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Abstract 

The purpose of this study is to test the role that the intrinsic parasympathetic nervous system could play on 

the adaptive electrophysiological changes produced by physical training on intrinsic myocardial automatism, 

conduction and refractoriness. Trained rabbits were submitted to a physical training protocol on a treadmill 

for six weeks. The electrophysiological study was performed on an isolated heart preparation. The 

investigated myocardial properties were: a) Sinusal automatism; b) Atrioventricular and ventriculoatrial 

conduction; c) Atrial, conduction system and ventricular refractoriness. The parameters to study the 

refractoriness were obtained by means of an extrastimulus test at four different pacing cycle lengths (10% 

shorter than spontaneous sinus cycle length, 250, 200 and 150 ms; and d) Mean dominant frequency (DF) of 

the induced ventricular fibrillation (VF), using a spectral method. The electrophysiological protocol was 

performed before and during continuous atropine administration (1µM), in order to block cholinergic 

receptors. Cholinergic receptor blockade did not modify either the increase in sinusal cicle length, 

atrioventricular conduction and refractoriness (left ventricular and atrioventricular conduction system 

functional refractory periods) or the decrease of DF of VF. These findings reveal that the myocardial 

electrophysiological modifications produced by physical training are not mediated by intrinsic cardiac 

parasympathetic activity.  
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Introduction 

The effects of aerobic endurance training on sinus chronotropism and atrioventricular conduction are well 

known. Indeed, a decrease in the resting heart rate and a depressed atrioventricular conduction has been 

reported in human and experimental studies (19, 5, 36). It has been proposed that these modifications are the 

result of an increased resting vagal tone (5, 33, 34). However, data presented by several investigations in 

which sympathetic and parasympathetic blockade was performed after an exercise training period have 

shown a decrease in the intrinsic heart rate (20, 19, 27, 6, 37) and an intrinsic atrioventricular conduction 

depression (37). Furthermore, similar results have been obtained in experimental models using isolated heart 

preparations not only on sinus chronotropism (28, 38, 39) and atrioventricular node conduction (38), but also 

on ventricular refractoriness, which increased by training (38, 39).  

On the other hand= However (do you mean that or Moreover/ In addition), the heart contains 

postganglionic cholinergic neurons, as it is well known, distributed throughout each major atrial and 

ventricular intracardiac ganglionated plexus (30, 31, 3, 18). It has been reported that these intracardiac 

neurons display ongoing activity (11) even after acute decentralization (1, 2) and can modify cardiac activity 

(18, 15), although their precise function and physiological relevance is not completely known (4). 

Since the involvement of parasympathetic postganglionic neurons on automatism, conduction and 

ventricular refractoriness modifications produced by chronic exercise is not well-known, our purpose is to 

investigate the role of intrinsic cholinergic neurons on these electrophysiological modifications in a model of 

isolated heart preparation from trained rabbits. We hypothesize that the electrophysiological changes 

produced by physical training are mediated by parasympathetic neurons contained in the intracardiac 

ganglia. 

 



Materials and methods 

Animals and study design 

Thirty-two male New Zealand white rabbits (Oryctolagus cuniculus) were used in the present study. 

Animals were divided into three experimental groups: a trained group (n=11), a control group (n=11) and a 

sham-operated group (n=10). Animals in the control and sham operated groups were housed in the animal 

quarters for 46 days and rabbits in the trained group were submitted to a physical exercise program. After 

familiarization with treadmill running for 4 days, animals in the trained group ran 5 days/week for 6 weeks at 

0.33 m/s. Each training session was divided into six periods of 4 minutes of running and 1 minute of rest 

(39). The correct execution of treadmill exercise was constantly supervised and those animals that did not 

adequately run on the treadmill, because they either stopped frequently or ran irregularly, were excluded 

from the study. Housing conditions and experimental procedures used in this study were in accordance with 

the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals (NIH Pub. No. 85-

23; Revised 1985) and with the approval from the Institutional Animal Care and Use Committee. 

Preparation and perfusion 

Following heparinization and anesthesia (ketamine 25 mg·kg-1, i.v.), animals were euthanized. After 

thoracotomy, the heart was quickly removed and immersed in cold (4ºC) Tyrode solution for further 

preparation. The aorta was cannulated and connected to a Langendorff system to provide the heart with 

warmed, oxygenated Tyrode solution containing (in mM) 130 NaCl, 5.6 KCl, 2.2 CaCl2, 0.6 MgCl2, 1.4 

NaH2PO4, 25 NaHCO3, and 12.2 glucose. Oxygenation was carried out with a mixture of 95% O2 and 5% 

CO2. Tyrode temperature was constant throughout the experiment (37 ± 0.5ºC), and perfusion pressure was 

maintained at 60 mmHg. 

Two bipolar surface electrodes (silver wire, Teflon-coated) with an inter-electrode distance of 1 mm were 

positioned on the right atrium for recording and pacing, and an identical electrode was placed on the left 

ventricle for pacing. Ventricular recordings were made by means of a plaque with 240 unipolar stainless steel 

electrodes (electrode diameter = 0.125 mm, interelectrode distance = 1 mm) positioned at the epicardial 

surface of the lateral wall of the left ventricle. The indifferent electrode was a 4 x 6 mm stainless steel plaque 

located over the cannulated aorta. Recordings were obtained with a cardiac electrical activity mapping 



system (MAPTECH, Waalre, the Netherlands). The electrograms were amplified with a gain of 100–300, 

broad-band (1–400 Hz) filtered and multiplexed. The sampling rate in each channel was 1 kHz. Electrical 

stimuli were delivered by a Grass S-88 stimulator (Grass Instruments, Quincy, MA, USA) connected to a 

stimulus isolation unit.  

Measurements and calculations 

In the experiments, we used the same procedure with trained and non-trained rabbits. The parameters 

studied and their definitions were the following: 1) Sinus cycle length: the interval between two successive 

ventricular electrograms during basal sinus rhythm (V–V interval); 2) A-V interval: the interval between an 

atrial electrogram and its corresponding ventricular electrogram during basal sinus rhythm; 3) Wenckebach 

cycle length (WCL): the maximum cycle length of atrial pacing that produces A-V Wenckebach block; 4) 

Retrograde WCL (RWCL): the maximum cycle length of ventricular pacing that impedes a 1:1 V-A 

conduction; 5) Atrial effective refractory period (AERP): the maximum atrial extrastimulus coupling interval 

without atrial capture; 6) Atrial functional refractory period (AFRP): the minimum interval between the atrial 

electrogram produced by the last basic atrial train stimulus and that was triggered by the extrastimulus; (do 

you mean the passive as I corrected it?) 7) Ventricular effective refractory period (VERP): the maximum 

ventricular extrastimulus coupling interval without ventricular capture; 8) Ventricular functional refractory 

period (VFRP): the minimum interval between the ventricle electrogram produced by the last basic 

ventricular train stimulus and that was triggered by the extrastimulus; 9) A-V conduction system effective 

refractory period (AVCSERP): the maximum atrial electrogram coupling interval produced by the 

extrastimulus without ventricular capture; 10) A-V conduction system functional refractory period 

(AVCSFRP): the minimum interval between the ventricular electrogram produced by the last basic atrial 

train stimulus and that was triggered by the extrastimulus; 11) Effective refractory period of the V-A 

retrograde conduction system (VACSERP): the maximum ventricular electrogram coupling interval, 

produced by the extrastimulus, without atrial capture; 12) Functional refractory period of the V-A retrograde 

conduction system (VACSFRP): the minimum interval between the atrial electrogram produced by the last 

basic ventricular train stimulus and that was triggered by the ventricular extrastimulus; 13) Mean dominant 

frequency (DF) of ventricular fibrillation (VF): the frequency of the power spectrum with the greatest 

amplitude, analyzed in consecutive segments of 4 seconds using Welch’s method. 



In order to investigate these parameters, we performed several tests according to the following protocol: 

1) Atrial pacing at increasing frequencies (2 Hz∙s-1) to calculate WCL; 2) Atrial extrastimulus testing using 

basic trains of 10 stimuli at four different pacing cycle lengths: 10% shorter than sinus cycle length and of 

250, 200 and 150 ms. The pause between trains was 1 second and the extrastimulus was delivered with 5 ms 

decrements in each of the trains of stimuli starting from the coupling interval 10% lower than the sinus cycle 

length, 250, 200 and 150 ms. This test was used to determine atrial and A-V conduction refractoriness; 3) 

Ventricular extrastimulus testing, using the same technique as in atrial extrastimulus testing, was performed 

to evaluate ventricular and V-A retrograde conduction refractoriness; 4) Ventricular pacing at increasing 

frequencies (2 Hz.s-1) to obtain RWCL and induce VF; 5) Recording of ventricular electrograms during VF 

(330 s). Coronary perfusion was maintained during the arrhythmia. After 10 minutes of stabilization, 1µM 

atropine sulphate (Sigma-Aldrich, St. Louis, MO, USA), dissolved in Tyrode, was administered through the 

aorta in continuous infusion. Maintaining the infusion of atropine, we repeated the electrophysiological 

protocol to evaluate any possible changes derived from parasympathetic activity in the parameters studied 

after muscarinic receptors blockade. In the sham-operated group, the same volume of filtered Tyrode without 

atropine was infused because we wanted to confirm if the course of time or another manoeuvre such as the 

repetition of stimulation protocol could modify the results. V–V interval was measured after the initial period 

of stabilization, immediately before and after atropine and/or Tyrode infusion.  

Stimuli of 2 ms duration and twice diastolic threshold were used in the stimulation protocol. Mean atrial 

diastolic threshold was 8.8±5 mA( is it written like this??), while the mean ventricular diastolic threshold 

reached values of 14.2±5 mA.  

Coronary flow was weighed after collection for 1 min. Measurements were performed before starting the 

electrophysiological protocol, before and after the infusion of atropine, and also at the end of the protocol. 

Each heart was weighed after the experiment had finished. 

Data analysis 

All data are expressed as mean ± SD. Comparisons of refractory periods and DF of VF were made using a 

two-way ANOVA with repeated measures. Paired and unpaired Student’s t-test were used to compare R-R 



interval, A-V interval, WCL and RWCL, coronary flow and heart weights between or within groups when 

necessary. Statistical significance was accepted when P < 0.05. 



Results 

Sinusal chronotropism  

In the sham-operated group, the course of time or the experimental protocol repetition did not modify V-

V interval (Table 1). Likewise, cholinergic blockade did not modify V-V interval in the control and trained 

groups. Basal sinus cycle length was 16% longer in the trained versus the control group.  

Table 1. Sinusal chronotropism 

 

 

 

 

 

 

 

Values are means ± SD in ms. Number of experiments in 

parentheses. V-V = ventricular depolarization to ventricular 

depolarization; A-V = A-V interval. *P<0.05 vs control. 

 

A-V and V-A conduction 

After atropine administration, no differences in A-V interval and WCL were obtained within the control 

and trained groups (Table 2). WCL was 10% longer in the trained group with respect to the control group. In 

the sham-operated and control groups, RWCL underwent a 4% and 8% increase after Tyrode and atropine 

infusion, respectively.  

Table 2. Parameters of A-V and V-A conduction 

Values are means ± SD in ms. Number of experiments in parentheses. A-V = 

A-V interval; WCL = Wenckebach cycle length; RWCL = retrograde 

Wenckebach cycle length; *P<0.05 vs control; †P<0.05 vs pre-infusion. 

Group Basal Pre-infusion Post-infusion 

 V-V V-V V-V 

Control 

 

305±34 

(10) 

347±40 

(9) 

350±38 

(9) 

Trained 

 

354±34* 

(11) 

391±31 

(7) 

394±24 

(7) 

Sham 

 

314±35 

(10) 

328±47 

(9) 

327±46 

(9) 

 Pre-infusion Post-infusion 

 A-V WCL RWCL A-V WCL RWCL 

Control 

 

67±6 

(9) 

125±12 

(9) 

165±18 

(9) 

67±7 

(9) 

137±13 

(9) 

178±18† 

(9) 

Trained 

 

66±3 

(7) 

137±12* 

(11) 

176±22 

(10) 

66±7 

(7) 

148±28 

(11) 

179±21 

(10) 

Sham 

 

67±6 

(9) 

125±10 

(7) 

178±20 

(8) 

67±7 

(9) 

135±22 

(7) 

190±20† 

(8) 



Atrial, ventricular, A-V nodal, and V-A retrograde conduction system refractoriness 

Neither the effective nor the functional atrial, ventricular, A-V and V-A conduction system refractory 

periods were modified by the infusion of atropine (Figure 1A-F). The functional refractory period of the left 

ventricle was longer in trained animals vs. controls at the four pacing cycle lengths: 156 vs 138 ms at a 

coupling interval 10% lower than the sinus cycle length, 144 vs 129 ms at 250 ms pacing cycle length, 133 

vs 118 ms at 200 ms pacing cycle length and 122 vs 110 ms at 150 ms pacing cycle length (Figure 1D). 

Similarly, a larger A-V conduction system functional refractory period was observed in the trained group: 

178 vs 152 ms at a coupling interval 10% lower than the sinus cycle length, 160 vs 145 ms at 250 ms pacing 

cycle length and 151 vs 140 ms at at 200 ms pacing cycle length (Figure 1E). No significant differences were 

found in the remaining parameters of refractoriness between trained and untrained animals. AVCSERP and 

VACSERP were not analyzed because, in most cases, the atrial or ventricular effective refractory period was 

reached before the conduction system refractory period took place. Results obtained in the sham-operated 

group indicate that none of these parameters of refractoriness were modified by the course of time or the 

experimental protocol repetition (Tables 3, 4 and 5). 

Table 3. Parameters of atrial refractoriness 

 AERP AFRP 

 10% SCL 250 ms 200 ms 150 ms 10% SCL 250 ms 200 ms 150 ms 

Pre-

infusion 

87±12 

(6) 

88±7 

(6) 

89±9 

(6) 

81±8 

(6) 

106±8 

(6) 

106±9 

(6) 

105±10 

(6) 

99±5 

(6) 

Post-

infusion 

87±9 

(6) 

84±8 

(6) 

82±11 

(6) 

81±10 

(6) 

102±3 

(6) 

100±5 

(6) 

96±4 

(6) 

95±3 

(6) 

Values are means ± SD in ms. Number of experiments in parentheses. AERP = atrial effective refractory period; 

AFRP = atrial functional refractory period; 10% SCL = pacing frequency 10% shorter than spontaneous sinus cycle 

length; 250, 200 and 150 = pacing cycle length of 150, 200 and 150 ms. 

Table 4. Parameters of ventricular refractoriness 

 VERP VFRP 

 10% SCL 250 ms 200 ms 150 ms 10% SCL 250 ms 200 ms 150 ms 

Pre-

infusion 

118±20 

(5) 

104±14 

(5) 

97±11 

(5) 

83±13 

(5) 

137±19 

(5) 

123±11 

(5) 

115±10 

(5) 

105±8 

(5) 

Post-

infusion 

123±23 

(5) 

112±16 

(5) 

101±18 

(5) 

98±20 

(5) 

138±19 

(5) 

124±12 

(5) 

112±15 

(5) 

107±16 

(5) 

Values are means ± SD in ms. Number of experiments in parentheses. VERP = ventricular effective refractory 

period; VFRP = ventricular functional refractory period; 10% SCL = pacing frequency 10% shorter than 

spontaneous sinus cycle length; 250, 200 and 150 = pacing cycle length of 150, 200 and 150 ms. 

 



Table 5. Parameters of conduction system refractoriness 

 AVCSFRP VACSFRP 

 10% SCL 250 ms 200 ms 150 ms 10% SCL 250 ms 200 ms 

Pre-

infusion 

155±8 

(7) 

147±8 

(7) 

139±3 

(7) 

130±6 

(7) 

169±16 

(5) 

158±9 

(5) 

153±11 

(5) 

Post-

infusion 

153±9 

(7) 

141±6 

(7) 

134±6 

(7) 

128±6 

(7) 

166±14 

(5) 

156±7 

(5) 

153±12 

(5) 

Values are means ± SD in ms. Number of experiments in parentheses. AVCSFRP = atrioventricular 

conduction system effective refractory period; VACSFRP = ventricleatrial conduction system 

functional refractory period; 10% SCL = pacing frequency 10% shorter than spontaneous sinus cycle 

length; 250, 200 and 150 = pacing cycle length of 150, 200 and 150 ms. 

 

Figure 1. Myocardial refractory periods before (pre) and after atropine/Tyrode infusion (post). No differences were 

obtained after parasympathetic blockade in AERP (A), AFRP (B), VERP (C), VFRP (D), AVCSFRP (E) and 

VACSFRP (F). 10% SCL = pacing frequency 10% shorter than spontaneous sinus cycle length; 250, 200 and 150 = 

pacing cycle length of 150, 200 and 150 ms; *P<0.05 vs control. Error bars display the standard error of the mean. 



Dominant frequency of ventricular fibrillation. 

There were no differences in the DF of VF in the sham-operated group when comparisons before and 

after Tyrode infusion were made. In this group, DF of VF reached values of 22.0 ± 3.0 Hz immediately after 

VF triggering and decreased to 15.6 ± 3.3 Hz at 300 s. After Tyrode infusion, DF decreased from 24.3 ± 6.2 

to 17.4 ± 4.6 Hz. Similar kinetics were observed in the trained and control groups and no changes were 

found after cholinergic blockade on the mean DF of VF of both groups (Figures 2A and 2B). The mean DF 

of VF was lower in the trained group (Figure 2C). 

 

A 

B 

C 



Figure 2. Dominant frequency of ventricular fibrillation. 

Parasympathetic blockade did not modify this parameter in the 

control (A) and trained (B) groups. Furthermore, DF of VF was 

lower in the trained group (C) *P<0.05 vs control; †P = 0.08 ; ‡P 

= 0.06; §P = 0,09. Error bars display the standard error of the 

mean. 

 

Coronary flow and heart weights 

Coronary flow was not different between the trained and control groups when expressed in milliliters per 

minute per gram (3.24 ± 0.9 in the trained group vs 3.34 ± 0.9 ml·min-1·g-1 in the control group). Likewise, 

parasympathetic blockade did not modify coronary flow within the control and trained groups. In the sham-

operated group, the course of time or the experimental protocol repetition did not modify this parameter. 

Heart weights were similar in trained and control rabbits (14.4 ± 2 and 14.2 ± 2 g, respectively).  



Discussion 

We have studied the role of the intrinsic parasympathetic nervous system on training-induced 

modifications of the myocardial electrophysiological properties: automatism, conduction and refractoriness. 

The main findings of this study are that the parasympathetic blockade did not modify the effect of physical 

training on both sinus node automatism and atrioventricular conduction, and atrioventricular conduction 

system and ventricular refractoriness.  

Methodological considerations 

It must be noted that the experimental preparation used is not a "working heart" and the differences 

observed between groups do not result from differences in cardiac work (39). Moreover, it has been reported 

that rabbits provide a good experimental model for the investigation of cardiac electrophysiology. As it is 

known the electrophysiological properties and VF characteristics in the rabbit are more similar to that 

observed in humans than rats or mice (29, 12), which have major limitations in performing cardiac 

electrophysiological studies (13). Finally, by using the proper intensity, duration and frequency of exercise, 

the rabbit obtains a documented cardiovascular training effect rather easily (10). Indeed, it has been shown 

that the training protocol used reduces heart rate in vivo and in vitro (39), which is considered to be one of 

the most fundamental systemic characteristics of the trained state (26). Moreover, the training protocol 

produced myocardial HSP60 and iNOs expression modifications, (39) which are associated with physical 

training (16, 14).  

Effect of parasympathetic blockade on automatism and conduction 

As we have shown in the Results section, physical training depressed sinus node automatism and A-V 

nodal conduction. These results are partially in accordance with those previously obtained in human (20, 19, 

6, 36, 37) and experimental studies (28, 27, 38, 39). Nevertheless, muscarinic receptor blockade with 

atropine did not modify the negative chronotropic and dromotropic effects produced by physical training. It 

has been reported that the increase in resting cardiac parasympathetic activity produced by physical training 

underlies the decrease in resting heart rate and the depression of A-V conduction. As it is well known, the 

release of acetylcholine (ACh) from parasympathetic postganglionic terminals causes a muscarinic receptor-

mediated opening of specific potassium channels (IKACh) and other effects on several pacemaker currents that 



result in slowing the firing rate of pacemaker cells and a delay in AV conduction (8, 35). As the intrinsic 

cardiac nervous system displays ongoing activity even when it is disconnected from the higher nervous 

centers (1, 2) and can modify cardiac function (18, 15), the changes observed by previous studies using a 

similar experimental model (28, 38, 39) could have been mediated by intrinsic nervous activity. In view of 

the present results, intrinsic parasympathetic nervous system activity does not explain the bradycardia and A-

V conduction delay in isolated hearts from trained animals. Additionally, we did obtain differences in RWCL 

in the sham and control groups, an increase being produced after the infusion of Tyrode/atropine, 

respectively. These results are quite surprising, as parasympathetic blockade should have enhanced impulse 

conduction and decreased RWCL, given that ACh depresses conduction. Hence, the increase in RWCL does 

not seem to be an atropine related effect.  

Refractoriness and parasympathetic blockade  

With respect to the effects of cholinergic blockade, the changes produced by physical training on 

myocardial refractoriness were not mediated by intrinsic parasympathetic activity, as we did not find 

modifications by atropine infusion in ventricular or atrioventricular conduction system refractoriness. 

The study of ventricular refractoriness was carried out using two different methods: ventricular 

extrastimulus testing and spectral analysis of VF. Both measures provide a reliable method to assess 

ventricular refractoriness, not only with a common method used in electrophysiological studies 

(extrastimulus test) but also with the DF of VF. This last parameter expresses the speed of ventricular 

activation during the VF and inversely correlates with VFRP, thus being and indirect measure of ventricular 

refractoriness (9). Moreover, this procedure let us analyze up to 240 different points of ventricular 

myocardium in each experiment during VF.  

Our results show that the increase in ventricular refractoriness produced by physical training, assessed by 

the increase in VFRP and the decrease in DF of VF, was not altered after parasympathetic blockade. With 

respect to the increase of ventricular refractoriness, these results are similar to those obtained in previous 

studies (39). The prolongation of ventricular refractoriness could be related to intrinsic parasympathetic 

activity since parasympathetic postganglionic neurons are also found in the ventricle and their activity can 

lead to a release of ACh even in the isolated heart (22). This is consistent with experimental studies which 



have reported a prolonging effect of vagal nerve stimulation on ventricular refractoriness (23, 17), even 

without background sympathetic activity (21). Nevertheless, atropine administration did not modify the 

training-induced increase in ventricular refractoriness, indicating that this cardiac electrophysiological 

modification is not mediated by the activation of IKACh.   

As far as A-V conduction system refractoriness is concerned, we found that physical training increased 

AVCSFRP and this increase was not abolished after atropine infusion. Consequently, ACh does not seem to 

be implicated in the A-V conduction system refractoriness increase produced by physical training. These 

results are consistent with Stein et al. (37), which found that atrioventricular node effective refractory period 

in athletes was longer than in untrained individuals even after pharmacological blockade, indicating that 

these changes were caused by intrinsic electrophysiological modifications. Neither physical training nor 

parasympathetic blockade modified retrograde conduction system refractoriness. 

With respect to atrial refractoriness and its modification by physical training, it has been reported either 

no change (7) or an increase (24) in athletes with Wolff-Parkinson-White syndrome. Experimental studies 

carried out in isolated rabbit heart have shown that although the differences were not statistically significant, 

AERP tended to increase (p = 0.09) in the hearts of trained animals (39). In the present study, physical 

training did not change AERP and AFRP and these parameters were not modified after parasympathetic 

blockade. Regarding the effect of parasympathetic stimulation, acetylcholine release from parasympathetic 

postganglionic terminals in the atria activates IKACh, which leads to a shortening of the AERP, a decrease in 

the action potential duration and an increase in the dispersion of refractoriness (41, 40). These 

electrophysiological modifications facilitate the induction and maintenance of atrial fibrillation, whose 

incidence has been reported to be higher in long-term endurance athletes (25). Data presented indicate that 

physical training does not modify atrial refractoriness and that there is no ACh release from parasympathetic 

postganglionic terminals in atrial intracardiac ganglia to exert any influence in atrial refractoriness in the 

isolated rabbit heart model. 

The results obtained not only in the intrinsic heart rate and atrioventricular conduction but also in 

myocardial ventricular and atrioventricular node refractoriness, suggest a contributing role of an intrinsic 

adaptation induced by physical training. The observed electrophysiological modifications are exhibited in an 

isolated heart preparation and thus not submitted to extrinsic nervous system and/or humoral influences. 



Regarding the basic mechanisms implied in these modifications, we have discarded a functional implication 

of IKACh by means of muscarinic blockade with atropine, which implies that these intrinsic modifications are 

not dependent on intrinsic parasympathetic activity. Previous studies carried out by our research team 

reported that these changes do not seem to be related to heart hypertrophy, lipid peroxidation, and/or 

coronary flow modifications either (38).  

In conclusion, our findings reveal that the myocardial electrophysiological modifications produced by 

physical training are not mediated by intrinsic cardiac parasympathetic activity. As parasympathetic 

blockade did not modify the electrophysiological properties studied in isolated rabbit heart, other intrinsic 

modifications must be implied. 
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