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Multipartite plant viruses were discovered because of discrepancies between the observed dose response and predictions of
the independent-action hypothesis (IAH) model. Theory suggests that the number of genome segments predicts the shape
of the dose-response curve, but a rigorous test of this hypothesis has not been reported. Here, Alfalfa mosaic virus (AMV),
a tripartite Alfamovirus, and transgenic Nicotiana tabacum plants expressing no (wild type), one (P2), or two (P12) viral
genome segments were used to test whether the number of genome segments necessary for infection predicts the dose re-
sponse. The dose-response curve of wild-type plants was steep and congruent with the predicted kinetics of a multipartite
virus, confirming previous results. Moreover, for P12 plants, the data support the IAH model, showing that the expression
of virus genome segments by the host plant can modulate the infection kinetics of a tripartite virus to those of a monopar-
tite virus. However, the different types of virus particles occurred at different frequencies, with a ratio of 116:45:1 (RNA1
to RNA2 to RNA3), which will affect infection kinetics and required analysis with a more comprehensive infection model.
This analysis showed that each type of virus particle has a different probability of invading the host plant, at both the pri-
mary- and systemic-infection levels. While the number of genome segments affects the dose response, taking into consid-
eration differences in the infection kinetics of the three types of AMV particles results in a better understanding of the in-
fection process.

There is great variation in the architecture of the genome
between viruses; the nucleic acid used, its polarity in the

case of RNA viruses, replication and transcription strategies,
and genome size all vary between viruses. Moreover, this vari-
ation has important implications for virus biology and evolu-
tion, imposing limitations and providing opportunities. An-
other characteristic that varies between viral genomes is the
number of genome segments, which are essentially analogous
to chromosomes, as they are the highest level of physical orga-
nization of the genome. Whereas many viral genomes are com-
posed of only a single segment, some viruses have evolved ge-
nomes with multiple segments. For example, the members of
the family Orthomyxoviridae have evolved six to eight genome
segments, and reassortment of these segments during mixed-
genotype infections is a key feature of their epidemiology and
evolution (1, 2). Whereas all genome segments are packaged
into a single virus particle in the family Orthomyxoviridae,
some plant viruses are multipartite; each segment is packaged
individually into a virus particle (3). The number of genome
segments for multipartite plant RNA viruses ranges from two
(i.e., Bymovirus) to four (i.e., Hordeivirus), whereas Nanovirus
has a single-stranded DNA genome composed of six to eight
single-stranded DNA genome segments (4).

The existence of multipartite viruses was first suggested by ob-
servations that were at odds with predictions of the independent-
action hypothesis (IAH) model (5). The IAH model assumes that
each virus particle has a nonzero probability of infection and that
particles do not affect each other during the infection process
(6–8). Many IAH model predictions have been confirmed exper-
imentally for monopartite plant viruses (6, 7, 9–11). Given that
different types of virus particles obligatorily need to complement
each other for multipartite viruses, one would not expect the IAH
model to hold for a multipartite virus. Multipartite viruses were

indeed discovered because of the effects of multipartition on the
relationship between the dose and the local-lesion number. Price
and Spencer (12) first reported that the relationship between the
dose and the number of local lesions for Alfalfa mosaic virus
(AMV), Tobacco necrosis virus, and Tobacco ringspot virus on local-
lesion hosts was steeper than predicted by the IAH model. It was
quickly recognized that these steep dose–local-lesion relation-
ships could be explained if there were complementation between
different types of virus particles (13, 14). The groundbreaking
work of Fulton (5) finally put this hypothesis on firm ground.
Through a series of elegant experiments with Sour cherry necrotic
ringspot virus (renamed Prunus necrotic ringspot virus) and Prune
dwarf virus, Fulton demonstrated that the dose–local-lesion rela-
tionship was steeper than IAH predictions and that the infectivity
of the virus sometimes could be influenced by inactivated virus,
depending on whether the inactivation method degraded the viral
RNA. The conclusion that at least two particles are needed to cause
infection was then confirmed by the discovery that preparations of
some plant viruses are composed of two or more virus particles
(3). Moreover, preparations of a single type of particle had low
infectivity, which was restored in mixtures of the different types of
particles.

Although there is strong experimental evidence that multipar-
tition of the genome affects infection kinetics (3, 5), numerous key
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issues related to the infection process of multipartite viruses have
not been addressed. First, all work on infection kinetics concerns
local lesions, meaning that the results cannot necessarily be ex-
trapolated to infection of permissive hosts. Moreover, the effects
of multipartition on systemic infection have not been considered.
As it is precisely productive systemic infections that will result in
transmission between hosts, this omission is biologically relevant.
Will the kinetics of primary and systemic infections in a permis-
sive host conform to the predictions for a multipartite virus? Sec-
ond, if the different particle types are not present at the same
frequency, this may have a profound effect on the dose response.
Consider the hypothetical example of a bipartite virus one seg-
ment of which is 100 times as abundant as the other, while both
segments have the same probability of entering host cells. In this
case, the dose response will be limited and shaped by the low-
frequency variant, because any site invaded by the low-frequency
variant has probably already been invaded by the high-frequency
variant. Therefore, it needs to be considered if different particle
types are present at the same frequency and, if they are not, what
the ramifications are for infection kinetics. Finally, there are meth-
odological limitations in the original pioneering study of Fulton
(5); the comparison between data and models is not rigorous, and
the testing of hypotheses is purely qualitative. Although Fulton’s
work is seminal from a historical perspective, these shortcomings
have not been addressed in subsequent studies to date.

Here the kinetics of multipartite virus infection was re-exam-
ined by using tripartite AMV and Nicotiana tabacum plants as a
model system. A study design that allows a rigorous quantitative
analysis of whether the genome segment number predicts the
multipartite virus dose response and accounts for deviations from
IAH model predictions was used. Three plants were used for dose-
response experiments, Nicotiana tabacum L. cv. Samsun (referred
to here as wild-type plants), a transgenic plant derived from N.
tabacum cv. Samsun that expresses AMV genomic segment RNA2
under the control of the Cauliflower mosaic virus 35S promoter
(P2 plants), and a transgenic plant expressing AMV genomic seg-
ments RNA1 and RNA2 (P12 plants) (15). Note that uncoated
AMV RNA segments can achieve cell-to-cell movement (16–18),
whereas for systemic movement, the formation of virus particles,
each again encapsidating a single RNA segment, is required (17).
It has already been shown that the P2 and P12 transgenic plants
can support full-blown AMV systemic infection in the absence of
the expressed segment in the inoculum (15), and it was anticipated
that the expressed RNA segments could therefore complement
virus particles to generate primary or systemic infection. Here, we
attempted to alter the infection kinetics of AMV from those of a
tripartite virus to those of a bipartite or monopartite virus by
inoculating AMV into transgenic plants expressing one or two
viral genome segments. These results show that the underlying
mechanisms are more complex than previously thought and sug-
gest reasons why multipartition has evolved.

MATERIALS AND METHODS
Preparation of viral stocks. Virus was purified from infected Nicotiana
benthamiana plants inoculated with transcripts of RNA1, RNA2, and
RNA3 obtained from an infectious clone of AMV strain 425 Leiden. Virus
particles were isolated 4 days postinoculation (dpi) as previously de-
scribed (19). The purified particles were resuspended in PE buffer (10 mM
NaH2PO4, 1 mM EDTA, pH 7.0), aliquoted in stocks of 50 �l, and stored
at �80°C until use.

Dose-response experiments. Plants were kept in a growth chamber at
24°C with 16 h of light a day for 1 week until transplantation from agar plates
to soil. Thereafter, they were kept in a greenhouse at 24°C with 16 h of light a
day. We opted for a large, single-block experiment, given that any block level
experimental variation would tend to lead to smoother dose-response curves
(20, 21). Fifteen 5-week-old plants were inoculated with each of eight virus
doses obtained from a 5-fold dilution series in PE buffer and as mock-infected
controls. Each plant was rub inoculated with 5 �l of serially diluted viral stock
or only buffer, and Carborundum was used as an abrasive. Plants were mon-
itored for symptoms of AMV infection daily until 14 dpi.

Detection of AMV infection. The presence of AMV in inoculated and
upper leaves was performed by tissue printing analysis using a transversal
section of the corresponding petiole, as described previously (22). The
inoculated leaves were also analyzed by grinding full leaves with 10 vol-
umes of cold extraction buffer (50 mM sodium citrate, 5 mM EDTA, pH
8.5), which was then directly applied to the membrane as described
previously (23). RNA was fixed to the membrane with a UV cross-
linker (700 � 100 �J/cm2). Hybridization and detection were con-
ducted as previously described (24), with a digoxigenin (DIG)-ribo-
probe (Roche Diagnostic GmbH) complementary to nucleotides [nt] 1
to 964 (GenBank accession no. L00162.1) of AMV RNA4.

Quantification of viral stocks. Total RNA was extracted from purified
virus particles with TRI REAGENT (Sigma-Aldrich, Inc.) in accordance
with the manufacturer’s recommendations. Purified RNA was serially di-
luted (5-fold) in TE buffer, and 1 �l of each dilution was directly applied
to a nylon membrane together with serial dilutions of known amounts of
in vitro-transcribed RNA1, RNA2, and RNA3 of AMV. Quantification of
the transcribed AMV RNAs was performed with an ND-1000 spectropho-
tometer (Nanodrop) and with agarose gel with an RNA ladder (RiboRuler
High Range RNA Ladder 200 to 6000; Thermo Scientific). Replicas of the
same membrane were hybridized with specific DIG-riboprobes for AMV
RNA1 (complementary to nt 350 to 861; GenBank accession no.
L00163.1), RNA2 (complementary to nt 162 to 680; GenBank accession
no. X01572.1), RNA3 (complementary to nt 369 to 1248; GenBank acces-
sion no. K03542.1), and RNA4 (complementary to nt 1 to 964; GenBank
accession no. L00162.1). Hybridization and detection were conducted as
previously described (24), with a chemiluminescent substrate and the
LAS-3000 digital imaging system (Fujifilm). As AMV RNA4 is a sub-
genomic RNA of RNA3, the concentration of RNA4 was estimated by
subtracting the estimated RNA3 concentration.

To estimate the number of genome equivalents present and their fre-
quencies, all data for the standard curve (input and readout values of
known dilutions) were first log10 transformed to ascertain the range over
which the response was linear. The dynamic range was limited to 1 dilu-
tion before the response appeared to saturate. Linear regression of the
log10-transformed data was then performed, rendering high values for the
coefficient of determination (mean r2 � standard deviation [SD] �
0.994 � 0.006). For those samples that fell within the dynamic range, the
estimated linear regression parameters were used to estimate the un-
known concentrations in the virus samples. Finally, the number of ge-
nome equivalents was calculated on the basis of the length of the genome
segment.

Estimation of the area of primary infection foci in different plant
types. N. tabacum wild-type, P1, P2, or P12 plants were inoculated with a
mixture of capped transcripts corresponding to AMV RNA1 and RNA2, a
modified RNA3 that expresses the green fluorescent protein (GFP) (25),
and a few micrograms of purified AMV coat protein as described in ref-
erence 26. The fluorescence derived from chimeric AMV RNA3 encoding
GFP was monitored with a Leica stereoscopic microscope. The area of
infection foci was measured at 2 and 3 dpi with ImageJ software (27).

A generalized linear model (GLM) was used to statistically analyze the
data (SPSS 20.0), with the Akaike information criterion (AIC) used to
establish the best-supported model, by using a gamma distribution and
log link. Pairwise comparisons were made by using the estimated marginal
means with a Holm-Bonferroni correction. To test if there was an effect of
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the type of plant on the proportion of systemically infected leaves, the
lowest dose at which the majority of the plants of each genotype was
infected (1/625 dilution for wild-type plants, 1/3,125 dilution for P2
plants, and 1/78,125 dilution for P12 plants) was considered. The highest
infected leaf was considered the limit of systemic infection, and the num-
ber of systemic leaves below the highest infected leaf positive for AMV
infection was determined. A test of equal proportions was then performed
(R 2.14), grouping the data by plant type. Pooled data for each plant type
were used to perform pairwise comparisons, with a Holm-Bonferroni
correction for multiple comparisons.

Modeling of the dose response: classic framework with equal fre-
quencies of all types of virus particles. A simple framework for consid-
ering the dose response of a multipartite virus which assumes that the
different types of virus particles are present at the same frequency is de-
scribed first. This model is equivalent to the description given by Fulton
(5), although little detail is given in that publication. However, here the
model is geared to describing the frequencies of primary and systemic
infections, rather than the number of local lesions.

It is assumed that each virus particle type acts independently in the infec-
tion process up to the point at which it has successfully breached an epidermal
cell and can then begin to support replication in the presence of the other
necessary particle types, a part of the infection process that is referred to here
as “invading” the host plant. The different particle types will behave differ-
ently in this process (e.g., in the presence of RNA1 and RNA2, there will be
replication of these segments [28]), but the complete cellular infection cycle

cannot be completed unless all three particles have invaded a cell (15). The
assumption of independence is warranted if the virus is only passively carried
until it enters the cell and if particles do not aggregate. The mean number of
particles invading each cell is �jdj, where �j is the probability of particle type j
invading a cell and dj is the dose of that particle type. Note that �, being a
probability that reflects the ability of a segment to support virus replica-
tion, needs to be carefully interpreted here. The assumption is then
made that the number of particles of type j per cell, vj, follows a Poisson
distribution, such that Pr�vj � � ��jdj �vj e��jdj⁄vj!, where j can take the
values 1, 2 . . . k (k � 3 for AMV). Therefore, the frequency at which a cell
is infected by at least one particle of type j, Cj, will then be Cj � 1
� Pr�vj � 0� � 1 � e��jdj. However, the virus can only replicate if all of
the necessary k particle types have invaded the cell. If the frequency of the
particles in the inoculum is the same, then for each dose (a dilution of the
inoculum), the dose of each particle type (d) in the inoculum will also be
the same. If it is also assumed that the probability of infection of each
particle type is the same (e.g., � ' �1 � �2 � . . . � �k) and that the
successful infection of one cell will eventually lead to observable infection
of the inoculated leaf, then the frequency of infection in the inoculated leaf
(I) will be

I � �j�1
k C j � �1 � e��d�k (1)

For systemic infection of a plant, there is an additional infection step that
each particle type surmounts with a probability �j. Moreover, it is as-
sumed that there is heterogeneity in host plants in their susceptibility to

FIG 1 Infection model predictions. In all of the panels, the log10-transformed dose is on the abscissa (where the dose is the sum of the doses of each type of virus
particle) and the infection frequency is on the ordinate. In panel a, predictions of the infection model for a virus with one genome segment (k � 1; IAH) are
shown, with infection probabilities decreasing from 3.3 � 10�3 to 1 � 10�3 to 3.3 � 10�4 to 1 � 10�4 for the curves from left to right (the grain of the dotted
line becomes finer as the infection probability decreases). Note that changing the infection probability shifts the curve but does not alter its shape. Panels b and
c show model predictions for viruses with two (k � 2) and three (k � 3) genome segments at equal frequencies for different particle types, respectively, and the
same infection probabilities. Note that while the genome segment number alters the shape of the curve, changing the infection probability only changes its shape.
Panel d shows model predictions for a tripartite virus in which each segment has an infection probability of 3.3 � 10�3 but one segment has a 10-fold higher
frequency than the other two. The shape of the dose-response curve is then similar to that of a bipartite virus. Panel e shows model predictions for a tripartite virus
in which each segment has an infection probability of 3.3 � 10�3 but one segment has a 10-fold lower frequency than the other two. The dose response is then
similar to that of a monopartite virus. In panel f, the frequencies of the different particle types are the same but the probability of infection for the rare segment
is 3.3 � 10�2. The dose-response curve is then as steep as possible for a tripartite virus in the absence of nonadditive interactions (k is equal to the actual number
of genome segments or � � 1), even though the particle frequencies are different.
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systemic infection by the virus. This assumption is made because even at
high doses not all plants are always infected. These cases would be ex-
tremely unlikely under a maximum-likelihood framework that did not
include heterogeneity in host susceptibility and hence would strongly af-

fect model parameter estimates. Although heterogeneity in susceptibility
could be modeled in detail (21), a simpler but in this case equally effective
manner in which to take differences in susceptibility into account is to
assume that only a fraction 	 of host plants can be systemically infected. If

TABLE 1 Model fitting and selection results for testing of the IAH and DA modelsa

Plant and model NLLb AIC 
AICc AWd

Parameter estimate (CI)

� � k 	

Wild type
IAH 9.273 24.545 4.557 0.093 6.46 (4.17–10.23) � 10�12 7.08 (4.07–16.22) � 10�2 1 (0.830–1)
DA 5.994 19.989 0.907 1.35 (0.89–2.57) � 10�12 9.54 (4.90–16.98) � 10�2 2.635 (1.912–3.426) 0.937 (0.806–1)

P2
IAH 10.407 26.814 5.609 0.057 1.55 (1.07–2.45) � 10�11 0.204 (0.079–0.372) 0.965 (0.893–1)
DA 6.603 21.206 — 0.943 3.55 (2.40–5.62) � 10�11 0.204 (0.060–0.363) 2.801 (2.067–3.630) 0.996 (0.895–1)

P12
IAH 14.226 34.452 — 0.600 1.20 (0.25–2.04) � 10�10 1e 0.987 (0.922–1)
DA 13.633 35.265 0.814 0.400 7.59 (1.91–25.70) � 10�11 1 (0.977–1) 0.731 (0.521–1.380) 1 (0.926–1)

a Data for each plant type were analyzed separately to determine whether the IAH or DA model is best supported by the data. For wild-type and P2 plants, we expected to reject this
model, as three and two particles types, respectively, are required for infection. For the P12 plant, we expected the hypothesis to be supported because only one particle type is
required for infection, as the other two are supplied in trans by the plant. Note that each comparison of models is for the same plant type.
b NLL, negative log likelihood, a measure of model fit.
c 
AIC, difference between a given model and the best-fitting model.
d AW, Akaike weight, a measure of the relative support for the model.
e The lower and upper 95% CI limits coincide with the estimated parameter value.

FIG 2 Data and model predictions for different plant types. In all of the panels, the log10-transformed total dose of particles is on the abscissa and the frequency of
infection is on the ordinate. The dose is the sum of the doses of all three particle types. Solid lines represent the predicted dose-response curves for infection of the
inoculated host obtained by the best-supported model, i.e., DA for wild-type and P2 plants and IAH for P12 plants. The dotted lines represent the model prediction of
the dose-response curves for systemic infection. Circles represent the data for infection of the inoculated leaf, and triangles represent the systemic infection data. Error
bars indicate the 95% CIs. Note the steeper dose-response curves for wild-type and P2 plants and the decrease between the dose-response curves for the inoculated leaf
and systemic tissue, from wild-type to P2 to P12 plants, at which point the two curves practically coincide. For parameter estimates, see Table 1.
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it is again assumed that systemic infection probabilities are the same for all
particle types (� ' �1 � �2 � . . . � �k), the frequency of systemic
infection in plants (Is) will be

Is � ��1 � e���d�k (2)

For both equations 1 and 2, when k � 1, the model collapses to an IAH
model that assumes that each particle and particle type act independently.
Therefore, when k � 1, this model is referred to as the IAH model. When
k � 1, the infection presented above is referred to as the dependent-action
(DA) model. Note that k can take values of less than 1, but this outcome is
not expected here given previous results (5, 12). Note that for fitting of the
classic infection model, the combined dose (d) of all three particle types
was used.

Modeling of the dose response: a general framework. A limitation of
the classic framework for analysis of the dose responses of multipartite
viruses is that it does not take into account the possibility that the fre-
quency of different particle types varies in the inoculum. Moreover, the
probabilities of primary and systemic infections in the inoculated and
systemic leaves may also not be the same for each particle type. A simple
model taking these three aspects into account is therefore introduced. For
primary and systemic infections, the probabilities that a plant will be
infected are, respectively,

I � �j�1
k �1 � e��jdj�� (3)

Is � ��j�1
k �1 � e��j�jdj�� (4)

where � is introduced so that the interactions between particles of one
type can be nonadditive. When � � 1, there are antagonistic interactions
between particles of one type, whereas when � � 1, there are synergistic
interactions. When �  1, the general model predictions are equivalent to
those resulting from the classic model having an estimated k different
from the actual number of genome segments. For the dose response in
transgenic plants expressing one or two viral RNA segments, the term for
infection of these segments becomes 1 (i.e., all plants have undergone the
equivalent of being invaded by expressing the RNA segments) and it is
dropped from the model. I.e., for primary infection of P2 plants, which ex-
press AMV RNA2, the frequency of primary infection is I � �1
� e��1d1�� �1 � e��3d3�� whereas for P12 plants it is I � �1 � e��3d3��.

To test whether the data support the inclusion of model parameters,
model selection was performed over a series of models based on equations
3 and 4. Model 1 assumes additive interactions between particle types
(� � 1) and equal probabilities of primary and systemic infections be-
tween particle types (�'�1 � �2 � �3 and �'�1 � �2 � �3). Note that
this model is equivalent to the classic model only if the frequencies of
different particle types are equal. Three parameters must therefore be
estimated, �, �, and 	. Model 2 assumes no additive interactions between
particles but allows probabilities of infection for the different particle
types to vary. The frequencies of the different particle types were mea-
sured empirically, meaning that seven parameters must therefore be esti-
mated, i.e., �1, �2, �3, �1, �2, �3, and 	. Model 3 allows for nonadditive
interactions between particles but assumes that probabilities of infection
are equal. Four parameters must therefore be estimated, i.e., �, �, 	, and
�. Model 4 allows for nonadditive interactions and allows probabilities of
infection to vary for the different particle types. Eight parameters must
therefore be estimated, �1, �2, �3, �1, �2, �3, 	, and �. Finally, model 5
allows the probabilities of primary infection for the first and third particle
types (�1 and �3) to be host plant dependent and allows for nonadditive
interactions. (The second particle type is needed only for infection of the
wild-type plant, and only a single estimate of �2 is therefore needed.)
Model 5 is therefore the least restricted model. Although it is probably
overparameterized, this model serves to test whether model fit can be
further improved. Eleven parameters must be estimated, �1,WT, �1,P2, �2,
�3,WT, �3,P2, �3,P12, �1, �2, �3, 	, and �.

Model fitting and selection. To fit the model to the data, a maximum-
likelihood approach was used. Given that each plant represents an inde-
pendent observation, the likelihood of a model prediction for Ii is

L�Ii�X,Y � � �X

Y �Ii
y�1 � Ii�X�Y, where X is the total number of plants

inoculated and Y is the number of plants infected in the inoculated leaf,
and likewise for systemic infection. From a biological perspective, a plant
can become systemically infected only after successful primary infection
has occurred. However, since primary and systemic infections were deter-
mined independently, the likelihood of systemic infection is also calcu-
lated over all of the data and not just over the fraction of plants found to
have primary infections. The model was fitted to the data for each plant
type by first performing grid searches over large parameter spaces to en-
sure that a global solution was found. Next, stochastic hill climbing was
performed to determine exact parameter estimates. These searches were
also performed on 1,000 bootstraps of the data to estimate the 95% con-
fidence intervals (CIs) of the parameter estimates. AIC was then used to
perform model selection.

The data used for modeling of the dose response have been deposited
at Dryad (doi:10.5061/dryad.fj5m5).

RESULTS
Predictions of a simple infection model. The IAH model (equa-
tion 1) predicts a dose-response curve with a singular shape (19),
which can shift position, depending on the infection probability
(Fig. 1a). The same model can be extended to a multipartite virus,
when it is assumed (i) that particles of each type act independently
in invading the host (entering host cells; see Materials and Meth-
ods) and (ii) that particles of k types are necessary for infection,
which corresponds to the actual number of different segments.
This infection model predicts a steeper dose-response curve for
multipartite viruses if the frequencies of particles and their prob-
abilities of invading the host are the same (Fig. 1b and c). In this
case, the number of genome segments determines the shape of the
dose-response curve, but it can again shift positions, depending
on the infection probabilities of the different particle types (Fig. 1b
and c). However, if the frequencies of different particle types are
not the same or their infection probabilities are different, the
dose-response curve will tend to be shallower (Fig. 1d), approach-
ing the IAH response when, for example, one of the genome seg-
ments is very rare (Fig. 1e). On the other hand, a steep dose-
response curve equivalent to simple model predictions for a
tripartite virus can be achieved when the frequencies of particles
are not equal (Fig. 1f), but the product of dose and infection prob-
ability (�jdj) is approximately the same for all particle types.

One can therefore expect a steep dose-response curve for a
multipartite virus corresponding to simple model predictions
only under specific conditions. When these conditions are not
met, the dose-response curve will tend to be smoother. Moreover,
any experimental error (e.g., variation in virus dose or inoculum
size) will also tend to make the dose-response curve smoother (20,
21). Therefore, the observation of steep dose-response curves for
plant multipartite viruses seems to be somewhat unlikely from the
outset, and its apparent commonality is therefore striking (5, 12).

Rejection of the IAH model of AMV infection of wild-type
and P2 plants. Recent work on the IAH for Tobacco etch virus, a
monopartite Potyvirus, confirmed various IAH model predictions
(7, 10, 11). On the other hand, the relationship between the AMV
dose and the number of local lesions has been reported to be
steeper than IAH predictions (12). Therefore, we first set out to
confirm that the data for the infection of wild-type and P2 plants
do not support the IAH model, whereas data for the P12 plants
were expected a priori to support the IAH model. This analysis
with the classic infection model was performed to test whether
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these experimental results and analysis are compatible with his-
torical results. Equations 1 and 2 were fitted to the data, with a
separate analysis for wild-type, P2, and P12 plants (see Materials
and Methods). For wild-type plants, it was indeed found that the
DA model was better supported than the IAH model (Table 1), as
the dose-response curve was steeper than IAH model predictions
(Fig. 2a). For P2 plants the DA model was also better supported
than the IAH model (Table 1), as the dose-response curve for P2
plants was also steeper than IAH predictions (Fig. 2b). The steep
dose-response curve for both wild-type and P2 plants is also
shown by k values significantly greater than 1 (Table 1). On the
other hand, for P12 plants, IAH was the best-supported model
(Table 1) and the dose-response curve was very similar to
model predictions, being shallower than for P2 or wild-type
plants (Fig. 2c).

Frequencies of AMV particle types. The frequencies of the
three different AMV particle types were then considered, because
these frequencies should be equal in order for an analysis with
the classical model to be pertinent. However, it was found that
particle types were present at different frequencies in the virus
stock. The observed ratios (�SD) of RNA1 to RNA2 to RNA3 to
RNA4 were 116.4 � 17.5 to 44.8 � 8.0 to 1.0 � 0.3 to 123.6 � 23.7,
meaning that RNA3 is relatively scarce. Note that RNA4 was in-
cluded in this analysis but is not required for infection (15).

The general infection model suggests a particle-dependent
probability of host invasion. Initial analysis of the data by the
classic infection model suggests that the DA model is supported
for AMV infection of wild-type and P2 plants, whereas the IAH
model is supported for infection of P12 plants. However, given
that there are differences in the frequencies of the different
particle types, the data were analyzed with a general infection
model (see Materials and Methods). This second analysis was
performed with the data of all three plants types at once. More-
over, this approach has the added benefit that it allows testing
not only of whether the different particle types have different
invasion probabilities but also of whether these invasion prob-
abilities are independent of the presence of other particle types
(i.e., host plant dependent in this setup). Models 1 to 5 were
therefore fitted to the data, and model selection was performed.
Model 2 was the best-supported model (Table 2 and Fig. 3).
Although the fit (i.e., negative log likelihood) of models 4 and 5
is slightly better, model selection with AIC shows that the data
provide less support for these models; the minor improvement
in model fit does not compensate for the addition of extra
parameters to the model (Table 2). Model 2 allows each particle
type to have its own probabilities of invasion (�) and systemic
infection (�) but does not include host plant-dependent infec-
tion probabilities or nonadditive interactions between particles
during infection.

Effects of the expression of genome segments on secondary
infection. Given the large differences in systemic infection prob-
abilities predicted by both models (Tables 1 and 2), we expected to
observe qualitative differences in infection dynamics between the
different plant types. To study infection dynamics, the area of
primary infection foci was measured at two time points (Fig. 4a).
If primary infection foci expand rapidly, then the probability of
systemic infection may be larger; the virus may then reach vascular
tissue before host responses limit its expansion (11, 22). There was
a significant effect of the plant type on the area of primary infec-
tion foci (GLM, P � 0.001), and there were significant differences
in area among all of the plant types (P � 0.001 for all pairwise
comparisons). Moreover, there also appeared to be differences in
the intensity of fluorescence, with lower fluorescence in wild-type
than in P2 and P12 plants (Fig. 4b to d). In all cases, the differences
are in line with expectations based on estimated probabilities of
primary infection, i.e., P12 � P2 � wild type for focus area and
fluorescence intensity.

Whether there was evidence of qualitative differences in sys-
temic AMV infection in the three different plant types used was
also considered. There appeared to be fewer systemically infected
leaves in systemically infected P2 and wild-type plants than in P12
plants (Fig. 5). To test if this effect was significant, the data from
systemically infected plants at all doses were pooled and then a �2

test for trend in proportions was performed. A highly significant
effect of the plant type was found (�2 � 13.476, 1 df, P � 0.001)
overall. Pairwise comparisons showed that there were no signifi-
cant differences between wild-type and P2 plants (P � 0.377),
whereas there were significantly more infected leaves of P12 plants
than of wild-type or P2 plants (P � 0.001 for both comparisons).

DISCUSSION

The infection kinetics of AMV, a tripartite virus, was studied in
wild-type tobacco plants and transgenic plants expressing one
(P2) or two (P12) AMV genome segments (15). A steep dose-
response curve was found in wild-type plants, concordant with
previous results for multipartite viruses (5, 12). A rigorous
analysis of the data with the classic infection model, which
assumes that the three types of virus particles occur at the same
frequency in the inoculum, was therefore highly congruent
with these historical results. For P2 plants, similar results were
obtained, confirming that IAH model predictions are not sup-
ported for tripartite viruses, even when the host plant expresses
one genomic segment. On the other hand, for P12 plants, the
dose-response curve was shallower and IAH model predictions
were supported. These observations show that the expression
of two viral RNA segments in the host plant could modify the
infection kinetics of a tripartite virus to those of a monopartite
virus.

TABLE 2 Model fitting and selection results for models 1 to 5a

Model NLLb AIC 
AICc AWd

Parameter estimate (CI)

� � 	 �1 �2

1 152.742 311.483 237.805 0 2.95 (2.19–4.17) � 10�9 1 (0.209–1) 0.775 (0.775–0.948)
2 29.839 73.678 0.667 0.981 (0.901–0.998) 2.34 (0.11–8.51) � 10�11 3.24 (0.11–8.91) � 10�11

3 150.903 309.806 236.128 0 2.82 (2.29–28.84) � 10�9 0.525 (0.209–0.776) 0.845 (0.777–0.953)
4 29.768 75.768 1.858 0.264 0.980 (0.902–0.998) 2.45 (1.07–8.91) � 10�11 3.24 (1.07–9.55) � 10�11

5 28.105 78.210 4.532 0.069 0.980 (0.943–1) 1.51 (0.19–2.88) � 10�10

(Continued on next page)
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Analysis of the dose response with the classical infection model
assumes that all three types of virus particles occur at the same
frequency. However, it was found that the different particle types
were not present at the same frequency. Specifically, the virus

particle containing RNA3 was present at a relatively low fre-
quency. We have not encountered a discussion of the frequencies
of different particle types in the literature on multipartite viruses.
Nevertheless, published primary data on AMV support the parti-

TABLE 2 (Continued)

Parameter estimate (CI)

�3 �1 �2 �3 �

1.86 (0.10–9.77) � 10�8 0.182 (0.032–0.295) 6.17 (3.16–100) � 10�2 1 (0.324–1)

2.00 (1.12–9.12) � 10�8 0.182 (0.34–0.302) 6.46 (3.47–100) � 10�2 1 (0.123–1) 0.949 (0.949–1.047)
0.102 (0.043–0.234) 1.45 (0.81–16.60) � 10�2 1 (0.295–1) 0.976 (0.952–1.048)

(Continued on next page)

FIG 3 Effects of genome segment number on dose response. In all of the panels, the log10-transformed dose is on the abscissa and the frequency of infection is on the
ordinate. The dose is the sum of the doses of all of the particle types. Solid lines represent the predicted dose-response curves for wild-type plants, coarse dotted lines
represent the predicted dose-response curves for P2 plants, and fine dotted lines represent the predicted dose-response curves for P12 plants. Circles are the data for
wild-type plants, triangles are the data for P2 plants, and crosses are the data for P12 plants, with errors bars indicating the 95% CIs. Panel a shows the results for model
1 fitted to the inoculated leaf data, panel b shows the results of model 1 for systemic infection, panel c shows the results of model 2 for the inoculated leaf, and panel d shows
the results of model 2 for systemic infection. Both models include the empirically determined frequencies of different particle types. Model 1 fits the data poorly, because
the invasion probabilities of all of the particle types are the same. The most abundant particle type (RNA1) then, in fact, determines the infection kinetics, resulting in a
response that is independent of the plant type. Model 2 allows each particle type to have a different infection probability, even thought these infection probabilities do not
depend on the plant type (i.e., model 5), and fits the data much better. Model 3 (not shown) fits the data poorly. Models 4 and 5 (not shown) fit the data slightly better
than model 2, but model selection indicates that the improvements in fit do not justify the additional free parameters added.
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cle frequencies observed here. The ultracentrifugation patterns
(i.e., Schlieren peaks) obtained for two AMV preparations show a
lower peak for the middle component than for the bottom com-
ponent, while the top component is almost as abundant as the

bottom component (see Fig. 1 on pg. 521 of reference 29). The
frequency of RNA3 is so low that the “top component” in ultra-
centrifugation studies probably corresponds mainly to particles
encapsulating RNA4. Electrophoresis of RNA purified from AMV

TABLE 2 (Continued)

Parameter estimate (CI)

�1,WT �1,P2 �3,WT �3,P2 �3,P12

2.51 (0.81–11.48) � 10�11 4.57 (2.23–16.57) � 10�11 1.41 (0.79–14.79) � 10�9 3.72 (0.45–6.31) � 10�9 1.78 (0.36–3.63) � 10�8

a Data for all three plant types were analyzed jointly to determine whether the general infection model, incorporating differences in the frequencies of different types, could
adequately explain the dose-response data.
b NLL, negative log likelihood, a measure of model fit.
c 
AIC, difference between a given model and the best-fitting model.
d AW, Akaike weight, a measure of the relative support for the model.

FIG 4 Effects of plant type on virus expansion in primary infection foci. Panel a gives the areas (mm2) of primary infection foci at 2 (white bars) and 3 (gray bars)
dpi for the three plant types used. The error bars represent the 95% CIs. Primary infection foci at 3 dpi are shown for the wild-type (b and c), P2 (d), and P12 (e)
plants. Besides the differences in size, the foci of the P2 and P12 plants have a higher intensity of fluorescence, suggesting that there are higher levels of infection.
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particles clearly shows (i) that RNA1 and RNA4 are the most
abundant, (ii) that levels of RNA2 are intermediate, and (iii) that
RNA3 is scarce (see Fig. 7 on page 97 of reference 3). This congru-
ence of observed patterns suggests that the frequency of particles
estimated here might be a general pattern for AMV.

The different frequencies at which different virus particle types
occur have implications for the shape and position of the dose-
response curve. Given the scarcity of RNA3, the dose response for
wild-type plants would be predicted to be similar to that predicted
by the IAH model (Fig. 1e). The empirical dose-response curve is,
however, significantly steeper than IAH model predictions (Fig.
2a). Data were therefore analyzed with a general infection model,
and model selection identified model 2 as the best-supported
model. This model incorporates the empirically measured fre-
quencies of particle types and allows each particle type to have its
own probability of invasion and systemic infection. Parameter
estimates for model 2 suggest that the probability of invasion is
more than 2 orders of magnitude higher for AMV particles encap-
sidating RNA3, whereas probabilities of invasion are more or less
similar for the other two particle types (Table 2). Note that this
result does not depend solely on analysis of infection in P2 and P12
plants alone; it also follows logically from observing both a steep
dose-response curve in wild-type plants and different frequencies
of the different particle types. Moreover, what makes this model-
ing result compelling is that the probabilities of invasion and sys-
temic infection for different particle types also account for the
positions of the dose-response curves of the different plant types.

Figure 1 shows that the shape and position of the dose-response
curve are both dependent on the invasion probability, and these
results show that model 2 can also account for both. It would not
have been surprising if the expression of genome segments by the
host plant had affected the probability of invasion of another viral
segment, but the model selection results suggest that no such effect
occurs (i.e., model 2 has more support than model 5). Therefore,
from the perspective of the theoretical framework developed here,
the experimental system used (i.e., transgenic plants expressing
viral RNA segments) responds exactly as expected. This rigorous
and complete analysis therefore confirms results from the prelim-
inary analysis with the classical model. However, it also shows
that, in reality, infection kinetics are more complicated, as the
inclusion of differences in particle frequencies illustrates that
there are differences in the invasion probabilities of different par-
ticle types.

What mechanisms might account for these differences in inva-
sion probability? Effective “invasion” of cells in the inoculated leaf
may require fewer molecules of RNA3 than molecules of RNA1
and RNA2. We are not hereby suggesting a threshold, as such a
model would behave differently than the infection models pre-
sented here. Rather, the invasion process can be seen as two steps,
(i) physically breaching the cell and then (ii) being capable of
supporting the infection process. In this framework, particles of
each type have an independent probability of being successful at
either step. This suggests two mechanistic explanations of the
model. First, RNA3 is the shortest genome segment, and as a con-

FIG 5 Effects of plant type on systemic infection. All leaves from inoculated tobacco plants were sampled, and tissue-printing analysis was performed. To
compare the effects of the plant type on systemic infection, the lowest dose with which the majority of inoculated plants were infected was considered, even
though this dose was smaller for P12 than that for P2 plants and that for P2 plants was smaller than that for wild-type plants. The blot for each plant type is shown,
and the dilution is shown to the right of the plant type. N numbers below the columns indicate the plant replicates, and the designations to the left of the rows
indicate the leaves. ILa is the inoculated leaf (ground whole leaf), ILb is the inoculated leaf stem, and SL numbers represent the stems of systemic leaves, with SL1
being the leaf above the inoculated leaf. For P12 plants, the data for even higher dilutions are also presented to show that all of the leaves remained infected at all
of the doses used (d and e).
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sequence, particles encapsidating RNA3 may be considerably
more stable than those containing RNA1 and RNA2, or they may
enter cells in the inoculated leaf more easily. In both cases, the
probability of breaching a cell would be higher. Second, it may be
that the probability that an RNA3 molecule that has breached the
cell can support replication is higher than that RNA1 or RNA2 can
do so. In this case, RNA1 and RNA2 might be degraded more
quickly intracellularly. The fact that RNA1 and RNA2 contain all
of the genes required for replication (15) suggests that these seg-
ments must prime the cell for replication but that once a cell is
primed, the probability that an RNA3 molecule can successfully
start a productive infection is considerably higher. One might
therefore expect qualitative differences between the infection dy-
namics of different host plants. Indeed, primary infection foci
expanded more rapidly in P2 and P12 plants, whereas systemic
movement appeared to be enhanced only in P12 plants. These
observations again suggest that little RNA3 is required during in-
fection.

Key questions that remain are why multipartite genomes have
evolved and what adaptive advantages multipartition confers.
Four possible adaptive advantages conferred by genome segmen-
tation alone—as opposed to multipartition— have been sug-
gested. These advantages of segmentation alone may be relevant to
this discussion because multipartition itself might be a pleiotropic
effect of segmentation. I.e., given that most plant viruses are non-
enveloped, segmentation of the genome might inevitably lead to
the formation of multiple virus particles. First, at the usually high
genomic mutation rate of RNA viruses (30), a small segment
would have a greater chance of being replicated without errors
than a larger one (31). Second, reassortment could allow rapid
recombination, reducing the effects of clonal interference between
beneficial mutations occurring on different genome segments
while also bolstering purifying selection against deleterious muta-
tions (32), although in one case, reassortment appears to be scarce
in the field for a multipartite virus (33). Third, segmentation could
allow regulation of expression, because each segment can have its
own regulatory sequence, a hypothesis that has good experimental
support (34). Fourth, segmentation can, in principle, allow faster
replication of the viral genome through the accommodation of
additional transcriptional units (35). In addition to the advan-
tages conferred by genome segmentation alone, dividing the ge-
nome over multiple virus particles could confer the following
three advantages. First, recent work suggests that the stability of
particles will be improved by having shorter genome segments
and smaller particles with a lower packaging density (36, 37), lend-
ing credence to the view that encapsidation imposes limits on the
size of genome fragments. Second, it has been suggested that vec-
tors may transmit smaller particles more efficiently (38), although
this hypothesis has, to our knowledge, not been tested. Nonethe-
less, an increased chance of complementation would, theoreti-
cally, favor the evolution of a multipartite genome (39). Third,
recent work suggests that the frequencies of different genome
segments evolve to distinct levels, suggesting that virus particle
frequencies might have a regulatory role in gene expression
(40).

On the other hand, irrespective of the advantages it might con-
fer, the packaging of different genome segments in multiple types
of particles will also have a cost. This cost arises because infection
requires the entry of all genome segments into the same cell during
primary and systemic infections of the plant. If the total number of

genomes that enter a cell during both processes is not large and if
there are no mechanisms that physically link the different particle
types during transmission between hosts and between cells, there
will be an appreciable probability that not all types of genome
segments will be represented. Assuming the same probability of
cellular infection per genome segment of the complete (monopar-
tite virus) or partial (multipartite virus) genome, the same num-
ber of encapsidated copies of the complete virus genome will, in
principle, lead to lower levels of host infection with a multipartite
virus than with a monopartite virus (39). The results presented
here, however, strongly suggest that the infection probabilities of
the different virus particles can be highly divergent. We speculate
on a further reason why multipartite viruses have evolved and a
mechanism that mitigates the cost of multipartition. If the prob-
ability that RNA3 can support infection (i.e., invade a cell) is
higher than that for RNA1 and RNA2, then the virus could effi-
ciently infect even if there are fewer copies of this segment present.
Evolution could then favor the downregulation of RNA3 se-
quences by means of multipartition. Downregulation of RNA3
would then allow reallocation of cell resources to produce more
particles encapsidating RNA1 and RNA2, the limiting factors at
the start of infection. This higher production could then, in prin-
ciple, boost overall levels of infection and therefore be adaptive.
More evidence is needed to show that this hypothesis has merit,
although it is compatible with other hypotheses of why multipar-
tite viruses have evolved.
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