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Nowadays, different methods are being published for the segmentation of the liver but, in general, most of
them are not suitable for clinical practice due to several inconveniences as high computational cost, excessive
user dependence or low accuracy. The purpose of this paper is to present the performance and validation of a
fiver segmentation method in computed tomography images (contrast venous phase) where automation, easy
user interaction; ‘and low computational cost: (besides the required accuracy for clinical purposes) have been
taken into account. Firstly, an adaptive filter based onintrinsic parameters! of the liver is applied to reduce noise
but preserving external liver gradients. In’ a second: step, from'ai seed or a group of them, voxeis with similar
intensities are included in an initial 3D mask. Finally, thanks to the combination of morphological operators in
different orientations, several non-liver structures (cava vein, ribs, stomach or heart) are removed and the final 3D
liver mask is obtained. Thirty public datasets have been used to estimate the accuracy of the proposed algorithm,
twenty for training the method and ten for testing it. An average Jaccard index of 0.91 (:£0.03), a Hausdorff
distance of 26.68 (+10.42) mm, and a runtime of 0.25 seconds per slice, state a promising efficiency and
efficacy in the test datasets. To our knowledge, liver segmentation methods in the state of the art are achieving
high accuracy at the expense of requiring an exhaustive training stage and so much clinician interaction time
in different steps of the process. In this paper, a method based on intensity properties is carried out with a
high grade of automatism, an easy user interaction and a low computational cost. The results obtained for
different patients state a low variance and a good accuracy in most images, thus the robustness of the method
is demonstrated.

Keywords: Liver Segmentation, Intensity Model Algorithm, Mathematical Morphology, Hepatic Planning,
Computer Tomography.

1. INTRODUCTION

Hepatocellular carcinoma is the responsible of most liver cancers,
the sixth most common cancer in the world, the main reason of
death in cirrhotic people and it is also the third cause of death by

liver/lesions ratios and measures could be calculated. An accurate
liver segmentation has a direct application in planning, moni-
toring, and treatment of different types of pathologies such as
cirrhosis or hepatocellular carcinoma diseases' or in liver trans-

neoplasm. Besides, other types of liver cancers as Fibrolamellar
carcinomas, liver metastases, hepatoblastomas or angiosarcomas
show the social impact of this disease. Nowadays, hepatic tis-
sue anomalies are treated with a qualitative comparison of com-
puted tomography (CT) or magnetic resonance images (MRI)
thanks to physician experience; however, quantitative measures
are not extended. Liver segimentation is the first step to help sur-
geons or radiologists to delimit lesions in this organ, and thus
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plant surgery, but liver segmentation in CT images is currently an
unsolved problem,>™ To author’s concern, there is not a software
for liver surgery planning in clinical practice. The first limitation
for that is the necessity of a reliable and widely validated methad
of liver segmentation. This requirement is essential to be able to
apply this kind of software in clinical practice.

Liver segmentation algorithms are applied to MRI or CT
images. In the literature, these methods are more commonly used
in CT™' than in MRI*" for different reasons: CT has a better
gradient response than MRI, it has less artefact effects because
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the movement is less (a CT study requires an acquisition time of
2-3 minutes whereas u MR analysis requires 6-8 minutes) and,
consequently, CT involves less cost than MR. Currently, some
etforts are being focused on the liver segmentation in other image
modalities as positron emission tomography (PET) or ultrusounds
but the poor spatial resolution is a crucial disadvantage that nei-
ther manual corrections can solve in some cases for clinician
purposes.2¢-%?

Liver segmentation methods can be classified according to
several criteria: user interaction, input image type, algorithm
properties, etc. Regarding the algorithm properties, the meth-
ods can be divided in greylevel-based and contour-based meth-
ods. Contour-based methods generally achieve better results in
liver segmentation but a more complex interaction, initialization,
and/or training process is required in order to obtain the desired
results. These characteristics can be inappropriate in a clinical
environment. Probabilistic atlases, level-sets, deformable models,
statistical shape models are algorithms used in liver segmentation
which are based on contour properties.'™'? Probabilistic atlases
require a manual segmentation of several livers in order to form
the atlases.>® This part requires a hard work, since the robust-
ness of the method is related to the quality of manual liver seg-
mentations that forms the atlas. Then, a registration algorithm is
performed o find out the correspondence between the liver atlas
and this structure in the new image. The computational cost of
this process can be higher than 30 minutes in some cases.” Level
set algorithms fit an initial curve to the boundary of the organ of
interest, in our case the liver. These algorithims also need training’
or an initial iteration to form the initial curve, for example with
more than 30 seeds® or drawing this initial curvé.'® Soine efforts
are focused on providing this initial curve in an automatic way
but the accuracy of the algorithm decreases'! or computational
cost increases more than 10 minutes for a typical dataset of
100-120 slices.” In the case of statistical or deformable models,
a hard training is also required in a similar way to the proba-
bilistic atlases. ™ '* Additionally, the computational cost increases
considerably in these methods and therefore the clinical usability
decreases. For those reasons (computational cost, training, and
hard user interaction) these algorithms can be accurate but their
clinical application is limited.

Greylevel-based methods have a lower computational cost but
these algorithms are less robust to noise and gradient changes,
Thresholding algorithms, classifiers as k-means, or region grow-
ing methods belong to this group of algorithms,'®? Region
growing methoads need some seed points in order to use some
greylevel criteria for pixel addition to the liver mask.'6:!7 ¥
Thresholding algorithms use histogram properties to classify pix-
els, thus these methods are optimized for a determined type
of images with similar histograms properties.’® These methods
can obtain promising results and thanks to the reasonable com-
putational cost and the low training required, they could be
optimal for clinical environments.'®"? Efficient pre- and/or post-
processing steps are needed in order to reduce noise and adja-
cent organs connections in this kind of algorithms to carry out
an accurate segmentation but these processes could increase the
computational cost and the user interaction and similar problems
to contour-based methods may appear.'?

User iteration increases the method accuracy but it reduces
their usability due to the consuming of clinician’s time and the
final algorithm can obtain user-dependent results,>7® So, it is
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important to balance the user interaction and the automation of
the method (the behaviour of greylevel methods are better in
these issues) and the robustness and accuracy of the final seg-
mentation (the behaviour of contour-based methods are better in
these cases).

The primary contribution of this paper is the design and vali-
dation of some pre- and post-processing steps in order to perform
a 3D region growing algorithm for the segmentation of the liver
in CT venous phase images. Region growing algorithm has the
advantages of a low computational cost and no training require-
ments. These conditions are combined, in the proposed work,
with an easy user interaction, and a considerable robustness and
accuracy, provided thanks to the pre- and post-processing filters
designed. The selection of this algorithm is based initially on the
accurate results of some authors.'®!? However, the main prob-
lems of these algorithms are the pre- or post-processing steps
used, that increase the computational cost and therefore, clinical
utility is reduced. Besides the selection of an optimum criterion
that allows an accurate 3D growing, the success of our proposal
lies in the design of these pre and post processing stages which
turn a 3D region growing algorithm into a suitable solution for
clinical use, i.e., a reasonable balance between accuracy, robust-
ness, computational cost, and user interaction.

The liver segmentation method proposed in this paper is
included within the framework of the HepaPlan project.”* The
aim of HepaPlan is the development of a planning system
for hepatic surgery, Figure !, which is cwrently under clinical
validation.

After the liver tissue extraction, internal structures (hepatic
veins and arteries, or biliary ducts) and lesions will be segmented.
These segmented structures are obtained from different studies
of the samie patient, and, therefore, a registration step is required
to have this information in a common 3D space. The correct seg-
mentation and registration of these hepatic structures is needed
in order to develop several tools for surgeons and radiologists:
to compute different measures (such as tumour volume or area)
or ratios (liver/tumour volume); to calculate distance between
lesions and other structures; to obtain tamour position in Couin-
aud classification; and to carry out virtual resections for hepatic
transplants.

The rest of the paper is divided into three sections. Section 2
reminds some tools used in our algorithm and explains the devel-
oped algorithm. Section 3 presents the final results and Section 4
states a discussion of our conclusions and outlines the future
work.

2. METHOD

2.1. Theoretical Background

Region growing methods are hased on neighbourhood greylevel
intensities to expand an initial seed (or group of seeds) to obtain
a final mask of the region of interest. With this initial seed (or
seeds), a pixel is added to the mask (in our case the liver mask)
if it fulfils two conditions: it is connected to the pixels that have
already been labelled as liver and it satisfies some similitude cri-
terion (different similitude criteria define different region growing
algorithms). In our work, this criterion is defined as

f(x)emyLtkxay (H

where f(x) is the intensity of a new candidate pixel with coor-
dinates (x = (x, y)), my and ¢, are the average and the standard
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Fig. 1. HepaPlan project framework.

deviation of the pixel values of an initial liver mask and k is
a tolerance parameter. This formulation is extensive to 3D vol-
umes, only the connexion criteria between voxels changes. If the
algorithm begins with a seed point (and not with an initial mask),
g and oy, is calculated using a neighbourhood around this seed
point,

Mathematical morphology is a non-linear processing tech-
nique in spatial structures that is based on maxima and minima
operators.” Erosion and dilation are the two basic operators:

Dilation: [8,(f)](x) = [Qﬁx) flx=5)

(2
Erosion: {e,(f)](x) = min f{x+b) )
hal(x}

where B(x) is the structuring element centred at point (x) with a
particular size and shape and f(x): E — T is a greyscale image
where v € F is the pixel position and T represents the pixel
greylevel.

Other filter based on mathematical morphology that is used
in this paper is the reconstruction by dilation and the partial
reconstruction by dilation.?® The reconstruction by dilation of an
image ¢(x) from a marker image f(x) is defined as a geodesic
difation of the image f with respect to other image g, called
reterence, up to idempotence:

RA(f)=8(f) 3)

where 8(&,") (f) is such that 82,”( )= 81."“) (), and where
5,(\,") (F) = 88U (£)) being 8 (f) = Su(f) A g the geodesic
dilation with the unitary structuring element (a disk of radius
equal to one pixel).

The partial reconstruction by dilation instead of applying the
geodesic dilation (Sf‘,')(f)") up o the idempotence, it is carried
out N times, ie.,iell, i=1,2,...,i.
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The close-hole operator can be defined from the reconstruction
by dilation. In greylevel images, any set of connected voxels
surrounded by connected componetits -of higher values than the
surrounding is considered a hole, This operator fills all the holes
in-an image f (x) that do not touch the marker image fs:

) = (RS (4)

where f¢ is the complement image of f, and f; is the image
border defined in 2D as:

255, x =0}y = 0}.x = width{]y = height
fo(x) = (5)

l 0, otherwise

2.2. Algorithm

The dingram block of our algorithm is presented in Figure 2.
The first purpose of the algorithin is to obtain a CT volume with
a liver tissue as uniform as possible but preserving the gradient
between adjacent organs.

Several simoothing filters were evaluated: a curvature flow filter
(CF),”” a morphological centre filter (MC),*® and the adaptive
filter (AF) proposed in this paper that is based on first-order
statistics of the image, such as the average of the greylevel values
(m) and their standard deviation (o). This filter changes the pixel
intensity as:

my  iftmgemEzo
Flx) = [ (6)

F(x)  otherwise

where ms is the average of the circular pixel neighbourhood
of radius 5 and m and o are an initial estimation of the aver-
age greylevel of the liver values and their standard deviation,
respectively.
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Fig. 2. Segmentation algorithm flowchart.

These parameters (m, o) are calculated using a 2D region
growing with a seed point selected by the user in one slice where
the liver appears as large as possible and with homogeneous
greylevel in the liver tissue (Fig. 3(a)). For this region growing
2D, the k parameter has been extracted experimentally (k = [.2)
and the mg and o, parameters that control the region growing
(Eq. (1)) are calculated in a circular neighbourhood of radius 25,
centred in this selected seed. Each pixel in the final mask of this
2D region growing is considered for calculating the m and o
parameters needed by the adaptive filter. With these parameters,
the adaptive filter is applied to the whole 3D study according
to Eq. (6). Several experiments demonstrate that the adaptive fil-
ter obtains a more uniform grey-level in the liver reducing the
noise and preserving better its boundaries than other approaches,
Quantitative comparisons will be presented in Results section.

In the next step, a 3D region growing is applied fo the
smoothed CT volume (Figs. 3(b) and (c)), Eq. (1). The whole
mask obtained as result of the previous 2D region growing
is used as seed for the 3D region growing algorithm, so my,
and ¢, parameters are set to m and. o respectively (the adap-
tive filter parameters). The tolerance (b = 1.85) is extracted

(@ (b)

(d) (©)

Fig. 3. (a) 2D region growing output (original slice and contour superim-
posed and seed in black cross position); (b} one sfice of the 3D region grow-
ing (original slice and contour superimposed); (¢) output 3D region growing
masks in sagittal/coronal views.

empirically using several datasets for evaluating the optimal tol-
erance parameter.

At this point, the 3D liver mask states two problems. On one
hand, an over-segmentation is produced by organs connected to
the liver and with similar greylevel, It is the case of the ribs,
cava/portal vein, heart and stomach. These connections appear
frequently in all patients, but not always all structures are over-
segmented as it depends on the type of study, the contrast agent
and the anatomical patient’s features. On the other hand, the
method obtains the under-segmentation of some lesions with a
greylevel lower than liver tissue.

Organ  over-segmentation is solved with several post-
processing filters focused on two main steps: an erosion to break
connections between organs followed by a partial reconstruction
to recover and refine the liver boundaries, as it is depicted in
Figure 4.

The problem of the under-segmentation is solved with a close-
hole operator. Only lesions in external zones of the liver tissue,
the close-hole filter in axial view doesn’t have effect because
the lesion touches. the liver border., Takilig into account to the
datasets used: for the validation of the method, this situation is
not common but to minimize this drawback the filter is applied in
the three main views of the 3D study (axial, coronal and sagittal).

2.3. Post-Processing
Figure 4 shows the flowchart of the post-processing stage and
Figure 5 depicts the results of the different steps, Firstly, 2D ero-
sion is applied to the axial masks with a structuring element,
B, (x) (Fig. 5(a)). In the eroded masks, M, the holes are closed
using the close-hole operator in the three main directions of the
eroded masks (axial, sagittal and coronal), the largest 3D object
(the liver) is selected being 2D dilated in axial direction, with the
same structuring element than the 2D erosion to try to recover
the original size of the liver, obtaining the mask M,, (Fig. 5(b)).
Erosion and dilation are not lineal operators, so it is not pos-
sible to recover completely the original size with this 2D dila-
tion. For this reason, a partial reconstruction is performed under
M), using Mcy masks (where the contours are better defined) as
marker images, to refine the resulting contour of the 2D dilation
(Fig. 5(c)).

Finally, the mask contour is smoothed using Fourier descriptor
filtering technique,® as previously proposed in Ref. [19], obtain-
ing the final liver mask (Fig. 5(d)).

3. RESULTS

The goodness of our method has been evaluated with 30 pub-
lic studies (sliver07 dataset), the same way that most authors
follow to validate their algorithms 255 10131416 A collection of
20 studies were provided with manual reference in order to tune
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Fig. 4. Post-processing flowchart,

the algorithm. Other 10 dataset were provided (without manual
reference) in order to submit the obtained masks and then, an
independent observer evaluates the liver segmentation method
with five coefficients and a score system.? This approach ensures
the validity and independence of the final results. The size of
each slice was 512 x 512 pixels. The number of slices of each
volume varied from 64 to 348, depending on the dataset. Pixel
spacing was between 0.55 and 0.88 mm in x/y direction and
slice distance was between | and 3 mm.?

In the sliverQ7 dataset, the five coefficients used to obtain
the goodness of the method have been: Volumetric Overlap
Error (VOE) or Jaccard Coefficient (JC), Relative Volume Differ-
ence (RVD), Average Symmetric Surface Distance (ASSD), Root
Mean Square Symmetric Surface Distance (RMSD) and Maxi-
mum Symmetric Surface Distance or Hausdor(f Distance (HD).?

The parameters to be tuned in our method are the structuring
element of the 2D erosion {and 2D dilation), B, (), and the num-
ber of iterations in the partial reconstruction, N, both used in the
post-processing stage.. After different tests with: the 20 training
sliverQ7 datasets. the best results were achieved for ‘a’ circular
B, (x) of radius 5 and N = 3. P

©) (©)

Fig. 5. Liver masks superimposed to original image resulting fo algorithm
steps (a) 2D eroded mask; (b) difated contour; (¢} contour after partial recon-
struction; (d) final contour.
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Table T shows the average (m.y) and the standard deviation
(07q) Of the five coefficients of the 10 test studies evaluated by
an independent observer and the average (i) and the standard
deviation (07,,) of the five coefficients of the 20 training stud-
ies whose manual reference is open access.>** Additionally, the
Dice Coefficient (DC) has been also computed for comparison
purposes.

All the results were calculated on an Intel core i5 @ 2.80 GHz,
with a RAM of 2 GHz and Windows 7 (32 bits). The run-
time average of the 30 datasets (20 training and 10 test) is
0.25 seconds per slice. A typical stady, 120-140 slices, is pro-
cessed in 30-35 seconds.

Additionally, Figures 6 and 7 show respectively the results of
different steps of the algorithm and 3D liver results of a private
dataset, These CT studies are provided by the “Hospital Universi-
tario y Politécnico La Fe de Valencia” but a manual segmentation
is not available and therefore, quantitative coefficients can’t be
computed. These images are acquired in Toshiba Aquilion and
Philips Brilliarice CT machines and:.image resolution and spacing
have ot significant differences with the sliver07 dataset. This
dataset contains healthy and unhealthy patients and the sequence
used for the segmentation of the liver is the portal phase because
in this sequence the liver appears better contrasted than in oth-
ers. The qualitative results are very similar to the public studies
shown in Table I and are depicted in Figures 3 and 5. The param-
eters used for these private CT studies are the same that in the
sliverQ7 dataset, which demonstrates the good performance of the
method in different situations and that is not needed new param-
eter setfings to work properly with different input conditions,

3.1. Influence of the Noise Reduction Filter

The influence of the noise reduction {or smoothing) filter was
caleulated by applying different smoothing filters and obtaining
the five coefficients in the 20 training datasets, Table II shows the
average of the most representative coefficients for the different
filters applied in the pre-processing step.

3.2, Influence of User-lteration in the Seed Selection
To evaluate the dependence of the algorithm accuracy with the
seed selection, a final test was carried out., The selected seed

Table |. Final results of the 20 training dataset,
VOENC RVD ASSD RSMD HD DC
(%)/(0-1) (%) {mm.) (mm.) {mm.) {0-1)
Migstc 8.78/0.91 ~4.83 1.49 3.2 26.68 0.95
(Uea?  (2.78Y/(0.03) (2.21) (0.72) (1.84) (10.42)  (0.02)
Myain- 8.48/0.92 —3.68 1.62 3.65 31.83 0.96
(Tvan’s  (1.67)/(0.02) (2.83) (0.62) (1.57) (10.7) {0.01)
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Fig. 6. Liver masks overlayed on the original image resulting to algorithm steps. (a) Original image; (b) after 2D erosion; (c) final contour.
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Fig. 7. 3D Liver models of the private dataset.

by one expert in one dataset was stored (called from now the
expert seed). Ten random seeds were generated. The restrictions
to select the random seeds were to have a similar greylevel
(between - standard deviation in a circular neighbourhood of
radius 25 pixels) to the seed selected by the expert and to be in a
position relative close (a sphere of radius 5 cm was selected) to
the expert seed. This procedure tried to emulate the seed selec-
tion by a new user who will probably select the seed in a slice
where the liver appears as large as possible and with homoge-
nous level intensity (in a region with similar greylevel and not
inside a vessel or in a caudal or cranial slice). The algorithm
was run ten times using one of the ten random seeds each time
and the average and the standard deviation of the most repre-
sentative coefficients can be.observed:in Table Il The first row
shows the results using the expert seed (previously included in
the Table I1). The dataset selected for this experiment was: the
one that got the closest coefficients to the coefficient average of
the twenty training datasets.

4. DISCUSSION

Table 1V provides the most promising results and features of
methods presented in the state of the art for comparison pur-
poses. It has been demonstrated that the Jaccard Coefficient and
the Hausdorff Distance are the most significant coefficients for
volume comparison,” so these two coefficients (and the dice
coefficient for comparative purposes) and the computational cost
are provided. The authors®# 191314 yse the same sliver07 dataset
(10 test studies) than in this work, so the results are directly
comparable, The last 5 authors of this Table TV7% 111216 yge not
publicly available datasets and the comparison is not direct. It is
observable that methods with better accuracy than ours required
a high user interaction® ' or a high computational cost,™ 791214
In Refs. [12, 16] no user interaction or training is required but
accuracy is lower than our method'® or compulational cost is
higher.'> These methods'®'® use the region growing method in
some part of the whole process of the liver segmentation, so it is

Table fl. Resuits with different noise reduction filters.

denmonstrated the benefits that this algorithm can produce in our
purpose.

In Ref. [2], several authors published their methods and results
in the same ten test datasets {(whose manual segmentation is not
published). These methods are divided in automatic and inter-
active methods for comparison purpose. To compare our algo-
rithim with interactive methods it is important to specify that
these methods require a hard initialization in comparison to our
method. In most cases an initial contour has to be provided for
initialization purpose or several seeds located in specific zones
of the liver. Additionally, these methods require a computational
cost between 7 and 60 minutes per dataset. These features make
these methods accuracy higher than ours (a VOE less than 7%
in most-cases) but they reduce considerably the clinical usability
of these methods in comparison to ours.

If the ten automatic methods published in Ref. {2] are anal-
ysed, the accuracy is lower than the one obtained by interac-
tive methods and only two of them'* ' have a VOE lower than
our method (other coefficients have similar tendency). However,
these two methods need more than 115 and 35 training datasets,
respectively, and they require 7 and 15 minutes, respectively, for
the segmentation of one patient, in any case higher than our
method.

Finally, other region growing algorithms have been analysed
and compared with our approach. In Ref. [2] an interactive
method and an automatic method are based on this algorithm.
In both cases, they produce lower accuracy and higher compu-
tational cost than our method. In Ref. [17], a 2D region grow-
ing method is applied to liver segmentation and a runtime of
3.53 seconds per slice is obtained, but quantitative results are not
provided. Finally, in Ref. [16] a sophisticated 3D region grow-
ing algorithm is applied on CT fmages in venous phase and the
results in the 20 training datasets that we use in our work are
provided. The same five coefficients are computed; the VOE is
8.2% (in our training datasets is similar, 8.48%) but the stan-
dard deviation (:£4.1) is higher than our method (£1.67) so the
variability and the robustness of our method is higher.

Table Hil. Results obtained with the expert seed and the average and
standard deviation of the results obtained with the random seeds.

Srooth. filter VOE (%) HD {mm.) Seeds VOE (%) HD (mm.)
Morphological center 11.37 32.23 Radiol. seed 8.47 24.41
Curvature flow filter 10.24 32.85 My DO 8.44 21.97
Adaptive filter (our proposal) 8.47 31.83 (0.77) (1.33)
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Table IV. Accuracy and computational cost of different liver segmentation methods.

Method VOE (%) HD (mmy) DC (0-1) Computational cost Algorithm features

Our method 878 26168 0.95 25-30 s 1 sead

Jietalt 8:3 293 35 min

Yang et al.” 57 20102 2 min = 30 seeds in specific positions

Peng et al.® 55 186 High user interaction: initial contour in heart
portal vein and liver is needed

Heimann et al.? 77 3011 7 min Training required

Kainmuller et al.'® 86 23105 15 min Training required with manual segmentation

Rusko et al. ¥ 1144 28112 25s

Wang et al.¢ 21.49/7.68 18/10 min Training required with manual segmentation

Casclaro et al.® 0.96/0.95 18 min

Ciecholewski et al.'? 0.81 Only for healthy patients

Campadetli et at.}! 0.95 50 s Image resolution 256 x- 256

For these reasons, we can conclude that our approach fulfills
the requirements needed for clinical practice. It has a high accu-
racy (in the same order than the best automatic methods with
which it has been compared) and a lower variability, which makes
it a robust solution. Besides that, the proposed method has a
high usability in comparison with others, measured in terms of
computational cost and user interaction.

5. CONCLUSIONS AND FUTURE WORK

A liver segmentation method in CT venous phase images is pre-
sented in this paper. A 3D region growing algorithm has been
evaluated with promising results. The selection of this method
is based on easy user interaction, automation (only a seed point
intraduced by the user is needed}, and low .computational cost,
These are typical requirements in a medical environment.' A pre-
processing filter to reduce noise is applied due to:intrinsic CT
images properties. An adaptive filter based on statistical param-
eters is proposed in this paper and it is compared with other
filtering approaches obtlaining the best results (Table I1). After, a
post-processing step is carried out {o refine the final results. An
averaged VOE coefficient of 8.78% £ 2.78 (or Jaccard index of
0.91:4:0.03) and a Hausdorff Distance of 26.68 4+ 10.42 mm. in
the test datasets shver()7 demonstrate that results are promising
above all if the high level of automation of the method and the
low computational cost is taken into account. The computational
cost is about 0.25 seconds per slice, in a typical study of 120
slices, the software needs 30 seconds for obtaining the 3D final
mask. The user interaction is only related to a seed selection,
the other parameters were tuned with the training datasets. For
this reason, the variability of this seed selection has been mea-
sured (Table 1) and the low coefficients variability state user
independence of the algorithm.

Regarding future work lines, new approaches of our method
will be focused on applying some variation of the watershed
transform, like the marker-controlled paradigm® or the stochastic
watershed®' in order to improve the accuracy in some areas of the
actual region growing method presented in this work. Watershed
algorithm does not increase considerably the computational cost
and it has easy user interaction. The problem of watershed trans-
form is the initial separation between foreground and background
which is equivalent to compute regional minima in the gradient
of the image and therefore, an over-segmentation may appear
in the original transform. To define these minima and reduce
the over-segmentation problem, the final mask obtained with the
approach presented in this paper could be used to obtain the

needed internal markers in order to apply a 3D marker controlled
algorithm for improving the accuracy of our method and for seg-
menting other areas that are currently not accurately segmented.
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