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Abstract  

Objective: To assemble a biohybrid patch consisting of a large (5 cm X 5 cm) elastomer 

scaffold whose pores are filled with a self-assembling peptide (SAP) gel entrapping 

adipose stem cells (ASCs), to be used in a big animal model of myocardial infarction. 

The study focuses on the way to determine optimal procedures for incorporating the 

SAP solution and the cells in the patch in order to ensure cell colonization and a 

homogeneous cell distribution in the construct before implantation. The problems 

associated with the scale-up of the different procedures raised by the large size of the 

construct are discussed. 
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Materials and methods: Experiments were performed to settle different alternatives: 

incorporation of the SAP gel prior to cell seeding or simultaneous SAP-and-cells 

loading of the scaffold; surface seeding of cells or cell injection into the scaffold’s 

pores; helping the seeded cells to disseminate throughout the scaffold prior to 

incubation by gentle shaking or by centrifugation. Immunocytochemistry techniques 

and confocal and scanning electron microscopies were employed in order to analyze and 

quantify the cell invasion and early distribution. Observed cell concentration and 

uniformity throughout the patch were taken as the indicators to settle the different 

alternative procedures. 

Results: The peptide pre-loaded scaffold, seeded internally and smoothly shaken before 

incubation yielded the best results in terms of greater cell density and the most uniform 

distribution after 24 h of culture compared with the other methods. These procedures 

could be translated to obtain large biohybrid  patches with success. 

Conclusions: The results obtained after the different seeding methods permitted to 

establish an effective protocol for the assembly of large scaffold + SAPs gel + cells 

biohybrids for their subsequent implantation onto the infarcted myocardium of a 

preclinical big animal model progressing for clinical translation. 

Keywords: scaffold, self-assembling peptide, cell seeding, myocardial patch, myocardial 

support and regeneration. 
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1. Introduction 

Adult human hearts are able to functionally regenerate after cardiac infarction [1, 2] but 

this capacity seems limited when large areas of cardiac tissue are involved, resulting in 

substantial loss of ventricular mass, vascularization and contractibility. Proposed 

strategies to repair damaged cardiac tissue include cell transplantation directly at the 

injured site, or tissue engineering techniques to induce the regeneration of injured native 

tissue. Cell types investigated include cardiac stem cells, skeletal myoblasts, stem cells 

from bone marrow or mesenchymal stem cells from adipose tissue, and endothelial 

progenitor cells, among others, usually resulting in an improvement of heart contraction 

by paracryne effects (secretion of cytokines), increase of wall thickness and micro-

vessel density (neovascularization) [3-6]. The main results reported with these 

procedures are however limited, not producing a complete restoration of the contractile 

function [7], owing to a poor cell retention and graft viability in the target site. Besides, 

a significant number of cells (more than 90%) die within the first days post-

transplantation or disseminate to other tissues. A possible solution would be to 

encapsulate the transplanted cells in an injectable gel, but this has the drawback of the 

low mechanical properties of gels, which difficults their handling, localization and 

retention on a damaged moving tissue. 

Alternative tissue engineering strategies [8, 9] combine cells with three-dimensional 

scaffolds or patches that host them and improve their survival, induce the formation of 

new blood vessels and extracellular matrix and at the same time mechanically assist the 

host tissue. The polymers employed to date to obtain scaffolds include collagen, gelatin, 

fibrin, hyaluronic acid and alginate [10-13] of natural origin, or the synthetic polylactide 

acid (PLA), polylactide-co-glycolic acid (PLGA), polycaprolactone (PCL), 

poly(ethylene glycol) (PEG), polypropylene (PP) and poly(glycerol sebacate) (PGS), 
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with different architectures and combined with a variety of cells [14-17]. As an 

example, Chachques et al. [18] implanted collagen sponges seeded with bone marrow 

cells onto the post-ischemic myocardial scar of a series of patients in a clinical 

feasibility study and observed an increase of the thickness of the infarct scar as well as a 

normalization of the cardiac wall stress. The main limitation of those scaffolds was the 

low mechanical characteristics of the materials employed to engineer the myocardial 

tissue and a too fast and complete bio-resorption of the material at mid-term. 

The concept of the 7
th

 FP project RECATABI, where this study is framed, is a biohybrid 

cardiac patch consisting in an elastomer polymer scaffold whose pores are filled with 

the self-assembling peptide (SAP) hydrogel RAD16-I, which encapsulates adipose-

tissue derived stem cells (ASCs). A first series of these patches employed poly(ethyl 

acrylate), PEA, as matrix to develop scaffolds with interconnected spherical pores; this 

polymer is an elastomer compatible with the myocardial tissue in terms of mechanical 

properties, is easy to process, and has excellent biological performance [19].  

SAPs are resorbable nanomaterials that mimic the structure of the extracellular matrix, 

promoting and modulating cell functions such as adhesion, proliferation and migration. 

Thanks to these properties, they have been used for a variety of applications in vitro 

with different types of cells (osteoblasts, embryonic stem cells, adult neural stem cells, 

endothelial cells,…) [20-22] and for regenerative strategies in animal models [23-26]. 

One commonly employed SAP, RAD16-I [18-20], is a hydrogel consisting of simple 

repeated sequences of RADA amino acids with alternating hydrophobic and hydrophilic 

lateral groups. They are injectable in aqueous solution, and form percolating β–sheet 

nanofibers when exposed to a salt solution or physiological media [21, 27, 28]. At low 

concentrations (0.15%-0.25%) the gel is soft and fragile, resulting in a poor 

manageability; on the contrary, at an elevated concentration (from 0.5 to 1%) the gel 
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becomes tough and impedes an adequate cellular ingrowth [21]. In the present proposal, 

the elastomer scaffold membrane provides the three-dimensional context and the 

mechanical integrity, whereas the peptide gel RAD16-I filling the scaffold’s pores is 

expected to act as an encapsulating medium for the cells, improving their survival and 

retaining them inside the membrane, allowing permeability to cellular metabolites and 

wastes, and likely improving vascularization throughout the scaffold. 

ASCs are a convenient cell source for cardiac regenerative purposes since they can be 

easily harvested from the patient, have an elevated proliferation rate in vitro and are 

non-immunogenic; besides, some studies and clinical trials have demonstrated their 

potential to improve ventricular function [29-32], which could lead to their use for 

cardiac clinical application [33,34]. Since the direct cell graft into infarcted myocardium 

has had poor results, with a rapid dissemination of cells to other sites and a low rate of 

cell survival of the effectively engrafted cells [35], the transplantation of the cells inside 

a physical support may help improve over those results: the scaffold can cover the 

damaged area, can protect the grafted cells by offering a cellular niche and thus prolong 

their survival and paracryne effect, and impede their migration from the site of interest. 

An increased localized activity of the cells could lead to wall thickening and 

neovasculogenesis, eventually improving the heart function. 

In facing a preclinical study in a big animal model (sheep) additional factors that 

condition the design of the solution must be taken into account. The most relevant ones 

are the size of the patch, the number of the cells to be transplanted, and the timing of 

pre-implant seeding and in vitro culture of the cells in the patch. The dimension of the 

patch designed for this study (5x5 cm) is related to the size of the infarct model created 

by surgical procedure (coronary artery branch ligations) in adult sheep [19,36], and the 

number of cells to be transplanted and the pre-implant culture time have followed 
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previous experience [18]. Taken together, these circumstances impose stringent 

requirements on the design of the patch: it must be able to lodge those numbers of cells, 

these must seed and distribute uniformly across the patch in 24 h, and the whole patch 

must be rapidly vascularized throughout after implantation, to keep the seeded cells 

alive. In the present work we address these questions, related to the design and 

implementation of a biohybrid patch for use in an infarcted sheep heart. 

 

2. Materials and methods 

2.1. Preparation of the scaffolds 

Scaffolds of polyethyl acrylate (PEA) with interconnected spherical pores were 

prepared following a porogen-template leaching method as described in [37, 38]. 

Briefly, poly(methyl methacrylate) microspheres (PMMA; Colacryl dp 300) of known 

size, 130 ± 20 μm, were sintered between two plates in order to obtain a porogen 

template. A monomer solution was prepared by mixing ethyl acrylate (EA; 99%, 

Sigma-Aldrich) with 2 wt% ethyleneglycol dimethacrylate (EGDMA; 98%, Sigma-

Aldrich) as crosslinker and 1 wt% benzoine (98%, Scharlau) as initiator, stirred and 

injected into the porogen template. The filled template was then placed between two 

glass plates, polymerized under a UV source for 24 h, and post-polymerized in an oven 

at 90˚C for another 24 h. The template was removed by soxhlet extraction for 24 h with 

acetone (Scharlab). Afterwards, a gradual solvent exchange to water was performed to 

avoid the collapse of the obtained scaffolds due to the fast evaporation of acetone. 

Finally, the 1 mm-thick PEA scaffolds obtained were dried under vacuum at 40ºC until 

constant weight, and cut as small discs of 8 mm diameter for in vitro assays. The 

obtained samples were sterilized with a 25 kGy dose of gamma irradiation in a 
60

Co 

source (Aragogamma, Barcelona, Spain) before use. 
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2.2. SAPs preparation and filling of the scaffolds 

The self-assembling peptide (SAPs) RAD16-I solution (PuraMatrix™ 1% (w/v), BD 

Biosciences) was employed as a filler hydrogel in the PEA scaffolds’ pores. The 

viscous stock solution was sonicated for 30 min at 25ºC applying 30 W in a Bandelin 

bath, diluted with water (extra pure, Scharlau) up to 0.3% (w/v) and vortexed (Elmi 

SkyLine) to ensure homogeneization. In one series of scaffolds, the SAP solution and 

the cells were simultaneously incorporated to the scaffolds; these will be hereafter 

called 1-step loaded scaffolds (Fig. 1a). In a second series of scaffolds (hereafter 

referred to as 2-steps loaded, Fig. 1b) the SAP was loaded as a 0.15% (w/v) solution 

with the help of some vacuum, as in [19, 39]; more precisely, the scaffold was placed 

(folded if necessary) in a large syringe, the aqueous SAPs solution was loaded, and the 

air removed. Next, maintaining the luer taper of the syringe sealed, the peptides solution 

was forced to penetrate in the scaffold by performing repeated strokes until it was 

completely wet.  

 

2.3. Seeding of ASCs and pre-culture of the biohybrids 

Adipose-tissue derived stem cells (ASCs) of subcutaneous fat tissue biopsies were 

obtained from the mediastinal fat tissue of female Ille de France sheep and isolated 

according to [12]. The adhered cells were incubated at 37ºC in a humidified atmosphere 

with 5% CO2 in minimum essential medium alpha (α–MEM) supplemented with fetal 

bovine serum (FBS; 10%), L-Glutamine (2 mM), penicillin (10 U/ml), streptomycin (10 

mg/ml), gentamicin (10 mg/ml) (all products from Gibco/Invitrogen) and plasmocin (5 

µg/ml, Invivogen, ant-mp) to avoid mycoplasma contamination. The cells were allowed 

to proliferate in culture flasks until passage 6, then harvested by trypsinization (0.25% 
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Trypsin-EDTA, Gibco/Invitrogen) and resuspended in a 10% sucrose (Sigma-Aldrich) 

aqueous solution (instead of culture medium, to avoid the SAPs gelling upon their 

contact) at densities of 5 and 10∙10
6
 cells/ml to be used in the two series of scaffolds. 

10
5
 cells were seeded in each scaffold having a diameter of 8 mm in a 48-well tissue 

plate; this corresponds to a density of 2∙10
6
 cells/cm

3
 of scaffold. In the 2-step loaded 

scaffolds, the 10
5
 cells were seeded in a 20 μl aqueous droplet after the vacuum helped 

incorporation of the 0.15% (w/v) SAPs solution. For the 1-step loaded scaffolds, the 

initial 0.3% (w/v) SAPs solution was half diluted with the cells-sucrose suspension and 

20 μl of the resulting 0.15% (w/v) SAPs solution containing the 10
5
 cells was 

incorporated at once. 

The cell seeding was performed by two different methods: in a subset of samples, the 20 

μl cells (or cells+SAPs) droplet was seeded onto the upper-surface of the scaffolds, and 

in the other, the droplet was injected within the pores of the scaffolds making use of a 

Hamilton syringe. 

After the encouraging results, in terms of better cells distribution within the pores, 

obtained in a previous work [19] with a dynamic seeding as compared to a static one. 

Two dynamic methods were compared here: half of the scaffolds were smoothly shaken 

(25 rpm, 30 min) after the seeding in a Titramax 101 shaker (Heidolph instruments, 

Germany) and the remaining were centrifuged (600 rpm, 5 min) in a centrifuge 5804 

eppendorf device. Next, 300 μl more of culture medium were carefully added to each 

well to gel the peptides and entrap the cells, and cells were incubated at 37°C in a 

humidified atmosphere under 5% CO2 for 24 h. 

Each one of the 8 resulting experimental groups (1-step or 2-step loaded scaffolds, 

either seeded on their surfaces or by internal injection, and shaken or centrifuged before 

culture) consisted in three 8 mm-diameter replicas. They were subsequently 
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characterized to determine the optimal seeding procedure before the scale-up to the 5x5 

cm
2
 patches. 

 

2.4. Biological characterization of the biohybrids 

After 24 h culture, the biohybrids were processed for fluorescence staining. Samples 

were rinsed with 0.1 M phosphate buffered saline (PBS; pH 7.4) and fixed for 15 min in 

4% paraformaldehyde (Panreac). After 30 min permeabilization with 10% fetal bovine 

serum and 0.1% triton X-100 in PBS, samples were incubated for 60 min in the selective 

F-actin stain Phalloidin Bodipy FL (Invitrogen) at a dilution of 1:200 in 0.1% BSA-PBS 

at room temperature and mouse monoclonal anti-vimentin (v6630, Sigma) overnight and 

incubated for 1 h with Alexa fluor goat anti-mouse 647 (A21236, Invitrogen)The 

samples were rinsed in PBS and then stained 5 min with 10 µg/mL DAPI (4',6-

diamidino-2-phenylindole, Sigma, 1:5000). Afterwards, the samples were cryoprotected 

by immersion in 0.1 M PBS at pH 7.5 containing 30% sucrose and included in OCT. 50 

μm-thick sections were obtained by using a cryostat (Leica, CM 1900), collected onto 

superfrost slides and rinsed with PBS. The slices were mounted on glass slides using 

Fluoromount-G™ (F4680, Sigma-Aldrich), and examined to collect fluorescent images 

under an epifluorescence (Leica DM6000) or confocal laser scanning microscope 

(CLSM; FV 1000, Olympus). 

 

2.5. Image processing 

For cell quantification, DAPI labelled cell nuclei were counted in three images taken 

under the fluorescence microscope before the scaffolds’ cutting, and corresponding each 

to 0.004 cm
2
 per each experimental group; the number of cell nuclei per unit area was 

obtained from these quantifications. To further evaluate the invasibility of the scaffolds 
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by the ASCs, the expression of F-actin (filamentous actin) in the cytoskeleton was 

quantified together with the DAPI labelling to determine the percentage of image area 

covered by cells. The mean cell surface area gave an idea of cells spreading and 

attachment in each case. All image processing and analysis were done using an in-house 

software developed under MATLAB R2006a (The MathWorks, Inc., Natick, MA). 

 

2.6. Scale-up and characterization of large biohybrids 

To set up the assembly of the biohybrids in the final dimensions following the best 

conditions found in vitro, large 5x5x0.1 cm
3
 PEA scaffolds were firstly prepared 

following the fabrication methodology explained above. To validate such protocol for 

large patches and ensure a homogeneous and high porosity and pores’ interconnections, 

bare scaffolds were examined by scanning electron microscopy (SEM) in a JSM 6300 

(JEOL Ltd., Tokyo, Japan) device, previously sputter-coated with gold, at 15 kV of 

acceleration voltage and 15 mm of working distance. The scaffolds were fractured in 

liquid nitrogen in order to obtain surface and transversal images. The proposed SAPs 

injection protocol and their gelling inside the pores upon the addition of culture medium 

was checked in large scaffolds by congo red 0.1% (w/v) aqueous solution (Fischer 

Scientific) staining for 20 min followed by 30 min of rinsing with water and 

macroscopical observation. 

The scaffold+SAPs+ASCs assembly protocol giving the best results in terms of 

invasion and homogeneous distribution of the cells in small biohybrids was translated to 

the large patches: the scaffolds were pre-loaded with the peptide solution, next seeded 

internally with a Hamilton syringe and smoothly shaken for 30 min at 80 rpm, and 

finally cultured for 24 h before analysis. After expansion and trypsinization, ASCs were 

resuspended in a 10% sucrose aqueous solution at a density of 40∙10
6
 cells/ml. 100∙10

6
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cells were seeded per SAPs pre-loaded scaffold, distributed in 50 uniformly spaced 

injections of 50 µl each. 

After a 24 h culture, slices of the patches were analyzed by immunocytochemistry and 

confocal microscopy as described above, and by scanning electron microscopy in a SEM 

Hitachi S-4800 device. The samples were rinsed in 0.1 M PBS at pH 7.5 and fixed in a 

2% paraformaldehyde and 2.5% gluteraldehyde solution. The samples for SEM were 

post-fixed with 1% OsO4 (Aname, 19112) and dehydrated in serial ethanol (30, 50, 70, 

96 and 100%); next, they were dried using liquid CO2 (critical point values: 328ºC, 1100 

psi; Autosambri 814, Rockville, MD, USA) and coated with gold to be observed. 

 

2.7. Statistical analysis 

All values were expressed as mean ± standard deviation (SD) and analyzed statistically 

using a two-tailed Student’s t-test. The level of significance was set at p<0.05. 

 

3. Results 

3.1. Scale-up of the fabrication procedures to implantable large biohybrids 

Fig. 2a and 2c shows macroscopical and SEM images, respectively, of 5x5 cm
2
 PEA 

scaffolds, fabricated with the procedure employed previously for small scaffolds, but 

with special care on the uniform sintering of the porogen template and on the handling 

of the swollen scaffolds during the rinsing of the porogen. The obtained scaffolds 

showed interconnected spherical pores with pore diameters around 130 ± 20 µm, 

leading to a bulk porosity of 80.8±3.5%. They were flexible and adaptable to curved 

surfaces such as the myocardium. 

The SAPs filling procedure employed for the smaller samples was also valid for the 

large scaffolds: their elastomeric nature allows their rolling and folding inside a syringe 
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and successive stroked of its piston force the viscous peptide solution to penetrate into 

the pores. Fig. 2d shows the SAPs filling in the scaffold’s pores under cryoSEM, which 

appears as stretched-out fibers formed as water sublimates. The peptides solution 

successfully gels in situ within the pores of large scaffolds when in contact with culture 

medium, and the β-sheet structures stain red with congo red (Fig. 2b).  

 

3.2. Cell viability and distribution after the different seeding procedures in small 

biohybrids 

The effectiveness of the eight different seeding procedures chosen was studied after 24 

h culture. Fig. 3 shows the distribution of cell nuclei (stained with DAPI) under the 

fluorescence microscope. In the 1-step loaded and internally seeded scaffolds, the cells 

were concentrated in the vicinities of the injection point, as was also the case in those 

seeded on top of the surface in one step; few cells were able to migrate through the 

scaffolds’ pores and the non-attached leftover was lost. None of both dispersion 

methods (shaking or centrifugation before culture) helped to better distribute the cells 

within the scaffolds’ pores. Contrarily, when cells were seeded after a SAPs pre-load (2-

step loaded scaffolds), they were able to diffuse from the injection point, more when 

cells were seeded internally than on the surface; they invaded the whole available 

volume of the scaffolds. Both dynamic dispersion methods were equally effective in 

achieving rapid cell diffusion through the peptide filler.  

Next, a more thorough study was undertaken of the following factors: i) the effect of the 

SAPs solution on the efficiency of cell seeding, ii) the seeding points of the cells, either 

internal or superficial, and iii) the dynamic conditions to enhance cell diffusion before 

incubation.  
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The 1-step and 2-step loaded scaffolds, both seeded in their core with a Hamilton 

syringe and shaken before incubation, were compared to understand the role of SAPs 

during the seeding. The confocal microscopy images of longitudinal slices of such 

scaffolds after the immunocytochemistries (Fig. 4) confirm that when SAPs and cells 

are incorporated simultaneously the cells are retained in the peptide solution at the site 

of injection (a, b, taken at the injection site), whereas, when cells are seeded following 

the prior SAPs loading, they invade the scaffold and distribute homogeneously 

throughout it (c, d, representative of the whole scaffold). Interestingly, once lodged 

within the pores (24 h), the cells seem to attach to the PEA hydrophobic surface rather 

than remain suspended in the SAPs hydrogel (see the detail, e, f). In 1-step loaded 

scaffolds the cells maintained a spherical morphology, whereas in 2-step loaded ones 

cells appeared more elongated, indicative of the adhesion to the material surface. 

The viable cells of these 1-step and 2-step loaded scaffolds were next quantified by 

image analysis. The DAPI labelled cell nuclei yielded the number of cells per unit area, 

which increases 3-fold when the cells are incorporated after the peptide solution has 

been loaded in the inner pores, Fig. 5a. The F-actin (filamentous actin) staining with 

phalloidin allowed defining the area covered by cytoskeleton and . the mean cell surface 

area, calculated as the area covered by the cells divided through the number of cell 

nuclei (Fig. 5b). the first quantity  was considerably larged in 2-step loaded scaffolds, 

although the cell area was approximately the same with both procedures analyzed, in 

spite of their rather different morphology. 

Next, 2-step loaded scaffolds seeded either internally or on top of the surface, and 

shaken before incubation, were compared by immunocytochemistry and confocal 

microscopy to determine the depth to which cells diffuse through the peptide solution 

before being entrapped upon its gelation. The images of transversal cuts (Fig. 6) show 
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that only some of the cells seeded on the surface can penetrate, only 50 µm inwards the 

scaffold (a, b), whereas the rest are lost. By contrast, those injected internally are well 

distributed throughout the scaffold thickness (c, d).  

In 2-step loaded scaffolds seeded internally no differences were found between the two 

dynamic (shaking and centrifugation) seeding protocols proposed, insofar as both 

helped to distribute sufficiently the cells (figure not shown). It must be remarked that 

the application of some cell-dispersing protocol before the SAPs gelling and consequent 

cell entrapment is crucial, as was demonstrated in [19] against a conventional (static) 

seeding. 

 

3.3. Translation of the assembly protocol to large biohybrids for their implantation in a 

sheep model 

The best results produced by the culture of small discs were those of the 2-step loaded 

scaffolds, seeded internally with a Hamilton syringe and smoothly shaken (or 

centrifuged) before incubation; such small format biohybrids hosted in their pores the 

highest and most uniformly distributed cell population. These same steps were then 

translated to the large scaffolds, but with doubled cell concentration, 4∙10
6
 cells/cm

3
 of 

scaffold. Thus, 100∙10
6
 cells, suspended in 2.5 ml of sucrose supplemented aqueous 

medium, were incorporated to large 5x5x0.1 cm
3
 scaffolds previously loaded with the 

SAPs solution, with 50 equally spaced injections of 50 μl each, which correspond to 1 

internal injection per 0.5 cm
2
 of external surface (as in the small discs, where they had 

proved to spread over such an area). Next, the biohybrids were shaken horizontally at 80 

rpm for 30 min at 37ºC and incubated. After 1 day, they were analyzed to find out their 

state just before a hypothetical implantation in infarcted myocardium. Under confocal 

microscopy (Fig. 7) it was possible to observe that the ASCs were homogenously 
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distributed throughout the entire scaffold and tended to attach to the PEA trabecules 

establishing cell-cell contacts, rather than remaining suspended and isolated within the 

gel. Similar results were found by SEM (Fig. 8), although the preparation procedure is 

quite invasive and a non-negligible fraction of cells was lost from each slice: cells were 

accommodated on the available PEA three-dimensional struts establishing intimate cell-

cell interactions. 

 

4. Discussion 

The purpose of the present study was to set a methodology to determine an effective 

way to build-up large implantable byohibrid patches, fixing the different choices 

available to combine their three components: scaffold, peptide gel, and cells. The 

variables under study were: the manner and sequence for the incorporation of the 

peptide solution and the cells, the way to seed the cells in the scaffold, and the 

subsequent dynamic conditions before their incubation to achieve the greatest invasion 

and most uniform cell distribution within the construct. The alternative choices were 

first studied in small-sized biohybrids, and the selected options were then scaled-up to 

establish a protocol to prepare and assemble the large biohybrid patches for their 

subsequent implantation in the infarcted sheep.  

The need to have a large patch uniformly colonized by cells 24 h before surgery 

determined the main design options for the construct: the use of a filler hydrogel inside 

the pores of a patch with a highly regular pore architecture, produced by an opal-like 

porogenic template. It was argued that the large number of cells hosted in the patch 

could only be viable if the pore sizes of the scaffold allowed for a rapid ingrowth of 

microcapillaries when implanted, and it was judged that only a template-based 

manufacture of the scaffold, using a sintered template made of regular-sized spherical 
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microbeads, could ensure the necessary control over pore size and distribution. Other 

porogenic techniques lead to less controllable porous structures that cannot ensure 

perfect connectivity and size of the pores. Furthermore, it was advanced that a soft 

hydrogel filling the pores of the scaffold would constitute a medium improving cell 

spreading throughout the scaffold, thus permitting a fast and uniform cell colonization 

of the implantable structure. These basic hypotheses were confirmed by the results of 

our study. As several works have underlined [40-42], the microstructure of the scaffolds 

in tissue engineering is critical to ensure the hosting of a high enough cell density, allow 

cell migration, diffusion of nutrients and metabolites, new tissue growth and 

vascularization.   

The SAPs solution proved to be an excellent diffusion medium for the cells, provided 

that it was incorporated within the scaffold’s pores prior to the seeding (2-step loaded 

scaffolds). In the hours following the seeding, ASCs first migrate through the hydrogel 

and then attach to the PEA hydrophobic trabecules in an extended conformation with 

numerous cell-cell contacts. When cells were seeded simultaneously with the peptide in 

a specific location of the scaffold (1-step loaded scaffolds) the cells were only able to 

colonize the vicinities of the point where they had been seeded.  

The internal seeding of the cells (injected with a Hamilton syringe) into the scaffold 

gave much better results than a seeding on top of the surface of the scaffold, because in 

this latter case those cells that have not been able to invade the three-dimensional 

structure (especially if they have been seeded simultaneously with the peptide solution) 

are dragged away when the culture medium is added, and are consequently lost. Before 

the gelling of the peptide solution upon the addition of culture medium, and the 

consequent entrapment of cells, the mechanical assistance to cell spread represented by 

shaking or centrifuging greatly contributed to the uniform distribution of the cells 
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throughout the construct. This had already been identified in a previous work [19] as 

advantageous when compared with a static seeding, and the results obtained here reveal 

that such mechanical assistance can be performed by any means available (shaker, 

centrifuge) without significant differences in its outcome, at least in the range of the 

parameters tested here. 

These observations, gained from the experiments on small scaffolds samples, resulted in 

a biohybrid assembly method consisting in the following steps: 1) a pre-loading of the 

scaffold with the peptide solution with the help of syringe vacuum to force the viscous 

solution to penetrate into the pores of the hydrophobic scaffold, 2) the injection of the 

cell suspension within the filled scaffolds’ pores, and 3) a smooth shaking of the 

biohybrid to distribute the cells before the peptide solution was gelled by adding culture 

medium, and 4) subsequent incubation of the construct. 

Next, this assembly protocol was scaled-up to the needs of the large 5 X 5 cm
2
 scaffolds 

intended as myocardial patches for the preclinical study.  

The transition from the manufacture of small scaffolds to that of large format ones 

posed specific technical problems. Achieving a uniform sintering of the microbeads 

throughout the large porogen template is critical to guarantee the homogeneity of the 

porous structure of the ensuing scaffold, especially the pore interconnectivity. 

Furthermore, large scaffolds require a much more careful handling when swollen in 

solvents during the successive rinsings to obtain one-piece non-defective structures. A 

quality check to control these aspects had to be introduced, based on the inspection of 

SEM images of the structures obtained in different selected spots of the large patches.   

As regards the cell seeding, these large scaffolds required multiple, uniformly 

distributed, injection sites with a Hamilton syringe. To scale-up the results obtained 

from the experiments on the smaller samples, the area of the large patch was divided 
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into units of the same area as the smaller samples, where it had been established that 

uniform cell distribution could be achieved in 24 h with the selected protocol. This 

resulted in a number of 50 injections uniformly spaced through the large scaffold.  Once 

the cells were seeded, a mechanically assisted dispersion greatly helped the uniform 

colonization of the construct. Both methods here studied were equally effective with the 

small samples; nonetheless, in view of the technical limitations facing centrifugation of 

large biohybrids, the simpler shaker-assisted protocol was finally selected.  

 

5. Conclusions 

An effective protocol for assembling large biohybrid patches consisting in an 

elastomeric scaffold with a peptide-gel filling entrapping ASCs has been established. 

The alternative options in the way to achieve this goal have been settled with different 

experiments, and specific difficulties are discussed related to the fabrication of large 

uniform scaffolds with a high, interconnected porosity, their manipulation in the 

different stages, and the incorporation of the peptide solution and a high concentration 

of cells homogeneously distributed. The assembly protocol of these large biohybrid 

patches consisted in the incoporation of the peptide solution into the scaffold’s pores, 

the injection of the cells in different selected locations, their dispersion by shaking prior 

to the gelling of the peptide hydrogel, and the incubation of the hybrid construct. This 

sequence ensures that after a 24 h in vitro culture such biohybrids host a large number 

of viable cells uniformly distributed throughout the large area of the patch, and are 

ready to be implanted in the infarcted myocardium. 
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