.4 and Fig. 6.5 when the field
order or the CN degree is varied.

The blocks P and P−1 in Fig. 6.11 perform direct and inverse permutation of
messages from VN to CN and vice versa, respectively. The permutation is done
based on the hm,n non-zero values of H.

The “VN mem” block is the memory required to store the messages in the VN
processor during the decoding process. The depth of the required memories fits
with the size of the circulant sub-matrices (QC) which form H [36]. On the other
hand, the block “LLR mem” stores the channel information. This information is
loaded in “VN mem” at the beginning of each new decoding frame.

Fig. 6.12 shows the implementation of a decompression network (DN) for GF(4).
A total of dc decompression networks are required to generate all q × dc Rmn
values. Note that two decompression networks are included in the VN processor.

111



Chapter 6. High-performance NB-LDPC decoder with reduction of message exchange

Algorithm 11: Layered Schedule for the Proposed Decoder

Input: Ln(a) = log[P (cn=zn|yn)
P (cn=a|yn) ]

Inicialization:
Q

(0)
n (a) = Ln(a), t = 1, ∆Qm1 = 0, am1 = 0, ∆Qm2 = 0, am2 = 0,

E(a) = 0, z∗n = 0, P (a) = 0

Main Loop:
while t ≤MaxIter do

for l = 1 to M do
1 R

(t−1)
mn (a) = DN{∆Qm1, am1,∆Qm2, am2, E(a), z∗n, P (a)}

2 Q′mn(a) = Q
(t−1)
n (hmna)−R(t−1)

mn (a)

3 Qmn(a) = Q′mn(a)−min
{
Q′mn(a)

}

4 zn = arg min(Q′mn(a))

5





∆Qm1,∆Qm2

am1, am2

E(a), P (a), z∗n



 = mT-MM

{
Qmn(a), zn

}

6 R
(t)
mn(a) = DN{∆Qm1, am1,∆Qm2, am2, E(a), z∗n, P (a)}

7 Q
(t)
n (h−1mna) = R

(t)
mn(a) +Qmn(a)

end
8 t = t+ 1

end
Output: c̃n = arg min (Qn(a))

Algorithm 12: Proposed Decompression Operations
for j = 1→ dc do
if P1(a) 6= j and P2(a) 6= j then
if a = am1 then
Out(a+ z∗j ) = ∆Qm1

else if a = am2 then
Out(a+ z∗j ) = ∆Qm2

else
Out(a+ z∗j ) = γ ×∆Qm2

else
Out(a+ z∗j ) = E(a)
Rmnj(a+ z∗j ) = λ×Out(a+ z∗j )

end for

112



6.4 NB-LDPC Decoder Implementation

Figure 6.11: Top-level proposed decoder architecture

However, the area required in our proposal, which duplicates the logic required to
implement DN, is much lower than the one of a conventional implementation of
T-MM algorithm with layered schedule ([42], [50]).

To illustrate the decoder operation, in Fig. 6.13 a timing diagram is presented. It
includes the input and output of the VN processor memory (VN MEM), the CN
processor output (CN output) and the VN processor output (VN output). There
are dv × QC = M rows in H to be processed in each iteration, that is, M layers
which require M clock cycles (one layer per clock cycle). On the other hand,
we included seg pipeline stages in the CN to improve timing. After processing
QC layers (the size of a circulant matrix), the pipeline must be emptied before
processing the following QC layers, which requires seg clock cycles. So, block n
in Fig. 6.13 includes the processing of layers from QC × (n − 1) + 1 to n × QC,
plus seg clock cycles due to the pipeline.

The decoding process starts loading the channel information Ln(a) = Q
(0)
n cor-

responding to the first QC rows on the VN memory (QC × dc × q reliabilities).
Then, iteration 1 starts with the processing of block1: Q(0)

n is read from VN MEM
and, at the same time, the VN processor starts; after seg clock cycles the CN
processor obtains its outputs and Q(1)

n is saved in VN MEM. Then, this process
is replicated for blocks from 2 to dv. The same operations are repeated till the
maximum number of decoding iterations (MaxIter) is reached. At this point, the
tentative hard decoding starts to obtain the symbols c̃n and store them in the cor-
responding memory (Code mem in Fig. 6.11). Some control signals avoid that the
permutation block P and the substractor in Fig. 6.11) modify Q(MaxIter)

n during

113



Chapter 6. High-performance NB-LDPC decoder with reduction of message exchange

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

Figure 6.12: Proposed Decompression Network. Example for GF(4)

this process. Finally, the new QC × dc × q LLR values are stored in VN MEM
while c̃n is obtained, and a new decoding process starts.

The throughput (Thrput) of the decoder can be obtained applying (6.5), where
the dv × (QC + seg) = M + seg × dv clock cycles required per iteration and the
QC clock cycles required for initialization and output codeword estimation are
included.

Thrput =
fclk[MHz] ·N · p

MaxIter · (M + dv · seg) +QC

[
Mb

s

]
(6.5)

114



6.4 NB-LDPC Decoder Implementation

Figure 6.13: Decoder timing

6.4.3 Decoder implementation results and comparisons

The decoder architecture explained in Section 6.4.2 was implemented on a 90nm
CMOS process with nine metal layers and operating conditions 1.2V and 25oC.
VHDL was used for hardware description and Cadence tools were used for synthesis
and implementation.

Table 6.4 shows the implementation results for two high-rate NB-LDPC codes
whose performance are analysed in Section 6.3.3: (2304,2048) NB-LDPC code
over GF(16) (dc = 36, dv = 4) and (1536,1344) NB-LDPC code over GF(64)
(dc = 24, dv = 3). Our purpose is to show the efficiency of our proposal over
different GF(q) order and different degree distribution. The size of the circulant
sub-matrices for both codes is QC = 64. The number of iterations in Table 6.4
is adjusted to reach a FER approximately equal to 10−6 for Eb/N0 = 4.55dB
(see Fig. 6.7 and Fig. 6.8). Although both codes have equal number of bits per
codeword (9216) and similar rate, an increase by four in the GF(q) order does
not have the same impact on the number of gates of the decoder (the GF(64)
NB-LDPC code has 2.85 times the number of gates of the one for the GF(16)
NB-LDPC code). Additionally, the GF(64) NB-LDPC code has stronger burst
error correction capability. On the other hand, our proposal reach a throughput
over 1Gbps and 1.3Gbps for GF(16) and GF(64), respectively.

Table 6.5 compares the implementation of our proposal with other state-of-the-
art proposals from literature for the (837,726) NB-LDPC code over GF(32). For
each reference, the number of iterations is selected to achieve approximately the
same performance (see Fig. 6.6) and all of them use layered schedule on their
implemented decoders. For the proposals that do not use a CMOS 90nm process,
the throughput showed in Table 6.5 is scaled to this technology using the equations
in [41]. On the other hand, our place-and-routed results have a core occupation of
70%.

In terms of gate count, our proposal, which applies parallel processing in the CN,
outperforms the other decoders from Table 6.5 except for [34]. The decoder from
[34] requires 23% less gates than our approach thanks to the serial processing

115



Chapter 6. High-performance NB-LDPC decoder with reduction of message exchange

Table 6.4: Implementation results for the proposed mT-MM algorithm. 90nm CMOS
process

NB-LDPC code (2304,2048), GF(16) (1536,1344), GF(64)
(dc, dv) / (rate) (36,4) / (0.889) (24,3) / (0.875)

Report Post-layout Synthesis
Quantization (w) 6 bits 6 bits

Gate Count
(NAND) 1.42M 4.05M

fclk (MHz) 380 300
Iterations 10 8

Throughput (Mbps) 1047 1345
Area (mm2) 11.65 -

used in their design. This fact introduces an important reduction in the area but
increases considerably the latency of the design, as can be seen in Table 6.5.

In terms of throughput, our proposal achieves the highest throughput among the
solutions from literature listed in Table 6.5. This is due to the reduced set of
exchanged messages between CN and VN, which reduces the wiring congestion.
Our approach outperforms solutions from [42] and [50],which are the ones with
higher throughput in Table 6.5, by 48% and 20 %, respectively.

Regarding efficiency, which is obtained as throughput divided by gate count, our
proposal clearly outperforms the rest of decoders: its efficiency is 93.85% higher
than the most efficient decoder in Table 6.5 [50].

The post-layout area required by the proposed decoder is smaller than any other
solution from literature for similar CMOS technology and code parameters. The
reduction in area is about 65% compared to [42], which was the solution with lower
area until now.

To quantify the reduction in the wire length when mT-MM algorithm is applied,
we compare the post-layout results of the decoder from [15] with the proposed
approach where the same process is considered for both implementations. The
total wire length is 75.4 cm for [15] and 58.2 cm for the proposed decoder which
corresponds to a reduction of 23%.

To sum up, the proposed decoder based on the novel mT-MM algorithm offers im-
portant advantages compared to the state-of-the-art in both area and throughput.
On the other hand, it is important to remark that the proposed mT-MM algo-
rithm does not introduce significant performance loss for Galois field orders lower
or equal to GF(32) and involves a non-negligible performance loss of about 0.07dB
for GF(64), which is compensated with a great area saving and a throughput over
1.3Gbps, as can be seen in Table 6.4.

116



6.5 Conclusions

Table 6.5: Comparison of the proposed NB-LDPC layered decoder with other works
from literature, for the NB-LDPC code (837,726) over GF(32)

Algorithm SMSA
[32]

T-Max-
log-QSPA

[30]

RMM
[34]

T-MM
[42]

OMO-
TMM
[50]

mT-MM
[This

Proposal]

Report Synthesis Post-
layout Synthesis Post-

layout
Post-
layout

Post-
layout

Technology 180 nm 90 nm 180 nm 90 nm 90 nm 90 nm
Quantization

(w) 5 bits 7 bits 5 bits 6 bits 6 bits 6 bits

Gate Count
(NAND) 1.29M 8.51M 871K 3.28M 1.79M 1.17M

fclk (MHz) 200 250 200 238 250 345
Iterations 15 5 15 9 8 8

Latency (clock
cycles) 12995 4460 12675 1507 1279 1343

Throughput
(Mbps) 90 nm 149 223 154 660 818 1080

Efficiency 90
nm (Mbps/M-

gates)
115.51 26.2 176.81 201.22 456.98 923.07

Area (mm2) - 46.18 - 14.75 16.10 8.97

6.5 Conclusions

The modified Trellis Min-Max algorithm (mT-MM) is proposed in this paper. This
algorithm reduces considerably the number of exchanged messages between check-
node and variable-node processor in NB-LDPC decoders. In terms of performance,
the proposed algorithm introduces a negligible performance loss compared to the
original T-MM algorithm for high-rate codes over GF(16) and GF(32). Regarding
implementation results, our approach has significant advantages in terms of area
and speed compared to proposals that exchange the complete set of messages
between check-node and variable-node processors, especially for codes with high
order fields and high check-node degree. To show these advantages we implemented
several layered decoders with the mT-MM algorithm for different fields and degree
distributions, outperforming in all cases others proposals from literature in terms
of area and throughput.

117



Chapter 6. High-performance NB-LDPC decoder with reduction of message exchange

118



Chapter 7

Reduced-complexity Non-Binary
LDPC decoder for high-order
Galois fields based on Trellis
Min-Max algorithm

Figure 7.1: Key points of the improvements presented in this chapter.

In this chapter, the paper “Reduced-complexity Non-Binary LDPC decoder for
high-order Galois fields based on Trellis Min-Max algorithm” is included. This
work follows the line from the previous chapters, reducing the cardinality of the

119



Chapter 7. Reduced-complexity NB-LDPC decoder for high-order GF based on T-MM algorithm

exchanged messages between CN and VN processors. This reduction is made by
means of simplifying the way how the extra column of the trellis in T-MM processor
is built, keeping only the most reliable information that is outputted from the CN
processor. The complexity of the CN is reduced, allowing us to implement a full
decoder for high-rate GF(64) codes. Fig. 7.1 summarizes the key points that were
improved in the derived paper.

Abstract: Non-binary LDPC codes outperform its binary counterparts in
different scenarios. However, they require a considerable increase in com-
plexity, especially in the check-node processor, for high-order Galois fields
higher than GF(16). To overcome this drawback, we propose an approx-
imation for the Trellis Min-Max algorithm which allows us to reduce the
number of exchanged messages between check node and variable node com-
pared to previous proposals from literature. On the other hand, we reduce
the complexity in the check-node processor, keeping the parallel computation
of messages. We implemented a layered scheduled decoder, based on this al-
gorithm, in a 90nm CMOS technology for the (837,723) NB-LDPC code over
GF(32) and the (1536,1344) over GF(64), achieving an area saving of 16%
and 36% for the check-node and 10% and 12% for the whole decoder, re-
spectively. The throughput is 1.07 Gbps and 1.26 Gbps, which outperforms
the state-of-the-art of high-rate decoders with high GF order from literature.

Index terms: NB-LDPC, T-MM, Message Compression, Layered Schedule,
Check Node Processing, High Speed, High Rate, VLSI Design.

7.1 Introduction

Non-binary Low-Density Parity-Check (NB-LDPC) codes are a promising kind of
linear block codes defined over Galois Fields GF (q = 2p) with p > 1. NB-LDPC
codes have numerous advantages over its binary counterparts, including better
error correction performance for short/medium codeword length, higher burst error
correction capability and improved performance in the error-floor region.

The main disadvantage of NB-LDPC codes is the high complexity of the decod-
ing algorithms and derived hardware architectures, which limit their application
in real scenarios where high throughput and reduced silicon area are important
requirements.

Davey and MacKay [6] rediscovered LDPC codes defined over Galois Fields GF(q =
2p) with p > 1 with the introduction of the Q-ary Sum-of-Product Algorithm
(QSPA) as an extension of the binary LDPC decoding based on belief propagation.
Since then, several advances have been made to reduce the complexity of the
decoders.

120



7.1 Introduction

Improvements based on QSPA, such as Fast Fourier Transform SPA (FFT-SPA)
[28], log-SPA and max-log-SPA [29], reduce the computational load of the parity-
check equations without introducing any performance loss. The recently proposed
Trellis Max-Log-QPSA [30] algorithm improves considerably both area and decod-
ing throughput compared to previous solutions based on QPSA, making use of a
path construction scheme to generate the output message in the check-node (CN)
processor. These solutions offer the highest coding gain for high-rate NB-LDPC
codes, but at the same time, include costly processing that limits their application
in real communication and storage systems.

Extended Min-Sum (EMS) [14] and Min-Max [15] algorithms were proposed with
the aim of reducing the complexity offered by solutions based on QPSA. In these
algorithms, the CN equations are simplified by making approximations to involve
only additions and comparisons in their parity-check equations. Since both al-
gorithms make use of forward-backward (FB) metrics in the CN processor, the
maximum throughput is bounded due to serial computations. The number of
exchanged messages between CN and Variable Node (VN) for both algorithms is
nm×dc, where nm is a fraction of q total reliabilities, being nm � q and dc the CN
degree. Therefore, the number of messages between nodes is lower than previous
solutions from literature.

To avoid the use of FB metrics, Trellis Extended Min-Sum (T-EMS) algorithm
[16, 17] was proposed. The input messages are organized in a trellis, including an
extra column on it, to enable the generation of CN output messages in parallel. On
the other hand, Trellis Min-Max (T-MM) algorithm [42] improves both algorithm
and architecture compared to T-EMS from [16, 17]. One Minimum Only TMM
(OMO-TMM) [50] is an approximation of T-MM that reduces the complexity of the
CN by obtaining only one minimum and estimating the second one. Both, T-EMS
and T-MM, do not introduce any performance loss compared to EMS and Min-Max
algorithms, respectively. Moreover, the derived hardware architectures improve in
area and speed with respect to other proposals from literature based on algorithms
from [14, 15]. The main drawbacks of T-EMS, T-MM and OMO-TMM are: i) the
high number of exchanged messages between CN and VN (q×dc reliabilities), which
impacts in the wiring congestion, limiting the maximum throughput achievable;
ii) the high amount of storage elements required in the hardware implementations
of these algorithms, which supposes the major part of the decoder’s area.

To overcome the drawbacks of T-EMS and T-MM, the proposal in [53] introduces a
technique of message compression that reduces the wiring congestion between CN
and VN and the storage elements used in the derived architectures. The messages
at the output of the CN are reduced to four elementary sets which include the
intrinsic and extrinsic information, the path coordinates and the hard-decision
symbols. The information exchanged between processors is reduced from q × dc
reliabilities to 4× (q− 1) +dc messages without introducing any performance loss.
A step further was taken in [56], where the mT-MM algorithm was proposed. This

121



Chapter 7. Reduced-complexity NB-LDPC decoder for high-order GF based on T-MM algorithm

algorithm reduces the cardinality of the intrinsic information to only two elements,
and the rest q − 2 values are approximated by a constant value. The information
exchanged between processors is reduced to 3 × (q − 1) + dc messages but at the
cost of some performance loss.

In this paper we take as starting point the solution from [53] to propose a novel
algorithm which reduces the messages that include the intrinsic information and
the path coordinates from (q − 1) values to only L messages each one, being
L < nm � q. This improvement allows us to pass from the number of messages
exchanged in [53] to only (q−1) + 3×L+dc, saving area in the decoder thanks to
the reduction of the memory requirements. This reduction of messages introduces
a performance loss in the coding gain that can be controlled by means of the
parameter L. In a second step, we introduce a novel method to generate the L
most reliable values of the intrinsic set, reducing considerably the CN complexity
compared to previous solutions from literature [17, 42, 53]. The low size of this
set allows us to propose a simplified network that calculates the L most reliable
values for the intrinsic information. These values are sent to the VN. The proposed
network greatly reduces the area required by the extra column processor from [17,
42, 53], which is the bottleneck of the implemented CN processors. Our proposal
allows the design of high-rate NB-LDPC decoders over GF(32) and GF(64) without
prohibitive areas. For the code (1536,1344) NB-LDPC code over GF(64) the area
saving in the CN is about 36% and 15% considering the overall decoder compared
to solutions from [53], with a performance loss of 0.1dB . In terms of throughput,
the increase is about 17.5% compared to the design from [53]. For the (837,726)
NB-LDPC code over GF(32) the area saving in the CN is about 16% and 10%
for the overall decoder, introducing a performance loss of 0.08dB and a gaining
in throughput of 10% compared to [53]. In both cases, we implemented a layered
scheduled decoder because the aim of the paper is to obtain high-throughput
decoders for codes with large Galois Field. For other efficient decoders not focused
in high throughput we refer to [57].

The rest of the paper is organized as follows: Section II includes the basis on
NB-LDPC codes and T-MM algorithm implemented using compressed messages.
Section III includes the proposed approximation to reduce the CN output messages
for T-MM algorithm and describes a novel way to obtain the most reliable intrinsic
information without analyzing the entire trellis. Section IV includes the hardware
implementation for the proposed check node architecture. The implementation of
a layered scheduled decoder and comparison with other proposals from literature
are devised in Section V. Finally, conclusions are presented in Section VI.

122



7.2 T-MM decoding algorithm with compressed messages

7.2 T-MM decoding algorithm with compressed messages

A sparse parity-check matrix H defines a NB-LDPC code, where each non-zero
element hm,n belongs to a Galois field GF (q = 2p). Another common way to
characterize NB-LDPC codes is by means of a Tanner graph [20], where two kinds
of nodes are differentiated representing all N columns (variable nodes, VN) andM
rows (check nodes, CN) of H. N (m) denotes the set of VNs connected to a CN m
andM(n) denotes the set of CNs connected to a VN n, therefore, the cardinality
of the sets corresponds to dc and dv, respectively.

Let’s consider a message m ∈ GF (q)K which is coded to c = m×G, where G
is the generator matrix that satisfies G ·HT = 0, being 0 the zero matrix of size
K ×M . Using Binary Phase Shift Keying (BPSK) signalling, the codeword c is
transmitted over a binary input Additive White Gaussian Noise (AWGN) channel.
The received sequence is y = c + e, where e is the error vector introduced by the
noisy communication channel.

NB-LDPC codes are decoded applying iterative algorithms where messages that
represent reliability values are passed from VN to CN and vice versa. Basically,
two types of scheduling are used: i) Flooding, where first all CN are processed
and then all VN are updated based on the CN output messages and the channel
information; ii) Layered, where one CN is processed and then all connected VN are
updated, so, the process is repeated until all CN are processed. In this paper we
consider layered schedule since it offers a better trade-off between complexity and
decoding speed and for its higher convergence compared to the flooding schedule
[22]. Algorithm 13 includes the basic steps involved in the layered schedule of
NB-LDPC decoding.

The initialization step requires to extract the a priori information from the com-
munication channel to compute the log-likelihood ratio (LLR). This is obtained
by means of Ln(a) = log[P (cn = zn|yn)/P (cn = a|yn)]. Additionally, a nor-
malization is made to ensure that all the LLR values are non-negative, L′n(a) =
|Ln(a) − Ln(zn)|, being zn the hard-decision symbols associated to the highest
reliability. LLRs are loaded in the VN which is represented by the set Qn(a). This
set corresponds to the a posteriori information which is updated as the decoding
algorithm progresses, as can be seen in Step 3 of Algorithm 13.

Messages from VN to CN are denoted as Qm,n(a) and are calculated using the VN
information Qn(a) and the CN to VN messages Rm,n(a) (Step 1, Algorithm 13).
CN output messages Rm,n(a) are calculated using function φ. This function varies
depending on the algorithm applied for the decoding. If the tentative codeword c̃,
calculated in Step 4, satisfies the parity-check equation, then the decoding process
stops outputting c̃ as a valid codeword, or else the process is repeated until the
maximum number of iterations (Iter) is reached.

123



Chapter 7. Reduced-complexity NB-LDPC decoder for high-order GF based on T-MM algorithm

Algorithm 13: Layered schedule
Inicialization:

Q
(0)
n (a) = Ln(a), R(0)

m,n(a) = 0, t = 1
Main Loop:

while t ≤ Iter do
for l = 1 to M do

1 Qm,n(a) = Q
(t−1)
n (hm,na)−R(t−1)

m,n (a)

2 R
(t)
m,n(a) = φ (Qm,n(a))

3 Q
(t)
n (h−1m,na) = R

(t)
m,n(a) +Qm,n(a)

end

4 c̃n = arg min
(
Q

(t)
n (a)

)

5 if c̃×HT = 0 then break
else t = t+ 1

end
Output: c̃ = [c̃1, c̃2, . . . , c̃N ]

Trellis Min-Max (T-MM) algorithm [42] was proposed as a new implementation
of Min-Max from [15] that allows the parallel processing of messages in the CN
and reduces the complexity. Applying a message compression technique [54], the
basic steps of T-MM in the CN and the number of exchanged messages are further
reduced without introducing any performance loss compared to the original T-MM
algorithm.

In the compressed version of the T-MM algorithm, instead of sending q×dc Rm,n(a)
messages to the VN processor, the information in the CN is organized in four
elementary sets called I(a), E(a), P (a) and z∗n.

I(a) is the set related to the intrinsic information sent to the VN processor. This
set is calculated applying (7.1) to the most reliable CN input messages in delta
domain [16], m1(η(a)).

I(a) = min
η(a)∈ conf∗(1,2)

{
max (m1(η(a)))

}
(7.1)

conf∗(nr, nc) [42] is the configuration set which selects the possible paths con-
formed by the nr symbols with higher reliability value. From all the possible
paths, the configuration set only selects the ones that deviate at most nc times
from the hard-decision path1. From this reduced set of possible paths, the one

1The hard-decision path is the one formed only by messages corresponding to the symbol
α−∞, which in delta domain corresponds to the reliability of zn

124



7.3 T-MM algorithm with reduced set of messages

selected from the corresponding I(a) value is the one that ensures the highest re-
liability (minimum value). In this paper we consider the case where nr = 1 and
nc = 2. So, only the most reliable messages are considered (first minimum set
m1(a)) and only one and two deviation paths are taken into account.

The set E(a) is related to the extrinsic information. It is composed of m1(a) or
m2(a) (second minimum set) messages depending on the number of deviations of
the path used to form I(a) according to (7.2).

E(a) =

{
m2(a) if I(a)→ one deviation
m1(a) otherwise (7.2)

The set P (a), with nc × (q − 1) values, is used to keep track of the column where
deviations take place, when the values of the set I(a) are generated. This infor-
mation is used in two situations: first, to select the proper values for the set E(a)
depending on the deviation information when the set I(a) is computed; second, it
is used at the VN to generate the q × dc reliabilities as will be seen next.

Finally, the hard-decision symbols defined as zn = arg mina∈GF (q)Qmn(a) and the
syndrome β =

∑dc
1 zn are used to generate the hard-decision symbols z∗n = zn +β

required for delta-to-normal domain transformation.

At the VN processor a decompression of messages is made to generate the Rm,n(a)
values used to obtain the a posteriori information Qn(a) [42]. The decompression
operations are made following (7.3).

Rm,n(a+ z∗n) =

{
I(a) if P (a, 1) 6= n and P (a, 2) 6= n
E(a) otherwise (7.3)

7.3 T-MM algorithm with reduced set of messages

In this Section we introduce a novel method to reduce the number of messages
exchanged between CN and VN compared to the proposal from [53]. First, we
define the reduced set of compressed messages that are sent from CN to VN and
an approximation to obtain the rest of values in the VN. Second, the performance
of the method is analyzed. Third, a technique to generate the most reliable values
of the set I(a) without building a complete trellis structure is presented.

125



Chapter 7. Reduced-complexity NB-LDPC decoder for high-order GF based on T-MM algorithm

7.3.1 Reduction of the CN-to-VN messages

The sets I(a) and P (a) are required to generate the messages Rm,n(a) at the VN
processor, as can be seen in (7.3). Reducing the cardinality of I(a), the one of
P (a) is also reduced.

Our proposal is to keep the L most reliable values of I(a) and the correspond-
ing ones of P (a) and E(a), being L < (q − 1). Consider the set I∗(a′) =
{I∗(a′1), I∗(a′2), . . . , I∗(a′L)}, as the L most reliable values from the set I(a)
and a′ = {a′1, a′2, . . . , a′L} are their corresponding GF symbols. On the other hand,
consider the sets E∗(a′) = E(a) ∀ a ∈ a′ and P ∗(a′) = P (a) ∀ a ∈ a′.

Defining the complementary set a′′ ∈ a \ a′, we propose to set E∗(a′′) = m1(a′′).
So, the cardinality of the set E∗(a) is kept in q−1. Table 7.1 includes the number
of bits of each one of the sets exchanged from CN to VN processors compared
to the proposal from [53], where w is the number of bits used to quantize the
reliabilities.

Table 7.1: Number of bits required to be exchanged from CN to VN processor

Number of bits
T-MM [53] Proposed

I(a)/I∗(a) (q − 1)× w L× w
E(a)/E∗(a) (q − 1)× w (q − 1)× w

z∗n dc × p dc × p
P (a)/P ∗(a) 2× (q − 1)× dlog dce 2× L× dlog dce

As an example consider the (837,726) NB-LDPC code over GF(32) (dc = 27, dv =
4) and the (1536,1344) NB-LDPC code over GF(64) (dc = 24, dv = 3) built using
the methods from [36]. For the first code the number of bits at the CN output is
817 bits using w = 6 bits with the method from [53], while for our proposal the
number of bits is only 385, so there is a reduction of 53%. For the second code,
the method from [53] outputs 1530 bits, while our proposal only exchanges 586
bits, which corresponds to a reduction of 62% in the number of bits. The L value
was set to four in these examples.

Since the cardinality of the sets I∗(a) and P ∗(a) has been reduced compared
to I(a) and P (a), respectively, it is no longer possible to generate the messages
Rm,n(a) using (7.3) at the VN.

126



7.3 T-MM algorithm with reduced set of messages

For the symbols a′ is possible to construct L× dc values for R∗m,n(a′) using (7.4).
It is easy to see that R∗m,n(a′) = Rm,n(a) ∀ a ∈ a′.

R∗m,n(a′ + z∗n) =





I∗(a′) if P ∗(a′, 1) 6= n
and P ∗(a′, 2) 6= n

E∗(a′) otherwise
(7.4)

For the complementary set of symbols a′′, it is necessary to propose a function
that approximates the reliabilities of the messages Rm,n(a′′) due to the cardinality
reduction of the sets I(a) and P (a). Therefore, we introduce a novel way to obtain
the messages Rm,n corresponding to the symbols a′′. This uses an approximation
function based on an offset and a scaled version of the set E∗(a′′) as expressed in
(7.5).

R∗m,n(a′′ + z∗n) = γ1 × E∗(a′′) + γ2 × I∗(a′L) (7.5)

Even considering that the scaling factors γ1 and γ2 are constant values, the offset
I∗(a′L) and the set m1(a′′) depend on the specific CN input messages at each
iteration. This fact introduces a self-adjusted term for the approximated values of
Rm,n(a′′).

7.3.2 Performance Analysis

To show the behavior of the set R∗m,n(a) compared to Rm,n(a) in an implementa-
tion of T-MM algorithm [42], we computed histograms for the sets R∗m,n(a) and
Rm,n(a). We tested several NB-LDPC codes over different Galois field and de-
gree distribution, for various Eb/No values and taking 106 repetitions for each
configuration. We achieved similar results in all cases.

In Fig. 7.2 we present the results for the (837,726) NB-LDPC code over GF(32)
[36]. Eb/No was set to 4.3dB, γ1 = γ2 = 0.5 in (7.5) and L = 4 for this example.
In this figure, the x-axis includes the arranged reliabilities for the sets R∗m,n(a) and
Rm,n(a), where index 0 corresponds to the symbol with the highest reliability and
indexes 1 to 4 are related to the reliabilities filled with (7.4) considering L = 4.
As can be seen, for indexes 1 to 4 the values for the set R∗m,n(a′) are equal to
the ones for the set Rm,n(a) for the same indexes, since (7.4) corresponds to (7.3)
for a ∈ a′. For indexes 5 to 31, we observe that the approximation introduced
in (7.5) underestimates the mean values of R∗m,n(a′′) compared to the ones from
Rm,n(a). Even so, the tendency of the reliability values is similar. The γ1 and γ2
values were adjusted by means of Bit Error Rate (BER) simulations, considering
hardware-friendly values for the sake of simplicity of hardware implementations.

127



Chapter 7. Reduced-complexity NB-LDPC decoder for high-order GF based on T-MM algorithm

0 5 10 15 20 25 30
0

2

4

6

Arranged Reliabilities

M
ea
n
V
al
ue

Rm,n(a)

R∗m,n(a)

Figure 7.2: Mean values for each reliability in the set ∆Q(a). The values were arranged
in the x axis. The code under test is the (837,726) NB-LDPC code over GF(32).

In order to test our proposal and reduce the number of exchanged messages be-
tween CN and VN, we performed BER simulations to compare it to the conven-
tional T-MM algorithm. The code under test was the (837,726) NB-LDPC code
over GF(32) [36]. It can be seen in Fig. 7.3 that an increment of the parameter L
(more exchanged messages from CN to VN) is translated into a BER performance
closer to the conventional implementation of T-MM algorithm. It is observed an
improvement of almost 0.2dB in the coding gain increasing L from L = 2 to L = 4,
0.05dB from L = 4 to L = 6 and almost negligible when passing from L = 6 to
L = 8. We also include in Fig. 7.3 the BER performance for L = 4 and 8 de-
coding iterations for the quantized model (6 bits) to ease comparisons with other
proposals in Section V.

The same analysis was made for the (1536,1344) NB-LDPC code over GF(64)
varying the L parameter. The BER performance is presented in Fig. 7.4. It can
be seen that the performance losses are greater than the ones from Fig. 7.3 for
small L values, comparing both to the conventional T-MM algorithm [42]. This
is due to the percentage of reliabilities approximated using (7.5), which is 87.5%
for the GF(32) code and 93.75% for the GF(64) code, considering L = 4 for both
cases. It will be seen in Section 7.4 that the performance loss of 0.1dB for L = 4
introduced with our approach is compensated with an important reduction in the
complexity of the check node.

128



7.3 T-MM algorithm with reduced set of messages

3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

10−10

10−8

10−6

10−4

10−2

100

102

Eb/No(dB)

B
E

R
T-MM
L = 2, γ1 = 0.625, γ2 = 0.75

L = 4, γ1 = 0.375, γ2 = 1.0

L = 6, γ1 = γ2 = 0.5

L = 8, γ1 = γ2 = 0.5

L = 4, γ1 = 0.375, γ2 = 1.0

Figure 7.3: Bit Error Rate performance for our proposal varying the L parameter
compared to T-MM algorithm. The code under test is the (837,726) NB-LDPC code
over GF(32). 15 decoding iterations and floating point model are considered in all cases
except for the last curve where 8 iteration and 6 bits are employed.

7.3.3 Generation of the set I∗(a′)

In Section 6.3.1 a method to reduce the number of messages sent from CN to VN
was presented. It was shown that modifying the parameter L, the performance loss
compared to T-MM algorithm [42] can be tuned. On the other hand, a method
to approximate the discarded messages of the set I(a) was introduced using (7.5).
The maximum performance loss is set to 0.1dB, so we fix L = 4 in the rest of the
paper. In this way, the performance loss is 0.08dB for the (837,726) NB-LDPC
code over GF(32) and 0.1dB for the (1536,1344) NB-LDPC code over GF(64).

From the analysis made in Section 6.3.1, it is easy to see that even reducing
considerably the number of exchanged messages from CN to VN, the CN has to
calculate the entire set I(a) using (7.1) and the set P (a) before selecting the L
most reliable values from them. In this paper we propose a method to obtain
the L most reliable values without using (7.1) nor introducing any approximation.
Our method takes advantage of the min-max operator involved in (7.1). The
min-max operator is used to obtain the reliability value among the reliabilities
selected by the configuration set, for each symbol a. Examining how the min-max
operator behaves to obtain the L most reliable symbols, it is possible to extract

129



Chapter 7. Reduced-complexity NB-LDPC decoder for high-order GF based on T-MM algorithm

3.8 4 4.2 4.4 4.6 4.8 5
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/No(dB)

B
E

R

T-MM
L = 4, γ1 = 0.375, γ2 = 1.0

L = 5, γ1 = 0.375, γ2 = 0.875

L = 6, γ1 = 0.375, γ2 = 0.75

L = 8, γ1 = 0.375, γ2 = 0.75

Figure 7.4: Bit Error Rate performance for our proposal with different values of L com-
pared to T-MM algorithm. The test code is the (1536,1344) NB-LDPC code over GF(64).
15 decoding iterations and floating point model are considered for both algorithms

some rules to avoid the implementation of a complete trellis structure. In Fig.
7.5 an example for the set ∆Qm,n(a) (GF(8), dc = 4) is presented, where the
most reliable messages per row are marked with a dashed square. The rightmost
column includes the set I(a) formed by combination of the m1(a) values following
(7.1). This example will be used to explain the method to obtain the set I∗(a′),
composed of the L = 4 most reliable values of the set I(a).

First, consider the absolute minimum, m11, among all the m1(a) reliabilities, in
the example from Fig. 7.5 m11 = 1. m11 will appear on the set I(a) only in
one-deviation paths, because in the two-deviation cases, m11 will be discarded by
the max operator when all the possible paths for each symbol a are analyzed. On
the other hand, there is only one “one-deviation” path for each symbol a, so, in
the example of Fig. 7.5, for the symbol α3, the one-deviation path corresponds
to m11. In fact, this path is the most reliable among all the possible ones for α3.
Then, instead of analyzing all the possible paths to obtain the most reliable value
of the set I(a) (I∗(a′1)), we only have to assign the value I∗(a′1) = m11 and retain
the value of the corresponding symbol a′1 = am11 = α3.

A similar analysis can be done to find the second most reliable value of the set I(a).
This value can be obtained assigning the second minimum of m1(a) (m12 = 2 in

130



7.3 T-MM algorithm with reduced set of messages

Figure 7.5: Example of the sets ∆Qm,n(a) and I(a) for GF(8) and dc = 4

the example from Fig. 7.5), so, I∗(a′2) = m12 and a′2 = am12 = α0. Note that there
can be a two-deviation path that gives the same reliability value as m12, this is the
combination ofm11 andm12 if they belong to different columns (m11col 6= m12col).
In this case, the reliability of this two-deviation path corresponds to m12 due to
the max operation involved in (7.1).

The selection of the third most reliable value of I(a) (I∗(a′3)) requires a comparison
between multiple candidates, which includes the one-deviation path formed with
m13 and the two-deviation path made with the combination of m11 and m12. The
two-deviation path will be selected for I∗(a′3) (I∗(a′3) = m12 and a′3 = am11 +am12)
unless m11 and m12 belong to the same column of ∆Qm,n(a). In that case, the
reliability selected is m13 (I∗(a′3) = m13 and a′3 = am13). In the example from
Fig. 7.5, since m11 = 1 and m12 = 2 belong to the same column of the trellis
(n = 1), m12 can not be used for I∗(a′3). Instead of this, the selected reliability is
I∗(a′3) = m13 = 3 and a′3 = am13 = α4.

For I∗(a′4), we consider the candidates listed in Table 7.2 with the priority given
in its leftmost column. The conditions to select a reliability are listed in the
rightmost column of Table 7.2. Basically, the conditions ensure that a value will
not be selected if another one with higher reliability has been used for a symbol
a′i ∀ i ∈ 1, 2, . . . , L and, on the other hand, for the two-deviation cases, no more
than one deviation is made on each stage of the trellis [16, 42].

Following with the example in Fig. 7.5 and the priority and conditions listed in
Table 7.2 for the possible candidates for I∗(a′4), the highest priority candidate
(OD, m13) must be discarded since it was used for the I∗(a′3) reliability. Next, we
select the one with the second priority since it meets the conditions from Table
7.2. Thus, I∗(a′4) = m13 and the corresponding symbol a′4 = am11 + am13 = α6.

131



Chapter 7. Reduced-complexity NB-LDPC decoder for high-order GF based on T-MM algorithm

Table 7.2: Possible candidates for the I∗(a′4) reliability

Priority Involved
Reliabilities I(a′4)

One (OD) /
Two (TD)
deviation

path

Condition to be selected

1o m13 m13 OD
Not been used for

I∗(a′3) and
am11 + am12 6= am13

2o m13 , m11 m13 TD am13 + am11 6= am12

and m13col 6= m11col

3o m13 , m12 m13 TD am13 + am12 6= am11

and m13col 6= m12col

4o m14 m14 OD -

The conditions derived to obtain the L most reliable values of the set I(a) can
be mapped directly in a hardware structure, avoiding a complete analysis of the
trellis. The CN architecture is presented in next section.

The proposed CN decoding algorithm is summarized in Algorithm 14. Step 1
corresponds to the delta-domain transformation [35] of the CN input messages,
Qm,n(a), using the tentative hard-decision symbols zn. The syndrome β is cal-
culated adding, in the GF domain, all zn symbols (Step 2). Step 3 finds the
two-minimum among the dc input messages in delta-domain for each symbol a.
The position of the first minimum, m1col(a), is also retained. A L-min finder for
the set m1(a) is included in Step 4. Function ψ selects the L values for the set I∗,
as detailed in this section. Step 6 includes the conditions to select the values of
the set E(a), as explained in Section II.

7.4 Check Node architecture

In this section we present the architecture for the CN processor based on the
proposed method. It includes a network to calculate, in an efficient way, the L = 4
most reliable messages of the set I(a), using the conditions explained in Section
7.3.3.

The top-level block diagram for the proposed CN is detailed in Fig. 7.6. The CN
input messages are Qm,n, which come from the VN processor, and the tentative
hard decision symbols z. Both input messages are used to compute the Normal-
to-Delta domain transformation (N→∆ block in Fig. 7.6). dc transformation

132



7.4 Check Node architecture

Algorithm 14: Proposed check-node decoding algorithm
Input: Qmn

zn = arg mina∈GF(q)Qmn(a) ∀ n ∈ N (m)

1 ∆Qmn(a+ zn) = Qmn(a)

2 β =
∑dc
j=1 znj

∈ GF(q)

3 [m1(a),m1col(a),m2(a)] = 2-min{∆Qm,ni
(a)
∣∣∣
dc

i=1
}

4 [m1∗,m1∗col, a
′] = L-min{m1(a)}

5
[
I∗, I∗path, I

∗
sym

]
= ψ{m1∗,m1∗col, a

′}

6 E(a) =

{
m2(a) if I(a)→ one deviation
m1(a) otherwise

Output:





I∗, I∗path, I
∗
sym

E(a)
z∗n = zn + β ∀ n ∈ N (m)

networks are needed in the CN, each one requires q× log(q) w-bit MUX following
the approach proposed in [39], where w is the number of bits for the data-path.

z is also used to obtain the syndrome β adding all dc tentative hard-decision
symbols. This operation requires w × (dc − 1) XOR gates. β is used to generate
the new hard-decision symbols z∗, which are sent to the VN to generate the R∗m,n
messages using (7.4). z∗ symbols are generated using GF(q) adders which require
dc × w XOR gates to implement them.

Two-minimum finders obtain the two most reliable messages for each GF(q) symbol
over the delta-domain values (∆Qm,n). The search of α−∞ is excluded, since it
corresponds to the hard-decision symbols, with the highest reliability (zero-value).
So, in the CN processor there are q − 1 two-minimum finders where the position
of the first minimum values is also extracted to obtain the set I∗(a′), as explained
in Section 7.3.3. Implementation is done by means of tree-based two-minimum
finders, following the approach from [40]. Each finder has dc inputs, implemented
with 2× dc w-bit comparators and 3× dc w-bit MUXES.

A L-min finder is used to obtain the L most reliable values of the set m1(a),
m1(a′) (m1∗ in Fig. 7.6), outputted from the 2-min finder. We propose to use a
parallel sorting approach for the implementation with the aim of improving speed
at the CN processor. The proposed architecture is presented in Fig. 7.7, where
an example for four inputs is included. It is based on a two stage circuit: first

133



Chapter 7. Reduced-complexity NB-LDPC decoder for high-order GF based on T-MM algorithm

Figure 7.6: Proposed check-node block diagram

(Fig. 7.7.a), we compute comparisons between all the combination of input pairs
(Xi, Xj) ∀ i 6= j and, then, we add the output of the comparators for each one
of the inputs. The main idea is to count the number of times that an input Xi

is lower than the other N − 1 inputs, being VXi
the number of times and N the

number of inputs of the network. The greater the VXi
value, the lower Xi is. So,

the second stage (Fig. 7.7) is responsible to find the value VXi corresponding to
the minimum that we are looking for. For example, the m11 value corresponds
to the one with VXi

= N − 1, since it is lower than the rest of inputs. So, m12
corresponds to VXi

= N−2 and so on for the rest of m1j values which corresponds
to VXi

= N − j.

The proposed CN architecture requires a structure as the one in Fig. 7.7.a oper-
ating with q − 1 inputs. Since we particularize the CN for the case where L = 4,
we require four selection networks from Fig. 7.7.b, one for each m1j value.

The implementation of the structure from Fig. 7.7.a requires (q−1) ×( q−22 ) w-bit
comparators. The number of adders is summarized in Table 7.3 for different field
orders.

Four structures as the one in Fig. 7.7.b, considering L = 4, need 4 × (q − 1) × p
XNOR gates, 4 × (q − 1) × (w + 2 × p + dlog dce) AND gates, assuming that the
symbols a′ and columns m1col(a

′) from the L most reliable m1(a) values must be
retained to be used in the calculation of the I∗(a′), as can be seen in the block
diagram from Fig. 7.6. Finally, 4× q × (w + p+ dlog dce) OR gates complete the
logic elements required in the implementation of the circuit.

The solution from Fig. 7.7 to the L-min finder offers a high-speed structure that
does not compromise the latency of the overall CN processor.

134



7.4 Check Node architecture

(a)

(b)

Figure 7.7: (a) First stage of the proposed L-min finder. (b) Circuit to extract the j-th
minimum value. Example for four inputs.

The set I∗(a′) is generated using the circuit presented in Fig. 7.8 which is a direct
implementation of the method explained in Section 7.3.3. It uses the outputs of
the L-min finder as inputs to obtain the sets I∗(a′), I∗(a′)path and I∗(a′)sym.

As can be seen in Fig. 7.8, the generation of the set I∗(a′) requires few hardware
resources which can be easily summarized in 15 × p + 3 × w + 17 × dlog dce +
6 equivalent NAND gates. For the (837,726) NB-LDPC code over GF(32) this
corresponds to 184 NAND gates and 216 NAND gates for the (1536,1344) NB-
LDPC code over GF(64). The increase of the field order does not increment
significantly the number of required gates compared to the structure that generates
the extra column ∆Q(a) in the proposal from [42], which is unsuitable for fields
higher than GF(32).

135



Chapter 7. Reduced-complexity NB-LDPC decoder for high-order GF based on T-MM algorithm

Table 7.3: Adders required to implement the circuit from Fig 7.7.a

Field size (q) # ADD bits

256
128

64
32

16
8

4
q × q/2 1 bit

q × q/4 2 bit

q × q/8 3 bit

q × q/16 4 bit

q × q/32 5 bit

q × q/64 6 bit

q × q/128 7 bit

q × q/256 8 bit

Figure 7.8: Circuit to generate the set I∗(a′)

The reliabilities of the set E∗(a) are generated using the circuit from Fig. 7.9. The
portion of the circuit rounded by dashed lines is repeated for each GF symbol. The
generation of the set E∗(a) requires (q−1)×(23×w+6×p)+3×dlog dce equivalent
NAND gates. To compare our proposed CN architecture with a conventional
implementation of T-MM algorithm [53], we synthesized the design using Cadence

136



7.4 Check Node architecture

Figure 7.9: Circuit to generate the set E∗(a′)

Register Transfer Level (RTL) compiler for the (837,726) NB-LDPC code over
GF(32) and the (1536,1344) NB-LDPC code over GF(64). It can be seen in Table
7.4 that the area saving is almost doubled for the GF(64) NB-LDPC code compared
to the GF(32) case. This is due to the reduction of complexity in the I∗(a)
generation that is the bottleneck in the CN implementation from [53].

Table 7.4: Synthesis results for the proposed CN architecture

Equivalent NAND gates
Saving

[53] Proposed
(837,726) NB-LDPC
code over GF(32) 154806 133273 16.16 %

(1536,1344) NB-LDPC
code over GF(64) 423144 309938 36.52%

137



Chapter 7. Reduced-complexity NB-LDPC decoder for high-order GF based on T-MM algorithm

7.5 Top-level decoder architecture and complexity
comparison

In this section we include the proposed CN architecture in a layered decoder with
a similar structure to [54].

The decompression network generates the set R∗m,n(a) and implements (7.4) and
(7.5) using the structures presented in Fig. 7.10. The circuit from Fig. 7.10.a
generates a (q − 1)-length set I∗(a) from the reduced set I∗(a′). Once the set
I∗(a) is obtained, the circuit from Fig. 7.10.b is used to generate the set R∗m,n(a)
performing the Normal-to-Delta domain transformation from the sets I∗(a), E∗(a)
and the new hard-decision symbols z∗n.

(a)

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

(b)

Figure 7.10: Proposed decompression network circuits. (a) Circuit to generate the set
I∗(a). (b) Circuit to generate the set R∗m,n(a), an example with GF(4)

The decoder requires 2× (q− 1) circuits as the one from the left-side in Fig. 7.10,
each one uses [27× log dc + 14×w+ 6× p] equivalent NAND gates. On the other
hand, it requires 2× dc circuits as the one presented on the right-side of Fig. 7.10
using q × ((p+ 1) + 2× log dc + 1) equivalent NAND gates each one of them.

One of the main benefits of reducing the number of messages exchanged from CN
to VN is that the number of registers required to store the CN output messages
from one iteration to the next one are greatly reduced compared to conventional
implementations of T-MM algorithm [42], which store M × q×dc×w information
bits. Our proposal only requires M × [(q−1)×w+4× (w+2× log dc+p)+dc×p]
registers.

138



7.5 Top-level decoder architecture and complexity comparison

Table 7.5: Implementation results for the (1536,1344) NB-LDPC code over (GF(64) in
a 90nm CMOS process.

T-MM
[42]

T-MM
CNBMP

[53]

OMO-
TMM
[50]

mT-MM
[56]

[This
work]
L = 4

[This
work]
L = 5

Report Synthesis Synthesis Synthesis Synthesis Post-
layout

Post-
layout

Quantization
(w) 6 bits 6 bits 6 bits 6 bits 6 bits 6 bits

Gate Count
(NAND) 4.88M 3.34M 4.63M 4.05M 2.97M 2.99M

fclk (MHz)
Synthesis 250 300 250 300 351 351

fclk (MHz)
Post-layout 192 231 192 231 271 265

Iterations 8 8 8 8 8 8
Throughput
(Mbps)

Post-layout
874 1049 874 1049 1259 1231

Efficiency
(Mbps/
Million
NAND)

179 314 189 259 424 412

Area(mm2) - - - - 28.90 29.09

7.5.1 Decoder implementation results and comparisons

The complete decoder architecture based on the CN architecture explained in
Section 7.4 was implemented on a 90nm CMOS process with nine metal layers
and operating conditions 1.2V and 25oC. VHDL was used for the description of
the hardware and Cadence tools were used for synthesis and implementation of the
proposed approach. To show the efficiency of our proposal for high-rate NB-LDPC
codes over high-order fields, we present results for the (1536,1344) NB-LDPC code
over GF(64). In order to simplify comparisons with other proposals from literature,
we include results for the (837,726) NB-LDPC code over GF(32). Both QC-codes
have been constructed using the methods from [36]. The throughput is obtained
as:

Throughput =
fclk ×N × p

iter × (M + dv × seg) + qQC
,

where qQC is the size of the circulant sub-matrices which conform H and seg
corresponds to the pipeline stages used in the design. For the both codes we
choose seg = 16 to achieve a balance between throughput and area.

To the best authors’ knowledge, we present the first post-layout results for a high-
rate NB-LDPC code over GF(64). As fas as the authors’ knowledge, the best high-

139



Chapter 7. Reduced-complexity NB-LDPC decoder for high-order GF based on T-MM algorithm

throughput decoder implementation for GF(64) is presented in [24]. It includes a
chip implementation for a full-parallel decoder based on the (160,80) NB-LDPC
code over GF(64) with degree distribution (dc = 4, dv = 2) using a 65nm CMOS
process. The reported gate count is 2.78M reaching a throughput of 1221Mbps
(881Mbps for 90nm). A direct comparison is not possible because this is not a
high-rate code (the rate is only 0.5) and our code has a rate of 0.875, furthermore,
it is about 10 times shorter than the one we use (960 bits per codeword compared
to 9216 bits in our code).

In order to compare our decoder with previous proposals implementing the same
code, we synthesized the designs from [42, 50, 53, 56] for the GF(64) code. We
could not obtain post-layout results due to the high gate count of the designs.The
results are summarized in Table 7.5, where we also show the implementation results
of our decoder for L = 4 and L = 5. The implementation for L = 5 was done by
the extrapolation of the architecture for L = 4. Comparing the implementation
for L = 4 and L = 5, the increment in area and the reduction of throughput are
both about 1%. On the other hand, there is a coding gain of 0.02dB with this
increment in L. Comparing our decoder for L = 4 with the others proposals in
Table 7.5, it can be seen that the highest reduction in the gate account is about
61% compared to the work from [42], and the lowest is 12% compared to the
proposal from [53]. In order to make fair comparisons in terms of throughput, it
is important to remark that the clock frequency (fclk) usually reduces its value
after placing and routing the design. For example, our proposal achieves fclk =
351 MHz after synthesis and this value is lowered to 271 MHz after the place and
route stage, which corresponds to a reduction of 23%. Thus, the post- synthesis
throughput of the other works is reduced in the same percentage and showed in
Table 7.5. Considering these values, our work would outperform them between
30.6% and 16.6%, thanks to the reduction of complexity in the CN processor and
the minimization of messages exchanged between CN and VN, which mitigates the
routing congestion.

In terms of efficiency measured as the ratio between throughput (Mbps) and num-
ber (million) of equivalent NAND gates, our approach outperforms the one from
[42] in almost 2.4 times. Compared to the design from [53], our proposal outper-
forms it in 35%.

Table 7.6 compares the implementation results of the proposed decoder (L =
4) with other state-of-the-art proposals for the (837,726) NB-LDPC code over
GF(32). The number of iterations in all the proposals listed in Table 7.6 was
adjusted to achieve similar performance at Eb/No = 4.4 dB. As can be seen, our
proposal outperforms most of the other approaches in both area and throughput.
In terms of gate count, despite he fact that [34] requires 21% less gates, our
work achieves a throughput which is almost seven times higher due to the parallel
processing used in the CN. Compared to the proposal from [56], our approach has

140



7.6 Conclusions

similar throughput and outperforms it almost 6% in area, thanks to the reduction
of complexity in the CN with the hardware structures presented in Section. 7.4.

In terms of efficiency, our approach is five times most efficient that the proposals
from [34, 42] and almost 9 times higher than the decoder from [32]. Compared to
the design from [56], our novel proposals offers 8.6% higher efficiency.

7.6 Conclusions

In this paper we introduce an approximation for the T-MM algorithm to reduce the
complexity of the CN architecture, which was the bottleneck in previous solutions
from literature. This reduction allow us to offer post-layout results for high-rate
NB-LDPC codes over GF(64) without prohibitive areas and higher throughput
than the existing proposals, at the expense of some performance loss.

141



Chapter 7. Reduced-complexity NB-LDPC decoder for high-order GF based on T-MM algorithm

Table 7.6: Comparison of the proposed NB-LDPC layered decoder with other works
from literature, for the (837,726) NB-LDPC code with GF(32)

A
lg
or
it
hm

sM
S

[3
2]

T
re
lli
s

M
ax

-lo
g

Q
SP

A
[3
0]

R
M
M

[3
4]

T
-M

M
[4
2]

T
-M

M
C
N
B
M
P

[5
3]

O
M
O
-

T
M
M

[5
0]

m
T
-M

M
[5
6]

[T
hi
s

P
ro
po

sa
l]

R
ep

or
t

Sy
nt
he

si
s

P
os
t-

la
yo

ut
Sy

nt
he

si
s

P
os
t-

la
yo

ut
P
os
t-

la
yo

ut
P
os
t-

la
yo

ut
P
os
t-

la
yo

ut
P
os
t-

la
yo

ut
T
ec
hn

ol
og
y

18
0
nm

90
nm

18
0
nm

90
nm

90
nm

90
nm

90
nm

90
nm

Q
ua

nt
iz
at
io
n

(w
)

5
bi
ts

7
bi
ts

5
bi
ts

6
bi
ts

6
bi
ts

6
bi
ts

6
bi
ts

6
bi
ts

G
at
e
C
ou

nt
(N

A
N
D
)

1.
29
M

8.
51
M

87
1K

3.
28
M

1.
25
M

1.
79
M

1.
13
M

1.
06
M

f c
lk

(M
H
z)

20
0

25
0

20
0

23
8

30
0

25
0

34
5

39
3

It
er
at
io
ns

15
5

15
9

8
8

8
8

F
E
R

@
E

b
/
N

o
=

4
.4

dB
2
×

1
0
−
4

5
×

1
0
−
5

9
×

1
0
−
5

9
×

1
0
−
5

1
×

1
0
−
4

9
×

1
0
−
5

1
×

1
0
−
4

1
×

1
0
−
4

T
hr
ou

gh
pu

t
(M

bp
s)

64
22
3

66
66
0

98
1

81
8

10
80

10
71

T
hr
ou

gh
pu

t
(M

bp
s)

90
nm

14
9

22
3

15
4

66
0

98
1

81
8

10
80

10
71

E
ffi
ci
en

cy
(M

bp
s
/

M
ill
io
n

N
A
N
D

ga
te
s)

11
5.
5

26
.2

17
6.
8

20
1.
2

78
4.
8

45
7

92
3

10
10
.4

A
re
a

(m
m

2
)

-
46
.1
8

-
14
.7
5

10
.6

16
.1

8.
97

9.
80

142



Chapter 8

Discussion and conclusions

In this chapter the results obtained during the realization of this thesis are dis-
cussed from two points of view: i) firstly, each one of the proposals developed in
chapters two to seven is considered independently and their strengths and weak-
nesses are analyzed; ii) secondly, the impact of each proposal on the objectives
of this thesis is evaluated. Furthermore, comparisons with T-EMS and the best
approaches from literature are made to show the improvements introduced in this
thesis. Finally, the main conclusions derived from the thesis are presented, based
on the fulfillment of the objectives for this work. Moreover, future research lines
to continue the works made during this thesis are included.

8.1 Summary of the main contributions

In this section the highlights of each proposal presented in the previous chapters
are summarized and also their impact on the objectives proposed in this thesis
from a qualitative way.

• Chapter 2, Simplified Trellis Min-Max (T-MM) algorithm: intro-
duces a low-complexity version of the T-EMS algorithm from [16], where
the computation of the extra-column of the Trellis and the generation of the
CN output messages were greatly simplified, reducing the complexity of the
CN processor in both, area and latency. The substitution of the addition
operator with the maximum avoided the increase in the data-path width,
which has a direct impact in the area of the processor. The proposed CN
processor was included in a layered-scheduled architecture, which includes
permutation networks to perform the Qm,n(a)×hm,n operation using GF(q)
arithmetic, this improvement avoided the use of multipliers in the CN. The
parallel processing of messages in the decoder and the reduction of complex-

143



Chapter 8. Discussion and conclusions

ity in the CN allowed an increase in the achieved throughput compared to
proposals using forward-backward metrics to derive the CN output messages.

Since the proposal requires the exchange of the full set of q × dc reliability
values between processors, the amount of memory resources required to im-
plement the decoder is the same as the one from T-EMS [17]. On the other
hand, T-MM has no performance loss compared to conventional implemen-
tations of Min-Max algorithm, moreover, the number of iterations to achieve
the same performance is less than the ones required by the conventional
implementations of Min-Max.

• The proposal included in Chapter 3 includes two novel algorithms called
One - Minimum - Only (OMO) T-EMS (OMO-TEMS) and One -
Minimum - Only T-MM (OMO-TMM). These algorithms simplify the
computation of the two most reliable CN input messages used to calculate
the extra column in trellis-based CN processors. The proposed algorithms
avoided the implementation of two-minimum finders, which demand an im-
portant percentage of the CN area especially for high-rate rate codes (high
CN degree dc). The two-minimum finders were substituted by simple one-
minimum finders plus an estimation of the second minimum using a combi-
nation of an scaled version of the first minimum and the discarded value in
the final stage of each finder. This estimation follows a statistical behavior
similar to the real second minimum, as shown in Chapter 3. Besides, the
introduced performance loss is negligible compared to conventional imple-
mentations of T-MM and T-EMS, which takes a maximum of about 0.03 dB
for all tested codes.

Comparing the OMO-TMM to the T-MM proposal, the first one requires less
area in the CN processor and also introduces a reduction in the latency which
is translated into an increment in the overall throughput of the implemented
decoder. Since this work is focused on the reduction of complexity in the CN,
it needs to exchange of the full q×dc reliability values and, thus the number
of memory resources required for the decoder implementation is maintained.

• The Compressed Non-Binary Message Passing (CNBMP) approach
introduced in Chapters 4 and 5 corresponds to a modification at the ar-
chitectural level of the simplified T-MM and T-EMS approaches. The mod-
ification includes the translation of part of the complexity of the CN to the
VN processor which enables the exchange of only five elementary sets to the
VN processor, which includes all the necessary information to reconstruct
the entire set of messages. The reduction of the number of exchanged mes-
sages is from q × dc × w bits to only 2 × (q − 1) × (w + dc) + dc × p bits
and, at the same time, the number of storage resources used to store the CN
output messages from one iteration to the next one is decreased in the same
quantity.

144



8.1 Summary of the main contributions

An important fact is that no performance loss is introduced compared to T-
MM and T-EMS approaches, since the architectural modification was made
without modifying the algorithm.

The reduction of the exchanged messages and the storage elements allows
a reduction of the decoder area and an increase in throughput compared to
T-MM and CNBMP approaches from previous chapters.

• The algorithm named modified Trellis Min-Max (m-TMM) described
in Chapter 6 follows the same line of work that the approach from chapters
4 and 5. Moreover, the reduction of the number of exchanged messages
coming from CN to the VN processor is higher than the CNBMP work.
m-TMM algorithm introduces a way to reduce the intrinsic set of messages
to only two elements. This decrease in the cardinality of the set reduces
the number of exchanged messages and the reduction in the requirements
of storage elements allows an increment in the achieved throughput and a
reduction in the decoder area. Another important fact is that with m-TMM
we were able to obtain synthesis results for the high-rate (1536,1334) NB-
LDPC code over GF(64).

On the other hand, the performance loss compared to T-MM depends on
the specific code and on the adjustment of the scaling parameter γ used to
approximate the q − 3 elements discarded in the CN processor.

• Chapter 7 includes a RC-TMM algorithm which introduces a novel way
to reduce even more the number of exchanged messages between CN and VN
compared to the previous proposals from this manuscript. In this case not
only do we reduce the cardinality of the intrinsic set, but also the number
messages related to the information concerned to the deviation coordinates
are decreased.

The L most reliable messages in the CN processor are kept. Therefore,
the higher the L value is, the lower the introduced performance loss is. It
is important to remark that a low value of L = 4 is enough to keep the
performance loss lower than 0.1dB for the codes under test.

On the other hand, a new way to obtain the L most reliable values for the
intrinsic set and their associated deviation coordinates is introduced. With
this computation unit, an important part of the complexity in the CN is
reduced, especially for codes over high-order Galois fields.

The RC-TMM algorithm allows us to present the first post-place and route
results for a high-rate NB-LDPC code over GF(64) achieving a throughput
higher than 1Gbps with reasonable occupied area.

145



Chapter 8. Discussion and conclusions

The main benefits for each work presented in this thesis are summarized in Ta-
ble 8.1 in a qualitative fashion, where the acronym used to quickly identify each
proposal is included.

8.2 Analysis of results

In this section the works presented in the previous chapters are quantified including
how each one of them contributes to improve the key-points of NB-LDPC decoders
listed in Table 8.1.

To perform the quantification of the results, three high-rate NB-LDPC codes with
different degree distribution and over various Galois field orders were used. The
codes are constructed using the methods introduced in [36]. The characteristics of
the NB-LDPC codes are listed in table 8.2.

Despite this, most papers from literature use the (837,726) NB-LDPC code over
GF(32) to perform comparisons with other works. Therefore, this was the code
used in all papers from previous chapters to present the results of the implemented
decoder architectures.

• First, the CN area measured with equivalent NAND gates is analyzed.
The CN processor is the most complex block of NB-LDPC decoders. This
is the main reason why some of the works presented in this manuscript are
focused in the reduction of the complexity of CN, in both area and latency,
without sacrificing coding gain compared to the reference algorithms (EMS,
Min-Max, T-EMS).

Fig. 8.1 includes the comparison of the CN area for the codes listed in Table
8.2. All the proposals included in this manuscript were compared to the
original T-EMS algorithm and hardware architecture from [16, 17]. As can
be seen, the improvements for the CN area are more visually notable passing
from T-EMS to the T-MM approach, for all codes.

Comparing each proposal to its left neighbour, it can be noted that the
reduction in area is more notable for T-MM, OMO-TMM and RC-TMM
approaches. This is due to the fact that these works focus on reducing the
CN complexity, and in the case of RC-TMM approach the reduction in area
is higher for high-order Galois fields.

• The next step consists on evaluate the storage resources required to im-
plement each one of the decoders proposed in this thesis. Although the CN
is the most complex part of NB-LDPC decoders, most of the area of layered-
schedule based decoders corresponds to storage elements such as memories
for the channel information and VN messages and, on the other hand, shift-
registers to store the CN output messages from one iteration to be used in

146



8.2 Analysis of results

Table 8.1: Main benefits of each proposal presented in this thesis

Proposal Acronym

C
N

ar
ea

S
to
ra
ge

R
es
ou

rc
es

D
ec
od

er
A
re
a

R
ed

u
ct
io
n
M
es
sa
ge

E
xc
h
an

ge

L
at
en

cy

T
h
ro
u
gh

p
u
t

H
ig
h
-O

rd
er

G
F

Chapter 2: Simplified Trellis
Min-Max Decoder Architecture

for NB-LDPC Codes
T-MM X X X

Chapter 3: One Minimum Only
Trellis Decoder for NB-LDPC

Codes

OMO-
TMM X X X

Chapter 4: Reduction of
complexity for NB-LDPC
decoders with compressed

messages and Chapter 5: A 630
Mbps Non-Binary LDPC

Decoder for FPGA

CNBMP X X X X

Chapter 6: High-performance
NB-LDPC decoder with

reduction of message exchange
m-TMM X X X X

Chapter 7: Reduced-complexity
NB-LDPC decoder for

high-order Galois fields based
on T-MM algorithm

RC-
TMM X X X X X

147



Chapter 8. Discussion and conclusions

Table 8.2: NB-LDPC codes used to perform comparisons between the proposals in-
cluded in the manuscript

NB-LDPC code Degree
Distribution (dc,dv)

rate

(2304,2048) over GF(16) (36,4) 0.889
(837,726) over GF(32) (26,4) 0.863
(1536,1344) over GF(64) (24,3) 0.875

T
-E

M
S

T
-M

M

O
M
O
-T

M
M

C
N
B
M
P

m
T
-M

M

R
C
-T

M
M

104

105

106

C
he
ck

N
od

e
(C

N
)
N
A
N
D

G
at
es GF(64)

GF(32)
GF(16)

Figure 8.1: Graphical comparison of the CN area for all the proposals included in this
thesis

the next-one. Then, as can be seen on Table 8.1, some of the proposals
presented in this manuscript deal with the reduction of storage resources in
NB-LDPC decoders. Fig. 8.2 presents a bar-graph for the three high-rate
codes under test where the number of memory bits to implement each de-
coder are counted. The first group of bars includes results for the T-EMS
based decoder for comparison purposes. As can be seen, since T-MM and
OMO-TMM approaches deal with the CN complexity but work with the full
set of q×dc reliability values, the number of memory bits required is equal for
all of them. On the other hand, the last three works (CNBMP, mT-MM and
RC-TMM) introduce methods to reduce the number of exchanged messages
between CN and VN processor, which directly impact on a reduction of the
number of bits stored on shift-registers from one iteration to the next-one.

148



8.2 Analysis of results

The reduction from the two initial works to the CNBMP approach is due to
the fact that instead of exchanging q×dc messages, CNBMP exchanges only
four elementary sets of q − 1 elements each one, which reduces the strong
dependency on the CN degree (dc) and reduces the area for high-rate codes.

T
-E

M
S

T
-M

M

O
M
O
-T

M
M

C
N
B
M
P

m
T
-M

M

R
C
-T

M
M

105

106

107

M
em

or
y
B
it
s

GF(64)
GF(32)
GF(16)

Figure 8.2: Graphical comparison of the memory bits required for all the proposals
included in this thesis

Although the reduction in the memory bits cannot be easily seen on Fig. 8.2,
it is almost 4% passing from CNBMP to m-TMM approach and 7% from
m-TMM to RC-TMM work for the GF(16) code under test. For the GF(64)
code the reduction is about 5% and 10%, respectively. This apparently low
decreasing in the number of stored bits is due to the fact that the reduction
is made on the four elementary sets introduced in the CNBMP paper.

Another important fact is that the number of memory bits is greater for the
GF(16) code compared to the GF(32) one. This is due to the GF(16) code,
which is more than twice longer (number of bits) than the GF(32) code and
the channel information and VN memories store all the code bits multiplied
by the number of field elements.

• Next we analyze the decoder area, measured in equivalent NAND gates,
for each proposal implementing the three codes under test. In this case,
the bar graph presented in Fig. 8.3 is the addition of graphs from Fig. 8.1
and 8.2 plus the equivalent NAND gates of the logic required to process the
messages at the VN processor for each proposal.

149



Chapter 8. Discussion and conclusions

T
-E

M
S

T
-M

M

O
M
O
-T

M
M

C
N
B
M
P

m
T
-M

M

R
C
-T

M
M

106

107
E
qu

iv
al
en
t
N
A
N
D

ga
te
s

GF(64)
GF(32)
GF(16)

Figure 8.3: Graphical comparison of the decoder area for all the proposals included in
this thesis

It can be seen in Fig. 8.3 how each proposal outperforms the previous one.
The reduction in the decoder area is most notable for the three last works
thanks to the decrease of memory resources which conforms the major part
of the decoder area. Comparing the T-EMS proposal to the RC-TMM ap-
proach, the reduction in area is 56%, 53% and 55% for the GF(16), GF(32)
and GF(64) codes, respectively. It is important to remark that the area occu-
pied by the implementation of the RC-TMM algorithm for the GF(64) code
is only 19% higher compared to the area occupied by the T-EMS proposal
for the GF(16) code, having both codes the same bit-length.

• Next, the evolution in the achieved throughput is included, starting from
T-EMS to the last work (RC-TMM). In this case, Fig. 8.4 only includes the
results for the implemented decoders included in the papers from chapter 2 to
7. It can be noted the constant tendency of increasing the throughput for the
three codes under test. In all cases, we achieved a throughput higher than 1
Gbps for all codes, for example, the GF(16) code passed from 957 Mbps for
the CNBMP approach to 1047 Mbps for the m-TMM proposal. The GF(32)
code passed from 484 Mbps with T-EMS to 1080 Mbps (m-TMM decoder).

The GF(64) code exhibits a great increment in the achieved throughput from
the m-TMM to the RC-TMM approach. This occurs due to the fact that
the RC-TMM approach was focused in high-order Galois fields, where the

150



8.2 Analysis of results

simplifications made to compute the most reliable values of the extra column
in the CN processor become more important. For this code, the throughput
increased from 874 Mbps (T-MM, OMO-TMM) to 1259 Mbps (RC-TMM).

T
-E

M
S

T
-M

M

O
M
O
-T

M
M

C
N
B
M
P

m
T
-M

M

R
C
-T

M
M

0

500

1,000

1,500

T
hr
ou

gh
pu

t
(M

bp
s)

GF(64)
GF(32)
GF(16)

Figure 8.4: Graphical comparison of the achieved throughput for all the proposals
included in this thesis

It is important to remark that all the results are taken from post place and
route reports except the ones for the GF(64) code (T-MM, OMO-TMM,
CNBMP and m-TMM), where the post place and route results were esti-
mated based on a reduction of the clock frequency passing from synthesis
to a routed design. To be fair, the same percentage of reduction of the
RC-TMM approach was used, where the reports are actually from a placed
and routed design. This situation was clearly explained in the paper from
Chapter 7.

• Since all the works from this thesis use parallel processing of messages,
the latency is kept low compared to other proposals from literature using
forward-backward to derive the CN output messages. It is well-known that
those approaches require long-latency networks to implement their decoding
algorithms. Table 8.3 include the achieved latency for all the proposals from
this thesis, compared to the one from T-EMS [17].

Passing from T-EMS to the T-MM proposal, the latency was reduced in 30%
thanks to the reduction of complexity in the computation of the CN output
messages and the extra column compared to the T-EMS based architecture.

151



Chapter 8. Discussion and conclusions

Table 8.3: Latency of all the proposals for the (837,726) NB-LDPC code over GF(32)

Proposal Latency
(clock cycles)

T-EMS 2160
T-MM 1507

OMO-TMM 1279
CNBMP 1280
m-TMM 1343
RC-TMM 1535

An additional 15% of reduction in the latency was achieved passing from
T-MM to the OMO-TMM approach. The reduction is due to the shortening
in the critical-path thanks to the use of single-minimum finders instead of
two-minimum finders.

The latency of the decoders from m-TMM and RC-TMM approaches was
increased compared to OMO-TMM and CNBMP proposals with the aim of
increase the clock frequency and hence the achieved throughput. Despite
this, if required, the latency can be reduced without modifying the decoder
behaviour.

• The last parameter used to evaluate the results of this thesis is the ef-
ficiency, calculated as the ratio between the achieved throughput and the
equivalent Million of NAND gates of the entire decoder (Mbps/Million NAND
Gates). This parameter has been used in the literature as a quantity that
measures how many Mbps are achieved per Million of NAND gates required
to implement the decoder. For example, serial decoders require many less
NAND gates that a parallel one, but the achieved throughput could be of the
same magnitude order for both designs. This fact can be observed with the
efficiency parameter where the serial design from the example will exhibit
higher efficiency than the parallel one.

Fig. 8.5 includes a bar graph for the efficiency parameter of all the proposals
included in this manuscript. It can be seen that the efficiency of T-EMS
approach for the GF(32) code was outperformed in all the approaches for
the same code until reaching almost five times the efficiency with the RC-
TMM proposal. For the GF(64) code the increment was almost three times
passing from 161 with the T-MM based decoder to 422 with the RC-TMM
approach. It is important to remark how the efficiency is doubled comparing
the T-EMS decoder for the GF(32) code to the RC-TMM approach for the

152



8.3 Comparison with other works from literature

GF(64) code, even taking into account that the GF(64) code is twice longer
than the GF(32) one and the field size is doubled too.

T
-E

M
S

T
-M

M

O
M
O
-T

M
M

C
N
B
M
P

m
T
-M

M

R
C
-T

M
M

0

200

400

600

800

1,000

E
ffi
ci
en
cy

(M
bp

s/
M
ill
io
n
N
A
N
D

ga
te
s)

GF(64)
GF(32)
GF(16)

Figure 8.5: Graphical comparison of the efficiency parameter for all the proposals
included in this thesis

For all the parameters analyzed in this section it has be shown that they were
improved from one work to the next one for the three high-rate codes under test.

8.3 Comparison with other works from literature

In this section comparisons between the works included in this manuscript and
other works from literature are made. Since the (837,726) NB-LDPC code over
GF(32) is usually used by hardware designers to compare their proposals and most
of the works in literature use this code to present their implementation results, we
decided to use this code to show the comparisons in this section as was made in
the papers from the previous chapters.

In order to simplify comparisons, only two of our works, CNBMP and RC-TMM
are included. The first one (CNBMP) is selected since it represents an imple-
mentation of the T-MM algorithm without any performance loss, compared to
the original algorithm. On the other hand, the RC-TMM approach is selected
since it represents our state-of-the-art proposal with lower area and offering higher
throughput for high-order fields, as was seen in the previous section. Besides, RC-

153



Chapter 8. Discussion and conclusions

Table 8.4: Comparison of the works from this manuscript with other proposals from
literature, for the (837,726) NB-LDPC code with GF(32)

Algorithm sMS
[32]

Trellis
Max-log
QSPA
[30]

Min-
Max
[33]

RMM
[34]

CNBMP
[53]

RC-
TMM
[58]

Report Synthesis Post-
layout Synthesis Synthesis Post-

layout
Post-
layout

Technology 180 nm 90 nm 130 nm 180 nm 90 nm 90 nm
Quantization

(w) 5 bits 7 bits 5 bits 5 bits 6 bits 6 bits

Gate Count
(NAND) 1.29M 8.51M 2.1M 871K 1.25M 1.06M

fclk (MHz) 200 250 500 200 300 393
Iterations 15 5 15 15 8 8
FER @

Eb/No = 4.4
dB

2× 10−4 5× 10−5 5× 10−5 9× 10−5 1×10−4 1× 10−4

Throughput
(Mbps) 64 223 64 66 981 1071

Throughput
(Mbps) 90

nm
149 223 107 154 981 1071

Efficiency
(Mbps /
Million
NAND
gates)

115.5 26.2 50.9 176.8 784.8 1010.4

Area
(mm2) - 46.18 - - 10.6 9.80

TMM algorithm introduces a negligible performance loss for the GF(32) code and
only 0.1 dB for the GF(64) one.

Table 8.4 includes the implementation results for the state-of-the-art works from
literature implemented for the test code over GF(32). The works included are the
ones with remarkable results implementing different soft-decision algorithms. As
explained before, CNBMP and RC-TMM proposals are included in the right-most
columns of Table 8.4 to perform the comparisons.

As can be seen, apart from our proposals, only the work from [30] includes post-
layout results for their design, therefore, the throughput report for the rest of
works listed in Table 8.4 ([32, 23, 34]) are overestimated compared to post-layout
reports.

154



8.3 Comparison with other works from literature

Since the works from Table 8.4 are implemented for different CMOS technologies,
the technology was scaled to show results over a 90 nm CMOS process using first-
order approximations [41] based on the transistor gate-length and its relationship
with the transmission delay for the different processes. To this end, the scaling
factors used to derive the comparisons shown in Table 8.4 are 1.66 and 2.33 for
130/90 nm and 180/90 nm scaling, respectively. Note that, different algorithms
were compared under the same performance, so each one has a different number
of iterations.

In terms of gate count, the RMM decoder [34] is the one that requires less NAND
gates outperforming the RC-TMM proposal by 22%. This fact is due to the
serial processing for the RMM approach in the CN which reduces considerably
the required area. ON the other hand, the serial processing reduces considerably
the throughput in almost 7 times compared to the RC-TMM proposal. Note that
despite the sMS [32] and Min-Max [33] approaches use serial-based processors, they
require more equivalent NAND gates than our CNBMP and RC-TMM proposals
which apply parallel processing. The complexity of NB-LDPC decoders which
applies parallel processing of messages was reduced until reaching the same order
of magnitude of decoders which uses serial processing of messages. The work from
[30] requires more than 8 times the number of gates compared to the RC-TMM
approach. This fact is compensated with the high coding gain achieved thanks to
the use of QSPA algorithm.

Compared to the proposals from other authors in terms of the normalized through-
put (90 nm), it can be observed that the approach from [30] achieves the highest
one thanks to the lower number of iterations required to achieve a desired coding
gain. Despite this, our works outperforms its throughput results 4.39 times for the
CNBMP approach and 4.80 times for the RC-TMM proposal. The other proposals
[32, 33, 34] are limited because of the serial processing of messages which increases
the latency reducing the achieved throughput.

Only the work from [30] includes a post-layout report. Their decoder occupies more
than six times the area compared to our proposals with much lower throughput.

In general, our works outperforms the best proposals from literature for the same
code taking into account different parameters of decoders. The general conclusions
for all the works included in this thesis are devised in the next chapter.

155



Chapter 8. Discussion and conclusions

8.4 Conclusions

The main soft-decision decoding algorithms for NB-LDPC codes were analyzed in
Chapter 1, concluding that the Trellis Extended Min-Sum (T-EMS) algorithm has
strong potential to achieve high decoding speeds thanks to the parallel processing
of messages in the CN processor. This was the main reason to select T-EMS
algorithm as the starting point to develop the contributions included in this thesis.

The main objective of this thesis was the development of low-complexity algorithms
and architectures for VLSI implementation of high-speed SD NB-LDPC decoders
suitable for high-rate codes over high-order Galois fields. Three specific objectives
were established to achieve this main objective. Below, the conclusions related
with each one of the specific objectives are exposed.

8.4.1 Objective 1: reduction of area and latency of Check Node
(CN) processors

To accomplish this objective, three proposals were presented in this thesis. They
dealt with the reduction of the CN processor area. The first one, T-MM, (Chapter
2) reduced the complexity on how the CN output messages are computed. On the
other hand, the substitution of the addition operator by the maximum, avoided
the data-path growing in the processor. All these features of the T-MM based CN
processor reduced the CN area in 58% compared to the T-EMS based processor.

The second proposal, OMO-TMM, (Chapter 3) further introduced simplifications
in the CN processor. OMO-TMM eliminated the use of two-minimum finders
to search for the two most reliable messages per Galois field symbol. A novel
method was presented, which introduces the use of single-minimum finders plus
an estimator of the second most reliable messages. The reduction in area was
bigger for high-rate codes where the CN degree (dc) is higher. With OMO-TMM
a reduction in area of 54% of the CN was achieved, compared to the previous
T-MM approach. An important fact is that the performance loss was negligible
when compared to T-MM, being about 0.02dB.

The third proposal that dealt with the reduction of the CN area is the RC-TMM
(Chapter 7). Once the T-MM and OMO-TMM reduced the complexity in the com-
putation of CN output information and the calculation of the two most reliable
messages, respectively, the extra-column processor was identified as the most com-
plex block in the CN, specially for high-order fields, being the complexity in the
order of O( q

2

2 ) in conventional implementations of T-EMS and T-MM approaches.
Therefore, this work introduced a novel and simplified way to only compute the L
most reliable elements of the extra-column. The complexity of the extra-column
processor was reduced to be O(L) when L takes small values lower than 6. This
proposal allows an area reduction of 15% compared to the OMO-TMM. As can

156



8.4 Conclusions

be seen, the three listed works outperform the previous one. Furthermore, the CN
area reduction from the T-EMS version previous to this thesis to the RC-TMM is
about 84%.

8.4.2 Objective 2: reduction of the number of messages
exchanged between processors in NB-LDPC decoders

One of the identified bottlenecks for T-EMS was the high density of wires that
exchange information between CN and VN processors, due to the transportation of
the full set of q×dc messages. The high number of wires connecting the CN and the
VN processor causes wire congestion and reduces the achieved throughput due to
the extra area required to route all the wires. Additionally, this wiring makes the
processor to be placed away from each other, which increases the critical path. On
the other hand, the number of messages passing from the CN to the VN is directly
related to the quantity of memory resources required to store these messages from
one iteration to the next-one in layered scheduled decoders. Therefore, a reduction
in the number of exchanged messages bring two benefits: i) an increase in the clock
frequency and the achieved throughput and, ii) a reduction in memory resources
and hence the decoder area.

Three works included in this thesis dealt with the reduction of the number of
exchanged messages between CN and VN processors: CNBMP (Chapter 4 and 5),
m-TMM (Chapter 6) and RC-TMM (Chapter 7). The CNBMP approach redefines
the CN output messages from the T-MM algorithm. They are organized in five
elementary sets, these compressed messages are sent to the VN processor where
the entire set of q × dc messages is reconstructed. Since there is no information
loss, no performance loss was introduced. The cardinality of the compressed sets
is independent of the CN degree, being suitable for high-rate codes. Compared
to the conventional implementation of T-EMS and T-MM decoders, the reduction
in the number of exchanged messages was 83% for the GF(32) code under test.
The same percentage of reduction was achieved in the amount of memory elements
required to store the CN output messages from one iteration to the next one. The
global reduction in area was about 40% and the increase in throughput was 32%
for the same code.

The m-TMM decoder used the five elementary sets defined in the CNBMP ap-
proach (Chapters 4 and 5) as starting point to propose a reduction in the cardi-
nality of one of the elementary sets from q to only two elements. The dismissed
q − 2 less reliable messages were approximated in the VN to reconstruct the full
set of q×dc reliability values. The introduced performance loss due to the approx-
imation of messages is less than 0.05dB for the codes under test. Compared to the
CNBMP decoder, the reduction in the number of exchanged messages and hence
in the storage resources is 23%. These achievements introduce an extra 10% in

157



Chapter 8. Discussion and conclusions

the increase of throughput and 3% of area decreasing, compared to the CNBMP
approach.

Following the same line of work, the RC-TMM approach introduced a reduction
in the cardinality of three of the five elementary sets defined in chapters 4 and
5. Specifically, a method to keep only the L most reliable messages of three sets
was introduced. Besides, a novel method to approximate the reliability values in
the VN was presented. Furthermore, thanks to the reduction in size of the three
sets in the CN, a simplified method to compute the L most reliable messages was
presented. The performance loss due to the approximation of messages in the VN
is less than 0.07dB for the GF(32) code and 0.1dB for the GF(64) code. On the
other hand, the percentage of reduction in the number of exchanged messages was
38% compared to its previous proposal (m-TMM) and in addition, for the GF(32)
code the area was decreased in 7%.

Compared to the T-EMS approach, in the RC-TMM proposal the number of ex-
changed messages from CN to the VN was reduced in 92% for the GF(32) code
under test.

8.4.3 Objective 3: implementation of high-performance
decoders for Galois fields larger than 32

All the progresses made with the proposals included in this manuscript in terms
of area and throughput allowed us to present the first post-place and route reports
for a high-rate code over high-order Galois fields. For example, the (1536,1344)
NB-LDPC code over GF(64) achieved a throughput of 1259Mbps and required an
area of 28.90 mm2.

Keeping the coding gain near to the one of T-EMS algorithm was one of the
constraints imposed in this thesis. Therefore, we take care that our proposals
introduced less than 0.1 dB of performance loss for high-rate codes. For example,
for the GF(32) code under test, the RC-TMM proposal, requiring only a seventh
part of the CN area required by T-EMS, introduces 0.07 dB of performance loss
compared to this algorithm, and 0.1 dB for the GF(64) code tested.

An important quality factor when designing hardware architectures to decode NB-
LDPC codes is how efficiently they use the area in order to achieve high decoding
speeds. The efficiency, measured as the relation between the throughput (Mbps)
and the number of equivalent NAND gates required by the design (Million NAND
gates), is commonly used in the literature by hardware designers to compare their
proposals with others. All the decoder architectures included in this thesis ap-
ply parallel processing of messages, which allow us to reduce the area and hence
the latency, which is translated into an increase in throughput. Specifically, the
efficiency of the T-MM approach proposed in this thesis is 38% higher than the

158



8.4 Conclusions

previous T-EMS implementations. An additional 21% of increasing was achieved
passing from T-MM to OMO-TMM implementation. Both proposals (T-MM and
OMO-TMM) reduce the complexity of the CN and, at the same time, the latency
was decreased, so both area and throughput were improved.

When compared the OMO-TMM to the CNBMP proposal, the increase in the
efficiency was 48%. Despite the increment in throughput of the CNBMP decoder
achieved with the reduction in the wiring between processors, the great increment
in the efficiency is due to the reduction in area thanks to the decrease in the storage
elements used in the decoder implementation.

The efficiency was increased by 11% when passing from CNBMP to m-TMM. In
this case, the achieved increment is due to both improvements (area and through-
put) since the m-TMM reduces the number of wires between processors and the
number of storage elements of the decoder. Finally, 6% of improvement was
achieved passing from the m-TMM to the RC-TMM approach. The reason of
this increment was the reduction in the CN complexity, specifically the computa-
tion unit used to calculate the extra-column of the trellis.

Comparing the implementation of the original T-EMS algorithm to the RC-TMM,
the efficiency is almost five times higher for the latter.

8.4.4 Final Comments

To sum up this section we summarize the achievements of this thesis:

i) the computational load of the main processor was simplified, which reduces
the arithmetic complexity;

ii) the dependency of the check node processor with his degree (dc) was reduced
by half;

iii) a new definition of sets to allow the compression of the messages exchanged
between processors was introduced, which reduces the wiring of the hardware
implementations; and

iv) a new decoding algorithm that avoids the dependency with GF(q) of the
NB-LDPC decoders, with negligible performance loss, was proposed.

All these contributions allow us to increase the efficiency of the derived archi-
tectures at least four times and even more important, the new decoders can be
applied to high-rate codes of medium codeword length over Galois Fields larger
than GF(32), which will improve the integration of NB-LDPC codes with modu-
lations of higher order (to the best knowledge of the authors was not feasible to
implement in hardware with the existing proposals in literature).

159



Chapter 8. Discussion and conclusions

8.5 Future Research Lines

Although the considerable improvements obtained with the proposals included in
this manuscript, NB-LDPC decoders are far from be integrated in some real sys-
tems with high demanding constraints. Architectures of tens of Gbps are required
for high-speed communication systems and standards (such as the 100Gbps links),
in conjunction with error-floor regions lower than a BER of 10−15 with a waterfall
performance close to the Shannon’s limit. In order to meet all these requirements
without decreasing the code rate, a lot of research needs to be done to combine
both VLSI and coding theory. Considering the state of the art at the moment of
the publication of this thesis, we consider that the most promising research lines
that can contribute to accomplish with all these objectives are the following ones:

• One of the main constraint for optical transport systems is to have a FER
performance without error-floor until BER = 10−15 is a main constraint
for optical transport systems. Therefore, we propose to study the proposed
algorithms from this manuscript for BER values lower than 10−10 where the
error-floor effect could appear degrading the performance in the decoder.
When this effect occur, a solution could be the use of concatenated codes.
Specifically, the use of a concatenated NB-LDPC + RS codes helps to correct
the possible residual errors resulting from the use of a simple NB-LDPC
decoding algorithm.

• Spatially-Coupled LDPC (SC-LDPC) codes are strong candidates for future
optical transport systems due to their close performance to the Shannon
channel capability and their potentially high-speed decoding using a slicing
windows over the photograph of the code. It has been shown in the litera-
ture that SC-LDPC codes exhibit relatively high error-floor, limiting their
application in optical systems where very low error-floor is required. Since
NB-LDPC codes have better performance than its binary counterpart for
high SNR, the use of the low-complexity algorithms presented in this thesis
could be studied to decode SC-LDPC codes in its non-binary form.

• In order to improve the coding gain in optical systems joint coding and
modulation schemes are used. This systems are called coded-modulation
(CM) and are widely studied for wireless and optical systems. NB-LDPC
codes could be used in CM schemes with the aim of reducing the complexity
in the coding-modulation process since the Galois field symbols are directly
mapped to modulated symbols. Since the proposed algorithms from this
thesis exhibit low complexity for high-order fields and high-rate codes, they
could be considered to be used in CM schemes.

160



Bibliography

[1] B. Pierce, “Five key steps to high-speed nand flash performance and reliabil-
ity,” in Proc. of Flash Memory Summit, 2010, Aug 2010.

[2] D. MacKay and R. Neal, “Near shannon limit performance of low density
parity check codes,” Electronics Letters, vol. 33, no. 6, pp. 457–458, Mar
1997.

[3] Digital Video Broadcasting (DVB), “Second generation framing structure,
channel coding and modulation systems for Broadcasting, Interactive Ser-
vices, News Gathering and other broadband satellite applications (DVB-S2),”
Ago 2009.

[4] LDPC coding for OFDMA PHY. 802.16REVe Sponsor Ballot Recirculation
Comment. IEEE C802.16e-04/141r2, 2004.

[5] Joint Proposal: High Throughput Extension to the 802.11 Standard: PHY.
IEEE P802.11 Wireless LANs. IEEE 802.11-05/1102r4, 2006.

[6] M. Davey and D. MacKay, “Low-density parity check codes over GF(q),”
IEEE Communications Letters, vol. 2, no. 6, pp. 165–167, 1998.

[7] J. Fu, M. Arabaci, I. Djordjevic, Y. Zhang, L. Xu, and T. Wang, “First ex-
perimental demonstration of nonbinary LDPC-coded modulation suitable for
high-speed optical communications,” in Optical Fiber Communication Con-
ference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic
Engineers Conference, March 2011, pp. 1–3.

[8] M. Arabaci, I. Djordjevic, L. Xu, and T. Wang, “Nonbinary LDPC-Coded
Modulation for High-Speed Optical Fiber Communication Without Band-
width Expansion,” Photonics Journal, IEEE, vol. 4, no. 3, pp. 728–734, June
2012.

[9] 100G Forward Error Correction White Paper, OIF. OIF-FEC-100G-01.0,
May 2010.

[10] C.-S. Choi, H. Lee, N. Kaneda, and Y.-K. Chen, “Concatenated non-binary
LDPC and HD-FEC codes for 100Gb/s optical transport systems,” in IEEE
International Symposium on Circuits and Systems (ISCAS), 2012, 2012, pp.
1783–1786.

161



Bibliography

[11] F. Sala, K. Schouhamer Immink, and L. Dolecek, “Error control schemes for
modern flash memories: Solutions for flash deficiencies,” Consumer Electron-
ics Magazine, IEEE, vol. 4, no. 1, pp. 66–73, Jan 2015.

[12] G. Liva, E. Paolini, T. De-Cola, and M. Chiani, “Codes on high-order fields
for the CCSDS next generation uplink,” in Advanced Satellite Multimedia
Systems Conference (ASMS) and 12th Signal Processing for Space Commu-
nications Workshop (SPSC), 2012 6th, Sept 2012, pp. 44–48.

[13] L. Costantini, B. Matuz, G. Liva, E. Paolini, and M. Chiani, “Non-binary
protograph low-density parity-check codes for space communications,” Int. J.
Satell. Commun. Network, vol. 30, pp. 43–51, 2012.

[14] D. Declercq and M. Fossorier, “Decoding Algorithms for Nonbinary LDPC
Codes Over GF(q),” IEEE Transactions on Communications, vol. 55, no. 4,
pp. 633–643, 2007.

[15] V. Savin, “Min-Max decoding for non binary LDPC codes,” in IEEE Interna-
tional Symposium on Information Theory, 2008, pp. 960–964.

[16] E. Li, D. Declercq, and K. Gunnam, “Trellis-Based Extended Min-Sum Al-
gorithm for Non-Binary LDPC Codes and its Hardware Structure,” IEEE
Transactions on Communications, vol. 61, no. 7, pp. 2600–2611, 2013.

[17] E. Li, D. Declercq, K. Gunnam, F. García-Herrero, J. Lacruz, and J. Valls,
“Low Latency T-EMS Decoder for NB-LDPC Codes,” in Conference Record of
the Forty Seventh Asilomar Conference on Signals, Systems and Computers
(ASILOMAR), 2013.

[18] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Informa-
tion Theory, vol. 8, no. 1, pp. 21–28, January 1962.

[19] D. J. MacKay and R. Neal, “Good codes based on very sparse matrices,” in
Cryptography and Coding, ser. Lecture Notes in Computer Science, C. Boyd,
Ed., vol. 1025. Springer Berlin Heidelberg, 1995, pp. 100–111.

[20] R. Tanner, “A recursive approach to low complexity codes,” IEEE Transac-
tions on Information Theory, vol. 27, no. 5, pp. 533–547, 1981.

[21] C. Chavet and P. Coussy, Advanced Hardware Design for Error Correcting
Codes, Springer, Ed., 2014.

[22] M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 6,
pp. 976–996, 2003.

[23] J. Lin and Z. Yan, “An Efficient Fully Parallel Decoder Architecture for Non-
binary LDPC Codes,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 22, no. 12, pp. 2649–2660, Dec 2014.

[24] Y. Park, Y. Tao, and Z. Zhang, “A Fully Parallel Nonbinary LDPC Decoder
With Fine-Grained Dynamic Clock Gating,” IEEE Journal of Solid-State Cir-
cuits, vol. 50, no. 2, pp. 464–475, Feb 2015.

162



Bibliography

[25] F. Garcia-Herrero, E. Li, D. Declercq, and J. Valls, “Multiple-Vote Symbol-
Flipping Decoder for Nonbinary LDPC Codes,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 22, no. 11, pp. 2256–2267, Nov
2014.

[26] F. Garcia-Herrero, D. Declercq, and J. Valls, “A symbol flipping decoder
for NB-LDPC relying on multiple votes,” in 8th International Symposium on
Turbo Codes and Iterative Information Processing (ISTC), 2014, Aug 2014,
pp. 203–207.

[27] W. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge
University Press, 2009.

[28] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over
GF(2q),” in Proceedings 2003 IEEE Information Theory Workshop, 2003, pp.
70–73.

[29] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding of
LDPC codes over GF(q),” in 2004 IEEE International Conference on Com-
munications, vol. 2, 2004, pp. 772–776 Vol.2.

[30] Y.-L. Ueng, K.-H. Liao, H.-C. Chou, and C.-J. Yang, “A High-Throughput
Trellis-Based Layered Decoding Architecture for Non-Binary LDPC Codes
Using Max-Log-QSPA,” IEEE Transactions on Signal Processing, vol. 61,
no. 11, pp. 2940–2951, 2013.

[31] A. Voicila, F. Verdier, D. Declercq, M. Fossorier, and P. Urard, “Architec-
ture of a low-complexity non-binary LDPC decoder for high order fields,” in
International Symposium on Communications and Information Technologies,
2007. ISCIT ’07., Oct 2007, pp. 1201–1206.

[32] X. Chen and C.-L. Wang, “High-Throughput Efficient Non-Binary LDPC
Decoder Based on the Simplified Min-Sum Algorithm,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 59, no. 11, pp. 2784 –2794,
nov. 2012.

[33] J. Lin and Z. Yan, “Efficient Shuffled Decoder Architecture for Nonbinary
Quasi-Cyclic LDPC Codes,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 21, no. 9, pp. 1756–1761, 2013.

[34] F. Cai and X. Zhang, “Relaxed Min-Max Decoder Architectures for Nonbinary
Low-Density Parity-Check Codes,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 21, no. 11, pp. 2010–2023, Nov 2013.

[35] E. Li, K. Gunnam, and D. Declercq, “Trellis based Extended Min-Sum for de-
coding nonbinary LDPC codes,” in 8th International Symposium on Wireless
Communication Systems (ISWCS), 2011, pp. 46–50.

[36] B. Zhou, J. Kang, S. Song, S. Lin, K. Abdel-Ghaffar, and M. Xu, “Construc-
tion of non-binary quasi-cyclic LDPC codes by arrays and array dispersions,”
IEEE Transactions on Communications, vol. 57, no. 6, pp. 1652–1662, 2009.

163



Bibliography

[37] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2,dc)-LDPC
codes over GF(q) using their binary images,” IEEE Transactions on Commu-
nications, vol. 56, no. 10, pp. 1626–1635, October 2008.

[38] E. Li, “Décodeurs Haute Performance et Faible Complexité pour les
codes LDPC Binaires et Non-Binaires,” Ph.D. dissertation, École Nationale
Supérieure de l’électronique et de ses Applications, à l’Université de Cergy-
Pontoise, 2012.

[39] J. Lin, J. Sha, Z. Wang, and L. Li, “Efficient Decoder Design for Nonbinary
Quasicyclic LDPC Codes,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 57, no. 5, pp. 1071–1082, 2010.

[40] C.-L. Wey, M.-D. Shieh, and S.-Y. Lin, “Algorithms of Finding the First Two
Minimum Values and Their Hardware Implementation,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 55, no. 11, pp. 3430–3437,
2008.

[41] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital integrated circuits-
A design perspective, 2nd ed. Prentice Hall, 2004.

[42] J. Lacruz, F. Garcia-Herrero, D. Declercq, and J. Valls, “Simplified Tre-
llis Min-Max Decoder Architecture for Nonbinary Low-Density Parity-Check
Codes,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 23, no. 9, pp. 1783–1792, Sept 2015.

[43] X. Zhang and F. Cai, “Reduced-latency scheduling scheme for min-max non-
binary LDPC decoding,” in IEEE Asia Pacific Conference on Circuits and
Systems (APCCAS), 2010, Dec 2010, pp. 414–417.

[44] ——, “Reduced-Complexity Decoder Architecture for Non-Binary LDPC
Codes,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 19, no. 7, pp. 1229–1238, July 2011.

[45] M. Punekar and M. Flanagan, “Trellis-based check node processing for low-
complexity nonbinary LP decoding,” in IEEE International Symposium on
Information Theory Proceedings (ISIT), 2011, July 2011, pp. 1653–1657.

[46] Y. S. Park, Y. Tao, and Z. Zhang, “A 1.15Gb/s fully parallel nonbinary LDPC
decoder with fine-grained dynamic clock gating,” in IEEE International Solid-
State Circuits Conference Digest of Technical Papers (ISSCC), 2013, Feb
2013, pp. 422–423.

[47] C.-C. Cheng, J.-D. Yang, H.-C. Lee, C.-H. Yang, and Y.-L. Ueng, “A Fully
Parallel LDPC Decoder Architecture Using Probabilistic Min-Sum Algorithm
for High-Throughput Applications,” IEEE Transactions on Circuits and Sys-
tems I: Regular Papers, vol. 61, no. 9, pp. 2738–2746, Sept 2014.

[48] X. Zhang, F. Cai, and S. Lin, “Low-Complexity Reliability-Based Message-
Passing Decoder Architectures for Non-Binary LDPC Codes,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 11, pp.
1938–1950, Nov 2012.

164



Bibliography

[49] F. Garcia-Herrero, M. Canet, and J. Valls, “High-speed NB-LDPC decoder
for wireless applications,” in International Symposium on Intelligent Signal
Processing and Communications Systems (ISPACS), 2013, Nov 2013, pp. 215–
220.

[50] J. Lacruz, F. Garcia-Herrero, J. Valls, and D. Declercq, “One Minimum
Only Trellis Decoder for Non-Binary Low-Density Parity-Check Codes,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp.
177–184, Jan 2015.

[51] X. Zhang and F. Cai, “Efficient Partial-Parallel Decoder Architecture for
Quasi-Cyclic Nonbinary LDPC Codes,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 58, no. 2, pp. 402–414, Feb 2011.

[52] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-
complexity decoding for non-binary LDPC codes in high order fields,” IEEE
Transactions on Communications, vol. 58, no. 5, pp. 1365–1375, May 2010.

[53] J. Lacruz, F. Garcia-Herrero, and J. Valls, “Reduction of Complexity for
Nonbinary LDPC Decoders With Compressed Messages,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 11, pp. 2676–
2679, Nov 2015.

[54] J. Lacruz, F. Garcia-Herrero, M. Canet, J. Valls, and A. Perez-Pascual, “A
630 Mbps non-binary LDPC decoder for FPGA,” in IEEE International Sym-
posium on Circuits and Systems (ISCAS), May 2015, pp. 1989–1992.

[55] J. Sha, Z. Wang, M. Gao, and L. Li, “Multi-Gb/s LDPC Code Design and
Implementation,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 17, no. 2, pp. 262–268, Feb 2009.

[56] J. Lacruz, F. Garcia-Herrero, M. Canet, and J. Valls, “High-Performance NB-
LDPC Decoder With Reduction of Message Exchange,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. PP, no. 99, pp. 1–12,
2015.

[57] Y.-L. Ueng, C.-Y. Leong, C.-J. Yang, C.-C. Cheng, K.-H. Liao, and S.-
W. Chen, “An Efficient Layered Decoding Architecture for Nonbinary QC-
LDPC Codes,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 59, no. 2, pp. 385–398, Feb 2012.

[58] J. O. Lacruz, F. Garcia-Herrero, M. J. Canet, and J. Valls, “Reduced-
Complexity Nonbinary LDPC Decoder for High-Order Galois Fields Based
on Trellis Min-Max Algorithm,” IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, vol. PP, no. 99, pp. 1–11, 2016.

165


	Abstract
	Resumen
	Resum
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	Preface
	1 State of the art of non-binary low-density parity-check codes
	1.1 LDPC codes and decoding process
	1.2 Nomenclature
	1.3 Decoding schedules
	1.4 Decoding architectures
	1.5 NB-LDPC decoding algorithms and architectures
	1.5.1 Trellis Extended Min-Sum Algorithm

	1.6 Frame Error Rate (FER) Performance
	1.7 Conclusions of the state of the art

	2 Simplified Trellis Min-Max Decoder Architecture for NB-LDPC Codes
	2.1 Introduction
	2.2 Trellis Extended Min-Sum Algorithm
	2.3 Simplified Trellis Min-Max Algorithm
	2.3.1 Algorithm Description
	2.3.2 Frame Error Rate Performance

	2.4 Check Node Architecture
	2.5 Architecture for the Complete Decoder
	2.5.1 Decoder Schedule
	2.5.2 Decoder Architecture
	2.5.3 Decoder Timing
	2.5.4 Decoder Complexity and Implementation Results

	2.6 Comparisons With Other NB-LDPC Decoders
	2.7 Conclusions

	3 One Minimum Only Trellis Decoder for NB-LDPC Codes
	3.1 Introduction
	3.2 Trellis - Extended Min-Sum algorithm
	3.3 One Minimum Only Trellis Decoder
	3.3.1 Estimators for the second minimum value
	3.3.2 Statistical analysis of the different estimators
	3.3.3 Frame Error Rate Performance

	3.4 OMO T-EMS and OMO T-MM Hardware Architectures
	3.4.1 Check Node Architecture
	3.4.2 Complete decoder architecture

	3.5 Conclusions

	4 Reduction of complexity for NB-LDPC decoders with compressed messages
	4.1 Introduction
	4.2 Non-binary LDPC message passing
	4.3 Compressed Non-Binary Message-Passing (CNBMP)
	4.4 Hardware impact of CNBMP
	4.5 Conclusions

	5 A 630 Mbps Non-Binary LDPC Decoder for FPGA
	5.1 Introduction
	5.2 Basis on NB-LDPC codes and T-MM decoding algorithm
	5.3 Proposed Decoder Architecture
	5.3.1 Check-node architecture
	5.3.2 Top-level decoder architecture

	5.4 Conclusions

	6 High-performance NB-LDPC decoder with reduction of message exchange
	6.1 Introduction
	6.2 Trellis Min-Max decoding algorithm
	6.3 Modified Trellis Min-Max Algorithm
	6.3.1 Reformulation of Trellis Min-Max Algorithm
	6.3.2 Reduction of replicated information in check-to-variable exchanged messages
	6.3.3 Modified Trellis Min-Max algorithm

	6.4 NB-LDPC Decoder Implementation
	6.4.1 CN architecture for mT-MM algorithm
	6.4.2 Top-level decoder architecture
	6.4.3 Decoder implementation results and comparisons

	6.5 Conclusions

	7 Reduced-complexity NB-LDPC decoder for high-order GF based on T-MM algorithm
	7.1 Introduction
	7.2 T-MM decoding algorithm with compressed messages
	7.3 T-MM algorithm with reduced set of messages
	7.3.1 Reduction of the CN-to-VN messages
	7.3.2 Performance Analysis
	7.3.3 Generation of the set I*(a')

	7.4 Check Node architecture
	7.5 Top-level decoder architecture and complexity comparison
	7.5.1 Decoder implementation results and comparisons

	7.6 Conclusions

	8 Discussion and conclusions
	8.1 Summary of the main contributions
	8.2 Analysis of results
	8.3 Comparison with other works from literature
	8.4 Conclusions
	8.4.1 Objective 1: reduction of area and latency of Check Node (CN) processors
	8.4.2 Objective 2: reduction of the number of messages exchanged between processors in NB-LDPC decoders
	8.4.3 Objective 3: implementation of high-performance decoders for Galois fields larger than 32
	8.4.4 Final Comments

	8.5 Future Research Lines


