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Abstract

In this paper we propose a method of finding the initial equilibrium con-
figuration of cable structures discretized by finite elements applied to the
shape-finding of the railway overhead system. Absolute nodal coordinate
formulation finite elements, which take into account axial and bending de-
formation, are used for the contact and messenger wires. The other parts
of the overhead system are discretized with non-linear bars or equivalent
springs. The proposed method considers the constraints introduced during
the assembly of the catenary, such as the position of droppers, cable tension,
height of the contact wire, etc. The main result of the shape-finding problem
is the computation of the length of droppers. A comparison of the results
obtained for reference catenaries in the bibliography is also included.

Keywords: catenary, shape-finding, absolute nodal coordinate, overhead
system

1. Introduction

The overhead system is responsible for transmitting electrical power to
the locomotive in an uninterrupted flow of current and consists of two main
components: the catenary and the pantograph. The former is the static struc-
ture built over the railroad tracks to carry the contact wire. The pantograph
is the mechanism attached to the train that presses against the contact wire
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in such a way as to achieve a permanent contact that ensures power trans-
mission with the lowest possible contact force in order to minimize wear on
the system.

Simulating the dynamic interaction between the pantograph and the cate-
nary is a useful tool in the design of more efficient catenary systems. With
these tools designers can analyze, for example, the effects of the catenary
geometry or the properties of the cables on the contact force between panto-
graph and catenary. The number of codes developed in recent years [1–16]
is an example of just how important simulation is becoming in this field. A
common feature of most of the codes is that the cables are modeled using the
finite element method, mainly using prestressed beam formulations, like the
Euler-Bernoulli or Timoshenko beam theories. The absolute nodal coordi-
nate formulation (ANCF) proposed by Shabana [17, 18] is a cable model also
used in dynamic simulations of the catenary system, for example in [15, 16].
The pantograph is usually simplified as a lumped mass model, although some
codes incorporate a more complex multibody model [19, 20].

One concern of finite element models of cable structures like the catenary
system is how to obtain the initial configuration, i.e. the undeformed length
of the elements and the global position of every node in the mesh that is
in static equilibrium with external loads. This is usually referred to in the
bibliography as the shape-finding or shape forming of the structure. This is
a complex problem since cables are extremely flexible structures with highly
non-linear behavior and undergo large displacements before attaining the
equilibrium configuration from an unknown reference configuration. The
designer must therefore obtain the initial equilibrium configuration, taking
into account how the system is assembled in practice and the geometric
constraints imposed. Although little attention has been paid in the literature
to the shape-finding of the catenary system, it is a well-known and challenging
problem in the design of other cable structures, such as light large-area roofs
or cable-supported bridges [21–26]. As pointed out in [27, 28], the initial
configuration of the catenary can strongly influence the results of the dynamic
simulation.

The aim of this work is to propose a method of computing the initial
configuration of cable structures modeled by the finite element method us-
ing ANCF cable elements. A review of shape-finding methods can be found
in [21]. The non-linear displacement method [22, 23] and the force density
method [24–26] are the two most commonly used formulations. The method
proposed in this work can be considered a variation of the non-linear dis-
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placement method, and even though it is a general method, we applied it
to finding the initial configuration of a railway catenary. The method takes
into account any constraints that may appear during the assembly of the
catenary. It can also be used to compute the length of the droppers in order
to obtain a given height for the contact wire.

Some algorithms have been proposed in recent years to compute the equi-
librium position of the catenary and the length of the droppers [28–30]. How-
ever, the present paper uses a different method to solve the shape-finding
problem as well as a different model for the wires. A Euler-Bernouilli beam
is used in [29] and special catenary elements are used in [28, 30]. [31] reviews
the different special elements used in the literature to model wires. Although
classical finite element techniques, such as the two-node truss element or
isoparametric elements, may be used in the literature, other improved for-
mulations are preferred. These are based on a mathematical description of
the deformed wire, as in the parabolic approximation element [REFS], or the
more popular catenary element [28, 31–34]. In this paper we use the abso-
lute nodal coordinate formulation (ANCF) [16–18, 35] element to model the
messenger and contact wires and traction bar elements for the droppers. The
ANCF element accounts for the bending and axial deformations of the wires.
The formulation is 3D and can consider large deformations. The ANCF ele-
ment has C1 continuity, which can be important in the dynamic simulation
of the contact between the contact wire and the pantograph. The ANCF
element was used in [15] to model a 2D catenary and in [16, 36] to construct
a 3D railway catenary.

Concerning the railway catenary, in the last years some algorithms have
been proposed to compute the equilibrium position and obtain the length of
the droppers [28–30]. The differences between these works and the present
paper are the method used to solve the shape-finding problem as well as
the model used for the wires. A Euler-Bernouilli beam is used in [29] or
special catenary elements are used in [28, 30]. In [31] there is a review of
different special elements used in the literature to model wires. Although
classical finite element techniques like the two-node truss element or isopara-
metric elements could be used in the literature other improved formulation
are preferred. These formulations are based on a mathematical description
of the deformed wire, like the parabolic approximation element [37] or the
more popular catenary element [28, 31–34]. In this paper we use the abso-
lute nodal coordinate formulation (ANCF) [16–18, 35] element to model the
messenger and contact wires and traction bar elements for the droppers. The

3



ANCF element accounts for the bending and axial deformations of the wires.
The formulation is 3D and large deformation is considered. ANCF element
has C1 continuity which can be important in the dynamic simulation of the
contact between the contact wire and the pantograph. The ANCF element
was used in [15] to model a 2D catenary and in [16, 36] to construct a 3D
railway catenary.

The paper is organized as follows. In Section (2) the main components
of the railway catenary are outlined. The formulation of the ANCF element
is reviewed in Section (3). In Section (4) we detail the proposed formulation
to find the initial configuration of the catenary. Two methods are proposed
to obtain the desired position of the contact wire and compute the length
of the droppers and the initial configuration. In Section (5) the proposed
formulation is used to solve some reference problems and compare the results
with those in the bibliography. The conclusions are summarized in Section
(6).

2. Description of a railway catenary

A railway catenary is depicted in Figure (1). The cables include the mes-
senger or carrier wire, the contact wire, the droppers and may include stitch
wires. Masts, brackets and registration arms are the structural elements that
support the whole system. The messenger wire is supported at regular in-
tervals on brackets at a certain height over the track. The main function of
the messenger wire is to hold the contact wire (to which it is attached at
predefined intervals by droppers), which transmits the electrical current to
the pantograph. The droppers are fixed to the contact ande messenger wires
by clamps, providing the whole catenary system with a certain stiffness. The
stitch wire modifies the stiffness of the catenary near the supports. As in
the case of the droppers, clamps are used to attach the stitch wires to the
messenger and contact wires.

The initial configuration of the cables largely depends on how the assem-
bly of the catenary system is performed. Here we briefly outline the main
features of the assembly that are important for the definition of the shape-
finding method proposed in this work. The finite element model must fullfil
the constraints introduced during the stringing of the catenary.

First, the external structural elements (masts and brackets) are installed
along the track. The main messenger and contact wires are then tensioned
in a number of spans. The messenger wire is connected to the brackets and
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Figure 1: Picture of a high-speed train catenary.

the contact wire is connected to the registration arm. The tension is held
constant with the help of systems mounted on the first and last masts. A
stagger is defined along the track for the contact wire and optionally for the
messenger wire. The stitch wire is then mounted and a predefined tension
is applied. Finally, the droppers are installed at predefined points along the
track in each span. Each dropper has a given length in order to obtain the
correct height of the contact wire at the connection points. The catenary
can be defined with or without presag. In the former case, the height of the
contact wire is defined as a predefined function with zero sag at the first and
last dropper in the span and maximum sag at the central dropper. In the
latter, the height of the wire at the dropper connection points is constant.

The finite element model of the catenary used in this work is shown in
Figure (2). The nodes of the finite element mesh are shown as circles. The
model contains different types of two-node elements. The ANCF beam ele-
ment is used to model both the messenger and contact wires and allows for
axial and bending deformation in the wires. The droppers are modeled as
non-linear bar elements that can only transmit traction forces. The registra-
tion arm is a single straight bar element. The messenger wire and registration
arm supports can be defined by a simple constraint of the displacement or
can be replaced by equivalent springs and dampers. In the following Sec-
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Figure 2: Finite element model of the catenary.

tion the main aspects of the finite element formulation used in this work are
described.

3. Finite element formulation

As pointed out above, the wires undergo large deformations when the
catenary is assembled, which means that a nonlinear finite element formula-
tion has to be used. In this work two types of elements are used. The first is
a beam element based on the absolute nodal coordinate formulation. This el-
ement was introduced in [17, 18]. In 3D problems it has 6 degrees of freedom
per node (coordinates and gradients) and it accounts for axial and bending
deformations when computing the strain energy. The main difference be-
tween this element and the classical nonlinear beam formulation is the use
of gradients instead of rotational degrees of freedom. The element’s perfor-
mance was analyzed in [16, 35] and compared with the classical formulation
in [38]. The second element is a non-linear two-node bar.
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3.1. Absolute nodal coordinate element
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P

Figure 3: Undeformed and deformed configurations of the ANCF element.

Here we used the formulation presented in [16, 17]. Figure (3) shows the
undeformed and deformed configurations of an element with two nodes i and
j. We define the nodal degree of freedom vector of the element that contains
the displacements and the gradients as:

q =

[

xi yi zi
∂xi

∂χ

∂yi
∂χ

∂zi
∂χ

xj yj zj
∂xj

∂χ

∂yj
∂χ

∂zj
∂χ

]T

(1)

where χ is the local coordinate in the undeformed configuration ranging
from 0 to the element initial length l0. The position vector in the deformed
configuration r is a cubic polynomial and can be interpolated using the shape
functions matrix as:

r =







a0 + a1χ+ a2χ
2 + a3χ

3

b0 + b1χ+ b2χ
2 + b3χ

3

c0 + c1χ+ c2χ
2 + c3χ

3







= Sq (2)

Taking into account the definition of the normalized local coordinate ξ = χ/l0
and the C1 continuity between elements, the interpolation matrix is defined
as:

S =





S1 0 0 S2 0 0 S3 0 0 S4 0 0
0 S1 0 0 S2 0 0 S3 0 0 S4 0
0 0 S1 0 0 S2 0 0 S3 0 0 S4





S1(ξ) = 1− 3ξ2 + 2ξ3

S2(ξ) = l0
(

ξ − 2ξ2 + ξ3
)

S3(ξ) = 3ξ2 − 2ξ3

S4(ξ) = l0
(

ξ3 − ξ2
)

(3)
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The strain energy of the element is computed from the contribution of axial
and bending deformations respectively as:

UC =
1

2

∫ l0

0

(

EAε2L + EIκ2
)

dχ (4)

where E is the Young’s modulus, A is the area and I is the moment of inertia,
εL is the axial deformation and κ the curvature. The axial deformation is
computed as:

εL =
1

2

(

r′Tr′ − 1
)

=
1

2

(

qTS′TS′q− 1
)

(5)

where the abbreviation for the spatial derivative is used:

r′ =
∂r

∂χ
=

1

l0

∂r

∂ξ
S′ =

∂S

∂χ
=

1

l0

∂S

∂ξ
(6)

The curvature can be approximated using the following equation:

κ = |r′′| =

√

qTS′′TS′′q (7)

Note that this equation is valid for low axial strains such as that found in
the catenary wires.

The equivalent nodal force vector due to axial and bending deformation
can be computed from the derivative of the strain energy (equation (4)) with
respect to the nodal coordinates:

fCe (q, l0) =
∂UC

∂q
=

1

2

∫ l0

0

(

EAεL
∂εL
∂q

+ EI
∂κ2

∂q

)

dχ (8)

Details of the formulation and the computation of the integrals can be found
in [18]. Assuming that gravity is acting in z direction, the nodal equivalent
force due to gravity can be written as:

fCg (l0) =

∫ l0

0

ST
{

0 0 −gρA
}T

dχ

=− gρAl0

{

0 0
1

2
0 0

l0
12

0 0
1

12
0 0 −

l0
12

}T
(9)

where ρ is the density.
The equivalent nodal force vector is obtained by adding equations (8) and

(9). Note that the force is a function of the deformed nodal coordinates and
the initial length of the element:

fC(q, l0) = fCe (q, l0) + fCg (l0) (10)

8



3.2. Discontinuity in axial force

As pointed out above, the ANCF element has C1 continuity. This means
that the gradients of the position are continuous between elements and there-
fore it is the axial strain. This is a drawback of this type of element if one
wire is connected to another (for example, the stitch wire with the messenger
wire in Figure (2) or the connection between elements e1 and e2 in Figure
(4)). In this particular case the axial tension will be discontinuous and the
element is not able to account for this.

i

j

ke1

e2

Figure 4: Connection of elements with discontinuous axial deformation.

In order to avoid problems with discontinuities in the axial force trans-
mission, an improved element can be defined. A new degree of freedom α is
added to element e2 in Figure (4). Without loss of generality we assume that
the new degree of freedom α is associated with the first node j of element
e2. The coordinates of the elements e1 and e2 are defined as:

pe1 = qe1 =

[

xi yi zi
∂xi

∂χ

∂yi
∂χ

∂zi
∂χ

xj yj zj
∂xj

∂χ

∂yj
∂χ

∂zj
∂χ

]T

pe2 =

[

xj yj zj α
∂xj

∂χ
α
∂yj
∂χ

α
∂zj
∂χ

xk yk zk
∂xk

∂χ

∂yk
∂χ

∂zk
∂χ

]T

(11)

Note that the gradients of node j of element e2 are modified by a factor α.
This factor allows the element to have a jump in the axial strain in the node j
while keeping continuity in the slope. The continuity is obtained because the
direction of the cable element depends only on the ratios of the components of
Vector p, pe2

4 /pe2
3 = pe1

4 /pe1
3 , pe2

5 /pe2
3 = pe1

5 /pe1
3 and pe2

5 /pe2
4 = pe1

5 /pe1
4 , which

are independent of the new coordinate α. Therefore, the same direction is
obtained for both elements at the connection point.
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Similarly to the ANCF element, the equivalent nodal force vector due to
axial and bending deformation can be computed from the derivative of the
strain energy (Equation (4)) with respect to the nodal coordinates. In this
case we obtain:

fSTe (q, α, l0) =



















∂UC

∂q

∂UC

∂α



















=























∂UC

∂p

∂p

∂q

∂UC

∂p

∂p

∂α























(12)

3.3. Nonlinear bar element

The nonlinear bar element is a straigth line with two nodes i and j and
six degrees of freedom (the global coordinates of each node). The strain
energy can be computed from Equation (4), taking into account only the
axial deformation term (i.e. I = 0). The axial deformation can be computed
as:

εL =
l2d − l20
2 l20

(13)

where l0 is the undeformed length and ld is the deformed length of the element

l2d = (xj − xi)
2 + (yj − yi)

2 + (zj − zi)
2 (14)

The equivalent nodal force vector due to strain fBe (q, l0) is computed using
Equation (8) and the force due to gravity from Equation (9) to obtain:

fBg (l0) = −
gρAl0
2

{

0 0 1 0 0 1
}T

(15)

Again, the force introduced by the bar element is the contribution of elas-
tic deformation and gravitational forces and is a function of the deformed
coordinates q and the initial length:

fB(q, l0) = fBe (q, l0) + fBg (l0) (16)

3.4. Boundary conditions and solution

Figure (5) shows a model of the catenary. The ANC beam element is
used for the messenger wire (blue) and the contact wire (red). The droppers,
the stitch wire and the registration arm are modeled as bar elements.

The following Dirichlet boundary conditions are imposed in the model:
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E

EE
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Figure 5: Boundary conditions in the finite element model.

• Label A in Figure (5). The initial and final nodes of the contact and
messenger wires are restricted in all directions.

• Label B. The nodes of the contact wire located in the second and second
to last masts are restricted in y and z

• Label C is the midpoint anchor. The node of the messenger wire located
in the central mast is constrained in all directions.

• Label D. The nodes of the messenger wire connected with the brackets
are restricted in y and z. The vertical constraint can be replaced by a
spring element.

• Label E. The fixed nodes of the registration arm are constrained in all
directions.
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The equilibrium configuration of the catenary is the solution of the non-
linear system obtained after the standard assembly of element force vectors

f(q, α, l0) =
⋃

(

fC(q, l0) + fST(q, α, l0) + fB(q, l0)
)

= 0 (17)

The union symbol here is used to denote the standard finite element assembly
process. Assuming that the undeformed length of each element is known,
Equation (17) can be solved using for example the Newton-Raphson method.

The discontinuous traction element has an advantage for solving the non-
linear problem using the Newton-Raphson method. The new coordinate α of
each element depends only on the geometry of the element and the assembly
process results in an independent equation. This equation can therefore be
eliminate without assembly and without increasing size of the global system.
On the other hand, some new calculations are performed during iterations
to update the value of α for each element.

Note that the equilibrium position (Equation (17)) depends on the un-
deformed length of the elements, which is not generally known in the case
of a catenary system. In the following section we propose two methods of
computing these lengths.

4. Initial configuration problem

As pointed out above, the finite element model of the catenary must re-
produce the constraints introduced during the assembly of the system. We
thus propose a method of finding the position of each node and the initial
length of each element in the mesh that fulfills these constraints, besides
the force equilibrium equations. First, a finite element mesh of the system
is defined taking into account the desired number of elements in each wire.
A tentative initial configuration of the catenary and the reference length of
the elements are computed by the analytical catenary equation. To pose the
problem, we need to define the constraints to be fulfilled and the correspond-
ing set of element lengths to be computed. As the number of unknowns
must be equal to the number of equations, rather than defining the initial
length of each element as unknown, we define some groups of elements whose
initial length is modified by a factor κl. The factor κl for each group is the
unknown of the problem. The following groups of elements are defined for
each constraint:
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Figure 6: Groups of elements.

• Tension in the messenger wire: All the elements of the messenger wire
in the first span form the group sharing the same length factor κl. This
factor is used to impose the first constraint. If the catenary has a fixed
point, the last span is also defined as a group with variable factor length
on which the traction in the second part of the wire is imposed.

• Tension in the contact wire: All the elements in the first span of the
contact wire belongs to a group.

• Tension in the stitch wire: Figure (6) shows a schematic diagram of
the stitch wire. The element identified by a triangle is the group used
to impose the traction in this wire.

• Position of the stitch wire: The longitudinal position of the connecting
point of stitch wire and droppers can be imposed by defining the two
groups of elements shown in Figure (6) by a square and label A.

• Position of the nodal mast: The group of elements between the bracket
and the stitch wire connection is chosen to impose the longitudinal
position of the messenger wire/bracket connection. This is shown in
Figure (6) by a square and label B.

• Position of the droppers: The set of elements between two droppers
in the messenger and contact wires forms the groups that impose the
longitudinal position of the droppers (square symbol in Figure (6) and
labels C and D).

• Height of the contact wire. Each dropper is a group that controls the
height of the contact wire (circle in Figure (6)).
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4.1. Pointwise constraint method

The first method of obtaining a static configuration of the catenary consist
of solving a set of equations that include the equilibrium of internal and
external forces (Equation (17)) and the following constraint equations:

• Traction in the messenger, contact and stitch wires. The internal force
in the node in which the traction is imposed must be equal to the
desired value T , so the equation can be written as:

cI (q, κl) = fANC
e x

2
+ fANC

e y

2
+ fANC

e z

2
− T 2 = 0 (18)

where fANC
e i is the i component of the internal elastic force at a given

node.

• Global x position of the connection points of droppers with messenger
and contact wires, of brackets with the messenger wire and registration
arm with contact wire. In this case the equation to be fulfilled is simply:

cII (q) = qx − vx = 0 (19)

where vx is the desired value of position.

• Height of the contact wire. The height of the contact wire hc is imposed
at each contact wire/dropper connection. The equation can be written
as:

cIII (q) = qz − hc = 0 (20)

Equilibrium equations (17) together with the constraints (18), (19) and
(20) forms a system of non-linear equations:

f(q, κll0) = 0

c (q, κll0) = 0

}

(21)

The system can be solved by the Newton-Raphson method to obtain the
position of each node q and the factor κl of each group.
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4.2. Height optimization method

The second method proposed for finding the initial configuration of the
catenary is a minimization problem under constraints. The functional to be
minimized is the quadratic difference between the height of the contact wire
a the desired value hc along a given catenary path. The imposed constraints
are the traction in messenger, contact and stitch wires cI (Equation (18)) and
the position of connection points cII (Equation (19)) besides the equilibrium
equations (Equation (17)). Formally, the problem can be written as:

min
1

2

∑

∀pg

(qz(pg)− hc)
2

subject to

f (q, κll0) = 0

cI (q, κll0) = 0

cII (q) = 0

(22)

where qz(pg) is the global coordinate z of the contact wire computed at a
number of points pg along the path of the catenary. The problem of Equa-
tion (22) can be solved using the Lagrange multiplier method. Additional
variables, the Lagrange multipliers λi, are introduced and the minimization
problem can be written as the optimization of the following functional:

L (q, κll0, λ) =
1

2





∑

∀pg

(qz(pg)− hc)
2 + λIII f+ λI cI + λII cII



 (23)

Taking the variation of the functional of Equation (23) with respect to all
variables, that is, the global coordinates q, the factor of length κl and the
Lagrange multipliers λi, we obtain the following system of nonlinear equa-
tions

∑

∀pg

(qz(pg)− hc)
∂qz(pg)

∂q
+ λIII

∂f

∂q
+ λI

∂cI
∂q

+ λII

∂cII
∂q

= 0

λIII

∂f

∂l0
+ λI

∂cI
∂l0

+ λII

∂cII
∂l0

= 0

f (q, κll0) = 0

cI (q, κll0) = 0

cII (q) = 0

(24)
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5. Results

The methods described above were used to compute the equilibrium con-
figuration and the length of the droppers for some reference problems. The
results are compared with the length of droppers obtained from the literature
for the same configurations. The method of pointwise constraint of Section
(4.1) is used for the these examples. An example of a real catenary is also
presented and the methods of Sections (4.1) and (4.2) are compared.

5.1. Reference Catenary 1

The first reference catenary consist of a single span with two droppers and
no stitch wire. This catenary was proposed in [27] as a benchmark problem
to test the dynamic response of the pantograph-catenary interaction. The
data used in this problem are presented in Table (1) and the wire element
data used in the proposed method are shown in Table (2). The same geom-
etry was analyzed in [28], in which a catenary element was used. One of the
differences between the ANCF element and the catenary element is in the
computation of the internal force. In the first, case axial and bending defor-
mations are included, whilst the catenary element assumes rigid behavior in
axial direction and neglects the strain due to bending.

Span length Ls 20 m
Encumbrance Hs 1.0 m
Number of droppers 2
Longitudinal position 1: x = 5.5
of droppers (m) 2: x = 14.5

Table 1: Geometrical data for the reference catenary 1

Contact Messenger Droppers
Axial stiffness EA(MN) 13.053 6.667 1.711
Bending stiffness EJ(Nm2) 150.0 0.0 —
Mass/unit length (kg/m) 1.068 0.60 0.14
Tension (kN) 15 15 —
Clamp mass (kg) 0.25 0.25 —

Table 2: Material data for Reference Catenary 1
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The reference configuration obtained for this catenary is shown in Figure
(7). The undeformed length of the droppers is found to be Ld = 0.9540
m. This value is in agreement with the value obtained in reference [27]
Ld = 0.95 m or reference [28] Ld = 0.9579 m. Despite the differences in the
formulations the results are very similar. For this catenary the influence of
axial and bending deformations can therefore be said to be negligible.

0 5 10 15 20

0

0.2
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0.6

0.8

1

Longitudinal position x (m)

H
ei
gh

t
y
(m

)

Initial configuration

Figure 7: Equilibrium initial configuration of Reference Catenary 1.

The influence of the finite element discretization error was analyzed. The
length of droppers was computed with different meshes. The number of
elements of the contact and messenger wires range from 6 to 12. The results
are shown in Table (3) for different combinations of elements in the contact
wire and messenger wires. As can be observed, the influence of the number
of elements is at most a few millimeters.

Messenger wire
Number of
elements

6 12 24 48 96

C
on

ta
ct

w
ir
e 6 0.9543 0.9537 0.9534 0.9533 0.9532

12 0.9561 0.9548 0.9542 0.9539 0.9537
24 0.9550 0.9544 0.9542 0.9540 0.9540
48 0.9551 0.9545 0.9542 0.9541 0.9540
96 0.9551 0.9545 0.9543 0.9541 0.9540

Table 3: Undeformed length of the droppers (m) for different finite element meshes.
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5.2. Reference Catenary 2

The second example was proposed in [30]. This problem has two con-
figurations: with and without presag. The authors proposed a method of
computing the initial configuration of the catenary and provide the lengths
of the droppers. They used a finite element model with the Euler-Bernouilli
beam element. The data pertaining to the simulation of this problem are
presented in Tables (4) and (5). Note that we have introduced the axial stiff-
ness to allow for axial deformation of wires, as data was lacking in reference
[30]. The droppers are assumed to have a constant stiffness. Dropper mass
is concentrated in the clamps.

Span length Ls 50 m Bracket stiffness 2 · 106 N/m
Encumbrance Hs 0.96 m Registration arm stiffness 213 N/m
Dropper stiffness 105 N/m Registration arm mass 2.6 kg
Longitudinal position 1: x = 2.5 6: x = 27.5
of droppers (m) 2: x = 7.5 7: x = 32.5

3: x = 12.5 8: x = 37.5
4: x = 17.5 9: x = 42.5
5: x = 22.5 10: x = 47.5

Table 4: General data for Reference Catenary 2

Contact Messenger
Axial stiffness EA (MN) 12.063 6.722
Bending stiffness EJ(Nm2) 130.0 29.0
Mass/unit length (kg/m) 0.987 0.605
Tension (kN) 12 12
Clamp mass (kg) 0.2 0.2

Table 5: Material data for Reference Catenary 2

Figures (8) and (9) show the initial configuration of the catenary with
presag. The length of the droppers is compared in Table (6) for the catenaries
with and without presag. The results show a good agreement in all computed
values, even though the type of element and axial behavior of the wires are
different and a different method is used to compute the equilibrium position.
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Figure 8: Initial equilibrium configuration of Reference Catenary 2.
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Figure 9: Initial equilibrium configuration of the contact wire in Reference Catenary 2.

Without presag
Dropper 1 2 3 4 5
Reference [30] 0.875 0.738 0.636 0.567 0.533
Present paper 0.8751 0.7386 0.6361 0.5678 0.5336

With presag
Dropper 1 2 3 4 5
Reference [30] 0.875 0.778 0.705 0.657 0.633
Present paper 0.8747 0.7784 0.7056 0.6571 0.6328

Table 6: Length of droppers (m) for Reference Catenary 2

5.3. High speed train catenary

The last example is a real catenary with 10 central spans in addition to
four spans for the transitions. The properties of the catenary are detailed in
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Tables (7) and (8). In this case we compare the two methods proposed to
solve the initial configuration problem (Sections (4.1) and (4.2)). A curved
track path with radius R = 20000m is also generated and the lengths of
droppers are compared with those obtained from a straight path. To solve
problems with curved paths, the element formulation is modified with the
appropriate coordinate transforms to impose the equilibrium of equations
as well as the other constraints in a local coordinate system. A schematic
diagram of the two tracks is shown in Figure (10).

Span length Ls 65 m Bracket stiffness 2 · 106 N/m
Encumbrance Hs 1.3 m Stitch wire length 18 m
Stagger messenger 0 m Stagger contact ±0.2 m
Clamp messenger ±0.21 kg Clamp contact ±0.21 kg
Longitudinal position 1: x = 6 Registration
of droppers (m) 2: x = 15.48 arm length 1.15 m

3: x = 24.18
4: x = 32.5
5: x = 40.82
6: x = 49.52
7: x = 59

Table 7: General data of the real catenary problem

Mass/unit Axial stiffness Bending stiffness Tension
length (kg/m) EA (MN) EJ(Nm2) (kN)

Messenger wire 0.864 10.42 103.7.8 15.75
Contact wire 1.374 18 198.4 31.5
Stitch wire 0.315 3.605 – 3.5
Droppers 0.315 3.605 – –
Registration arm 0.773 72.2 · 10−3 – –

Table 8: Material properties for the real catenary problem

The length of the droppers in three cases are shown in Table (9). The first
case involves a straight catenary in which the height of the contact wire is
imposed pointwise in the position at which the wire is connected to droppers
and registration arms. The second case is a catenary with a curved track and
pointwise constraints. In the last case the optimization method of Section
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Figure 10: Initial configuration of the real catenary for straight and curved track paths.

Dropper 1 2 3 4 5 6 7
Straigth track 0.7036 0.6130 0.4511 0.4001 0.4511 0.6130 0.7036
Curved track 1 0.7025 0.6131 0.4511 0.4000 0.4510 0.6129 0.7025
Optimization 0.6904 0.6028 0.4432 0.3922 0.4432 0.6028 0.6904

Table 9: Length of droppers (m) for high speed train catenary

(4.2) is used for a straight catenary. Practically the same results are obtained
for both straight and curved tracks, due to the large radius of the curve.
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Figure 11: Position of the contact wire.

As can be observed, the length of the droppers using the optimization
method is slightly less than that obtained with the pointwise constraint
method. This can be explained by looking at Figure (11), where the po-
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sition of the contact wire is plotted for a single span in both cases. The
reference height is 5.3m, which is attained exactly at droppers/contact wire
connection point using the pointwise constraint method. A higher position is
obtained for the optimization method since the reference height is imposed
over the whole span.

6. Conclusions

This paper presents two methods of shape-finding applied to the finite ele-
ment model of a catenary system, which take into account for the constraints
imposed during the stringing of the catenary In the first method the height
constraint in the contact wire is imposed at the points at which the wire is
connected to the droppers. In the second method an optimization problem
is solved. The objective function to be minimized is the difference in the
height of the contact wire with respect to a reference value. Both methods
were applied to find the initial configuration of some reference problems in
the bibliography and a good agreement was obtained.
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pantographe-caténaire, Ph.D. thesis, Laboratoire de Tribologie et Dy-
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