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ABSTRACT   

In the last years we have proposed the use of the mechanism of spontaneous symmetry breaking with the purpose of 
generating perfect quadrature squeezing. Here we review previous work dealing with spatial (translational and rotational) 
symmetries, both on optical parametric oscillators and four-wave mixing cavities, as well as present new results. We then 
extend the phenomenon to the polarization state of the signal field, hence introducing spontaneous polarization symmetry 
breaking. Finally we propose a Jaynes-Cummings model in which the phenomenon can be investigated at the single-
photon-pair level in a non-dissipative case, with the purpose of understanding it from a most fundamental point of view. 
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1. I$TRODUCTIO$  

1.1 Motivation 

Non-classical states of light have been a subject of active research in the last decades. Squeezed states are probably one 
of the most simple examples of them: in contrast to the coherent states (like the usual laser light or the vacuum), where 
both quadratures of light have the same uncertainty, in an ideal squeezed state quantum fluctuations are reordered such 
as one of the quadratures is free from noise, while the other is completely undetermined1. 

Soon after the concept of squeezed light was introduced, it was proved that nonlinear resonators were able to generate it1. 
In particular, it was shown that both degenerate optical parametric oscillators (DOPOs) and degenerate four-wave mixing 
cavities −which are, respectively, optical resonators with a χ(2) nonlinear crystal and a χ(3) nonlinear medium inside−, 
were able to create a highly squeezed vacuum in the output field at the degenerate frequency (signal frequency in the 
following) when working close to their emission threshold. However, DOPOs operated below threshold are nowadays 
the most common source for squeezed light, most of all because χ(3) media are usually affected by residual processes that 
provide extra noise (such as spontaneous emission or different types of scattering). Although noise reduction cannot be 
complete, as this would entail infinite fluctuations in the anti-squeezed quadrature (which requires infinite energy), 
squeezing levels as large as 11.5 dB (more than 90% of noise reduction) have been proved2. On the other hand, the 
squeezing level attained at threshold degrades as the system is brought apart from it, and hence this squeezing is critical 
as it requires a tuning of the system parameters. 

Squeezed light has found major applications in several fields like high precision measurements3,4 and quantum 
information5, a reason why it is important to keep improving its quality and finding new sources able to generate it. This 
was the main motivation that led us to propose the study of the phenomenon of spontaneous symmetry breaking (SSB) in 
nonlinear cavities as a potential resource for squeezing. 



 

 

 
 

1.2 General description of the phenomenon: squeezing induced by spontaneous symmetry breaking 

The basic ideas behind this phenomenon can be put as follows. Suppose that the nonlinear cavity showing bifurcation 
squeezing is also invariant under changes of some continuous degree of freedom ε of the signal field (like, e.g., the 
orientation of its linear polarization), which we might call the free parameter (FP) in the following. Above threshold, the 
classical or mean field value of the signal field ),( trEε is not zero (we explicitly denote the FP in the field), and when the 

system starts emitting it, a particular value of the FP must be chosen (selected randomly according to the initial 
fluctuations), hence breaking the symmetry of the system. This is what we mean by SSB.  

Now think about what quantum theory might bring. As variations in the FP do not affect the system, quantum 
fluctuations will be able to make it fluctuate without opposition, eventually making it become completely undetermined. 
But invoking now the uncertainty principle, the complete indetermination of a system’s variable allows for the perfect 
determination of its corresponding momentum. This means that we could expect squeezing to appear in the mode 

),( ti rEεε∂− . Moreover, this squeezing could be perfect (as the FP can be completely undetermined in the long term), 

and noncritical, as it is a product of the SSB which happens for any value of the parameters above threshold. 

In this review we show that this intuitive result is correct by focusing on three particular symmetries: rotational and 
translational symmetries in the transverse plane (Section 2), and symmetry in a polarization parameter of the signal field 
(Section 3). In addition we will have the opportunity to study the process at the very fundamental level by using a single-
atom analog of the polarization symmetry breaking which we model by a Jaynes-Cummings model (Section 4). 

2. SPATIAL SYMMETRY BREAKI$G 

2.1 Introduction 

As a first example of squeezing induced by SSB we consider nonlinear resonators which have some spatial symmetry in 
the transverse plane. Although the first symmetry we studied was the translational symmetry in wide aperture DOPOs6,7, 
we prefer to introduce here the phenomenon by using the spontaneous rotational symmetry breaking that occurs in two-
transverse-mode DOPOs8,9. This system will allow us to expose the basic mathematical formalism that we use to analyze 
SSB from a quantum viewpoint, and to introduce important considerations about its experimental realization and the 
measurement of its related quadrature squeezing. 

2.2 Spontaneous rotational symmetry breaking in two-transverse-mode DOPOs 

Consider a cavity having a thin χ(2) crystal placed on its waist plane and tuned in the following way8,9,10,11,12: At some 
frequency 2ω0 (pump frequency) the cavity is tuned to a TEM00 Gaussian mode G(r), while at frequency ω0 (signal 
frequency) it is the first family of transverse modes that resonates.  

The first family of transverse modes is formed by two Laguerre-Gauss (LG) modes L±1(r) with ±1 orbital angular 
momentum (OAM), and this is the reason why we will call this system the two-transverse-mode DOPO. The explicit 
expression of these modes at the waist plane is given by13 

 ( ) ( )2p21
p /exp2 wrwG −π= −r      ,     ( ) ( ) φ±−

± −π= iewrrwL 2
s

22
s1 /exp2r , (1) 

 

Figure 1. Scheme of the two-transverse-mode DOPO. The cavity is pumped by a Gaussian TEM00 mode, and is tuned 
in such a way that the down-converted photons must be generated in opposite OAM pairs with an arbitrary phase 
difference. On the other hand, the superposition of two LG beams is equivalent to a HG TEM10 mode whose 
orientation is given by the phase difference between the subjacent LG modes. Hence, above threshold mean field 
emission will take place in a TEM10 mode with an arbitrary orientation. 



 

 

 
 

where wp/s is the beam radius at the pump/signal frequency, and r = r(cosφ, sinφ) is the coordinate vector in the 
transverse plane. Note that from the LG modes one can obtain the usual TEM10 Hermite-Gauss (HG) mode rotated an 
angle ψ respect to the horizontal as13 

 ( ) ( ) ( )[ ] ( ) ( )ψ−φ=+= ±−
ψ

+
ψ−ψ cos22/ 11110 rrrr LLeLeH ii . (2) 

The Hamiltonian of the system has two parts (see Fig. 1): the pumping of the coherent, Gaussian, resonant mode at 
frequency 2ω0, and the parametric down conversion of the pump photons into signal photons inside the crystal. In the 
interaction picture it reads 

 ( ) H.c.ˆˆˆˆˆ
1100p +χ+= −+
†††E aaaaiH h , (3) 

where †
jâ  is the creation operator for a pump photon (j = 0) and signal photons with ±1 OAM (j = ±1), and pE and χ are 

proportional to the amplitude of the pumping beam and the nonlinear susceptibility of the χ(2) crystal, respectively9. The 
down-conversion part of this Hamiltonian is justified by energy and OAM conservation: from one 2ω0 photon with zero 
OAM, two ω0 photons with opposite OAM are created. 

This Hamiltonian has the symmetry ( ) ( )1111 ˆ,ˆˆ,ˆ −
θ−

+
θ

−+ → aeaeaa ii , which leaves the phase difference 2θ between the LG 

modes undefined. Hence θ is the FP of this system. The constant of motion associated to this symmetry is the photon 

number difference 1111 ˆˆˆˆ −−++ − aaaa
†† . This ensures that the LG modes L±1(r) will be twin beams whose intensity difference 

is potentially perfectly squeezed. Hence, once the threshold for signal’s mode generation is crossed, mean-field emission 
will take place in the mode ( ) ( ) ( )[ ] 2/1110 rrr −

θ
+

θ−θ += LeLeH ii , that is, a HG mode whose dipole-like pattern breaks the 

rotational symmetry of the system and can appear classically along any orientation θ. Using the techniques we explain in 
the next subsection, it can be shown that quantum noise makes rotate the pattern randomly, and that the phase quadrature 
of the HG mode orthogonal to the generated one is perfectly squeezed irrespective of the system parameters −which 

makes sense by following the reasoning given in the introduction, as ( ) ( )rr
2/

1010
π+θθ

θ =∂ iHHi −. In the following we 

name ( )rθ
10H the bright mode (as it is classically excited), and its orthogonal mode ( )r

2/
10

π+θ
H the dark mode (as it is 

classically empty of photons), denoting them by the indices ‘b’ and ‘d ’ respectively when needed. 

2.3 The mathematical formalism 

Let us briefly explain the techniques we use to analyze the phenomenon of SSB from a quantum viewpoint, by using the 
two-transverse-mode DOPO as an example. 

Hamiltonian (3) does not recast all the processes which occur in the DOPO. In particular it does not account for the 
photons which are leaving the cavity through the partially reflecting mirror; this is not a reversible process, and we must 
introduce it in the master equation satisfied by the density operator of the system14. We use a positive P representation 
for the density matrix15 which allows us to map the master equation into the following stochastic (Langevin) equations9 
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where γp/s is the cavity damping rate at the pump/signal frequency, and ξ(t) and ξ
+(t) are independent complex noises 

satisfying the usual complex white noise statistics9.  

The equivalence between these stochastic equations and the master equation must be understood in the following way: 

( ) ( )
stochasticjjjj faaf +αα= ,:ˆ,ˆ: † , that is, quantum averages of an operator function in normal order equal stochastic 

averages of the same function changing the boson operators by their associated stochastic variables. 

Outside the cavity there exists a continuum of modes, and hence squeezing cannot be defined via the simple single-mode 
uncertainty. As was first shown by Collet and Gardiner16, the quantity accounting for the fluctuations of quadrature 

†
m

i
m

i
m aeaeX ˆˆˆ ϕϕ−ϕ += outside the cavity (m refers to any signal transverse or polarization mode of the DOPO) is 



 

 

 
 

 ( ) ( ) ( ) ,:ˆˆ:21; ωτ−ϕϕϕ ∫ τ+δδτγ+=ω i
mmmm etXtXdXV  (5) 

where δA = A − <A>. We shall call this the noise spectrum, and ω the noise frequency. For the vacuum or coherent state 
we have V = 1; hence if V < 1 one can state that light is in a squeezed state for mode m. Note that the j = 0 (p/2) 
quadrature is usually called the amplitude (phase) quadrature, and is denoted by Xm (Ym). 

Note that we can retrieve the classical equations from the quantum Langevin equations by setting the noises to zero and 
making *

jj α=α+ . Then a simple algebraic manipulation, plus a stability analysis, shows that for χγγ=> /spthp EE the 

trivial solution 01 =α± becomes unstable, and a new stable solution ( )θexp1 imρ=α± , with ρ2 = χ/)( thp EE − , appears. 

Any value of θ is allowed by the classical emission, as the mean field equations preserve the symmetry of the original 
Hamiltonian. Note that this solution gives raise to the bright mode ( )rθ

10H as commented above. 

As for the quantum dynamics, we have two methods9 for solving Eqs. (4). The first one consist in assuming that quantum 
fluctuations are small as compared with the mean field solution, and then linearize Eqs. (4) with respect to them. When 
working with SSB we have to take special care because we expect θ to have arbitrarily large fluctuations. This means 
that linearization is only possible if the signal variables are expanded as 

 ( ) ( )tietb θ
±± +ρ=α m][ 11  and ( ) ( )tietb θ±+

±
+
± +ρ=α ][ 11 , (6) 

as in this way θ carries with the larger part of the fluctuations, while the b’s and θ& remain small8,9. This expansion allows 
us to further track the evolution of the orientation of the generated pattern. The linearization leads to the linear system8,9 

 ( )ti ξbbw s02 γ+=+θρ− L&& , (7) 

where b and ξξξξ are vectors collecting the fluctuations and the noise sources.L is a matrix whose particular expression is 
not important8,9; what is important is that it possesses two eigenvectors w0 and w1, having eigenvalues 0 and −2γs, 
respectively, which are related to the quadratures of the dark mode by Xd = 2

1/2
iw0·b and Yd = 2

1/2
iw1·b. After projecting 

the linear system onto w0 (we can further take w0·b = 0 as it just entails a redefinition of the arbitrary phase θ) we get 

 ( ) ( ) ,
12 s

2
0

s t
d

tVtη γ
−σ

=δθ=⇒
ρ

γ
=θ θ

& , (8.1) 

 ( ) ( ) ( ) ( )[ ]2s
2

sd1sdsd 2/1/2/; 22 γω+γω=ω⇒ηγ+γ−= YVtiYY& , (8.2) 

where η0 and η1 are real, independent noises with white noise statistics, sp
2 4/ γγχ=d , and thp / EE=σ . 

The first expression shows that the orientation of the bright mode (the FP of this particular system) evolves ruled by 
quantum noise, thus becoming completely undetermined in the long term. Note that the random rotation of the pattern is 
slow if we work far enough from threshold (d ≈ 10−13 for common system parameters8,9). On the other hand, the second 
expression states that perfect squeezing appears at zero noise frequency in the phase quadrature of the dark mode, 
irrespective of the system’s parameters. 

The second method we used to solve equations (4) was a semi-implicit numerical algorithm first developed by 
Drummond and Mortimer17, with which we proved that the analytical expressions obtained within the linear 
approximation are correct outside that limit9. 

2.4 Considerations about the measurement 

The noise spectrum of a given quadrature of the system is measured with a homodyne detection scheme. It consists in 
mixing the light exiting the DOPO with an intense local oscillator field (LOF) in a beam splitter, subtracting the 
photocurrents measured on its output ports, and introducing the resulting signal in a spectrum analyzer. It is possible to 
show that when the LOF is prepared in mode m and with phase ϕ, this measurement scheme directly gives the noise 

spectrum of quadrature ϕ
mX̂ . 



 

 

 
 

 

Figure 2. Noise spectrum as measured by a fixed TEM10 LOF initially orthogonal to the bright mode. Results are given in dB, defined 
through V[dB] = 10 logV .  (a) Noise spectrum as a function of the noise frequency, and for different values of the LOF phase ϕ. The 
rest of parameters are T = Topt, d = 10

−10, σ = 21/2(this value for σ is used also for (b) and (c), as the results are weakly dependent of it 
above threshold), although the same qualitative behavior is found for other values of them. (b) Noise spectrum at zero noise frequency 
and for ϕ = 90º as a function of the detection time. Three different values of d are considered (10−11, 10−12, and 10−13 from top to 
bottom). Note the existence of an optimum detection time. (c) Noise spectrum evaluated for the optimum detection time and frequency 
as a function of the LOF phase (d = 10−13 for the blue solid-line, and d = 10−6 for the red-dashed one). The inset shows the optimum 
noise frequency as a function of ϕ (which is independent of the rest of parameters). 

Therefore, in order to measure the squeezing properties of the dark mode, the LOF must be prepared in the mode 
orthogonal to the bright one, what seems impossible because this mode is rotating randomly. This is the reason why we 
studied the levels of squeezing that can be achieved when the local oscillator is prepared in the mode orthogonal to the 
bright one at the beginning of the experiment, but is kept fixed during the time the measurement lasts9. 

Let us call T and Ω the adimensional detection time and the noise frequency normalized to γs. An approximate 
expression (valid in the limit of small d) for the noise spectrum was found to be9,18 

 ( ) ( ) ( ) ϕω+ϕω+=ω πϕ 22/20
fixed sincos1ˆ; SSXV , (9.1) 
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In Fig. 2a we show this noise spectrum as a function of the Ω for different values of ϕ and fixed values of the rest of 
parameters. It can be appreciated that the best squeezing levels are found for ϕ = 90º and at zero noise frequency. In Fig. 
2b we show the noise spectrum for this parameters as a function of T and for different values of d (σ is fixed to 21/2 as it 
can be checked that the results are almost independent of it above threshold). We see that there exists an optimum 
detection time Topt = [σ

2(σ − 1)/d(σ2 + 1)]1/2 which maximizes the squeezing. Nevertheless, for any value of the detection 
time above Topt the squeezing levels are quite large. On the other hand, in experiments

19.20 it is difficult to ensure that 
ϕ = 90º above a precision of 1.5º. This is the reason why we have analyzed the noise spectrum for different values of it. 
Note that the optimum noise frequency is no longer ω = 0, because the infinite fluctuations of S0 at zero noise frequency 
enter the spectrum (Fig. 2a). On the other hand, it is possible to show that the optimum detection time is almost 
independent of ϕ for small deviations of this from 90º, and hence it is still given to a good approximation by the previous 
expression. In Fig. 2c we show squeezing level evaluated for the optimum detection time and frequency as a function of 
the LOF phase for different values of d (the inset shows the optimum noise frequency as a function of ϕ, which is 
independent of d ). Note that large levels of squeezing can be found also in this non-ideal case. 

2.5 Experimental considerations: injection of a TEM10 seed. 

In experiments, the cavity resonance is usually stabilized by using a technique called active locking19,20: the system is 
seeded with a low-intensity beam at the signal frequency ω0. Seeding our system with a TEM10 mode would have an 
additional effect: The orientation of the bright mode would be locked to that of the seed, and hence the bright and dark 



 

 

 
 

 

Figure 3. (a) Normalized intensity of the TEM10 mode as a function of the injection parameter Is for σ = 1.5 (the same 
behavior is found for any value of σ above threshold). Note that three solutions are allowed for small values of the 
injection, but dashed branches are unstable. (b) Noise spectrum of the TEM01 mode as a function of the injection 
parameter Is (σ = 1.001, 1.5, 2, and 4, from top to bottom). 

modes would correspond to fixed TEM10 and TEM01 modes, respectively. This occurs because the injection Hamiltonian 
of the seed has the form 

 ( ) H.c.2/ˆˆH.c.ˆˆ
11s10sseed ++=+= −+
††† EE aaiaiH hh , (10) 

which does not preserve the symmetry that Hamiltonian (3) had. This should facilitate measuring the system properties. 

Of course, breaking the symmetry of the system externally would destroy the phenomenon of squeezing induced by SSB, 
as a SSB no longer occurs. However, we thought that large squeezing levels could still be found in the TEM01 dark mode 
for reasonably small levels of the seed’s intensity. In order to prove this, we have studied the level of squeezing of the 
TEM01 phase quadrature as a function of the seed’s intensity when seeding on amplification, that is, when the seed is in-
phase with the pump field and hence sE is real. As will be shown elsewhere, the noise spectrum reads in this case 

 ( ) ( ) ( ) ][ 2
s

22
01 /1/41; γω++−=ω qqYV , (11) 

with q = σ − I10, being I10 proportional to the intensity of the TEM10 mode which is found from the cubic algebraic 

equation ( )[ ] s10
2

10 2/1 III =+−σ . We have defined the parameter Is = p
3
s

2
s

2 / γγχ E , which can be written in terms of the 

external power of the seed laser Ps as Is = 2Ps/Pp,th, being Pp,th the pump power needed to make the signal oscillate when 
0s =E . Values of Is in the range 10

−3−10−1 are usually required for active locking. It is possible to show that only one of 

the three solutions of this equation is stable, namely that with the larger value (upper branch of Fig. 3a). 

In Fig. 3b we show the noise spectrum at zero noise frequency (where squeezing is maximum) as a function of Is for 
different values of σ (always above threshold). Notice that even for the largest seed values, squeezing is still above 90% 
(V < 0.1). For different values of the seed phase, or larger values of its intensity the system shows new interesting 
behavior that would be analyzed elsewhere. 

2.6 Rotational symmetry breaking in degenerate four-wave mixing cavities 

Along the previous subsections we have treated in some depth perfect and noncritical quadrature squeezing through SSB 
of the rotational symmetry in a special type of DOPO. In order to show that this is not specific of the considered 
nonlinear system, we show now that this mechanism for perfect squeezing generation can also be found in χ(3) cavities.  

We proposed21 and analytically studied a special type of χ(3) cavity in which the SSB of the rotational symmetry occurs 
in a way similar to the 2-transverse-mode DOPO. The scheme of the system is depicted in Fig. 4a: Two Gaussian 
pumping beams of frequencies ω1 and ω2 are injected in a rotationally symmetric cavity containing an isotropic χ

(3) 
medium. The nonlinear cavity is tuned in such a way that close to the frequency ωs = (ω1 + ω2)/2 the first transverse 
family is resonant. One possible configuration for the cavity is explained in Fig. 4b. Within this cavity the signal field at 
frequency ωs is generated through the creation of photon pairs (see the four-wave mixing process indicated in Fig. 4a), 
each photon having opposite OAM because of OAM conservation just as in the two-transverse-mode DOPO. 



 

 

 
 

 

Figure 4. Scheme of a χ(3) cavity for squeezing generation through SSB of the rotational symmetry. (a) While the 
pumping beams (frequencies ω1 and ω2) have zero OAM, the signal modes −which have frequency 
ωs = (ω1 + ω2)/2− have ±1 OAM (denoted as l in the figure) because the cavity resonance closer to ωs corresponds 
to the first family of transverse modes. (b) Resonance spectrum of a nearly symmetric, nearly confocal cavity, 
which is one of the possible cavity configurations with the required properties. ωq,f  refers to the resonance of the 
family transverse family of order f and longitudinal mode order q. For this configuration one gets the maximum 
splitting between the f = 1 and f = 0 families. 

The Hamiltonian of the system is, of course, more complicated than the one treated before, and can be found in the 
original article21, where the stochastic Langevin equations are also derived. The problem can be, however, simplified by 
treating the pumping beams as classical fields and by further assuming that they do not suffer depletion. In this limit the 
interaction picture Hamiltonian can be written as 

( ) ( ) ( ) ( )



 +ρ++ρ+++++δ= −+−+−−++−−++−−++−−++

††††††††††
1111

2
1111

2
1111

2
1

2

1
2
1

2

11111 ˆˆˆˆ2ˆˆˆˆ4ˆˆˆˆ2ˆˆˆˆ
2

1
ˆˆˆˆˆ aaaaaaaaaaaaaaaagaaaaH hh , (12) 

where δ is the cavity detuning with respect to ωs, g is the nonlinear coupling constant proportional to the nonlinear 
susceptibility of the medium21, and ρ is the amplitude of the pumping fields (which are assumed to be equal).  

The above Hamiltonian exhibits the symmetry ( ) ( )1111 ˆ,ˆˆ,ˆ −
θ−

+
θ

−+ → aeaeaa ii , exactly as in the two-transverse-mode 

DOPO treated above. Hence one can expect to obtain similar results provided that a steady, stable mean field solution for 
the signal modes exists in some parameter region, what is indeed proved in full detail in the original article21: a TEM10 
mode with an arbitrary orientation exists whenever δ > 31/2γs and the pump intensity ρ

2 is inside the region defined by the 
curves γs/2g and [2δ + (δ2 − 3γs

2)1/2]/6g, and appears through a subcritical pitchfork bifurcation. The analysis of quantum 
fluctuations reveals that quantum noise makes this bright mode rotate, and that a quadrature of its orthogonal TEM10 
mode is perfectly squeezed within the given domain of existence of the mean field solution as expected. 

2.7 Translational symmetry breaking in large aperture DOPOs 

After the SSB of the rotational symmetry, we pass to briefly review our previous work on squeezing generation through 
the SSB of the translational symmetry6,7. In order to have translational symmetry in the transverse plane of a nonlinear 
cavity the resonator must have plane mirrors. Further, in order to have mean field states having a location in the 
transverse plane, a large Fresnel number cavity is needed as in this case the emission in nonlinear optical cavities tends 
to occur forming transverse patterns22,23 (also known as dissipative structures) such as stripe or hexagonal patterns, or 
localized structures, such as cavity solitons. Once the bright transverse pattern )( 0rr −A appears in a reference location 

r0, it implies a SSB of the system’s translational invariance, and hence we expect quantum noise to randomly change this 
location, and the appearance of noncritical and perfect squeezing in both the dark modes )( 00

rr −∂ Ai x and )( 00
rr −∂ Ai y , 

with r0 = (x0 , y0). 

This is what we demonstrated6,7 with the technique showed in subsection 2.3 properly adapted to deal with the nontrivial 
spatial dependence of the transverse patterns. In particular, the DOPO can be modeled within the positive P 
representation by the following stochastic equations6,7 
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where ∇2 is the transverse Laplacian, being δp/s and lp/s the detuning and characteristic diffraction length of the 

pump/signal field. The independent noises t),(rη and t),(r+η satisfy the usual white noise statistics but now with respect 

to both the space and time coordinates. The complex stochastic fields A(r,t) and A+(r,t) allow us to evaluate quantum 

averages of operator functions ][ t),(ˆt),,(ˆ rr †AAf , as
stochastic
][:][ t),(t),,(t),(ˆt),,(ˆ: rrrr += AAfAAf † . 

The mean field equations associated to Eqs. (13) possess stationary solutions (dissipative structures) of the form 
)(])sign(exp[)( 0s0 rrrr −βδ=− FiA , where β is a positive constant, )( 0rr −F  is real, and r0 is arbitrary due to the 

translational invariance. In order to study the dynamics of quantum fluctuations, we adiabatically eliminate the pump 
field and set ](t),[(t)][),( 00 tbAtA rrrrr −+−= and ](t),[(t)][),( 00

* tbAtA rrrrr −+−= ++ , where the FP of the system 

r0(t) is allowed to vary with time. The stochastic equations are then linearized with respect to b, b
+, and 0r& , arriving to a 

linear system of the form6,7 

 ( ) t),(0000 rηbbvv +=++κ L&&& yx yx , (14.1) 

 ( ) ( )++ ηχηχ=∂== *
00

*
)0(0 ,col,,col,,col )()( AAAAbb yxyx ηvb , (14.2) 

where we have defined χδγ=κ /||2 ss . This equation is of the same type as (7), with a major difference: now the matrix 

L , whose particular expression is not relevant for the purposes of this review and can be consulted in the original 
articles6,7, is a differential operator which depends on the nontrivial transverse pattern )( 0rr −A . This makes its full 

analytical diagonalization not possible; nevertheless, it is possible to show numerically that this operator always possess 
a biorthonormal eigensystem6,7, that is, a set of orthogonal vectors{vi , wi }satisfying{L vi = λivi, †L wi = *

iλ wi }. In 

particular, it is straightforward to prove that the vectors v0x and v0y are two Goldstone modes having null eigenvalues, 
while the vectors ( ) ( )*)1(1 ,col AAi yxyx −∂=w  have both −2γs eigenvalue.  

Projecting the linearized equations onto the Goldstone modes, it can be proved that the position of the transverse pattern 
is drifted by the quantum noise and, in particular, it has a variance given by6,7 

 ( ) DtV =δ= 2
00 rr , with ( )∫ +χκ= − *

0
2
0

2
0

22 Re2 AdD yx wwr , (15) 

which increases linearly with time as the orientation of the TEM modes in the previous examples. On the other hand, 
projecting onto the modes )1(1 yxw it is proved6,7 that an homodyne detection scheme in which the LOF coincides with 

)( 00
rr −∂ Ai x  or )( 00

rr −∂ Ai y −or any linear combination of these− would lead to the squeezing spectrum (8.2), that is, 

this fields have perfect, noncritical squeezing on its phase quadrature. Note that when the bright field has the form of a 
bright cavity soliton of the sech-type, these modes are similar to a TEM10 mode

7, while if mean emission takes place in a 
stripe pattern, they correspond to the stripe pattern complementary to the bright one. In any case, it was proved for the 
case of the cavity soliton that even when using a homogeneous LOF large levels of squeezing can be obtained7. 

3. POLARIZATIO$ SYMMETRY BREAKI$G 

In this section we generalize the idea of squeezing generation through the SSB of spatial symmetries to cases of SSB of 
the signal field polarization symmetry. In order to achieve non-critical quadrature squeezing through the latter, the 
nonlinear cavity must be invariant under variations of a FP in the polarization24 of the signal field. This FP might be, e.g., 
the eccentricity or the orientation of the polarization ellipse. Notice that continuous variations of one of these parameters 
correspond to rotations on the Poincaré sphere defined by the Stokes parameters 

In this SSB, the polarization state of the bright mode gets completely undetermined in the long term, while the dark 
mode coincides with the mode having orthogonal polarization with respect to the generated one. Next we resume the 



 

 

 
 

results found in our most recent communication25, where we show that polarization symmetry breaking can happen, at 
least in principle, in both χ(2) and χ(3) nonlinear cavities. 

3.1 Polarization symmetry breaking in type-II DOPOs 

Consider a type-II frequency degenerate OPO. In this device signal the photon-pairs are generated with orthogonal linear 
polarizations (say ex and ey) and an undefined relative phase. This implies that the signal field has elliptical polarization 
(with the ellipse axes orientated at ±π/4 with respect to the x-axis) but with undefined eccentricity and direction of 
rotation. Moreover, the Hamiltonian of this system is isomorphic to that of the two-transverse-mode DOPO8,9, Eq. (3). 
Hence all the conclusions we have obtained in Sects. 2.2 to 2.5 above apply to this case, the only change being in the 
physical meaning of the result: Now the bright mode is an elliptically polarized mode whose eccentricity will be 
completely undetermined in the long term, and the dark mode (the one showing perfect, noncritical squeezing) is the 
mode with orthogonal polarization. 

On the other hand, type-II OPOs being simultaneously polarization invariant and frequency degenerated do not seem to 
exist. In usual type-II OPOs the signal modes have different frequencies (although the frequency difference between 
them26 can be as small as 150kHz). Certainly they can be made frequency degenerate, but the technique used for that 
purpose breaks the polarization symmetry27: a birefringent plate is introduced within the cavity in order to couple the two 
orthogonally polarized signal modes, which forces frequency degeneracy but fixes the phase difference between them 
thus breaking the system's polarization symmetry. Hence, given the difficulties of having frequency-degenerate type-II 
OPOs, we give an alternative χ (3) nonlinear cavity. 

3.2 Polarization symmetry breaking in degenerate four-wave mixing cavities 

Consider a χ (3) nonlinear cavity similar to that presented in Sect. 2.6: Two Gaussian pumping beams of frequencies ω1 
and ω2 with orthogonal polarizations are injected in a rotationally symmetric cavity containing an isotropic χ

(3) medium, 
the nonlinear cavity being tuned in such a way that close to ωs = (ω1 + ω2)/2 there is a cavity resonance. Within this 
cavity the signal photons are generated in pairs via four-wave mixing (see again Fig. 3). 

We will not give here the Hamiltonian for this system because its expression is too lengthy25. Here it suffices to say that 
for isotropic χ(3) media in which the Kleinman symmetry applies (like, e.g., for nonlinearities due to nonresonant 
electronic response), and for circularly polarized pump beams (as otherwise preferred transverse directions are defined), 
the system’s Hamiltonian is isomorphic to (12), just changing the opposite OAM by opposite circular polarizations R and 
L. Hence all the conclusions given in 2.6 apply to this case, in which the bright and dark mode correspond to a linearly 
polarized mode and its orthogonal, being their orientation the FP of the system. This χ(3) cavity has the advantage over 
the type-II frequency degenerate OPO that it can be implemented within the experimental state of the art28. 

4. THE SI$GLE-PHOTO$-PAIR LIMIT 

So far we have considered nonlinear systems in which symmetry breaking happens at a macroscopic level, as the mean 
field which breaks the symmetry gets highly populated. In order to understand the phenomenon from a microscopic point 
of view, we develop now a model in which photon-pairs are generated one at a time. 

The basic scheme is depicted in Fig. 5a. A three-level atom is introduced in a cavity having highly reflective mirrors, so 
that losses can be neglected, focusing then on the intracavity dynamics. The atomic levels are disposed in a cascade 
configuration, with the additional assumption that the upper and lower levels corresponds to J = 0 states, while the 
intermediate level has J = 1. We assume that the cavity is tuned so that a longitudinal mode with frequency ω0=ωeg/2 
exists, where ωeg is the frequency of the transition from the excited to the ground state. In the interaction picture, and 
further assuming that the intermediate level is detuned from the cavity resonance, and hence can be adiabatically 
eliminated, the Hamiltonian reads   

 ( )††
LRgeLReg aaaaH ˆˆˆˆˆˆˆ

−− σ+σχ= h , (16) 

where eg−σ̂  and ge−σ̂  are the raising and lowering operators connecting the ground and excited states of the atom, and 

Râ and Lâ are the annihilation operators for right and left circularly polarized photons, respectively. This Hamiltonian has 

the same symmetry as the ones we have worked with so far. The difference now, is that the atomic operator ensures that 
no more than one photon-pair is created or annihilated at the same time, as when the atom decays it must reabsorbed a 
photon-pair before decaying again. This Hamiltonian can be analytically diagonalized, and hence the state of the system 



 

 

 
 

at any time can be known for any initial state. However, in this review we will focus on the case of having the atom 
initially excited, and a Fock state with the same number of R and L photons, as this also makes the evaluation of the 
expressions to come analytical or semi-analytical. We leave for future works the case of starting out of a different state 
for the field, or a superposition of excited and ground states for the atom. 

It is straightforward to show that the initial state ( ) --e ,,0 =ψ  evolves as 

 ( ) ( ) ( ) 1,1,sin,,cos ++Ω−Ω=ψ --fti--ett -- , (17) 

where Ω- = χ(- + 1). This state shows Rabi oscillations with frequency Ω- between the field states having 2- and 
2(-+1) signal photons. We will use this state vector to evaluate the expected value of different operators. 

Based on the analysis of SSB we have been explaining in the previous sections, we could expect noise reduction in the 
polarization mode orthogonal to the generated one. However, here the definition of the bright and dark modes is not as 
clear as in the previous examples, because we don’t have a macroscopic field to rely on (as 0ˆˆ == LR aa ). 

Nevertheless, exploiting the analogy with the previous systems, we define the bright and dark modes by  

 ( ) ( )L
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d
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b 2
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2

1
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where now θ, which is half the phase-difference between the signal modes, is not a stochastic variable (as we are not 
using a coherent representation), but a fully quantum-mechanical operator. As it is well known, a satisfactory phase 
operator of a single light mode has not been found yet. Nevertheless, even though not without debate, a phase difference 
operator satisfying reasonable properties was found by Luis and Sánchez-Soto28. In this reference the eigenvectors 
associated to the phase-difference operator are expressed as a function of the two-mode number state basis, and, using 

the spectral theorem, this allows us to express any function of the operator θ̂ as 

 ( )
( )

( ) ( ) ( )

1

2
,',',

21

1ˆ
0

0 0',,

'

+

π
+φ=φ−−







 φ
−

+
=θ ∑ ∑

∞

= =

φ−

n

r
mnmmnmef

n
f n

r

n

n

mmr

mmi
n
r n

r , (19) 

being φ0 an arbitrary phase which has the meaning of the vacuum modes phase difference. 

We write the boson modes associated to the bright and dark modes as 

 ( ) ( )L
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R
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where the order of the exponentials is chosen so that sddbb
ˆˆˆˆˆˆˆˆˆ -aaaaaaaa LLRR ≡+=+ †††† , that is, the number operator for 

the photons is left unchanged. Note that although for state (17) the mean field is zero for both modes, the mean number 

of dark photons is zero −=− 0ˆˆ ddaa
† , while the mean number of bright photons coincides with the total mean number 

of signal photons ( ) ( ) −Ω+==− t-t-aa -
2

sbb sin22ˆˆˆ† . This makes the interpretation of the modes as a bright and a 

dark mode somehow appropriate. 

As for the squeezing levels of the dark mode, it is easy to evaluate the variance of any of its quadratures ϕ
dX̂ ; we get 
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Figure 5. (a) An atom with two J = 0 levels plus an intermediate J = 1 level is introduced in a high Q cavity. Electric-dipole transitions 
require |∆J |=0 , and hence when the atom decays from the excited to the ground state, the generated cavity photons must have 
orthogonal circular polarizations. (b) Variances of the phase θ (red-dashed) and the dark quadratures (blue-solid) at the middle of a 
Rabi oscillation  as a function of the initial number of pairs R−L. (c) Variance of the phase q as a function of time for - = 0, 1, and 100 
(blue-solid, red-dashed, and green-dotted, respectively). Note that as - increases the amplitude of the oscillations decreases. 

Note that the variance is independent of ϕ, what makes sense as starting out of number states (which doesn’t have a 
definite phase) should not privilege any specific phase of the signal field. This expression shows that squeezing is 
maximum at the middle of the Rabi oscillations, and increases with -. In Fig. 5b we show the variance at the middle of 
the Rabi oscillation as a function of -. It can be appreciated that it saturates to a finite value close to 0.17, and hence in 
this case squeezing is not perfect inside the cavity. 

In order to show that the squeezing of the dark mode is related to the indetermination of the operator q, we can also 
evaluate the variance of this; a straightforward calculation shows that 
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In Fig.5c we show this variance as a function of time. Note that it is maximum at the middle of the Rabi oscillations 
(except for - = 0). In Fig. 5b we also show this variance at the middle of the Rabi oscillation as a function of -, showing 
that it arrives to an asymptotic value of π2/12. Note that the behavior of the phase variance is then completely opposite to 
that of the dark mode quadratures: when the latter is better defined (more squeezed), the former gets more undetermined. 
This is an indirect proof of the connection between these two phenomena. In fact, it also explains why squeezing in the 
dark mode is not perfect in this case: it cannot be perfectly determined just because θ never gets completely 
undetermined.  

5. CO$CLUSIO$S 

In this paper we have reviewed the work done by our group up to date on the subject of generation of perfect and non-
critical quadrature squeezing through spontaneous symmetry breaking (SSB), which includes spatial symmetries (both 
rotational and translational) as well as polarization symmetry. We have presented results on the squeezing properties of 
several nonlinear cavities, both of χ(2) and χ(3) types, in which these phenomena occur as well as discussed some aspects 
concerning the possibilities of observing them. Of particular relevance for the measurability of the squeezing achieved 
by these systems is the fact that the free parameter of the mean field diffuses: the orientation of the bright mode (in the 
case of rotational symmetry), the location of the bright transverse pattern (in the case of translational symmetry), and the 
orientation or eccentricity of the polarization of the bright mode (in the case of polarization symmetry) vary randomly in 
time, as they are governed by Wiener processes. This makes impossible to match the local oscillator to the output field in 
a homodyne detection scheme. However, the fact that the bright mode has a huge number of photons unless the system 
operates too close to threshold implies that the diffusion is quite slow, and the results given in Sect. 2.5 suggest that the 
detected squeezing level can be very large within experimentally achievable conditions. Moreover, as discussed in Sect. 
2.6, with a slight deliberate breaking of the underlying symmetry still large squeezing levels are produced while at the 
same time diffusion is prevented. Finally, in the last section we have proposed a cavity QED scheme in which SSB can 
be investigated at the very fundamental level. We showed that the relation between the indetermination of the free 
parameter and the squeezing of the dark mode −which was previously proved for macroscopic fields− appears already 
when a single photon-pair is generated. 
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