

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-39083-
3_13

http://link.springer.com/chapter/10.1007/978-3-319-39083-3_13

http://hdl.handle.net/10251/73843

Springer

Real Sáez, JV.; Sáez Barona, S.; Crespo, A. (2016). Combining Time-Triggered Plans with
Priority Scheduled Task Sets. En Reliable Software Technologies – Ada-Europe 2016.
Springer. 195-212. doi:10.1007/978-3-319-39083-3_13.

Combining Time-Triggered Plans with Priority
Scheduled Task Sets?

Jorge Real 1, Sergio Sáez 2, and Alfons Crespo 1

1 Instituto de Automática e Informática Industrial
2 Instituto Tecnológico de Informática

Universitat Politècnica de València
Camino de vera, s/n, 46022 Valencia, Spain
{jorge,ssaez,alfons}@disca.upv.es

Abstract. Time-triggered and concurrent priority-based scheduling are
the two major approaches in use for real-time and embedded systems.
Both approaches have their own advantages and drawbacks. On the one
hand, priority-based systems facilitate separation of concerns between
functional and timing requirements by relying on an underlying real-
time operating system that takes all scheduling decisions at run time.
But this is at the cost of indeterminism in the exact timing pattern of
execution of activities, namely variable release jitter. On the other hand,
time-triggered schedules are more intricate to design since all schedul-
ing decisions must be taken beforehand in the design phase, but their
advantage is determinism and more chances for minimisation of release
jitter. In this paper we propose a software architecture that enables the
combined and controlled execution of time-triggered plans and priority-
scheduled tasks. We also describe the implementation of an Ada library
supporting it. Our aim is to take advantage of the best of both ap-
proaches by providing jitter-controlled execution of time-triggered tasks
(e.g., control tasks), coexisting with a set of priority-scheduled tasks,
with less demanding jitter requirements.

Keywords: Real-Time Systems. Jitter. Time-Triggered Scheduling. Ada.

1 Introduction

Using concurrent tasks in real-time systems software allows designers to clearly separate
functional from timing requirements, letting them focus on functionality and delegating
the scheduling of activities on the underlying real-time operating system (RTOS). The
RTOS uses a priority scheme to select which task (or tasks, in multiprocessor systems)
can execute at a given time [1]. This approach is backed by extensive research results
that define the conditions under which this type of systems can be guaranteed to
comply with their deadlines at run time.

? This work has been partly supported by the Spanish Government’s project
M2C2 (TIN2014-56158-C4-1-P-AR) and the European Commission’s project EMC2
(ARTEMIS-JU Call 2013 AIPP-5, Contract 621429).

However, priority scheduling introduces a fundamental issue in tasks with strict re-
lease jitter requirements. Release jitter is the difference in time between the theoretical
and actual release time of a task. In major application areas, such as automatic control
or synchronised distributed communications, excessive release jitter causes performance
degradation that needs be avoided. Some amount of jitter is in practice unavoidable,
since scheduling decisions take time and that translates into scheduler’s overhead that
ultimately interferes the whole task set. But in priority scheduled systems, all but
the highest-priority task may be additionally interfered by other higher-priority tasks.
When this interference straddles a task’s theoretical release time, then the task will
suffer release jitter until all higher-priority levels become idle.

On the other hand, time-triggered scheduling is based on an offline predefined
schedule (a plan) in which the designer identifies the exact points in time when every
planned activity must start. From that release time, the activity is granted a time
slot to execute, whose duration is, by design, sufficiently large to accommodate its
computational needs. No other activity is scheduled until the end of the previous slot.
This property translates into small and bounded jitter, because time-triggered activities
do not interfere each other and they are solely affected by the scheduler’s overhead.
In addition, a time-triggered scheduler is comparatively simple, since all scheduling
decisions are taken at well-defined points dictated by the static plan. This means small
overhead, and therefore, less jitter. The main drawback attributed to time-triggered
scheduling is that plans may become difficult to design, specially when they are large
and involve a large number of activities.

In this paper we explore an alternative that combines both schemes for the same
application. Activities imposing strict jitter requirements are scheduled according to a
time-triggered plan, whereas the rest of tasks are scheduled by a priority-based sched-
uler. The whole set of tasks (time-triggered and priority-scheduled tasks) will be run-
ning under the same preemptive, priority scheduler, but time-triggered activities will
do it at the highest priority of the whole set. This is in order to ensure minimal latency
in their activations, given that they don’t suffer interference from (non-existent) higher-
priority tasks, and hence their release jitter can be kept controlled and short. The rest
of tasks execute at lower priority levels under the same dispatching policy (preemptive,
non-preemptive, EDF) or under a combination of several dispatching policies, e.g. by
making use of Ada’s priority specific dispatching. The Ada programming language is
very well suited for our purpose and we will be using it to illustrate our proposal.

Our approach also pays attention to providing temporal isolation to time-triggered
activities. A well-designed time-triggered plan guarantees, by construction, temporal
isolation among activities. However, run-time guarantees must be provided to cater
for potential overruns (execution of an activity could take longer than assumed due
to underestimation of its actual worst-case execution time). We want to guarantee
that an overrunning time-triggered activity will not jeopardise temporal isolation by
executing beyond its allocated slot. This would increase its interference on priority-
scheduled tasks and could even make it enter the slot of another time-triggered task
and delay its release. There are several ways to handle overruns, their appropriateness
being dependent on the application. One possibility is to abort the offending activity,
although this may not be an option for some applications. Another way is to take the
system to a degraded mode. Our proposed model and implementation support mode
changes at the time-triggered level, hence this is always a possibility. But more specific
to the overrun issue, our proposal also supports handling overruns by allowing the
offending activity to continue executing at a harmless, lower priority level. At that
priority level, they may find time to complete by the start of their next allocated time

slot, without interfering higher-priority levels. Our approach therefore supports these
three models. Which option to take is not imposed by our proposed scheduler, but
enforced by the particular pattern implementing the activity. We propose several such
patterns in this paper.

Although we confine most of our discussion to uniprocessor platforms, nothing
prevents our model to be applied on multiprocessors. This paper, however, focuses on
showing how the approach performs in terms of granting a reduced upper bound to the
release jitter of time-triggered activities, limiting our study to a uniprocessor example.
General considerations for application on multiprocessor systems are given in Section 8.

The rest of this paper is organised as follows. Section 2 presents related work. Sec-
tion 3 explains our system model for the time-triggered plan. Section 4 describes an
interface for the time-triggered scheduler and in Section 5 we propose several patterns
for time-triggered activities that make use of the scheduler functionalities. Implemen-
tation details are discussed in Section 6. We have conducted several experiments and
obtained jitter measurements that are presented and discussed in Section 7. Finally, in
Section 8 we give our conclusions and pointers to further work.

2 Related Work

The issue of jitter in control and communication systems has been tackled from different
angles. From a Control Engineering perspective, the work in [2] proposes to dynami-
cally adjust the controller’s parameters to compensate for the presence of jitter. Our
perspective is different, albeit complementary, since our focus is on the minimisation
of jitter at run time (while preserving the benefits of priority scheduling for tasks that
are more tolerant to variable jitter).

From a scheduling perspective, [3] proposes methods to transform an off-line sched-
ule into an equivalent fixed-priority task set that matches its runtime behaviour. This
transformation is however not always possible, in which case the original task set needs
be modified by splitting tasks into instances, hence generating a new task set. Our ap-
proach does not impose any transformations to the original task set, hence avoiding the
need for scheduling artefacts. In [4], the focus is on the control-scheduling co-design of
the system. A so called Control Server uses feedback from execution-time measurements
and dynamically modifies the sampling periods to optimise control performance. In
our proposal, the workload does not need to go through period modifications. Instead,
control tasks preserve their timing parameters because they always run at the highest
priority, irrespective of lower-priority events, hence experiencing minimal release jitter.
Changes to the workload are however possible in our approach by dynamically changing
the whole time-triggered plan. In [5], the authors propose to decompose control tasks
in three parts: initial, mandatory and final (the IMF model). This decomposition is
then used to assign higher priority to the parts that are most sensitive to jitter (initial
and final) which in turn reduces the amount of interference they suffer and therefore
contributes to reducing their jitter and improving the control performance. In [6], a
method is proposed to reduce delay variations caused by overload perturbations. Their
task model includes both IMF and non decomposed tasks and their method is to ad-
just their deadlines dynamically, according to a heuristic algorithm, so that tasks incur
less delay. The algorithm is however non trivial and it introduces additional runtime
overhead. In our proposed approach, control tasks are scheduled according to a time-
triggered plan, hence their release times are clearly identified and deviation from the

planned release points can only be caused by the scheduler’s overhead, but not from
higher-priority interference.

In summary, existing methods that tackle the jitter issue from a scheduling per-
spective, assume the system uses a priority scheduler and try to minimise the release
jitter of selected tasks by finding clever priority assignments and timing parameters
for them and by decomposing them into smaller parts. To the best of our knowledge,
there is no previous work that tackles this issue by combining the predictability and
controlled jitter of time-triggered schedules for jitter-sensitive tasks, with the flexibility
of priority scheduling for the rest of tasks, all running under the same priority scheduler
but granting the highest priority to the time-triggered plan.

3 System Model

In our system model, an offline, static time-triggered plan coexists with a set of concur-
rent, priority scheduled tasks. The priority scheme for these tasks can be either fixed
per task (e.g., deadline monotonic, DM) or dynamic per task, fixed per job (e.g., earli-
est deadline first, EDF). These priority-based models have been extensively described
in the literature and are fully supported in Ada [7]. Ada also supports the concept
of priority-specific dispatching, which makes it possible to have a combination of dis-
patching policies conveniently spread over priority bands. In the following subsections
we describe the system model for the static time-triggered plan, both in regard to
what defines a plan and what are the actions taken by the time-triggered scheduler,
and when those actions are executed. By assigning the time-triggered plan the highest
priority, the set of priority scheduled tasks does not interfere the execution of the plan.

3.1 The Time-Triggered Plan

A time-triggered plan is described by an ordered sequence of time slots. Figure 1 shows
a 6-slot example plan. Each slot has its own sequence number (a natural number), and
is characterised by two parameters: a work identifier, (Work Id), an integer value
ultimately referring to either a piece of user-provided application code or a predefined
scheduler action; the slot duration, a time interval after which the next slot starts. All
scheduling decisions are made exclusively at the beginning of each slot. When designing
the plan, the slot duration should be made large enough to accommodate the execution
of the work denoted by the slot’s work identifier

For example, Slot 2 in Figure 1 allocates 300 time units for the execution of Work 3.
The whole plan sequence starts at a given time (identified here as time 0) and each
slot starts right after the end of its predecessor in the plan. In the absence of mode
changes (see later), the plan is repeated cyclically. In some cases, and for some types
of slot, the slot duration may be zero. We consider three types of slots, depending on
the kind of activity that must be executed during the slot duration:

– A regular slot defines a time interval for the execution of an application-specific
activity. It is denoted by a regular Work Id and a strictly positive slot duration.
For regular Work Id we mean a positive integer corresponding to a regular work
identifier, i.e. one that ultimately refers to a piece of user-supplied application
code. The duration of a regular slot must be, by design, sufficient to accommodate
the worst-case execution time of that work – we will consider overrun handling in
subsection 3.2. In Figure 1, slots 0, 1, 2 and 4 are regular.

The following two types of slots correspond to scheduler actions exclusively and
they have no associated application-specific activity.

– An empty slot defines a time interval during which no user activity is planned.
This is useful for inserting gaps in the plan where they are needed, making the CPU
available to priority scheduled tasks. Note that, even though there is no application-
specific activity to execute during an empty slot, there will be scheduler actions
executed at the beginning of the slot, as described in subsection 3.2. Empty slots
use the special value zero as Work Id. Slot 5 in Figure 1 is an empty slot.

– A mode-change slot defines a point in time where it is possible to substitute the
current plan with a new one. This polling approach is consistent with the nature
of time-triggered scheduling, although the definition of mode-change slot provides
an extra degree of flexibility, since the designer can place these polling points
wherever the system can admit a mode change. At the start of a mode-change
slot, the scheduler will check whether there is a pending mode-change request to
process. If there is one, then the new plan will start executing at the end of the
mode-change slot. The change will be immediate if the mode-change slot duration
is defined to be zero. The ability to change mode (substitute the current plan with a
new one at run time) introduces a degree of flexibility that off-line, static schedules
do not possess by nature. The inclusion of mode change slots provides a flexible
means to specify in which points of the plan a mode change can be enforced. Mode
change slots (such as Slot 3 in Figure 1) are identified by Work Id = −1.

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

0 200 500 800 1000 1300 1500

1,200 2,300 3,300 -1,200 2,300 0,200

Slot 0

Fig. 1. A time-triggered plan. For each slot, the first number is the work identifier and the
second is the slot duration. Slot 3 is a mode change slot. Slot 5 is an empty slot.

Note that each slot can accommodate at most one application-specific activity,
as opposed to the classic cyclic executive [8, 9]. This has several advantages: one is
that we want to have the highest possible control over release jitter, which cannot
be accomplished if several activities of varying execution times share the same slot;
another reason is that, with only one activity per slot, the scheduler only needs to
check one activity at a time for potential overrun (see next subsection), which helps
keep the scheduler simple, and consequently helps keep release jitter small. Another
substantial difference is that each slot may have a different duration, as opposed to the
fixed duration of minor frames in the classic cyclic executive.

3.2 The Time-Triggered Scheduler

The time-triggered scheduler is the element of the system that enforces the timely
execution of the time-triggered plan. This includes not only releasing the activities
at their predefined release times, but also controlling that all activities behave as per

the plan’s design. In particular, the scheduler must check and take correcting actions
for possible overruns, i.e., activities whose actual execution time may exceed their
allocated slot duration. The scheduler must also give support to mode changes, as
described in the previous subsection. Contrary to the case of priority-based schedulers,
where scheduling decisions are taken at arbitrary points in time, all the decisions and
actions of the time-triggered scheduler must be taken and executed at predefined points
in time; in our case, at the start of each slot. Note that this is not necessarily a periodic
event, since slots may have different durations.

At the start of any slot, the scheduler checks whether there is still pending work
from the previous slot. Since the slot duration must accommodate, by design, the worst-
case execution time of its work, continued execution of an activity from the previous
slot constitutes an overrun. There are several possible ways to treat this situation. One
possibility is to lead the system to a fail-safe state (as in [10]), which can be achieved
by means of a mode change as we will show later. For the rest of this paper, we take a
less drastic approach and allow the offending activity to continue executing at a lower
priority, so that it only affects a particular set of tasks in the system (including an
empty set, if the overrunning activity is set to background priority). The particular
demoted priority can be specified for each activity as will be shown in the following
sections. After this overrun check, the scheduler takes different actions depending on
the type of slot:

Regular slot: The scheduler releases the execution of the slot’s activity, denoted by
its regular Work Id, and assigns it the time-triggered level priority.

Empty slot: No time-triggered activity needs be executed until the arrival of the next
slot. During an empty slot, time is fully available for priority scheduled tasks.

Mode change slot: The scheduler checks whether there is a pending mode change
request. If there is one, then the current plan is substituted with the new mode
plan (which may be totally different) and the next slot will be the first slot of the
new plan. Otherwise, the slot duration is also available for priority scheduled tasks.

The actual implementation details of mode changes depend on the concrete plat-
form. Ideally, the hardware includes enough memory resources to allocate all the re-
quired time-triggered tasks for all modes. On platforms with scarce resources however,
it may be necessary to delete old-mode tasks and load new-mode tasks to memory.
The time needed for these operations, as well as any additional overhead incurred to
enforce the mode change, can be absorbed by the mode-change slot duration.

4 API for Time-Triggered Plans

We propose an Application Program Interface (API) for Ada programs to use time-
triggered plans, possibly in combination with other concurrent, priority scheduled tasks.
The API for time-triggered plans is provided via the Ada package Time Triggered Scheduling.
Listing 1 shows the most relevant aspects of its specification.

The type Any Work Id refers to work identifiers in general, including regular and
special work identifiers (such as empty slots and mode change slots, as described in
subsection 3.1). Subtype Special Work Id covers the negative range of Any Work Id, plus
the value zero, whereas subtype Regular Work Id refers to strictly positive numbers that
correspond to regular work identifiers. Constants Empty Slot and Mode Change Slot (assigned
in the private part of the package) identify their corresponding special work identifiers.

The record type Time Slot encapsulates the two defining elements of time slots: their
duration and the work identifier for that slot. Additionally, we include the record field
Next Slot Separation , whose value is to be supplied at design time, indicating the time
separation between the start of the current slot and the next slot in the plan allocated
to the same work. The use of this piece of information is further explained in Section 5.

A time-triggered plan is an ordered sequence of time slots, as represented by the ar-
ray type Time Triggered Plan. Additionally, the access type Time Triggered Plan Access provides
access to time-triggered plans, so that plans can be efficiently passed as parameters to
subprograms.

Listing 1. Time-triggered API (incomplete)

−− Context clauses omitted
package Time Triggered Scheduling is

type Any Work Id is new Integer;
subtype Special Work Id is Any Work Id range Any Work Id’First .. 0;
subtype Regular Work Id is Any Work Id range 1 .. Any Work Id’Last;
Empty Slot : constant Special Work Id ;
Mode Change Slot : constant Special Work Id;

type Time Slot is record
Slot Duration : Time Span;
Work Id : Any Work Id;
Next Slot Separation : Time Span; −− Distance to next slot of same Work Id

end record;
type Time Triggered Plan is array (Natural range <>) of Time Slot;
type Time Triggered Plan Access is access all Time Triggered Plan;

protected type Time Triggered Scheduler (Nr Of Work Ids: Regular Work Id)
with Priority => System. Interrupt Priority ’Last is
−− Setting a new time−triggered plan
procedure Set Plan (TTP : in Time Triggered Plan Access; At Time : in Time);
procedure Set Plan (TTP : in Time Triggered Plan Access; In Time : in Time Span);
−− Time−triggered tasks wait here for their activation
entry Wait For Activation (Work Id : Regular Work Id);

−− Features for composed task patterns
−− Continue TT task at default or given demoted priority
procedure Leave TT Level (Work Id : Regular Work Id);
procedure Leave TT Level (Work Id : Regular Work Id; Prio : System. Priority);
−− Release time of the last slot of a given Work Id
function Get Last Release (Work Id : Regular Work Id) return Time;
−− Duration of the last slot of a given Work Id
function Get Last Slot Duration (Work Id : Regular Work Id) return Time Span;
−− Separation between the start of the last slot and the next slot of a given Work Id
function Get Next Slot Separation (Work Id : Regular Work Id) return Time Span;

private
−− ... Further details in listing 4

end Time Triggered Scheduler;

private
Empty Slot : constant Special Work Id := 0;
Mode Change Slot : constant Special Work Id := −1;
−− ... Further details in listing 4

end Time Triggered Scheduling;

Listing 1 continues with the definition of protected type Time Triggered Scheduler, which
encapsulates all data and subprograms used to implement the time-triggered scheduler.
The type has a discriminant (Nr Of Work Ids) to specify the number of regular work
identifiers used by all plans in all modes. Based on this number, we define bounded data
structures (in the private part of the protected type, not shown here) that are needed
for the scheduler’s operation. The priority of the time-triggered scheduler is set to the
maximum to prevent interference from other parts of the system with its operations.

Care has been taken to implement all the provided operations using constant cost
subprograms. The protected procedure Set Plan sets a new plan (given by parameter
TTP) to be started after a given point in time – the two versions of Set Plan differ only
in using a relative or an absolute value for that starting time. A plan set by means
of Set Plan will start executing immediately after that starting time if there was no
plan running (it was the first plan to be set) or at the end of the next mode change
slot otherwise. The entry Wait For Activation suspends the calling task until the work
corresponding to its Work Id must be released, according to the current plan.

The rest of protected subprograms are useful for composed task patterns such
as those described in Section 5. With Leave TT Level, a time-triggered work requests
to continue executing at a default demoted priority, or a particular priority for each
invocation. This is useful for works with an optional part that cannot be granted by the
plan due to an excessive or unbounded worst-case execution time. The optional part
can continue executing in competition with priority scheduled task and calculate the
best possible response in the available time, without interfering other planned activities.
The three getter functions provide the indicated values: the time when the calling work
was last released (Get Last Release); the duration of the slot in which the work was last
released (Get Last Slot Duration); and the time distance between the work’s current slot
and the next slot in the plan that is allocated to that work (Get Next Slot Separation). The
following Section shows how different patterns can take advantage of these functions.

5 Patterns for Time-Triggered Tasks

Common practice in time-triggered systems is to have all activities implemented by
subprograms that are directly called from the scheduler. We have taken a different
approach, whereby every activity (work) is executed by its own associated Ada task:
there is one task behind each work. Before we justify this implementation decision, note
that we are considering time-triggered schedules as part of a more complex system that
includes also other priority-scheduled tasks. Hence we are not imposing here a special
requirement on the operating system or runtime support: a priority-based, preemptive
scheduler is given for granted. Our approach is to implement each time-triggered work
with a high-priority task and let the RTOS decide which task to execute at a given time,
be it a time-triggered task or a priority-scheduled task. In addition, the implementation
must also be prepared for demoting overrunning time-triggered tasks, as explained in
Section 3. This feature alone requires that works must be executed by tasks whose
priorities can be changed by the scheduler at run time. Hence we use task types to
define patterns. We observe however that communication between works requires pro-
tected objects (not just shared memory) if we allow overrunning time-triggered tasks
to continue executing at a demoted priority beyond their allocated slot, concurrently
with other tasks. Using protected objects ensures that priority demotion of overrunning
tasks occurs only when data integrity is not compromised ([7], D.5.1).

The API described in Section 4 may be used for implementing time-triggered works
of different complexity. Listing 2 shows the simplest pattern for time-triggered tasks we
can think of, implemented by task type Simple Worker. The task first calls the scheduler’s
entry Wait For Activation . The scheduler will then keep the calling task blocked until a
slot arrives in which its work identifier is planned to execute. Upon completion of
the call to Wait For Activation , the task then executes its specific work actions. This is
repeated in an infinite loop. Worker tasks are created by instantiation of this task

type.1 Each instance must use a different value for the discriminant Work Id – this is
checked at runtime by the scheduler and the exception Program Error is raised if a task
tries to use another task’s work identifier. The discriminant Prio specifies the default
demoted priority, i.e., the priority to which the task will be demoted in case of overrun
or when it calls Leave TT Level without specifying a demoted priority value. We use the
CPU aspect here to set the affinity of all time-triggered tasks to the same processor,
although this is not compulsory. On a multiprocessor platform, each processor may be
running a different plan and each work task must be confined to its respective CPU.

Listing 2. Simple pattern for time-triggered tasks

TTS: Time Triggered Scheduler(3); −− A scheduler for 3 different works (arbitrary)

task type Simple Worker (Work Id: Regular Work Id; Prio : System. Priority)
with Priority => Prio, −− Demoted priority in case of overrun

CPU => 1; −− Set task’s affinity
task body Simple Worker is
begin

loop
TTS.Wait For Activation (Work Id); −− Block here until my slot arrives
Do My Work (...); −− Specific work actions

end loop;
end Simple Worker;

More elaborated task patterns are also supported by the scheduler described in
section 4. In particular, we propose the following additional patterns:

Worker With Cancellation Before causing an overrun, a task following this pattern
will cancel its activity, instead of following the default behaviour of continuing its
execution at a demoted priority level. This pattern is intended for tasks that cannot
contribute any value after their allocated slot duration, for example because their
result must be applied to a system output immediately.

The pattern modifies the Simpe Worker by enclosing the Do My Work sentence in the
abortable part of an Ada asynchronous transfer of control statement. The triggering
alternative is an absolute delay until the end of the current slot, hence the work
will be aborted before incurring overrun.2 This time is obtained by adding the slot
duration to its corresponding start time (Get Last Slot Duration + Get Last Release).

Worker With Initial Final This pattern is conceived for works that require con-
trolled and short jitter both at the beginning and towards the end of their activity.
The work is said to have an initial part (e.g., sensing a physical environment
variable) and a final part (e.g., the actuation phase of a control algorithm).

This pattern is a simple duplication of the loop actions of Simple Pattern: there are
two calls to Wait For Activation , one preceding the initial part and one preceding the
final part of the work. Note that the same effect can in principle be obtained
by two works, one for the initial part and one for the final. Using this pattern,
however, the advantage is that all communication between the initial and the final

1 Note that, for general application of the pattern, the actions represented by
Do My Work are different for each work. We have kept the patterns simple, but in
actual systems the task’s actions should be determined more flexibly (e.g. by using
access to subprogram or generic packages for task patterns).

2 To be on the safe side, we should subtract the worst-case duration of abort-deferred
operations in the work’s code. This would avoid the work to cross a slot barrier while
executing an abort-deferred operation.

part is immediate since both parts share the common task’s stack (no inter-task
communication is needed).

Worker With Initial Optional Final This pattern is for activities with initial and
final parts with strict jitter restrictions, plus an optional part between them. The
optional part may implement an optimisation algorithm for improving a quick and
dirty result obtained during the time allocated to the initial part. The execution
time of optimisation algorithms may be quite disperse, and hence it is not easy
to define their required slot duration: too large a duration would impose delays to
other activities; too short and the potential for run-rime overruns increases.

This pattern executes first the initial part until completion. After calling procedure
Leave TT Level, the task continues with the optional part at a demoted priority. When
the optional part is completed, the task will wait again for activation until the
arrival of the next slot corresponding to its work identifier. In that slot, the work’s
task executes the final part using the best result obtained during the optional part.
If the optional part has not finished by the time when starting the final part is due,
then the optional part is aborted (as in the Worker With Cancellation pattern). Listing 3
gives the implementation of pattern Worker With Initial Optional Final .

Listing 3. Pattern for works with initial, optional and final parts

task body Worker With Initial Optional Final is
−− Common data to all parts goes here

begin
loop

TTS.Wait For Activation(Work Id);
Initial Work ; −− Do initial part
TTS.Leave TT Level(Work Id,Optional Part Prio); −− Prepare to start optional part
select

delay until TTS.Get Last Release(Work Id) + TTS.Get Next Slot Separation(Work Id);
then abort

Optional Work; −− Do optional part
end select ;
TTS.Wait For Activation(Work Id);
Final Work; −− Do final part

end loop;
end Worker With Initial Optional Final ;

Figure 2 shows the execution of an example plan with three time-triggered tasks
(work tasks 1, 2 and 3) and two priority-based tasks (T4 and T5). Work 1 is a
Simple Worker, work 2 is a Worker With Initial Final and work 3 uses the more elaborated
Worker With Initial Optional Final pattern. T4 and T5 execute at their lower priorities, us-

ing the time made available by empty slots and early completion of work tasks. Work
3 starts executing the initial part (marked 3I), which gets completed before the end of
the allocated slot duration. It then calls Leave TT Level to continue the execution of the
optional part (marked 3O) at a given priority, in competition with the rest of priority-
or time-triggered-scheduled tasks. In this case, the demoted priority is half way between
the priorities of T4 and T5. When the optional part completes, it calls Wait For Activation

to wait for the arrival of the final part slot (marked 3F). Note that the optional part
is abortable, hence it can be forced to not cause overrun. All we need to do is set
the delay of the triggering statement to the right value: by the arrival of the next slot
allocated to this work. We obtain our last activation time by using the above men-
tioned extension Get Last Release. To this time, we need to add the duration of all slots
in between the current slot and the next slot for the current Work Id. This imposes
a time cost (traversing the plan) that we do not want to charge on the scheduler at

Priority-based tasks

TT tasks

Wait_For_ActivationLeave_TT_Level

Separation between initial and final slots

3I1 2I 2F

31 2 Ø Ø 2 3

TT Plan

3O

3F

T4

T5

Fig. 2. Execution of a Worker With Initial Optional Final pattern.

run time. To avoid this overhead on the scheduler, we use the Next Slot Separation field of
Slot Type record. The separation to my next slot can be easily calculated at design time
and stored in the plan using this field, where the scheduler can read it immediately.
The API function Get Next Slot Separation returns precisely this value for a given Work Id.

6 Implementation Details

A thorough description of all implementation details is not possible here due to space
limitations. We will limit ourselves to the most relevant details in terms of their impact
on jitter, i.e., the actions taken by the scheduler to timely enforce the plan. We will
omit discussing the implementation details of (much less frequent) mode changes.

As shown in Section 4, a time-triggered scheduler is enclosed in a protected object
with the highest priority. This grants mutually exclusive access to it. Listing 4 shows the
private parts of package Time Triggered Scheduling and protected type Time Triggered Scheduler,
which were omitted in Listing 1. They include all required types and state variables
needed for the time-triggered scheduler to enforce the execution of the plan according
to the model described so far.

Listing 4 shows the private details of the time-triggered scheduler. The private part
of the protected type includes the entry family Wait Until Released, with as many members
as work identifiers used in the system (across all modes). When a worker task calls
the scheduler’s entry Wait For Activation , it is ultimately requeued to its corresponding
entry family member, where it waits until its specific barrier is open by the scheduler.
All barriers are simple booleans stored in Work Control, one per work identifier – more
specifically, the field Allow Release of the record type Work Info.

Registration of work tasks in the plan is automatically handled by the scheduler
the first time a task calls Wait For Activation . Registration consists in taking note of the
caller’s Task Id and its default demoted priority, taken from the caller’s base priority.

Additional checks are enforced by the scheduler to make sure the calling task is the
one that registered for the specified work identifier. Program error is raised otherwise.

Listing 4. Private parts of scheduler package and protected type

package Time Triggered Scheduling is
... −− Types for storing runtime information
type Work Info is private ;
type Work Info Array is array (Regular Work Id range <>) of Work Info;

protected type Time Triggered Scheduler (Nr Of Work Ids: Regular Work Id) ... is
−− See full spec in Listing 1

private −− Of protected type
entry Wait Until Released (1 .. Nr Of Work Ids); −− Entry family: one entry per work
procedure MC Handler (Event : in out Timing Event); −− Handler for mode change timing event
procedure NS Handler (Event : in out Timing Event); −− Handler for new slot timing event
procedure Change Plan (At Time : Time); −− Enforce plan change
procedure Update Slot Info ; −− Update indexes and times to new slot
Current Plan, Next Plan : Time Triggered Plan Access := null ; −− Current and next plans
NS Event, MC Event : Timing Event; −− New Slot and Mode Change TEs
Current Slot Index , Next Slot Index : Natural:= 0; −− Relevant indexes and times
Next Mode Release, Next Slot Release : Time := Time Last;
Work Control : Work Info Array (1.. Nr Of Work Ids); −− Runtime work info

end Time Triggered Scheduler;
private −− Of package

...
type Work Info is record

Is Running: Boolean:= False; Demoted Priority: System. Priority := System. Priority ’ First ;
Work Task Id: Task Id:= Null Task Id ; Allow Release : Boolean:= False;
Last Release : Time:= Time Last; Last Slot Index : Natural:= 0;

end record;
end Time Triggered Scheduling;

Listing 5. Handler for the new slot timing event

procedure NS Handler (Event : in out Timing Event) is
Current Work Id : Any Work Id; Now : Time;

begin
−− Check for overrun (Current Slot Index refers to the just expired slot)
if Current Slot Index in Current Plan’Range then

Current Work Id := Current Plan (Current Slot Index).Work Id;
if Current Work Id in Regular Work Id and then −− Regular work

Work Control(Current Work Id).Is Running then −− Still running => demote
Set Priority (Work Control(Current Work Id).Demoted Priority,

Work Control(Current Work Id).Work Task Id);
end if ;

end if ;
−− Prepare to process current slot
Now := Next Slot Release; −− Start time of current slot
Update Slot Info ; −− Update Current Slot Index and Next Slot Release
Current Work Id := Current Plan(Current Slot Index).Work Id; −− Obtain current Work Id
case Current Work Id is −− Process current slot actions

when Mode Change Slot =>
if Next Plan /= null and then Next Mode Release <= Now then

Change Plan (Next Slot Release); −− Enforce new plan at the end of MC slot
else

NS Event.Set Handler (Next Slot Release , NS Handler’Access); −− Reprogram NS Event
end if ;

when Empty Slot =>
NS Event.Set Handler (Next Slot Release , NS Handler’Access); −− Reprogram NS Event

when Regular Work Id’Range => −− It’s a regular slot
Work Control(Current Work Id).Allow Release := True; −− Release the work’s task
NS Event.Set Handler (Next Slot Release , NS Handler’Access); −− Reprogram NS Event

when others =>
raise Program Error with "Undefined Work Id";

end case;
end NS Handler;

The scheduler may be triggered by two possible timing events: NS Event, which sig-
nals the arrival of a new slot, and MC Event for mode change events. Their handlers
are, respectively, NS Handler and MC Handler. As justified above, here we describe only the
handling of the new slot event, implemented by protected procedure NS Handler.

Other objects declared in the private part of protected object Time Triggered Scheduler

include Change Plan, which assigns control variables and programs the NS Event timing
event for the first slot of the next plan to switch to; Update Slot Info, also a simple pro-
cedure that updates control variables when a new slot starts; eight control variables
used by the scheduler; and Work Control, the array of work control blocks.

Listing 5 shows the handler for the timing event signalling the arrival of a new slot
(NS Handler). According to the model described in Section 3, there are different checks
to make at the start of every slot. The first one is to detect overrunning work from the
just expired slot. The two nested if statements check that the task associated to the
previous slot is still running, in which case it is demoted to its Demoted Priority, which is
retrieved from its corresponding work control block. The task will continue at a non-
disturbing priority level, where its interference is bounded to what is acceptable by the
rest of application tasks.

The handler then goes on with processing the just started slot. After updating some
indexes and times, the new slot is processed in a case statement. If it is a mode change
slot and there is a pending mode change request (a revious call to Set Plan has set a
non null value for the Next Plan control variable), then the new mode is enforced at the
end of the current slot if the starting time of the new plan is not in the future – if it
happens to be in the future, then the mode change handler (not described here) will
take care of changing the plan. If there is no pending plan change to process, then the
new slot timing event is reprogrammed for the start time of next slot. In the case of
an empty slot, we just need to reprogram the next slot timing event. If it is a regular
slot, then the scheduler opens the barrier for the work task, which will be released at
the highest priority immediately after completion of the handler, and reprograms the
new slot timing event. In the body of each member of Wait Until Released, where works
wait to be released by the scheduler, the task’s priority is set to the time-triggered
level (it could have been demoted due to a previous overrun, or a call to Leave TT Level,
or it could be the first activation of the task). The other two simple operations in
Wait Until Released are to close again its barrier and to mark the work as running in its
work control block.

We note that all the required scheduler functionality can be implemented using
three types of sentences: simple assignments, setting one task’s priority, and setting
one timing event. How efficiently these two last operations operations are supported
by the runtime is of crucial importance to keep the scheduler’s overhead small and
hence to cause minimal jitter to work tasks. The time needed to release a work task
contributes also to the scheduler’s overhead; but that would be the only blocked task in
its corresponding Wait Until Released member, which contributes to shorten the completion
of that protected action.

7 Experimental Results and Discussion

In order to evaluate the performance of the proposed approach, we have conducted
experiments to measure release jitter of a combined set of tasks: three time-triggered
tasks plus two deadline monotonic tasks. The system matches the one depicted in
Figure 2.

The two deadline monotonic tasks, T4 and T5, execute at lower priorities 6 and 4,
and have periods of 325 and 500 ms, respectively. The total plan duration is 1200 ms
and it contains the following sequence of 7 slots: 100 ms for W1; 200 ms for WI2; an
empty slot of 300 ms; 100 ms for WI3; an empty slot of 200 ms; another 200 ms for
WF2; and finally 100 ms for WF3.

We compiled this system for MaRTE OS [11] in bare machine configuration and
executed it on two hardware platforms, one using a Celeron CPU at 1.8 GHz and the
other using an older Pentium III at 800 MHz. Figure 3 shows cumulative frequency
histograms of release jitter measured on both platforms for all tasks in the system.
Note that the X axes are pseudo-logarithmic and cover the range from 0 to 1 second.

Celeron @ 1.8 GHz

Pentium III @ 800 MHz

Fig. 3. Cumulative frequency histograms of jitter, measured in ms.

On both platforms the results are comparable in terms of trend. Priority scheduled
tasks T4 and T5 experience a wide range of jitter values. In 50 to 60 % of the cases,
jitter is comparable to that of time triggered tasks, but then there is a slowly growing

trend with release jitters up to 140 ms of T5 on the Celeron and 395 ms on the slower
Pentium III. This makes T4 and T5 inappropriate for implementing control algorithms
or precisely synchronised communications. Time-triggered tasks experience a maximum
jitter of 272 µs on the Celeron and 702 µs on Pentium III. Furthermore, in 98.5 % of
the cases, jitter on time-triggered tasks was below 30 µs on the Celeron and 80 µs on
the Pentium III. Even considering the totality of cases, the results on maximum jitter
are 3 orders of magnitude apart between time-triggered and priority-scheduled tasks.

Looking at minimum jitter values, we observe (more clearly in the Pentium case)
that priority-scheduled tasks experience shorter minimum jitter than time-triggered
tasks. This occurs when they are released at idle times, when they are free from higher-
priority interference. This was expected because releasing a time-triggered task has the
additional overhead of the timing event, plus priority promotion, plus completing the
protected action implemented by the Wait Until Released entry.

8 Conclusions and Future Work

This paper has proposed and explored an approach that allows a time-triggered plan to
run under the same priority scheduler where other priority-scheduled tasks are running.
By using the highest priority level for the time-triggered schedule, and controlling the
scheduler by means of a timing event, the effect is a two-level scheduler that ensures
precedence of time-triggered activities over priority-scheduled tasks, which is essential
to keep release jitter low for time-triggered activities.

We have also proposed several programming patterns for task time-triggered ac-
tivities, from the simplest cyclic pattern, to patterns accommodating the structure of
decomposed tasks, an approach proposed for control tasks that can also be used for
other purposes such as handling communications in networks requiring strict synchro-
nisation (e.g., the CAN bus).

Experimental data indicate that all time-triggered tasks are subject to similar inter-
ference, bounded to values that are, in the vast majority of cases, orders of magnitude
lower than the release jitter experienced by priority-scheduled tasks. Our approach nat-
urally accepts previously designed time-triggered plans, and facilitates the extension
of those plans with additional priority-scheduled tasks. There are other aspects of the
proposal, not covered in this paper, that are the subject of current and future work.
They include:

Use on multiprocessor platforms Although we have limited our experiments to a
single CPU, the approach presented in this paper is applicable to multiprocessor
platforms. In a fully partitioned system, each processor executes its own plan and
work tasks have their affinity statically assigned. A certain amount of migration is
also possible, whereby work tasks can alternate slots of plans supported by different
processors, to balance the overall time-triggered workload. Global scheduling of
work tasks (i.e. allowing them to migrate at arbitrary points in time) seems not
appropriate in this case, since plans assign slots to one and only one work task.

Schedulability analysis A schedulability analysis is needed to assess the feasibility
of the full task set, including both the time-triggered plan and the priority-based
scheduling levels. The plan can be guaranteed by construction, since it executes
at the highest priority level and suffers no interference from priority-based tasks.
But the analysis of priority-based tasks needs to take into account the interference
caused by the execution of the higher-priority plan. One possibility is to consider

the whole plan as a real-time transaction, as defined in the computational model
of [12]. The period of the transaction would be the length of the plan and each time
slot can be considered as a task of the transaction with a static offset equal to its
release time. Adjacent time slots can be considered as a single task in the equiv-
alent transaction. This transaction has the highest priority and the interference
introduced in lower priority levels can be computed as described in [12].

Tools and integration with real-time framework Designing a plan can be a dif-
ficult task, especially for multiprocessors and with a certain degree of migration.
Development of software tools to ease building and analysing these combined sys-
tems would be of great value. Additionally, the integration of this approach with
existing real-time frameworks (such as those proposed in [13–15]) would facilitate
the use of pre-designed periodic tasks patterns, and the independent handling of
modes at the two different levels, priority-based and time-triggered. We want to
explore the feasibility and properties derived from such integration effort.

References

1. Liu, C., Layland, J.: Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment. Journal of the ACM 20(1) (1973) 46–61

2. Mart́ı, P., Fuertes, J., Fohler, G.: Jitter Compensation for Real-Time Control
Systems. In: Real-Time Systems Symposium. (2001)

3. Dobrin, R.: Combining Off-line Schedule Construction and Fixed Priority Schedul-
ing in Real-Time Computer Systems. PhD thesis, Mälardalen University (2005)

4. Cervin, A.: Integrated Control and Real-Time Scheduling. PhD thesis, Lund
Institute of Technology (April 2003)

5. Balbastre, P., Ripoll, I., Vidal, J., Crespo, A.: A Task Model to Reduce Control
Delays. Real-Time Systems 27(3) (September 2004) 215–236

6. Hong, S., Hu, X., Lemmon, M.: Reducing Delay Jitter of Real-Time Control Tasks
through Adaptive Deadline Adjustments. In IEEE Computer Society, ed.: 22nd

Euromicro Conference on Real-Time Systems – ECRTS. (2010) 229–238
7. ISO/IEC-JTC1-SC22-WG9: Ada Reference Manual ISO/IEC 8652:2012(E), URL:

http://www.ada-europe.org/manuals/LRM-2012.pdf (2012)
8. Baker, T.P., Shaw, A.: The cyclic executive model and Ada. In: Proceedings IEEE

Real Time Systems Symposium 1988, Huntsville, Alabama. (1988) 120–129
9. Liu, J.W.S.: Real-Time Systems. Prentice-Hall Inc. (2000)

10. Pont, M.J.: The Engineering of Reliable Embedded Systems: LPC1769 edition.
Number ISBN: 978-0-9930355-0-0. SafeTTy Systems Limited (2014)

11. Aldea, M., González-Harbour, M.: MaRTE OS: An Ada Kernel for Real-Time Em-
bedded Applications. Reliable Software Technologies - Ada Europe 2001, Lecture
Notes in Computer Science 2043 (2001) 305–316

12. Palencia, J., González-Harbour, M.: Schedulability Analysis for Tasks with Static
and Dynamic Offsets. In: 9th IEEE Real-Time Systems Symposium. (1998)

13. Wellings, A.J., Burns, A.: A Framework for Real-Time Utilities for Ada 2005. Ada
Letters XXVII(2) (August 2007)

14. Real, J., Crespo, A.: Incorporating Operating Modes to an Ada Real-Time Frame-
work. Ada Letters 30(1) (April 2010) 73–85

15. Sáez, S., Terrasa, S., Crespo, A.: A Real-Time Framework for Multiprocessor Plat-
forms Using Ada 2012. In Romanovsky, S., Vardanega, T., eds.: 16th International
Conference on Reliable Software technologies – Ada-Europe 2011. Volume 6652.,
Springer (June 2011)

