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Abstract

The main objective of the present work is to develop and provea theoretical explanation based on the Extended
Non-Equilibrium Thermodynamics (ENET) for the hysteretical thermoelectric behavior observed in certain thin-film
photovoltaic materials. The ENET introduces dissipative fluxes in the entropy balance that could explain this behavior.
To verify this explanation from a numerical point of view, results are generated using a Finite Element (FE) formula-
tion based on the ENET and already developed in previous publications by the authors. In addition, an identification
Inverse Problem (IP) is formulated; a cost function is defined as the quadratic difference between experimental and
numerical results and the IP is solved minimizing the cost function and using genetic algorithms. The conclusion is
that the loop-like distributions are due to energy dissipation introduced by dissipative fluxes that are closely related
with relaxation times. Also, the FE-IP combination permitsto find an approximated characterization of properties for
several materials from single experimental curves. Finally, several numerical simulations are proposed for laboratory
experiments to further validate the theoretical interpretation and to confirm the relation between relaxation times and
hysteresis.

Keywords: Thin-film, Thermoelectric, Hysteresis, Finite Element Method, Extended Thermodynamics, Relaxation
times, Inverse problems

1. Introduction

Thin-film semiconductors have drawn great attention
in the last two decades due to their suitability, among
other applications, for cells in solar energy. Semicon-
ductors of the thermoelectric type are completely char-
acterized by their figure-of-merit, that depends on ther-
mal and electric conductivities and on theSeebeckco-
efficient. These properties must be determined experi-
mentally to characterize the semiconductors and to de-
sign the solar cells themselves.

An experimental study for the measurement of the
Seebeckcoefficient in thin-film semiconductors has
been published in [1], reporting a hysteretic behavior
that prevents correct and unique measurements of this
coefficient. In [2], a similar behavior was observed in
the cuticle of the oriental hornetVespa Orientalis. This
cuticle seemly works as a thermoelectric heat pump for
the cooling of the hornet body, and as a solar energy
harvesting allowing the hornet to increase its activity in
the presence of strong insolation, [3].

A theoretical and a practical challenge emerge from

these works:

i) Physical interpretation of the hysteretic behavior

ii) Measurement of theSeebeckcoefficient

The first was undertaken in the references, conclud-
ing that the reason for this behavior could lay in fer-
roelectric properties (polarization phenomena). Pyro-
electric interactions were discarded in [1]. According
to [4], the reason could be related with the heating and
cooling speeds during the measurement process. For the
second challenge, an empirical procedure without sound
theoretical basis was proposed in [1], consisting on an
analytical fitting of the experimental curves. Another
alternative was proposed in [2], measuring theSeebeck
coefficient uniquely at the heating branch.

In the present work we state that from a physics the-
oretical point of view and using the Extended Non-
Equilibrium Thermodynamics (ENET) [5], hysteretic
phenomena are due to the presence of multiple ther-
modynamic configurations accessible to the thermo-
dynamic system; these metastable configurations are
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closely related with relaxation times, [6]. The ENET as-
sumes the existence of a non–equilibrium entropy den-
sity that depends on the classical state variables and on
the dissipative fluxes, in a formulation defined as ther-
modynamic mixed. This theory permits the study of
thermodynamic systems for which the local equilibrium
hypothesis is not valid, introducing relaxation times in
the formulation.

We aim to undertake the two aforementioned chal-
lenges, studying them with the Finite Element (FE) for-
mulation based on ENET developed in [7], along with
classical Inverse Problem (IP) techniques. Experiments
for several materials performed in [1] are numerically
replicated, and in addition a Sensitivity Analysis com-
plemented by an IP is developed. In particular the FE-
IP combination is employed for the characterization of
the Seebeckcoefficient and, in the future, for the effi-
ciency optimization of solar cells. Finally, three numer-
ical experiments for the verification of the ENET-based
explanation are discussed and proposed for laboratory
verification.

2. Theoretical formulation

The thermoelectric balance equations are the balance
of energy and of electric charge [8]:

ρmc Ṫ = −∇ · q − j · ∇V ;

∇ · j = 0
(1)

whereρm, c, T, q, j, V are the mass density, heat ca-
pacity, temperature, heat and electric fluxes and finally
voltage. In the previous equation the supradot ( ˙ ) de-
notes time derivative. The entropy balance required to
obtain the transport equations is given by [9]:

ρm ṡ= −∇ · js + σ
s ⇒
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q
T

;

σs = q · ∇
(

1
T

)

−
1
T

j · ∇V

(2)
where ṡ, js, σ

s are entropy rate, flux and production,
respectively. Note that the entropy production is in-
creased by two factors: thermal conduction andJoule
heating, the latter electric energy converted into ther-
mal one. From (2) and using the procedure described in
[10], the classical transport equations are:

q = −κ ∇T + α T j ;

j = −γ ∇V − α γ ∇T
(3)

V = 0

x2

x1
Th

Tc

Lx1

Lx2

Figure 1: Experimental configuration for the measurement oftheSee-
beckcoefficient in thermoelectric photovoltaic materials.

whereγ, κ are electric and thermal conductivities and
α the Seebeckcoefficient. These parameters are usu-
ally denominated transport properties and, in general,
depend on temperature as reported in [11].

As discussed in the introduction, the ENET considers
dissipative fluxes ˙q, j̇ in the classical entropy balance
(2). Therefore and according to [12], the entropy pro-
duction becomes:

σs = q ·
[

∇

(

1
T

)

+
C1

T
q̇ +

C3

T
j̇
]

+ j ·
[

−
1
T
∇V +

C2

T
q̇ +

C4

T
j̇
]

(4)

whereC1 to C4 are constants to be determined, closely
related with relaxation times. Note that these dissipa-
tive fluxes increase the entropy, in other words, add ir-
reversibilities to the thermodynamic system. According
to [12], [7], the ENET transport equations are:

q = −κ ∇T + α T j − τq j α T γ ∇V̇ + τq κ ∇Ṫ ;

j = −γ ∇V − α γ ∇T − τ jq α γ ∇Ṫ + τ j γ ∇V̇
(5)

The direct relaxation timesτq, τ j represent thermal
and electric “viscosities”, closely related withCattaneo
[13], [14] andDrude [15] models; the coupling relax-
ation timesτq j, τ jq represent thermal and electric vis-
cosities due to the presence of voltage and of tempera-
ture gradients, respectively.

Finally, in order to obtain the thermoelectric gov-
erning equations, the boundary conditions are incorpo-
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Figure 2: Experimental results reported in Ferrer 2006 [1] for FeS2
(top) and Ti-doped FeS2 (bottom) thermoelectric thin films.

rated:

Dirichlet : T = T̄ , V = V̄ ;

Neumann: q · n = qc , j · n = jc
(6)

whereT̄, V̄ are the temperature and voltage, andqc, jc
the thermal and electric fluxes, all of them prescribed.

3. Physical interpretation of the hysteretic behavior

Before developing a theoretical explanation of the
hysteretic behavior using the ENET, the experimental
procedure and empirical results reported in [1] are re-
viewed.

3.1. Experimental procedure

The experimental configuration for the measurement
of the Seebeckcoefficient usually involves placing the
thermoelectric between hotTh and coldTc faces’ tem-
perature and fixing at the latter the voltage, as shown in
Figure 1. Considering the classical transport equations
(3) and zeroing the prescribed fluxj, a linear relation-
ship between the applied temperature difference∆T and

the measured voltage drop∆V is obtained:

j = −γ ∇V − α γ ∇T

j = 0



















⇒ ∆V = −α ∆T (7)

Note that gradients have been replaced by increments to
be in accordance with the experimental measurements.
TheSeebeckcoefficient is determined plotting∆V ver-
sus∆T and calculating the slopeα of the linear relation-
ship (7); the sign ofα is related to the semiconductor
type:n or p.

Two thin-film material samples with dimensions
Lx2 = 15, Lx1 = 25 [mm] were characterized by the pro-
cedure described in the previous paragraph. Two very
different results were observed:

• For FeS2, the linear relationship∆V–∆T shown in
Figure 2 top, with a uniqueα

• For Ti-doped FeS2, the hysteretic behavior shown
in Figure 2 bottom, with different values ofα

As discussed in the introduction, for samples that
present a hysteretic behavior it is difficult to assign
a representativeSeebeckcoefficient: α was calculated
from the heating branch in [2] and from the common
diagonal slope of different loops obtained applying dif-
ferent∆T’s in [1], fitting the experimental results to a
uniqueα:

∆V = −α ∆T − α K
d(∆T)

dt
(8)

whereK was an empirical magnitude with dimension of
time. Therefore, the loop shape and its slope, Figure 2
(bottom), were determined by the second and first terms
on the right side of (8), respectively.

3.2. Theoretical explanation

The motivation to provide a theoretical explanation
using the ENET is due to the dependency of the empir-
ical equation (8) on d∆T/dt and onK; the two magni-
tudes can be closely related with those introduced by the
ENET: dissipative fluxes and relaxation times.

The relaxationτ j can be neglected in absence of free
electric charges, [7]. From the electric transport equa-
tion (5), forcing againj = 0:

∇V = −α ∇T − α τ jq
∂(∇T)
∂t

(9)

Contrasting (8) and (9), the equivalenceK ≡ τ jq is ev-
ident. Therefore, the loop shape, i.e. hysteresis, may
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depend onτ jq. From a theoretical point of view, the re-
lation between hysteresis and relaxation times already
was stated in [6]: this hysteresis depends on the ratio
τ jq/tob, wheretob is the observation time. The ratio de-
pends on the material properties, observing different be-
haviors if:

τ jq/tob << 1 → Linear response

τ jq/tob ≈ 1 → Hysteretical response

Summarizing, from statistical physics it can be said
that the microscopic equilibration timeτ jq increases
when the FeS2 is doped with Ti, provoking the hysteri-
cal behavior.

4. Finite element equations

Several numerical techniques to study the thermo-
electric coupling such as the finite difference [16] and
the FE methods have been published. The authors of
the present work have developed several non-linear FE
formulations, see [17], [18], [19], [7]. The first two
are steady–state formulations; the third one is dynamic
and includes the relaxation timeτq, permitting the study
of hyperbolic propagations of temperature, voltage and
thermal flux after theCattaneomodel. Finally, the
last work presents a complete FE formulation including
three relaxation times:τq, τq j, τ jq. These formulations
are fully described in the references and therefore will
not repeated here.

In the present work, the FE formulation includes the
three relaxation times. Since the thermoelectric prob-
lem only requires two degrees of freedom per node
(temperature and voltage), the assembled FE matrix is:





















c1K
TT + c2C

TT + c3MTT c1K
TV + c2C

TV

c1K
VT + c2C

VT c1K
VV





















(10)

wherec1, c2, c3 are time integration parameters andK ,
C, M the tangent conductivity, capacity and thermal in-
ertia matrices, respectively. Note thatK is denominated
stiffness matrix in theContinuum Mechanicscommu-
nity; however, for the thermoelectric problem it repre-
sents the conductivity matrix. Note also that the cou-
pled matrix will not be symmetric, requiring a special
algorithm for the inversion of the assembled matrix.

All terms in the assembled matrix are developed in
[19]. In particular, the submatricesCVT, CTV were in-
corporated in [7] to take into accountτ jq, τq j, respec-

tively:

CVT
AB = −τ jq

∫

Ω

(BA)t α γ BB dΩ

CTV
AB = −τq j

∫

Ω

(BA)t TB α γ BB dΩ

(11)

whereA, B denote two generic global FE nodes,Ω the
domain andB the discretized gradient matrix.

The time-integration algorithm is regularized to avoid
Gibbsphenomena with the procedure described in [19].
Since the FE formulation was intended to be complete,
a three-dimensional isoparametric element is used, al-
though due to geometry and boundary conditions the
models are one-dimensional in the present work.

Finally, the FE formulation was implemented into the
research codeFEAP [20], from the University of Cali-
fornia at Berkeley. This code provides several dummy
routines (user elements) that can be used for the imple-
mentation of newly developed modular elements written
in the programming languageFortran.

5. Calibration of the numerical model: inverse
problem

Material properties are required for the numerical
simulation of the experiment from [1], but some of these
properties were not reported. In addition, the relax-
ation time is not considered in the experimental work
(K is empirically fitted). Therefore, the present numeri-
cal model is calibrated with two steps:

1. A Sensitivity Analysis (SA) to identify the thin-
film properties that are relevant for the hysteretic
behavior

2. An identification IP to, from a single experimental
curve, quantify these properties

5.1. Sensitivity Analysis

The objective of the SA is the determination of the re-
lationships between the uncertainties for dependent and
independent (or random) variables. The SA is a method
for checking the quality of a given model; there are
many available procedures to develop a SA and we ap-
ply the one from [21]. This procedure uses the concept
of Standardized Regression Coefficients (SRC), whose
absolute values provide a measure of the importance of
each variable, [22].

The dependent variable is a cost function defined as
the quadratic difference between the voltage drops ob-
tained from the experimental curve∆VEXP drawn in
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Figure 2 bottom, and from the FE simulation∆VNUM:

f =
1
N

N
∑

i=1

(

∆VEXP
i − ∆VNUM

i

)2
(12)

whereN is the number of measurement points or FE
nodes.

The random variables are defined as the set
{α, γ, κ, c, ρm, τq, τ jq} and are assumed to be normally
distributed: mean values given in Table 2 are obtained
from [23], [1], and standard deviations are assumed to
be 25%. These deviations are higher than the usual 10%
to take into account a worst-case scenario.

To reduce CPU cost and at the same time guarantee
convergence, an optimized sample of sizem= 1000 was
calculated by the procedure developed in [24]. Accord-
ing to this reference, the sample is of theLatin Hyper-
cubetype since the convergence is faster than the one
related with random techniques.

τ
jq

τ
q

ρ
m

cκγα

0.4

0.2

0

Figure 3: Standardized regression coefficients in absolute value for
random variables (material properties).

Figure 3 shows the SRC’s in absolute value obtained
from the SA. As expected, the cost function is sensitive
to theSeebeckcoefficientα and specially to the relax-
ation timeτ jq. These facts agree with the theoretical
assumptions made in Section 3.2: the loop shape and its
diagonal slope depend onτ jq andα, respectively. The
sensitivities ofκ, c, ρm are smaller but relevant, since the
electric energy generated by theSeebeckeffects depends
on the thermal material properties as will be shown in
(14). Finally, the sensitivities ofγ, τq are not relevant at
all, the first due toj = 0. The second irrelevancy im-
plies that the purely thermal viscosity is not present in
this phenomenon,τq/tob << 1. Consequently, these two
random variables will not be considered in the follow-
ing.

5.2. Inverse problem
The identification IP is directed to evaluate the mag-

nitude of the random variables identified by the SA from

a reduced set of data, in particular experimental loops
∆V–∆T. Note that the material properties taken from
the references are not used now, with the objective of
characterizing the material without the need of a com-
plete set of experiments. The IP is solved using the pro-
cedure described in [24], [25], defining: (i) a set of out-
put variables (parametrization) introduced into the FE
code to solve the direct problem, (ii) a cost function and
(iii) a minimization method.

Parametrization

In the IP framework, the concept of model parametriza-
tion implies the solution characterization sought by a set
of parameters, that are the working variables and at the
same time the IP output. The choice of the parametriza-
tion is often not obvious, a critical step in the problem
setup. Here, according to the SA results from Figure
3, the output set is defined as{α, κ, c, ρm, τ jq}. Starting
from a wide range of these parameters given by the user,
the optimization algorithm searches the optimal values,
that must be very similar to the ones taken from the lit-
erature.

Cost function

The cost function (12) is redefined as:

f L = log( f + ε) (13)

whereε = 10−16 is a very small non-dimensional value
that ensures the function existence whenf → 0. Ac-
cording to [26], this redefinition often increases the min-
imization algorithm convergence.

Minimization

A standard Genetic Algorithm (GA), see [27], is em-
ployed to minimize (13) and to obtain the IP output
listed in the first column of Table 2. Other optimization
techniques such as gradient-based algorithms could be
applied, but according to [28] the GA guarantees con-
vergence, whereas gradient-based algorithms strongly
depend on the initial guess.

Table 1 first column lists the intrinsic GA parameters.
The selected population size permits to find a global op-

Parameter Value

Population size 30
Crossover ratio 0.8
Mutation ratio 0.02

Number of generations 100

Table 1: Parameter values for the genetic algorithm.
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Figure 4: Genetic algorithm convergence. Cost function vs.number
of generation.

timum with an adequate computational cost. The mu-
tation and crossover parameters are found by trial and
error and inject genetic diversity, ensuring that the solu-
tion does not fall in a local minima. A large number of
generations is chosen to warranty convergence.

5.3. IP results
Figure 4 shows the GA convergence to fit the experi-

mental curve of Figure 5 top (see below), reached with
approximately 50 generations and therefore evidencing
that the GA parameters from Table 1 were correctly cho-
sen. The IP is repeated ten times to ensure accurate re-
sults; the corresponding means and standard deviations
are listed in Table 2 second and third columns. Standard
deviations are less than 2%, except for the most sensi-
tive parametersα, τ jq with a 3%.

The calculatedκ, c, ρm are very close to the experi-
mental ones (fourth column). Also, the calculatedα, τ jq

can be compared with those empirically fitted in [1].
The relative errors between the IP and empirical results
are approximately equal to the standard deviations ob-
tained minimizing the problem with GA: the proposed
FE-IP combination is suitable for the correct calibration
of the material from a single experimental curve.

Para- Mean Standard Experi- Units
meter IP deviation mental
α -68 3 -65.8 [µV/K]
κ 1.66 1.8 2 [W/mK]
c 534 1.9 547 [J/KgK]
ρm 5328 1.3 4900 [Kg/m3]
τ jq 93 3 93 [s]

Table 2: Means and standard deviations obtained solving tentimes the
inverse problem for ann-type sample of Ti-doped FeS2. Experimental
values taken from [23] exceptα, τ jq empirically found in [1].
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Exptl.

t [s]

∆
V

[µ
V

]

7204802400

100

-100

-300

-500

-700

∆T [K]

∆
V

[µ
V

]

86420

-100

-300

-500

-700

Figure 5: Experimental (thick line) and finite element (symbols) re-
sults for three relaxation times,n-type Ti-doped FeS2. Top: voltage
drop vs. time, bottom: idem vs. prescribed temperature difference.

From the calculated parameters, FE and experimental
responses are compared in Figures 5 for samples of Ti-
doped FeS2 of then–type, in the top∆V versus time and
in the bottom∆V versus∆T. The FE model (circles)
correctly reproduces the experimental distribution; the
only noticeable differences appear at the initial times,
for which some error is due to the sharp discontinuity
(from ∆T = 0 to 2 [K]) of the initial boundary condi-
tions, see second term on the right side of (9). Smoother
initial boundary conditions would fix the problem, but
this error is not important for the targeted results.

In the same figure, FE distributions for two different
τ jq have also been plotted to study the influence of the
relaxation time on the loop shape; as explained before
the lower the relaxation the narrower loop, in particu-
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Figure 6: Experimental (solid line) and finite element (circles) results
for ap-type sample of Ti-doped FeS2. Measured voltage drop vs. ap-
plied temperature difference.

lar there is no hysteresis ifτ jq = 0. Although no ex-
perimental comparisons are available, the distributions
whenτ jq decreases imply that the error at initial times
is mitigated. This fact is again due to the second term
on the right side of (9): the smallerτ jq the less influent
this term is.

Figure 6 shows the same comparison but for ap-type
Ti-doping; the agreement between experimental and nu-
merical loops is again very good. Ten IP cases have
been executed to recalculate the material properties, ob-
taining the sameκ, c, ρm but differentα = 55.5 [µV/K],
τ jq = 30.6 [s], probably due to a difference in the dop-
ing process. No comparison is given here since no val-
ues are reported. TheSeebeckcoefficient changes sign
due to thep-type doping and its value is smaller, hinting
the lower performance of this material. The value ofτ jq

is about one third, reflecting the narrowness of the loop
with respect to that of Figure 5. This reduction is also
detrimental since from (9) it can be observed that the
higher the relaxation time the higher the voltage drop.

The FE-IP combination is now used to characterize
two new samples from [1], executing again ten IP’s and
obtaining values:

• for a PdS sample a calculatedα = −350± 32
[µV/K], same order as the experimental -300±40
reported in [29]

• for ann-type FeS2 sample a calculatedα = −18±3
[µV/K] again close to the experimentalα = −19,
measured in [1].

The calculated relaxation times for both samples are
τ jq =30, 102 [s], not measured in the references.

Finally, a more complete experiment from [1] for the
second sample is numerically reproduced in Figure 7:
a non–regular∆T versus time signal is applied and the
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1086420
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-40
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-160
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∆
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Figure 7: Experimental (solid line) and finite element (symbol for
each peak) results forn-type sample of FeS2. Measured voltage drop
vs. applied temperature difference for four different peaks.

voltage drop is measured. Four pulses of different band-
width and amplitude are prescribed (upper right) pro-
ducing four loops (main figure). The objective of this
experiment was to show that all loops have a common
slopeα, making possible its measurement. It is impor-
tant to remark that to accurately replicate the experi-
ment, a careful data reading with a smoothing technique
of the slopes and amplitudes is necessary. Four differ-
ent symbols are used to differentiate the four loops and
the agreement is again very good, not only for the four
loops but also for the way–in and way–out curves.

6. Design of experiments for the validation of the
theoretical explanation

The aim of this section is to present three numerical
experiments that could be experimentally performed in
the future to further validate the theoretical explanation
for the hysteretic behavior. From the energy balance (1)
and transport equations (5), and assumingj = 0, τq = 0
as before, the followingPoissonequation is obtained:

∇2V = −α
ρm c

κ
Ṫ − τ jq α

ρm c

κ
T̈ (14)

In (14), the sources (terms on the right side) depend
on the material propertiesα, κ, ρm, c, on temperature
derivativesṪ, T̈ and on the relaxation time,τ jq; accord-
ing to the proposed explanation:

τ jq = 0 or T̈ = 0 ⇒ No hysteresis
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Figure 8: Proposed numerical experiment temperature increment signals vs. time (left) and resulting voltage drop vs. difference temperature (right)
for an n-type sample of Ti-doped FeS2. Applied signals: linear (top), sinusoidals (middle) and exponentially increasing (bottom). For middle
figure, frequenciesω = 4π/t̂ continuous line, 12π/t̂, dashed. Only finite element results shown.

As already verified, there will be no hysteretic behav-
ior if τ jq = 0. To check the absence of hysteresis when
the prescribed signal is so thatT̈ ≡ d2(∆T)/dt2 = 0,
three numerical cases are performed in the following
subsections. In all of them, the simulation is done with
the FE, studying ann-type sample of Ti-doped FeS2 ma-
terial.

6.1. CaseA

The signal is forced to havëT = 0 with a linearT
shown in Figure 8 top left. A completely linear response
without any hysteresis is obtained when∆V is plotted
versus∆T as in the top right, and its slope is the unique
α value. Therefore, an alternative for the proper char-
acterization of theSeebeckcoefficient of these materials
would be to apply äT = 0 signal and use the classical
relation (7).

6.2. CaseB

In this case, the influence of the frequency is studied;
two sinusoidalT-signals with the same amplitude but

different frequenciesω = 4π/t̂, 12π/t̂ are prescribed as
in Figure 8 middle left. The signal is applied up to an
arbitrary time of 60 [s]. The middle right figure shows
two recurrent and superimposed hysteretic ellipses for
each of the periods. For both frequencies, hysteretic be-
haviors are observed, sinceτ jq , 0 andT̈ , 0. Three
interesting remarks can be made:

• At ∆T = ±1 [K], the voltage drop for the two sig-
nals is equal, since for botḧT = 0

• At ∆T = 0 [K] the difference between ellipse
heights is maximum, sincëT is also maximum

• The increase of voltage drop (ellipse height) is pro-
portional to the signal frequency sinceT̈ ∝ ω2

The last remark confirms, as was argued in [5], that
the influence of relaxation times is stronger for fast ef-
fects such as ultrasound waves. For these concentric
ellipses,α could be obtained geometrically measuring
their common slopes, as in [1].
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6.2.1. CaseC
The influence of theT-signal amplitude is studied in

this case. An exponentially increasing sinusoidal signal
is applied, as in Figure 8 bottom left. The response,
bottom right, is a growing spiral centered at the origin.
The distance between two branches is proportional to
the time between two consecutive signal periods.

Again the slope of the symmetry axis gives theSee-
beckcoefficient. Given that the same material is sim-
ulated, the three slopes of the right figures are equal,
although they look different due to the different scale.

7. Conclusions

This work presents a theoretical explanation for
the understanding of the hysteretic behavior in thin-
film photovoltaic materials, using the extended non-
equilibrium thermodynamics. It is concluded that the
hysteresis depends on the relaxation timeτ jq and on the
acceleration of the prescribed temperatureT̈. The latter
dependency could explain the strong influence of relax-
ation times on fast effects such as ultrasonic waves. Ex-
perimental cases from the literature have been simulated
using a finite element formulation developed by the au-
thors in previous publications, validating the theoretical
explanation. Three numerical cases have been proposed
and simulated to fully validate in the future our theoret-
ical explanation with laboratory experiments.

In addition, an identification inverse problem has also
been performed for the characterization of theSeebeck
coefficient and of the relaxation timeτ jq along with
other relevant material properties. The combination of
the inverse problem and of the finite element method
permits a good characterization of thin-film material
properties from a single experimental curve.
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