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Abstract: It is known that capacity issues in tactical production plans in a hierarchical context are relevant since its inaccurate 
determination may lead to unrealistic or simply non-feasible plans at the operational level. Semi-continuous industrial 
processes, such as ceramic ones, often imply large setups and their consideration is crucial for accurate capacity estimation. 
However, in most of production planning models developed in a hierarchical context at this tactical (aggregated) level, setup 
changes are not explicitly considered. Their consideration includes not only decisions about lot sizing of production, but also 
allocation, known as Capacitated Lot Sizing and Loading Problem (CLSLP). However, CLSLP does not account for set-up 
continuity, specially important in contexts with lengthy and costly set-ups and where product families minimum run length are 
similar to planning periods. In this work, a mixed integer linear programming (MILP) model for a two stage ceramic firm which 
accounts for lot sizing and loading decisions including minimum lot-sizes and set-up continuity between two consecutive 
periods is proposed. Set-up continuity inclusion is modelled just considering which product families are produced at the 
beginning and at the end of each period of time, and not the complete sequence. The model is solved over a simplified two-
stage real-case within a Spanish ceramic firm. Obtained results confirm its validity.
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1. Introduction

In the majority of the production planning models 
developed in a hierarchical context at the tactical 
level, the capacities at each stage are aggregated 
and setup changes are not explicitly considered. 
However, if at this level the setup times involve 
an important consumption capacity and have 
been completely ignored, this may lead to an 
overestimation of the real capacity availability 
which, in turn, may lead to unrealistic or unfeasible 
events during the subsequent disaggregation of 
tactical plans (Pérez, 2013). Considerable savings 
may be also be achieved through optimum lot-sizing 
decisions, known in the literature as Capacitated 
Lot Sizing Problem (CLSP) problem.

But standard CLSP does not sequence products 
within a period and also assumes that setup cost 

occur for each lot in a period, even if the last 
product to be produced in a period is the first one in 
the period that follows. In addition to that, most of 
them focus on the operational (disaggregated) level.

Many works have addressed the standard CLSP 
problem such as: Barani et al., 1984; Eppen and 
Martin, 1987; Chen and Tizy, 1990; Maes et al., 
1991; Chung et al., 1994; Hindi, 1996; Belvaux and 
Wolsey, 2001.

Standard CLSP may lead therefore to inaccurated 
capacity estimations at a tactical (aggregated) level, 
specially relevant in semicontinuous production 
environments with lengthy and costly set-ups and 
where minimum run lengths are similar to planning 
periods. In these contexts, setup continuity must 
be incorporated. These models are known as CLSP 
with setup carryovers or simply CLSP with linked 
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lot-sizes (Haase, 1994). These models have not been 
as intensively studied as the standard CLSP, mainly 
due to their model complexity and computational 
difficulty (Sox and Gao, 1999).

Just a few works have addressed the CLSP with 
linked lot-sizes, all of them with constant sequence 
independent setup times and /or setups, with a 
setup carryover. No sequence is considered within a 
period. They just focus on determining the products 
produced last and first in two consecutive periods, 
and also the configuration of the machine at the 
end of the period. Some examples may be found 
in Kang et al., 1999; Gopalakrishnan et al., 2001; 
Porkka et al., 2003; Suerie and Stadtler, 2003. 

But accounting accurately for setup times at the 
tactical level would mean simultaneously including 
not only lot sizing decisions, but also allocation 
of production. This later problem is known as 
Capacitated Lot Sizing and Loading problem 
(CLSLP) (Özdamar and Birbil, 1998; Özdamar and 
Bozyel, 1998). Although the above quoted works 
consider both allocation and lot sizing issues in a 
tactical planning level, there is a lack of tactical 
models in a hierarchical context that consider this 
CLSLP problem, so that capacities are aggregated 
and no product families allocation takes place, 
leading to inaccurate estimation of the real capacity 
availability that clearly affects to the operational 
level (Mustafa et al., 1999; Grieco et al., 2001). 
In addition to that, despite considering product 
families allocation and lot sizing issues, no setup 
continuity issues are included, specially in multi-
stage systems. This is particularly important in 
industrial sectors with semicontinuous processes 
such as:

 - ceramic (Alemany et al., 2009, 2011)

 - food (Van Donk, 2001; Soman et al., 2004, 
2007; Romsdal et al., 2011; Kopanos et al., 
2012a, 2012b). 

 - textile (Ishikura, 1994; De Toni and Meneghetti, 
2000; Guo et al., 2006; Min and Cheng, 2006; 
Wong and Leung, 2008; Ngaia et al., 2014)

 - chemical (Meijboom and Obel, 2007; Ulstein 
et al., 2007; Teimoury et al., 2010; Fumero 
et al., 2012; Shabani and Sowlati, 2013; Van 
Elzzaker et al., 2014)

All of them cope with very lengthy setup times 
in their manufacturing processes and at the same 
time their product families minimum run length 

are almost, equal or even higher than the planning 
period. Many firms in these sectors only work 
with planning overviews based on spreadsheets. 
However, given the increasing complexity of 
product catalogues and current market pressure 
to reduce supply times, more rigorous methods 
are needed to optimise resources, as the one 
mathematical programming-based proposed in this 
work.

Furthermore, given the dramatic increase of 
end products, the possibilities for assigning and 
establishing lots on production lines multiply. 
Therefore, the expected reduction of tactical 
production planning costs stands out as the 
proposed model establishes the product families 
to be produced on each line in an attempt to 
save changeovers as far as possible, this being 
an important objective, among others, in the 
aforementioned sectors. 

In this article, an approach to accurately model 
the capacity in tactical (aggregated) plans in 
a hierarchical context for a ceramic firm is 
proposed. For that, not only the CLSLP problem 
is considered, but also setup continuity issues and 
a two-stage system. Some of this paper authors 
already approached this issue in Pérez et al. 
(2014), but in a single stage one. The differences 
that result from this consideration justify this 
new scenario. This setup continuity is made over 
discrete periods of time, that is, it assumes that if a 
product family is manufactured two periods of time 
in the same production line just one set-up should 
be considered. Besides, it accounts for minimum 
lot sizes even if the product family was produced 
in a production line in different periods. The set-up 
continuity consideration along with the minimum 
lot sizes requirement allows the model to produce 
the minimum lot-sizes over two consecutive periods 
being another contribution of the paper. Within this 
model more efficient and realistic plans will be 
achieved at the tactical level, reducing later plan 
modifications due to internal aspects of the firm. 

The rest of the paper is arranged as follows. Sec-
tion 2 describes the problem being studied, as is 
the case of a Spanish ceramic plant. In Section 3, a 
deterministic MILP model to solve the problem is 
presented. Section 4 reports a numerical example to 
validate the model. Section 5 offers some conclu-
sions and future research lines, some of them al-
ready being undertaken.
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2. Problem description

This case involves a ceramic Spanish plant based 
in the province of Castellón, dedicated to the 
manufacture of different types of tiles (floorings and 
coverings) since 1975. 

Although this plant forms part of a broader industrial 
group (tiles SC) which is made up of different plants 
dedicated to the design, manufacture, marketing 
and distribution of finished goods, this work is 
single-company based, and the decisional problem 
to be addressed just focuses in mid term/tactical 
production planning issues.

Each production plant follows a make-to-stock 
strategy and it can be classified as a hybrid flow shop 
composed of several stages (presses-glazing lines, 
kilns and sorting-packing) uncoupled by buffers 
.Each stage is integrated by similar machines and 
different finished goods can be processed by each 
machine at each stage. 

The main characteristics of each one of such stages 
are:

1. Presses-glazing lines: is made up of one or 
several production lines in parallel with a 
limited capacity. Production lines may process 
different product families. Changeovers between 
product families incur setup costs owing to the 
time spent in changing, for example, moulds. A 
product family is defined as a group of finished 
goods of identical use (flooring or coverings), 
format (size), grout (white or red), and whose 
preparation on production lines is similar. This 
grouping into product families is crucial not only 
for commercial reasons but also to minimise 
setup times and costs. Glazing lines may not 
be standardised, in that case, each product 
family can be processed according to specific 
facilities with the appropriate technical features. 
Therefore, not all glazing lines are capable of 
processing all the product families, although a 
product family that may be processed on each 
line is known. Technological factors involved in 
the production process mean that when a certain 
family is manufactured on a specific line, it 
should be produced in an equal or greater amount 
than the minimum lot size. This is partly because 
a certain percentage of defects occur during the 
production process, and only a percentage of the 
manufactured items may be sold as first quality 
finished goods. 

2. Kilns: represent the bottleneck section and imply 
a high energy consumption and cost. Changeovers 
also occur in this section but are not as important 
as in the presses-glazing lines.

3. Sorting-packing: this section always has excess 
capacity and does not represent any critical 
resource. 

At the tactical level, an Aggregate Plan (AP) for 
capacity-related decisions is defined for product 
families in the first two stages (sorting-packing is 
not taken into account). In this context not only is 
important the consideration of setup times but also 
its continuity over consecutive planning periods, 
because the set-up are lengthy and the minimum 
lot sizes of product families imply a run length (3 
weeks) similar to the planning periods (1 month). 
These aspects are crucial to get accurate capacity 
availability estimation in the AP, which will 
constraint the master plan.

3. Problem Modeling

A MILP model has been developed to solve this 
ceramic tactical production planning problem. The 
objective is to minimize the total cost (set-up and 
inventory) over the time periods of the planning 
horizon. Decisions will have to simultaneously deal 
with not only the allocation of product families to 
production lines and kilns with a limited capacity, 
but also with the determination of lot sizing and other 
decisions regard to set-up continuity modelling. For 
example those which allow to know the first and the 
last product family processed on each production 
line and kiln in a planning period, so that one 
changeover can be saved if the last one processed in 
t and the first one in t+1 are the same. Or those which 
allow processing the minimum lot size between two 
consecutive periods with no changeover. All of them 
are later explained. 

The indexes, parameters, and decision variables are 
described in Tables 1-3, respectively.

Table 1. Indexes.

f Product Families (F) (f=1…F)

l Production Lines (L) (l=1…L)

k Kilns (K) (k=1….K)

t Periods of Time (PT) (t=1…T)
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Table 2. Parameters.

dft
Demand of F f in PT t.

cif
Inventory cost of a F f in a PT.

ciif
Inventory cost (intermediate) of a F f in a PT.

cslfl Setup cost for F f on L l.

cshfk
Setup cost for F f on K k.

tflfl Time to process a F f on L l.

tfhfk
Time to process a F f on K k.

tslfl Setup time for F f on L l.

tshfk
Setup time for F f on K k.

lmlfl Minimum lot size of F f on L l.

lmhfk
Minimum lot size of F f on K k.

capllt
Production capacity available (time) of L l during PT t.

caphkt
Production capacity available (time) of K k during PT t.

i0f
Inventory of F f at the start of the first PT.

ii0f
Inventory (intermediate) of F f at the start of the first PT.

M1,M2,M3,M4 Very large integers.

nf Number of F

βl0fl The L l is prepared to produce the F f at the start of the first PT.

βh0fk
The L l is prepared to produce the K k at the start of the first PT.

Table 3. Decision Variables.

Ift
Inventory of F f at the end of PT t.

IIft
Inventory (intermediate) of F f at the end of PT t. 

PFLflt
Amount of F f produced on L l in PT t. 

PFHfkt
Amount of F f produced on K k in PT t. 

YLflt
Binary variable with a value of 1 if F f is produced on L l in PT t, and with a value of 0 otherwise.

YHfkt
Binary variable with a value of 1 if F f is produced on K k in PT t, and with a value of 0 otherwise.

XLflt
Binary variable with a value of 1 if L l is ready to produce the F f in PT t, and with a value of 0 
otherwise.

XHfkt
Binary variable with a value of 1 if K k is ready to produce the F f in PT t, and with a value of 0 
otherwise.

ZLflt
Binary variable with a value of 1 if L l if a setup takes place of F f on L l in PT t, and with a value 
of 0 otherwise. 

ZHfkt
Binary variable with a value of 1 if K k if a setup takes place of F f on K k in PT t, and with a value 
of 0 otherwise. 

WLlt
Binary variable with a value of 1 if more than one F f is produced on L l in PT t, and with a value 
of 0 otherwise. 

WHkt
Binary variable with a value of 1 if more than one F f is produced on K k in PT t, and with a value 
of 0 otherwise. 

αLflt Binary variable with a value of 1 if L l is prepared to produce the F f at the start of PT t, and with a 
value of 0 otherwise. 

αHfkt
Binary variable with a value of 1 if K k is prepared to produce the F f at the start of PT t, and with a 
value of 0 otherwise. 

βLflt Binary variable with a value of 1 if L l is prepared to produce the F f at the end of PT t, and with a 
value of 0 otherwise. 

βHfkt
Binary variable with a value of 1 if K k is prepared to produce the F f at the end of PT t, and with a 
value of 0 otherwise. 
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fkt fktYH PFH≤  , ∀ f, k, t (9)

fkt fktYH XH≤  , ∀ f, k, t (10)

fkt fktZH YH≤  , ∀ f, k, t (11)

αHfkt–βh0fk ≤∑ZHfkt, ∀ f, k, t = 1 (12)

αHfkt–βHfkt–1 ≤∑
f

ZHfkt, ∀ f, k, t >1 (13)

βHfkt–αHfkt ≤(∑
f

XHfkt)–1, ∀ f, k, t (14)

∑
f
αHfkt=1, ∀ k, t (15)

∑
f
βHfkt=1, ∀ k, t (16)

αHfkt ≤ XHfkt , ∀ f, k, t (17)

βHfkt ≤ XHfkt , ∀ f, k, t (18)

3*XHfkt–∑
f

XHfkt ≤ αHfkt +βHfkt, ∀ f, k, t (19)

2*XHfkt– αHfkt –βh0fk ≤ 2*ZHfkt, ∀ f, k, t (20)

2*XHfkt– αHfkt –βHfkt–1 ≤ 2*ZHfkt, ∀ f, k, t (21)

∑
f

ZHfkt ≤ nf *(3– αHfkt– βHfkt –βh0fk),  ∀ f, k, t =1 (22)

∑
f

ZHfkt ≤ nf *(3– αHfkt– βHfkt –βHfkt–1), ∀ f, k, t >1 (23)

2–∑
f

YHfkt  ≤ 2*(1–WHkt), ∀ k, t (24)

( ) 1 *fkt kt
f

YH nf WH− ≤∑  , ∀ k, t (25)

αHfkt+βHfkt  ≤ (2–WHkt), ∀ f, k, t (26)

IIft=ii0f +∑
l

PFLflt  – ∑
k

PFHfkt , ∀ f, t = 1 (27)

IIft= IIft–1 +∑
l

PFLflt  – ∑
k

PFHfkt , ∀ f, t = 1 (28)

∑
l

tflfl  *PFLflt +∑
f

tslfl *ZLflt ≤ capllt ∀ l,t (29)

PFLflt ≤ M 3*XLflt, ∀ f, l, t (30)

PFLflt ≤ M 4*YLflt, ∀ f, l, t (31)

lmlfl*(ZLflt+ZLflt+1–YLflt+1) ≤PFLflt, ∀ l, f, t (32)

lmlfl*(ZLflt+ZLflt+1+YLflt+YLflt+1–2)≤PFLflt+PFLflt+1,

∀ l, f, t
(33)

YLflt  ≤ PFLflt , ∀ f, l, t (34)

YLflt  ≤ XLflt ,  ∀ f, l, t (35)

ZLflt  ≤ YLflt ,  ∀ f, l, t (36)

αLflt– βl0fl ≤ ∑
f  

ZLflt , ∀ f, l, t = 1 (37)

αLflt– βLflt–1 ≤ ∑
f  

ZLflt , ∀ f, l, t >1 (38)

βLflt– αLflt ≤ (∑
f  

XLflt )–1, ∀ f, l, t (39)

∑
f  
αLflt=1, ∀ l, t (40)
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∑
f  
βLflt=1, ∀ l, t (41)

αLflt ≤ XLflt , ∀ f, l, t (42)

βLflt ≤ XLflt , ∀ f, l, t (43)

3*XLflt–∑
f  

XLflt ≤ αLflt+ βLflt , ∀ f, l, t (44)

2*XLflt– αLflt+ βl0fl ≤ 2*ZLflt , ∀ f, l, t (45)

2*XLflt– αLflt+ βLflt–1  ≤ 2*ZLflt ,  ∀ f, l, t (46)

∑
f  

ZLflt ≤ nf *(3–αLflt–βLflt–βl0fl) , ∀ f, l, t = 1 (47)

∑
f  

ZLflt ≤ nf *(3–αLflt–βLflt–βLflt–1) , , ∀ f, l, t > 1 (48)

2–∑
f  

YLflt ≤ 2 *(1–WLlt), ∀ l, t (49)

(∑
f  

ZLflt )–1≤ nf *WLlt, ∀ l, t (50)

αLflt+ βLflt ≤(2–WLlt), ∀ f, l, t (51)

The objective function (1) expresses the minimization 
of the setup costs of the Fs on the Ls and Ks (both 
stages) and the inventory costs of the Fs at the middle 
(intermediate) and the end of the manufacturing 
process. 

Constraints (2) and (3) are the inventory balance 
equations of in-process and finished Fs, respectively. 
Constraint (4) ensures that the capacity required 
for the setup of Fs and the manufacturing of the 
lots assigned to each K do not exceed the capacity 
available on each K in each PT. Constraint (5) 
indicates that a F can only be produced on a K in a 
PT if the K has previously be prepared to produce the 
F in such a PT. Constraint (6) indicates that a F can 
only be produced on a K in a PT if it has previously 
been decided to produce the F on the K in such a PT.

Constraint (7) guarantees that should a certain 
amount of a F be produced on a K, it is equal to or 
above the minimum lot size established for the F 
on that K if the F is just produced in a single PT. 
Constraint (8) allows not to produce the minimum lot 
size established for a F on a K in a PT, if either the F 
was the last one produced in the previous PT and the 
first one produced in the next PT, or the F is the only 
one produced during two consecutive PTs. However, 
it guarantees in both cases that the total amount of 
F produced will be superior to its minimum lot size. 

Constraint (9) establishes that if there is no amount 
of F produced on a K in a PT then it is not allowed to 
produce the F on the K in such a PT. Constraint (10) 
establishes that if a F is produced on a K in a PT, then 
the K has been previously prepared to produce the F 
in such a PT.

Constraint (11) establishes that if a F is not produced 
on a K in a PT, then there is no setup on the K in 
such a PT. Constraints (12) and (13) ensure that if 
a K “status” at the start of a PT is different from the 
“status” at the end of the previous PT, then at least 
one setup has to be made on the K in such a PT. 
Constraint (14) indicates that if a K does not change 
its “status” during a PT, then it is already prepared 
(either at the start or the end of such a PT) to produce 
the same F. 

Constraints (15) and (16) guarantee that a K can be 
only prepared to produce just one F, in the start and 
in the end of a PT, respectively. Constraints (17) and 
(18) ensures that if a K is not prepared to produce 
a F in a PT, then that F can not be either the first or 
the last, respectively, for which the K was prepared 
in such a PT. Constraint (19) indicates that if a K is 
only prepared to produce just one F in a PT, then the 
K should be prepared either at the start or the end of 
such a PT to produce the F.

Constraints (20) and (21) indicate that it is only 
possible to save a single changeover on a K in a PT 
if the K is prepared at the start of the current PT to 
manufacture the same F for which it was prepared 
at the end of the previous PT. Constraints (22) and 
(23) indicate that if the “status” of a K at the start 
and the end of a current PT is equal to the “status” 
at the end of the previous PT, then just one or no F 
is manufactured. Constraint (24) assures that if one 
or no F is manufactured on a K in a PT, then WL=0, 
although the contrary case does not imply WL=1. 
For this it is implemented constraint (25). 

Constraint (26) guarantees that if more than one F 
is manufactured on a K in a PT, none of them can 
be the first and the last at the same time in such a 
PT. Therefore, only in the case in which one or no 
F is manufactured on a K in a PT is possible that 
αH=1 and βH=1 for that F. Constraints (27) and (28) 
are the inventory balance equations of intermediate 
products (between Ls and Ks).

Constraints from (29) to (51) are the same as 
constraints from (4) to (26) but in this case regarding 
to the Ls. 
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4. Numerical example

The model validation is made by its application to 
a simplified two-stage real case within a ceramic 
firm. The input data and the solution obtained are 
described in the following sections.

4.1. Input data description
The model data are based on historical information 
(demand data) and on the mean real values (times and 
costs). The physical configuration has been slightly 
changed for confidentiality reasons, considering a 
problem of a size that represents the main relevant 
characteristics, but not excessively large so that it 
could be described in detail here.

The model’s planning horizon is assumed to be half 
a year and it is divided into six monthly planification 
periods, from t1 to t6. Six product families labelled 
F1 to F4 were included, each of them corresponding 
to different formats. Only a single plant is considered, 
made up of two stages. First one, presses-glazing 
lines stage consists of three production lines , from 
L1 to L3. Second one, kilns stage, consists of two 
kilns, K1 and K2. Both stages are uncoupled by 
buffers.

Other relevant FGs data for the model can be 
consulted in Tables 4-5. Data of product families 
demand, and production capacity in each of the 
production lines (L) and kilns in each period of time 
are shown in Table 4. 

Table 4. Data of product families (F) demand and 
production capacity of production lines (L) and kilns (K) 
in each PT (t).

 

F 
d ft 

t1 t2 t3 t4 t5 t6 

F1 100 125 135 140 150 130 

F2 125 110 135 150 125 115 

F3 140 125 110 130 115 125 

F4 100 125 135 140 150 130 

F5 125 110 135 150 125 115 

F6 140 125 110 130 115 125 

L 
capl lt 

t1 t2 t3 t4 t5 t6 

L1 50 70 70 50 70 70 

L2 70 50 70 50 50 70 

L3 50 50 50 70 70 50 

K 
caph kt 

t1 t2 t3 t4 t5 t6 

K1 1000 1250 1000 1000 1200 1200 

K2 1200 1100 1100 1200 1300 1000 

In addition to the former table, some specific data 
of product families on production lines and kilns are 
shown in Table 5. No backorder is permitted.

The proposed model was translated to the MPL 
language, V4.2. The resolution was carried out 
with optimisation solver GUROBI 4.5.1. The input 
data and the model solution values were processed 
with the Microsoft Access database (2007). The 
experiment was run on a PC with a 2.40 GHz 
processor and 2 GB of RAM.

Table 5. Specific data of product families (F) in each of the 
production lines (L) and kilns (K).

  F L   i0 ciif tslf cslf tflf lmlf βl0lf 

F1 

L1 

50 0.1 2 35 0.1 160 0 

F2 50 0.15 2.5 30 0.25 180 1 

F3 50 0.2 3 40 0.2 175 0 

F4 50 0.15 3.5 45 0.2 160 0 

F5 50 0.25 2.5 30 0.1 180 0 

F6 50 0.1 3 45 0.15 170 0 

F1 

L2 

50 0.1 2 35 0.1 160 0 

F2 50 0.15 2.5 30 0.25 180 0 

F3 50 0.2 3 40 0.2 175 1 

F4 50 0.15 3.5 45 0.2 160 0 

F5 50 0.25 2.5 30 0.1 180 0 

F6 50 0.1 3 45 0.15 170 0 

F1 

L3 

50 0.1 2 35 0.1 160 1 

F2 50 0.15 2.5 30 0.25 180 0 

F3 50 0.2 3 40 0.2 175 0 

F4 50 0.15 3.5 45 0.2 160 0 

F5 50 0.25 2.5 30 0.1 180 0 

F6 50 0.1 3 45 0.15 170 0 

   F K ii0 cif tshf cshf tfhf lmhf βh0kf 

F1 

K1 

50 0.1 10 120 1.5 160 0 

F2 50 0.15 15 115 1.8 180 1 

F3 50 0.2 18 100 2.5 175 0 

F4 50 0.15 16 125 2 160 0 

F5 50 0.25 15 110 3.5 180 0 

F6 50 0.1 17 100 1.5 170 0 

F1 

K2 

50 0.1 10 120 1.5 160 0 

F2 50 0.15 15 115 1.8 180 0 

F3 50 0.2 18 100 2.5 175 1 

F4 50 0.15 16 125 2 160 0 

F5 50 0.25 15 110 3.5 180 0 

F6 50 0.1 17 100 1.5 170 0 

 

4.2. Evaluation of results
The values of the decision variables linked to the 
production lines and kilns that lead to the optimum 
solution and help to validate the set-up continuity are 
shown in Tables 6-9. 
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Table 6. Amount (m2) of product families (F) manufactured 
on production lines L1 and L2 in each PT.

   t1 t2 t3 t4 t5 t6 
L1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PFL F1 
F2 
F3 
F4 
F5 
F6 

 
164 

 
 
 

40 

 
 
 
 
 

465 

 
 

230 
 
 

140 

 
 
 

 
 

115 
 
 
 

 
 

125 
 
 
 

XL F1 
F2 
F3 
F4 
F5 
F6 

 
1 
 
 
 

1 

 
 
 
 
 

1 

 
 

1 
 
 

1 

 
 

1 

 
 

1 
 
 
 

 
 

1 
 
 
 

YL F1 
F2 
F3 
F4 
F5 
F6 

 
1 
 
 
 

1 

 
 
 
 
 

1 

 
 

1 
 
 

1 

 
 
 

 
 

1 
 
 
 

 
 

1 
 
 
 

βl0=F2 αL 
βL 

F2 
F6 

F6 
F6 

F3 
F6 

F3 
F3 

F3 
F3 

F3 
F3 

ZL F1 
F2 
F3 
F4 
F5 
F6 

 
 
 
 
 

1 

 
 
 

 
 

1 
 
 
 

 
 
 

 
 
 
 
 
 

 

 WL 1  1    
L2 PFL F1 

F2 
F3 
F4 
F5 
F6 

 
 

175 
125 

 

 
 
 

35 
 

 
 
 

350 
 
 

140 
 
 

170 
 
 

280 
 
 
 

125 
 

 
 
 
 

115 
 

XL F1 
F2 
F3 
F4 
F5 
F6 

 
 

1 
1 
 

 
 
 

1 
 

 
 
 

1 
 
 

1 
 
 

1 
 
 

1 
 
 
 

1 
 

 
 
 
 

1 
 

YL F1 
F2 
F3 
F4 
F5 
F6 

 
 

1 
1 
 

 
 
 

1 
 

 
 
 

1 
 
 

1 
 
 

1 
 
 

1 
 
 
 

1 
 

 
 
 
 

1 
 

βl0=F3 ALFAL 
BETAL 

F3 
F4 

F4 
F4 

F4 
F4 

F4 
F1 

F1 
F5 

F5 
F5 

ZL F1 
F2 
F3 
F4 
F5 
F6 

 
 
 

1 
 

 
 
 

 
 
 
 
 
 

1 
 
 
 
 

 
 
 
 

1 
 

 

 WL 1   1 1  

 

Table 7. Amount (m2) of product families (F) manufactured 
on production line L3 in each PT.

   t1 t2 t3 t4 t5 t6 
L3 PFL F1 

F2 
F3 
F4 
F5 
F6 

260 
 
 
 

25 

 
 
 
 

185 

 
106 

 
 

210 
 

 
150 

 
 

 
240 

 
 
 
 

 
 
 
 
 
 

XL F1 
F2 
F3 
F4 
F5 
F6 

1 
 
 
 

1 

 
 
 
 

1 

 
1 
 
 

1 
 

 
1 
 
 

 
1 
 
 
 
 

 
1 
 
 
 
 

YL F1 
F2 
F3 
F4 
F5 
F6 

1 
 
 
 

1 

 
 
 
 

1 

 
1 
 
 

1 
 

 
1 
 
 

 
1 
 
 
 
 

 
 
 
 
 
 

βl0=F1 αL 
βL 

F1 
F5 

F5 
F5 

F5 
F2 

F2 
F2 

F2 
F2 

F2 
F2 

ZL F1 
F2 
F3 
F4 
F5 
F6 

 
 
 
 

1 

 
 
 

 
1 
 
 
 
 

 
 
 

 
 
 
 
 
 

 

 WL 1  1    

 

Table 8. Amount (m2) of product families(F)manufactured 
on kilns K1 and K2 in each PT. 

   t1 t2 t3 t4 t5 t6 
K1 PFH F1 

F2 
F3 
F4 
F5 
F6 

 
198 

 
175 
75 

 
 
 
 

185 

 
122 

 
 

210 
 

 
150 

 
 
 
 

 
240 
115 

 
 
 

 
 

125 
 
 
 

XH F1 
F2 
F3 
F4 
F5 
F6 

 
1 
 

1 
1 

 
 
 
 

1 

 
1 
 
 

1 
 

 
1 
 
 
 
 

 
1 
1 
 
 
 

 
 

1 
 
 
 

YH F1 
F2 
F3 
F4 
F5 
F6 

 
1 
 

1 
1 

 
 
 
 

1 

 
1 
 
 

1 
 

 
1 
 
 
 
 

 
1 
1 
 
 
 

 
 

1 
 
 
 

βh0=F2 αH 
βH 

F2 
F5 

F5 
F5 

F5 
F2 

F2 
F2 

F2 
F3 

F3 
F3 

ZH F1 
F2 
F3 
F4 
F5 
F6 

 
 
 

1 
1 

 
 
 

 
1 
 
 
 
 

 
 
 
 
 

 
 

1 
 
 
 

 

 WH 1  1  1  
K2 PFH F1 

F2 
F3 
F4 
F5 
F6 

310 
 

225 
 
 

90 

 
 
 
 
 

465 

 
 

230 
135 

 
140 

140 
 
 

420 

280 
 
 
 

125 
 

 
 
 
 

115 
 

XH F1 
F2 
F3 
F4 
F5 
F6 

1 
 

1 
 
 

1 

 
 
 
 
 

1 

 
 

1 
1 
 

1 

1 
 
 

1 

1 
 
 
 

1 
 

 
 
 
 

1 
 

YH F1 
F2 
F3 
F4 
F5 
F6 

1 
 

1 
 
 

1 

 
 
 
 
 

1 

 
 

1 
1 
 

1 

1 
 
 

1 

1 
 
 
 

1 
 

 
 
 
 

1 
 

βh0=F3 αH 
βH 

F3 
F6 

F6 
F6 

F6 
F4 

F4 
F1 

F1 
F5 

F5 
F5 

ZH F1 
F2 
F3 
F4 
F5 
F6 

1 
 
 
 
 

1 

 
 
 

 
 

1 
1 
 
 

1 
 
 
 

 
 
 
 

1 
 

 

 WH 1  1 1 1  

 

Table 9. Intermediate and final inventory of product 
families (F) at each PT (t).

F 
IIft Ift 

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6 

F1 0 0 0 0 0 0 260 135 0 0 130 0 

F2 16 16 0 0 0 0 123 13 0 0 115 0 

F3 0 0 0 0 0 0 135 10 130 0 0 0 

F4 0 35 250 0 0 0 125 0 0 280 130 0 

F5 0 0 0 0 0 0 0 75 150 0 0 0 

F6 0 0 0 0 0 0 0 340 370 240 125 0 

 

The assessment method used consisted in analyzing 
if the model accounts for set-up continuity issues. 
However, the model operation was also assessed by 
two parameters: computational efficiency and the 
total costs in terms of tactical planning. 

These results confirm that the described constraints 
are valid to model the set-up continuity over discrete 
periods of time. It implies that if a product family is 
manufactured in two periods of time just one set-up 
is considered. This occurs just in case F is the last to 
be manufactured on a L or a K in a PT t and the first 
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to be manufactured on the same L or K in PT t+1. 
In addition to that, the model allows the minimum 
lot size may be completed without any changeover 
during these two consecutive periods.

A representative example may be seen in Table 6 for 
F1, which is manufactured on L2 in two consecutive 
PTs t=4 and t=5. F1 is manufactured at the end of 
PT t=4 in an amount less than its minimum lot size 
although it is also manufactured at the start of PT 
t=5, therefore meeting that minimum lot size of 
160 and just considering one set-up instead of two. 
Another example may be seen in Table 8 for F4, 
which is manufactured on K2 in two consecutive 
PTs t=3 and t=4. F4 is manufactured at the end of 
PT t=3 in an amount less than its minimum lot size 
although it is also manufactured at the start of PT 
t=4, therefore meeting that minimum lot size of 160 
and just considering one set-up instead of two. In 
Table 10 , the values of the total costs are shown. 

This paper focuses on the validation of set-up 
continuity issues so that some simplifications in 
the example are assumed, leading to approximated 
results of the reality. As aforementioned, tactical 
production planning in real ceramic SC scenarios 
includes a wide variety of production mix and 
other additional variables/costs, mainly related with 
the number of shifts planned in the press-glazing 
lines, the activation / desactivation of kilns or the 
subcontracting of some supplementary capacity for 
certain products families. In our example, the model 
generated a total cost of € 1894.4. The different 
components of the objective function appear in Table 
10: intermediate and final inventory costs and setup 
costs in both stages. Backorder costs are not reflected 
in the model assuming that all the demand has to be 
fulfilled.

Finally, problem size characteristics and 
computational efficiency can be consulted in 
Table 11.

Table 10. Total Costs.

Total Costs 

Intermediate Inventory costs 47.55 

Final Inventory costs 389.15 

Press-glazing Lines Set-up costs 255 

Kilns Set-up costs 1125 

 1816.7 

 

Table 11. Computational efficiency.

Computational efficiency 

Iterations 133745292 

Variables 1182 

Integers 1182 

Constraints 2922 

Non-zero 12804 

Density (%) 0.4 

Time (hours) 30 

MIP best bound 1437.15 

 

The computational efficiency parameter measures 
the computational effort required to solve models. 
The indicators are: the number of iterations needed 
by the solver and used to reach the final solution. 
Table 11 shows the number of model variables, 
the number of integers in the model, the number of 
constraints in the model, the number of non-zero 
elements in the constraints matrix that the model 
contains, the density of the constraints matrix that 
the model contains, the CPU time required to obtain 
the model solution and the MIP best bound. 

In this case, the model was solved by the standard 
solver setting the parameter “limit time” to 30 hours, 
obtaining a gap of 20% regarding to the optimal 
solution (Table 11). More efficient solutions could 
be reached, applying other solution techniques. 
For instance, from the validation of the model, the 
authors have observed that the solution time of the 
model substantially decreases by fixing the value 
of the binary variables YLfltand YHfkt. Therefore, the 
development of heuristics or metaheuristics similar 
to Motta et.al (2013) that evaluate different solutions 
generated by fixing the value of the binary variables 
YLflt and YHfkt, transferring them as input data to 
the model and optimize the value of the remaining 
decision variables, could substantially reduce the 
solution time and the gap. However, this issue is 
out of scope of this work and constitutes a future 
research line.

5. Conclusions

This work presents a mix integer linear programming 
(MILP) model to solve the tactical planning problem 
in a two stage production system in the ceramic 
sector for the purpose of minimizing product families 
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