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Abstract: In this work, active films based on starch and PVA (S:PVA ratio of 2:1) were developed
by incorporating neem (NO) and oregano essential oils (OEO). First, a screening of the antifungal
effectiveness of different natural extracts (echinacea, horsetail extract, liquid smoke and neem seed
oil) against two fungus (P. expansum and A. niger) was carried out. The effect of NO and OEO
incorporation on the films’ physical and antimicrobial properties was analyzed. Only composite
films containing OEO exhibited antibacterial and antifungal activity. Antibacterial activity occurred
at low OEO concentration (6.7%), while antifungal effect required higher doses of OEO in the
films. Incorporation of oils did not notably affect the water sorption capacity and water vapor
barrier properties of S-PVA films, but reduced their transparency and gloss, especially at the highest
concentrations. The mechanical response of the S-PVA films was also negatively affected by oil
incorporation but this was only relevant at the highest oil ratio (22%). S-PVA films with 6.7% of OEO
exhibited the best physical properties, without significant differences with respect to the S-PVA matrix,
while exhibiting antibacterial activity. Thus, the use of OEO as a natural antimicrobial incorporated
into starch-PVA films represents a good and novel alternative in food packaging applications.

Keywords: oregano essential oil; neem oil; water vapour permeability; mechanical properties; E. coli;
L. innocua; A. niger; P. expansum

1. Introduction

In the last few years, consumer demand for natural ingredients and foods without synthetic
preservatives has increased the popularity of natural antimicrobial agents. So far, many studies have
been carried out in order to take advantage of the antibacterial and/or antioxidant activities of natural
substances from different sources such as microorganisms, animals and plants [1].

Extracts from natural sources have been used against food spoilage since ancient times to extend
food shelf-life and to prevent foodborne diseases. Substances such as alkaloids, tannins, flavonoids
and phenolic compounds that are found in plant extracts are responsible for bioactivity [2,3]. These
substances have been widely used as food flavoring agents and most of them are generally recognized
as safe (GRAS) by the Food and Drug Administration (FDA). In Europe, extracts from natural resources
are regulated under Regulation EU 872/2012 that contains the list of flavoring substances authorized
for food uses.

Among bioactive plant extracts, it is well known that those from Echinacea (Echinacea purpurea),
field horsetail (Equisetum), neem (Azadirachta indica) or essential oils have shown antimicrobial activity
against foodborne pathogens or inhibited food spoilage. Significant antimicrobial activity has been
attributed to Echinacea extracts, in a series of in vitro tests, against Saccharomyces cerevisiae, various
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Candida species, Listeria monocytogenes and Staphylococcus [4,5]. Field horsetail has been also described
as an herb with antioxidant and antimicrobial properties. Some studies revealed its inhibitory effect on
the Aspergillus spp. and Fusarium spp. growth and toxin production [6–8]. Garcia et al. [9] confirmed
that a hydro-alcoholic extract of E. arvense inhibited the growth of Aspergillus flavus and Fusarium
verticillioides in maize seeds, especially at high water activity levels (simulating pre-harvest conditions).

Neem is also a non-toxic plant which possesses excellent antimicrobial properties [10–12].
In fact, Baswa et al. [13] revealed that the neem oil has bactericidal activity against 14 strains of
pathogenic bacteria such as Staphylococcus aureus [14], Staphylococcus typhus [15], and Escherichia coli,
Streptococcus mutans and lactobacilli [16]. On the other hand, Mahfuzul Hoque et al. [17] determined the
antibacterial activity of neem extracts against 21 strains of foodborne pathogens: Listeria monocytogenes,
Staphylococcus aureus, Escherichia coli O157:H7, Salmonella Enteritidis, Vibrio parahaemolyticus, and Bacillus
cereus, and five food spoilage bacteria: Pseudomonas aeroginosa, Psuedomas putida, Alcaligenes faecalis,
and Aeromonas hydrophila. They concluded that neem extracts generally showed higher antimicrobial
activity against Gram-positive bacteria than against Gram-negative, and none of the extracts showed
antimicrobial activity against E. coli O157:H7 and Salmonella Enteritidis. The mechanism of action of the
neem extracts is mainly attributed to the inhibition of cell-membrane synthesis in the bacteria [13].

Nevertheless, the most widely used extracts from natural sources are essential oils which have
exhibited antimicrobial activity against a wide spectrum of bacteria and fungi. They are constituted by
hydrophobic, volatile compounds with low molecular weight [18]. Among them, the oregano essential
oil is one of the most effective antimicrobial oils and its active properties have been demonstrated
in numerous studies [19–21]. These have been mainly attributed to carvacrol, thymol, γ-therpinene
and p-cymene [22–24]. The mode of action of the major components, carvacrol and thymol, as
explained by Burt [22], consists of the disintegration of the outer cell membranes of bacteria, releasing
lipopolysaccharides and increasing the permeability of the cytoplasmic membrane to ATP. Some
authors reported that gram-positives bacteria are slightly more sensitive to the essential oil action than
gram-negatives, according to the described mechanism [22,25,26].

Another natural antimicrobial agent is the traditional wood smoke that has been used for
centuries to preserve food quality on the basis of its antioxidant and antimicrobial properties [27,28].
The antimicrobial properties of the pyrolysis condensate or “liquid smoke” from different woods,
with different levels of phenols, carbonyl compounds and organic acids, against Staphylococcus
aureus, Aeromonas hydrophila, Salmonella, Listeria monocytogenes and Escherichia coli have been recently
studied [27].

In regards to the incorporation of antimicrobial agents into food systems, a new concept has
gained increasing acceptance in recent years, which is the incorporation of bioactive natural extracts in
food packaging, thus obtaining active packaging materials [24]. In this sense, the use of active coatings
in postharvest or minimally processed fruits and vegetables, cheeses, meats, etc. or the development of
bioactive films for food packaging is one of the reasons for the recent gain in importance of natural
bioactive substances.

Incorporation of bioactive substances in food coatings or packaging films shows some advantages,
including that the compounds are not directly exposed to external conditions [29], they can act only at
the surface level and can be applied at any stage of the food supply chain [30,31]. Thus, natural agents
have been incorporated into a wide spectrum of natural and synthetic polymer matrices to obtain
active materials [32], although no previous studies about the incorporation of bioactive substances
into starch-PVA blends has been found, despite that recent studies reported different benefits of this
blend film in terms of water vapor barrier and mechanical properties. Starch-PVA films were much
more extensible and stable throughout storage and exhibit lower water sorption capacity than pure
starch films [33]. However, the incorporation of antimicrobial substances can affect the film properties
which are relevant for a specific target application, such as barrier capacity to water vapour, oxygen,
CO2 or aroma compounds and mechanical and optical properties [34].

The aim of this work was to obtain bioactive S-PVA films for extending the food shelf life by
controlling the microbial spoilage. To this end, the antifungal activity of different natural compounds
(Echinacea and horsetail extracts, liquid smoke and neem seed oil) against two fungus (P. expansum
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and A. niger) was tested at different concentrations. Afterwards, on the basis of the obtained, and
previously reported, results, neem oil and oregano essential were incorporated into S-PVA films to
analyze their effect on the barrier, optical and mechanical properties of the films as well as the film
antimicrobial activity against two fungus, P. expansum and A. niger and two bacteria, L. Innocua and
E. Coli.

2. Materials and Methods

2.1. Materials

Pea starch (S) was purchased from Roquette Laisa España S.A. (Benifaió, Valencia, Spain), poly
(vinyl alcohol) (PVA) (Mw: 89,000–98,000, degree of hydrolysis >99%, and viscosity at 4% H2O,
20 ˝C is 11.6–15.4 cP) was obtained from Sigma Aldrich Química S.L. (Madrid, Spain) and glycerol
and magnesium nitrate-6-hydrate were provided by Panreac Química S.A. (Castellar de Vallès,
Barcelona, Spain).

Different natural antimicrobial substances used were: echinacea (E) and horsetail extract (HS)
extract from Soria Natural S.A. (Lérida, Spain), liquid smoke (LS), provided by G. Mariani & C. S.p.a.
(Cellatica, Italy), neem oil (NO) purchased from Magnolia Holland Ibérica S.A. (Vilassar de Mar,
Barcelona, Spain) and oregano essential oil (OEO) from Herbes del Molí (Benimarfull, Alicante, Spain).

Stock culture of Escherichia colli (CECT 515), Listeria innocua (CECT 910), and Asperguillus niger
(CECT 20156) supplied by Colección Española de Cultivos Tipos (CECT, Burjassot, Spain) were kept
frozen (´25 ˝C) respectively in Tryptone Soy Broth (TSB, Scharlab, Barcelona, Spain) for bacteria and
Potato Dextrose Broth (Scharlab, Barcelona, Spain) for fungus, supplemented with 30% glycerol.
Penicillium expansum was provided from the culture collection of Department of Biotechnology
(Universitat Politècnica de València, Valencia, Spain).

2.2. Preparation of Film Forming Dispersion and Films

Films were obtained by solvent casting procedure after the preparation of the corresponding film
forming dispersions (FFDs). First, starch (2% w/w) was dispersed and heated in an aqueous solution
at 95 ˝C for 30 min to induce starch gelatinization. Thereafter, the dispersion was homogenized using
a rotor-stator homogenizer (Ultraturrax D125, Janke and Kunkel, Germany) at 13,500 rpm for 1 min
and 20,500 rpm for 3 min. Afterwards, PVA was incorporated to the pregelatinized starch dispersion
in a S:PVA ratio of 2:1, and heated, while stirred, at 95 ˝C for 30 min until complete dissolution.
Finally, glycerol was added at a starch:glycerol ratio of 1:0.25, on the basis of previous studies [33].
This FFD was used to obtain the control films (S-PVA) and was also used to incorporate the different
antimicrobial substances: oregano essential oil (OEO) or neem oil (NO). These were incorporated into
the films at two different ratios with respect to the starch, 1:0.125 (S-PVA-1OEO and S-PVA-1NO) and
1:0.5 (S-PVA-2OEO, S-PVA-2NO), which corresponds to 6.7 and 22 g/100 g total solids in the film,
respectively. Afterwards, The FFD was homogenized at 12,500 rpm for 4 min to disperse the lipids.

Controlled volumes of film-forming dispersions (equivalent to 1.5 g of total solids) were cast into
levelled Teflon casting plates (15 cm diameter) and dried at 25 ˝C and 45% RH for 48 h. Then, they
were peeled intact from the plates and were conditioned at 53% RH using magnesium nitrate-6-hydrate
saturated solution at 25 ˝C until further analysis.

2.3. Physical Properties of Films

2.3.1. Film Thickness

Thickness of the films was measured at six random positions with a Palmer digital micrometer to
the nearest 0.0025 mm.

2.3.2. Moisture Content

The moisture content of the films (MC), equilibrated at 53% RH and 25 ˝C for one and five weeks,
was analysed by drying the samples in a vacuum oven at 60 ˝C for 24 h. Later on, the pre-dried
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samples were placed in desiccators containing P2O5 until reaching constant weight. Five replicates per
film formulation were considered.

2.3.3. Water Vapour Permeability

Water vapour permeability (WVP) was evaluated in the films equilibrated at 25 ˝C and 53% RH
after one and five storage weeks, following the ASTM E96-95 gravimetric method [35] by using Payne
permeability cups (Payne, elcometer SPRL, Hermelle/sd Argenteau, Belgium) 3.5 cm in diameter. The
temperature was 25 ˝C and the relative humidity gradient was 53%–100%, which was obtained using
magnesium nitrate-6-hydrate and pure water, respectively. Cups were introduced into desiccators and
these into a temperature-controlled chamber at 25 ˝C. Weight control of the cups was performed every
2 h using an analytical balance (˘0.00001 g). The water vapour transmission (WVTR) was determined
from the slope obtained from the regression analysis of weight loss data versus time, once the steady
state had been reached, divided by the film area. Five replications were carried out for each type
of film.

2.3.4. Internal Transmittance

The transparency was determined by applying the Kubelka–Munk theory for multiple scattering
to the reflection spectra obtained in a spectrocolorimeter CM-3600d (Minolta Co., Tokyo, Japan) with a
30 mm illuminated sample area. This theory assumes that each light flux which passes through the
film is partially absorbed and scattered, which is quantified by the absorption (K) and the scattering (S)
coefficients. Transparency (K/S) was calculated, as indicated by Hutchings [36], from the reflectance
of the sample layer on a white background of known reflectance and on an ideal black background.
Measurements were taken triplicate in samples equilibrated at 25 ˝C and 53% RH for one and five
weeks, using both a white and a black background.

2.3.5. Gloss

Gloss was measured using a flat surface gloss meter (Multi-Gloss 268, Minolta, Langenhagen,
Germany) at an angle of 60˝ with respect to the normal to the film surface, according to the ASTM
standard D523 [37]. Prior to gloss measurements, films were conditioned at 25 ˝C and 53% RH for
one and five weeks. Gloss measurements were carried out over a black matte standard plate and
were taken in triplicate. Results were expressed as gloss units, relative to a highly polished surface of
standard black glass with a value close to 100.

2.3.6. Mechanical Properties

Mechanical properties were measured with a Universal Test Machine (TA.XT plus, Stable
Micro Systems, Haslemere, UK) following the ASTM standard method D882 [38]. Equilibrated
film (25 ˝C for 1 and 5 weeks at 53% RH) specimens (2.5 cm wide and 10 cm long) were mounted
in the film-extension grips (A/TG model) which were set 50 mm apart. The speed of the testing
machine during stretching was 50 mm¨ min´1 until breaking. Force-distance curves were obtained and
transformed into Stress-Hencky curves which allowed tensile strength at break (TS, MPa), percentage
of elongation at break (E, %) and elastic modulus (EM, MPa) to be obtained. Eight samples per
formulation were measured.

2.4. Microbiological Analysis

2.4.1. Screening Test of the Antifungal Natural Substances

For the screening test, samples of the potentially bioactive substances were introduced in tubes
with Potato Dextrose Broth-PDB (Scharlab S.L., Barcelona, Spain) at two concentrations, 1% and
10% (mL substance/100 mL PDB). Immediately after, each tube were inoculated with the inoculum
at 105 spores per mL for both Aspergillus niger and Penicillium expansum, previously sporulated on
Potato Dextrose Agar (PDA) at 25 ˝C. The inoculums’ concentration was adjusted by means of a
haemocytometer. As control samples, tubes without antimicrobial substance were considered. After
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24 h of incubation, a count of colonies was performed in triplicate. To this end, the tube content was
extended on petri dishes (Sterilin Limited, Gwent, UK) with PDA (Scharlab S.L., Barcelona, Spain) and
incubated for 5 days at 25 ˝C.

2.4.2. Antimicrobial Effectiveness of the Films

In vitro analysis of the antimicrobial effectiveness of films was carried out by a method adapted
from Kristo, et al. [39] and Sánchez-González, et al. [34] by using two fungus, Aspergillus niger and
Penicillium italicum, and two bacterias, Listeria innocua as Gram+ bacteria and Escherichia coli as Gram´.

Bacteria were regenerated by transferring a loopful of bacteria into 10 mL of TSB and incubating
at 37 ˝C overnight. A 10 µL aliquot from the overnight culture was again transferred to 10 mL of TSB
and grown at 37 ˝C to the end of the exponential phase of growth. This culture, appropriately diluted,
was then used for inoculation of the agar plates in order to obtain a target inoculums of 102 UFC/cm2.
Tryptone soy agar with 3% NaCl (Panreac química, S.A., Castellar del Vallés, Barcelona, Spain) was
used as a model solid food system (TSA-NaCl). Aliquots of TSA-NaCl (20 g) were poured into Petri
dishes. After the culture medium solidified, properly diluted overnight culture of each bacteria was
inoculated on the surface.

On the other hand, fungi were inoculated on potato dextrose agar (PDA) and incubated at 25 ˝C
until sporulation. The cells were counted in a haemocytometer and diluted to a concentration of
105 spores per mL. Aliquots of PDA (20 g) were poured into Petri dishes. After the culture medium
solidified, diluted spore solution of each fungus was inoculated on the surface.

The different tested films of the same diameter as the Petri dishes (containing or not antimicrobial
substance) were placed on the inoculated surface. Inoculated and uncoated Petri dishes were used as
control in the respective culture medium, for bacteria or fungi. Plates were then covered with parafilm
to avoid dehydration and stored for 12 days at 25 ˝C for fungi and 10 ˝C for bacteria strains. Selected
temperatures tried to simulate practical conditions of application. Microbial counts on plates were
carried out immediately after the inoculation and periodically during the storage period (0, 3, 5, 7, 10
and 12 days).

To this end, the agar was removed aseptically from Petri dishes and placed in a sterile fitter
stomacher bag (Seward, West Sussex, United Kingdom) with 100 mL of tryptone phosphate water
(Sharlab S.A., Barcelona, Spain). The bag was homogenized for 2 min in a Stomacher blender (Bag
Mixer 400, Interscience, France). Afterward serial dilutions were prepared and poured onto plates
with selective microbial medium. PDA plates were used to obtain the fungus counts while a selective
microbial medium was used for bacteria for obtain high selectivity and good colonies. E. coli was
counted in Violet Red Bilis agar (Sharlab S.A., Barcelona, Spain) plates and in the case of L. Innocua in
Palcam Agar Base (Sharlab S.A., Barcelona, Spain) supplemented with Palcam Selective Supplement
(Sharlab S.A., Barcelona, Spain). Then an incubation of 5 days at 25 ˝C for fungi and 24 or 48 h at 37 ˝C
for Listeria or E. coli, respectively, was carried out. All microbial counts were performed in triplicate.

2.5. Statistical Analysis

Statgraphics Centurion XV.I (Manugistics Corp., Rockville, MD, USA) was used for carry out the
statistical analysis of results through analysis of variance (ANOVA). To differentiate samples, Fisher’s
least significant difference (LSD) was used at the 95% confidence level.

3. Results and Discussion

3.1. Screening Test: Selection of Antimicrobials

Table 1 shows the viable cell counts obtained for Aspergillus niger and Penicillium expansum after
24 h in contact with the different extracts at the two different concentrations (1% v/v and 10% v/v) in
PDB liquid culture. Only neem oil at 10% showed a significant antifungal effect compared with the
control sample.
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Table 1. Viable counts of Aspergillus niger and Penicillium expansum after 24 h in contact with the
different plant extracts (E) in PDB at 25 ˝C.

E Concentration (v/v) A. niger Log(UFC/mL) P. expansum Log(UFC/mL)

Control - 4.36 ˘ 0.10 a 4.56 ˘ 0.09 a,b

Echinacea extract
1% 4.35 ˘ 0.16 a 4.7 ˘ 0.4 b

10% 4.44 ˘ 0.12 a 4.60 ˘ 0.10 a,b

Horsetail extract
1% 4.64 ˘ 0.07 b 4.64 ˘ 0.02 a,b

10% 4.72 ˘ 0.02 b 4.9 ˘ 0.2 c

Liquid smoke 1% 4.53 ˘ 0.05 a,b 4.56 ˘ 0.02 a

10% 5.04 ˘ 0.22 c 5.252 ˘ 0.002 d

Neem oil
1% 4.35 ˘ 0.10 a 4.34 ˘ 0.06 e

10% 0 d 0 f

a, b, c, d, e, f different letters in the same column indicate significant differences among formulations (p < 0.05).

The assay tubes were also subjected to a qualitative analysis after the incubation for one week
at 25 ˝C. As can be observed in Figure 1, for tubes containing different extracts, the sporulation of
both fungi occurred at surface level due to the vital necessity of the oxygen for fungi growth. Only
samples containing 10% concentration of liquid smoke or neem oil at 1 and 10% showed no fungi
sporulation, regardless of the fungi genera. These results partially agree with data of the viable cell
counts commented on above, where only neem oil at 10% inhibited the growth of both fungi, A. Niger
and P. expansum, showing fungicidal activity after 24 h of contact. This result and those previously
reported [17,40,41] justify the interest in neem oil extracts as an active additive for obtaining bioactive
films. According to the lack of notable antifungal activity of the rest of tested extracts, active films were
formulated with neem oil and with oregano essential oil with proved antimicrobial activity [19,22].
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Figure 1. Photographs of natural extracts (1%wt and 10%wt) in PDB broth, inoculated with both fungi,
A. niger and P. expansum, incubated for one week at 25 ˝C. E: echinacea extract; HS: horsetail; LS: liquid
smoke; NO: neem oil.

3.2. Physical Characterization of Bioactive Films

Uncontrolled migration of water is generally recognized as one of the biggest problems during
food storage [42]. Food coating or packaging can control or slow down this process if the water
sensitivity and barrier capacity of packaging or coating materials are adequate. So, these properties are
relevant in defining the functionality of the materials. Moisture content and water vapour permeability
of the obtained films were characterized in films conditioned at 53% RH for 1 and 5 weeks at 25 ˝C
and are shown in Table 2.
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Table 2. Moisture content (MC), water vapour permeability (WVP), internal transmittance at 450 nm (Ti) and gloss at 60˝ incidence angle of blend control and oil
composite films.

FILMS
MC (%) WVP (gmm/sm2kPa) Ti—λ = 450 nm (%) Gloss (60˝)

1W 5W 1W 5W 1W 5W 1W 5W

S-PVA 6.3 ˘ 0.5 a,1 7.9 ˘ 0.3 a,2 4.39 ˘ 0.14 a,b,1 5.1 ˘ 0.8 a,1 86.2 ˘ 0.6 a,1 85.9 ˘ 0.6 a,1 13.2 ˘ 1.6 a,b,1 12.9 ˘ 1.2 a,1

S-PVA-1OEO 4.4 ˘ 0.2 b,1 8.3 ˘ 0.2 b,2 4.6 ˘ 0.6 b,c,1 5.2 ˘ 0.5 a,1 84.5 ˘ 0.7 c,1 84.5 ˘ 0.7 c,1 14.2 ˘ 1.6 a,1 13.5 ˘ 0.3 a,1

S-PVA-2OEO 4.33 ˘ 0.13 b,1 7.66 ˘ 0.11 a,2 4.9 ˘ 0.5 c,1 4.7 ˘ 0.3 a,b,1 81.6 ˘ 0.2 b,1 79.5 ˘ 0.2 b,1 12.3 ˘ 1.2 b,1 10.7 ˘ 0.8 b,1

S-PVA-1NO 4.5 ˘ 0.3 b,1 7.0 ˘ 0.3 c,2 3.7 ˘ 0.3 a,1 3.6 ˘ 0.8 b,c,1 79.5 ˘ 0.8 e,1 77.9 ˘ 0.6 e,1 12 ˘ 3 b,1 11 ˘ 3 b,1

S-PVA-2NO 6.70 ˘ 0.13 a,1 6.69 ˘ 0.14 d,1 4.1 ˘ 0.4 a,b,1 3.9 ˘ 0.8 c,1 74.3 ˘ 0.8 d,1 71.2 ˘ 1.4 d,1 8.5 ˘ 0.9 c,1 7. 9 ˘ 0.3 c,1

a, b, c, d different letter in the same column indicate significant differences among formulations (p < 0.05). 1,2 different number in the same file indicate significant differences among
storage times (p < 0.05).
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The moisture content of the S-PVA blend films was 6.3 and 7.9% after 1 and 5 weeks of storage,
respectively, which indicates that equilibrium was not reached after 1 week. These values agree with
those previously reported by Cano et al. [33] for the same type of films. Films containing bioactive
substances showed lower moisture contents after 1 storage week, but no notable differences were
observed among water sorption capacity of the films after 5 storage weeks. This indicates that
the more hydrophobic nature of active films slow down the water sorption kinetics but did not
notably modify the equilibrium values. Films with the highest content of neem oil (S-PVA-2NO)
reached the equilibrium value after 1 storage week. The different behavior of the films could be
related with the specific interactions between the oil components and the matrix depending on the
concentration [19,23]. Oil components could be linked to hydroxyl groups available in starch and PVA
limiting polymer–water interactions, by hydrogen bonding, thus resulting in a decrease of the film
moisturizing rate [43].

WVP value for S-PVA films was similar to that previously reported by Cano et al. [33] for the same
type of films and no significant changes occurred in this value due to the storage time. Incorporation
of oils to the films did not provoke notable changes in the WVP values which were also constant
during storage. So, the structural changes introduced in the polymer matrices by oils did not suppose
significant changes in their water vapor barrier capacity.

The film thickness values ranged between 64 and 88 µm and were slightly influenced by the oil
incorporation; no significant effect was observed for neem oil, but incorporation of oregano essential
oil gave rise to slightly thicker films (83 ˘ 13 µm against 70 ˘ 14 µm for the rest of the films) despite the
constant value of the solid surface concentration used [44]. This increase in thickness can be attributed
to a less compact polymer matrix due to the weakening of the interchain forces provoked by the
interactions of the essential oil compounds with the polymer chains. Similar behavior was described
by Zivanovic et al. [21] and Benavides et al. [45] for oregano essential oil incorporated to chitosan and
alginate matrices.

The gloss and transparency of the films are relevant properties of coatings, since they have a direct
impact on the appearance of the coated product [34]. Figure 2 shows the internal transmittance spectra
in the visible light range (400–700 nm) of the films where the highest transparency was observed for
S-PVA blend films. Films containing oils exhibited lower transparency due to the presence of a lipid
dispersed phase into the polymer matrix, which promotes light dispersion, as has been previously
observed by several authors [46,47]. This behavior has also been reported for films containing both
neem and oregano oils [10,48,49]. Table 2 shows the values of Ti at 450 nm, where the largest difference
among the films was found. S-PVA films were the most transparent with Ti values around 86%
according to previous studies [33]. Ti values decreased in line with the ratio of dispersed lipid; the
higher the oil ratio, the lower the film transparency, due to the promotion of light dispersion by the
dispersed phase.

In general, Ti slightly decreased during the storage time, which could be attributed to an increase
in the film compactness of the polymer matrices in line with the progressive chain aggregation during
storage [33]. It is noticeable that neem oil gave rise to more opaque films, especially in the low wave
length range, which is due to contribution of the selective light absorption of neem oil components. In
this sense, the addition of oils to the films improved their light barrier property.

As concerns film gloss, Table 2 shows the values at 60˝ incidence angle. In general, gloss of films
was significantly affected by the amount of oil in the matrix; the higher the content, the lower the
gloss values. No significant changes (p > 0.05) in gloss occurred during storage although a decreasing
tendency was observed. Gloss is related to the surface roughness of the films [46,50] and, in this
sense, oil incorporation usually enhanced the presence of surface irregularities due to the flocculation
and creaming of oil droplets during the film drying step and their accumulation on the film surface.
Likewise, an excessive creaming could imply coalescence at surface level and the formation of a
lipid layer at the top of the film. Exceptionally, S-PVA-1OEO films were glossier than other films
containing oils, with values similar to the control film (S-PVA). This suggests that the oil droplets at
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this oil concentration are well stabilized in the film forming emulsion and no notable flocculation and
creaming occurred during the film drying step.

Foods 2016, 5, 0000 9/18 

 

The gloss and transparency of the films are relevant properties of coatings, since they have  

a direct impact on the appearance of the coated product [34]. Figure 2 shows the internal 

transmittance spectra in the visible light range (400–700 nm) of the films where the highest 

transparency was observed for S-PVA blend films. Films containing oils exhibited lower 

transparency due to the presence of a lipid dispersed phase into the polymer matrix, which promotes 

light dispersion, as has been previously observed by several authors [46,47]. This behavior has also 

been reported for films containing both neem and oregano oils [10,48,49]. Table 2 shows the values 

of Ti at 450 nm, where the largest difference among the films was found. S-PVA films were the most 

transparent with Ti values around 86% according to previous studies [33]. Ti values decreased in line 

with the ratio of dispersed lipid; the higher the oil ratio, the lower the film transparency, due to the 

promotion of light dispersion by the dispersed phase. 

 
(a) 

 
(b) 

Figure 2. Internal transmittance of control and composite films: (a) films containing oregano essential 

oil (OEO) and (b) films containing neem oil (NO) after one (1W) and five weeks (5W) of storage. 

In general, Ti slightly decreased during the storage time, which could be attributed to  

an increase in the film compactness of the polymer matrices in line with the progressive chain 

aggregation during storage [33]. It is noticeable that neem oil gave rise to more opaque films, 

especially in the low wave length range, which is due to contribution of the selective light absorption 

of neem oil components. In this sense, the addition of oils to the films improved their light barrier 

property. 

As concerns film gloss, Table 2 shows the values at 60° incidence angle. In general, gloss of films 

was significantly affected by the amount of oil in the matrix; the higher the content, the lower the 

  

Figure 2. Internal transmittance of control and composite films: (a) films containing oregano essential
oil (OEO) and (b) films containing neem oil (NO) after one (1W) and five weeks (5W) of storage.

Table 3 shows the mechanical parameters usually used to describe the film mechanical behavior:
elastic modulus (EM), tensile strength (TS) and percentage of elongation (E) at break. This behavior
is strongly dependent on the microstructural features of the films. TS is the maximum tensile stress
that the film can sustain without break, E % is the maximum change in length before breaking, and
the elastic modulus (EM) quantifies the film stiffness. Values of mechanical properties obtained for
S-PVA films agreed with those previously found by Cano et al. [33] for similar S-PVA blend films.
The mechanical properties of composite films were strongly affected by the oil concentration and
storage time.

In general, films containing oil showed poorer mechanical performance than control films,
especially when the highest oil concentration was added: lower values of EM and mechanical resistance
(TS) and, for the highest oil content, lower extensibility. This is typical behavior when heterogeneities
(oil droplets) are introduced in the matrix structure due to the lack of miscibility of components,
thus reducing the overall cohesion forces of the polymer networks [19,49]. In some cases, lipid
incorporation into the polymer matrices led to an increase in the film extensibility, when specific
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lipid–polymer interactions occurred with the subsequent plasticization effect which enhanced the
film’s stretchability [51].

Table 3. Elastic modulus (EM, MPa), tensile strength (TS, MPa) and percentage of elongation (E, %) of
blend control film and oil composite films.

FILMS
EM (MPa) TS (MPa) E (%)

1W 5W 1W 5W 1W 5W

S-PVA 506 ˘ 63 a,1 690 ˘ 44 a,2 26.8 ˘ 1.4 a,1 32.3 ˘ 1.6 a,2 40 ˘ 4 a,1 41 ˘ 3 a,1

S-PVA-1OEO 502 ˘ 50 a,1 329 ˘ 53 b,c,2 26 ˘ 2 a,1 20.6 ˘ 1.5 b,2 42 ˘ 11 a,1 61 ˘ 9 b,2

S-PVA-2OEO 271 ˘ 49 b,1 355 ˘ 37 b,1 4.33 ˘ 0.13 b,1 7.66 ˘ 0.11 c,1 4.9 ˘ 0.5 b,1 4.7 ˘ 0.3 c,1

S-PVA-1NO 413 ˘ 32 c,1 296 ˘ 11 c,2 21.5 ˘ 1.0 c,1 19 ˘ 2 d,1 44 ˘ 7 a,1 60 ˘ 17 b,2

S-PVA-2NO 174 ˘ 14 d,1 124 ˘ 20 d,1 7.2 ˘ 0.6 d,1 6.8 ˘ 0.7 e,1 11 ˘ 2 b,1 21 ˘ 6 d,2

a,b,c,d,e different letter in the same column indicates significant differences among formulations (p < 0.05);
1,2 different number in the same file indicates significant differences among storage time (p < 0.05).

For films with the highest oil content, tensile strength decreased with respect to S-PVA films in
more than 75% of the fils, and the percentage of elongation at break was also dramatically reduced
from 40% to 20% or 5% for films containing neem oil and oregano essential oil, respectively. On the
contrary, Hosseini et al. [49] reported an increase in the plastic deformation for fish gelatin-chitosan
films when the amount of oregano essential oil in the films (0.4 to 0.8%–1.2% w/v) was increased.

After five weeks of storage, S-PVA films showed an increase in their resistance to breakage as
well as in their rigidity whilst no significant changes in their elongation capacity were observed.
These changes can be attributed to the progressive increase in the matrix compactness in line with the
progress of chain aggregation. This is promoted by means of the establishment of further interactions
between both polymers, i.e., the formation of oxi (-O-) groups and hydrogen bonds to some extent
between the hydroxyl groups of the starch and PVA chains [33,52–54].

On the contrary, films containing NO and low concentration of OEO became more stretchable
during storage (p < 0.05). This behavior suggests that oil components’ interactions with the polymer
chains were progressively established, this contributing to a strong plasticization effect in the matrix
and inhibiting the polymer chain aggregation. The different behavior of films with the highest ratio of
the OEO could be explained by having a too high of an oil content for it be effectively entrapped in the
polymer network, giving rise to a predominant effect of network weakening.

Oregano essential oil at the highest ratio imparted the poorest mechanical response to the films
and, in general, better results were obtained for films containing the lowest levels of both oils (good
values of rigidity and resistance and the greatest stretchability). These films exhibit similar mechanical
parameters to some commercial plastics which are very flexible and resistant, such as those found
by Cano et al. [33] for low density polyethylene (LDPE) bags with similar thickness (EM = 370 MPa,
TS = 27 MPa and %E = 40%).

3.3. Antibacterial Activity of Composite Films

Population viability of Listeria innocua and Escherichia coli in control plates and in plates coated
with the different films is shown in Figures 3 and 4 respectively. For both bacteria, population increased
from 2.5 to 8 logs UFC/cm2 at the end of the storage period. No significant antimicrobial activity
(about 1 log reduction) was observed for S-PVA films without oil throughout the incubation time at
10 ˝C, where the bacterial growth was very similar to that of control plates (without film).

The incorporation of neem oil at both ratios (Figures 3b and 4b) did not improve the antimicrobial
properties of S-PVA films, even more, neem oil seems to promote the early growth of bacteria during
the first storage period, showing a larger population than S-PVA films. On the other hand, the
incorporation of oregano essential oil at the two proportions (Figures 3a and 4a) promoted antimicrobial
properties in S-PVA films, showing a significant antibacterial activity since the first storage time. This
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effect depended on the essential oil concentration. At the highest oil concentration (S-PVA-2OEO), films
showed bactericidal effect just two hours after the plate coating. Meanwhile, the lowest concentration
of this oil in the films (sample S-PVA-1OEO) only slowed down the bacterial growth during the
incubation period.
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Figure 3. Population viability of Listeria innocua in TSA-NaCl medium at 10 ˝C (a) films with and
without oregano essential oil (OEO) and (b) films with and without neem oil (NO). Mean values for
each incubation period and 95% LSD interval are included in the plot. (LSD = ˘0.05).

Different authors reported that films containing essential oils are more effective against
Gram-positive than against Gram-negative bacteria [19,26,34,49]. However, oregano essential oil
gave rise to S-PVA active films, with an antibacterial and bactericidal effect particularly stronger
against Gram-negative bacteria, as can be observed in Figures 3a and 4a. Similar results were also
reported by Muriel-Galet et al. [55] for the oregano essential oil embedded in ethylene–vinyl alcohol
copolymer (EVOH) films. This behavior has been previously described as a specific action of the OEO
compounds [22,56,57]. In this sense, the main components of OEO (carvacrol and thymol) are able to
disintegrate the outer membrane of Gram-negative bacteria, releasing lipopolysaccharides (LPS) and
increasing the permeability of the cytoplasmic membrane to ATP.
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Figure 4. Population viability of Escherichia coli in TSA-NaCl medium at 10 ˝C (a) films with and
without oregano essential oil (OEO) and (b) films with and without neem oil (NO). Mean values for
each incubation period and 95% LSD interval are included in the plot. (LSD = ˘0.07).

3.4. Antifungal Activity of Composite Films

The possible antifungal effect of developed S-PVA films against Penicillium expansum and
Aspergillus niger was analyzed at 25 ˝C. Figures 5 and 6 show the cell viability level, for 105 spores/mL
initial population, of P. expansum and A. niger, respectively. For both fungi, population increased from
2.5 to 6.5 log UFC/cm2 at the end of the incubation period in all cases, except for the films containing
the highest amount of OEO. Control plates (without film) and those coated with S-PVA films (without
oil) showed a similar trend without antifungal activity.

The incorporation of neem oil at both ratios did not improve the antifungal activity of the S-PVA
films despite the activity detected for this oil in the screening test. This could be due to the strong
entrapment of the oil compounds in the film structure, which inhibits their diffusion to the film surface
where fungal growth occurs. Neem oil is mainly constituted (about 87%) by long chain fatty acids (oleic,
stearic, and palmitic acids) [58], which can strongly interact with hydroxyl groups of the polymers,
thus limiting their diffusion to the film surface and so the exhibition of the antifungal effects.

The presence of oregano essential oil in the films affected the fungal growth of both fungi genera,
depending on its concentration in the matrix, as previously observed by Sánchez-González et al., 2010
tea tree essential oil embedded in chitosan films. At the lowest OEO level (S-PVA-1OEO), no antifungal
effect was observed against A. niger whilst the growth of P. expansum was inhibited throughout the
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first seven incubation days (2 log reduction with respect to the control film). Nevertheless, after seven
days of storage, no significance difference in the fungus growth with respect to the control film was
observed. This behavior could be due to the losses of active compounds over time, maintaining
adequate concentration of active films on the agar medium surface till seven days. After this time, the
low availability of the active compounds on the surface led to the growth of fungi due to the prevalent
contamination [34,39].

At the highest oregano oil concentration (S-PVA-2OEO), fungicide effect was observed just after
two hours of plate coating. No growth of fungi during the storage period was observed, thus indicating
the lethal fungicidal effect of the oil components (carvacrol and thymol) in agreement with those
reported by other authors [55].

From the obtained results, it can be deduced that OEO is highly effective in limiting the
growth of gram-positive and gram-negative bacteria embedded in the S-PVA films, even at very
low concentrations, and was effective to control fungus at moderate ratios. The higher effect on the
bacteria growth can be attributed to the simpler cellular wall of this microorganism as compared to the
fungal cell walls.

Foods 2016, 5, 0000 13/18 

 

Different authors reported that films containing essential oils are more effective against  

Gram-positive than against Gram-negative bacteria [19,26,34,49]. However, oregano essential oil 

gave rise to S-PVA active films, with an antibacterial and bactericidal effect particularly stronger 

against Gram-negative bacteria, as can be observed in Figures 3a and 4a. Similar results were also 

reported by Muriel-Galet et al. [55] for the oregano essential oil embedded in ethylene–vinyl alcohol 

copolymer (EVOH) films. This behavior has been previously described as a specific action of the OEO 

compounds [22,56,57]. In this sense, the main components of OEO (carvacrol and thymol) are able to 

disintegrate the outer membrane of Gram-negative bacteria, releasing lipopolysaccharides (LPS) and 

increasing the permeability of the cytoplasmic membrane to ATP. 

3.4. Antifungal Activity of Composite Films 

The possible antifungal effect of developed S-PVA films against Penicillium expansum and 

Aspergillus niger was analyzed at 25 °C. Figures 5 and 6 show the cell viability level, for 105 spores/mL 

initial population, of P. expansum and A. niger, respectively. For both fungi, population increased from 

2.5 to 6.5 log UFC/cm2 at the end of the incubation period in all cases, except for the films containing 

the highest amount of OEO. Control plates (without film) and those coated with S-PVA films (without 

oil) showed a similar trend without antifungal activity. 

 

 

Figure 5. Population viability of Penicillium expansum on PDA medium incubated at 25 °C. (a) Films 

with and without oregano essential oil (OEO) and (b) films with and without neem oil (NO).  

Mean values for each incubation period and 95% LSD interval are included in the plot. (LSD = ±0.05). 

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

Lo
g(

C
FU

/c
m

2
)

Days of storage

Control

S-PVA

S-PVA-1NO

S-PVA-2NO

LSD
b)

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

Lo
g 

(C
FU

/c
m

2
)

Days of storage

Control

S-PVA

S-PVA-1OEO

S-PVA- 2OEO

LSD
a)

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

Lo
g(

C
FU

/c
m

2
)

Days of storage

Control

S-PVA

S-PVA-1NO

S-PVA-2NO

LSD
b)

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

Lo
g 

(C
FU

/c
m

2
)

Days of storage

Control

S-PVA

S-PVA-1OEO

S-PVA- 2OEO

LSD
a)

Figure 5. Population viability of Penicillium expansum on PDA medium incubated at 25 ˝C. (a) Films
with and without oregano essential oil (OEO) and (b) films with and without neem oil (NO). Mean
values for each incubation period and 95% LSD interval are included in the plot. (LSD = ˘0.05).
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Figure 6. Population viability of Aspergillus Niger on PDA medium incubated at 25 ˝C. (a) Films with
and without oregano essential oil (OEO) and (b) films with and without neem oil (NO). Mean values
for each incubation period and 95% LSD interval are included in the plot. (LSD = ˘0.05).

4. Conclusions

Composite films based on starch-PVA blends, containing potentially antimicrobial oils, exhibit
antibacterial (L. innocua and E. coli) and antifungal (A. niger and P. expansum) properties when they
contain oregano essential oil (OEO), whereas active neem oil did not impart these properties to the
matrix. Antibacterial activity occurred at low OEO concentration (6.7% in the dried matrix), while
antifungal effect required higher doses of oil in the films. Incorporation of oils did not notably affect
the water sorption capacity and water vapor barrier properties of S-PVA films, but reduced their
transparency and gloss, especially at the highest concentration (22% in the dried matrix). Mechanical
performance of the S-PVA films was also modified by incorporation of oils but this was only relevant
at the highest oil ratios. For the lowest oil concentration, the mechanical properties of the S-PVA
composites were in the range of those of some commercially available bags, becoming slightly more
plasticized after five weeks of storage. Among developed composite films, those containing 6.7% of
OEO exhibited the best physical properties, without significant differences with respect to the S-PVA
matrix, while also exhibiting antibacterial activity. So, these active films containing oregano essential
oil represent a novel and good alternative for use in food packaging. These films could be used to
extend the shelf-life of products such as bread and cheese, and as a coating material in fruits such as
oranges, lemon and mangos by using only natural compounds with antimicrobial activity.
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