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Abstract
We obtain a quasi-metric generalization of Caristi’s fixed point theorem for a kind of
complete quasi-metric spaces. With the help of a suitable modification of its proof, we
deduce a characterization of Smyth complete quasi-metric spaces which provides a
quasi-metric generalization of the well-known characterization of metric
completeness due to Kirk. Some illustrative examples are also given. As an
application, we deduce a procedure which allows to easily show the existence of
solution for the recurrence equation of certain algorithms.
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1 Introduction and preliminaries
We start by recalling several notions and properties of the theory of quasi-metric spaces.
Our basic references are [] and [].

By a quasi-metric on set X we mean a function d : X × X → [,∞) such that for all
x, y, z ∈ X: (i) x = y ⇔ d(x, y) = d(y, x) = ; (ii) d(x, z) ≤ d(x, y) + d(y, z).

A quasi-metric space is a pair (X, d) such that X is a set and d is a quasi-metric on X.
Given a quasi-metric d on X, the function d– defined by d–(x, y) = d(y, x) is also a

quasi-metric on X, called the conjugate of d, and the function ds defined by ds(x, y) =
max{d(x, y), d–(x, y)} is a metric on X.

Each quasi-metric d on X induces a T topology τd on X which has as a base the family
of open balls {Bd(x, r) : x ∈ X, ε > }, where Bd(x, ε) = {y ∈ X : d(x, y) < ε} for all x ∈ X and
ε > .

If τd is a T topology on X, we say that (X, d) is a T quasi-metric space.
Note that a quasi-metric space (X, d) is T if and only if for each x, y ∈ X, condition

d(x, y) =  implies x = y.
There exist many different notions of Cauchy net, Cauchy sequence and quasi-metric

completeness in the literature (see, e.g., [–]). For our purposes, here we will consider the
following ones.
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A net (xα)α∈� in a quasi-metric space (X, d) is called left K-Cauchy if for each ε >  there
is αε ∈ � such that d(xα , xβ ) < ε whenever αε ≤ α ≤ β . The notion of a left K-Cauchy
sequence is defined in the obvious manner.

We say that a quasi-metric space (X, d) is complete if every left K-Cauchy net is con-
vergent for τd– , and say that it is sequentially complete if every left K-Cauchy sequence is
convergent for τd– . (Note that our notion of (sequential) completeness of (X, d) coincides
with the usual notion of right K-(sequential) completeness of (X, d–).)

A quasi-metric space (X, d) is Smyth complete provided that every left K-Cauchy net in
(X, d) is convergent for τds (compare Definition  in [], [], p., etc.).

The following well-known result is a consequence of Definition  and Theorem  in []
(see also [], p., [], p.).

Proposition  A quasi-metric space (X, d) is Smyth complete if and only if every left
K-Cauchy sequence in (X, d) is convergent for τds .

The following implications are also known and easy to check:

Smyth complete ⇒ complete ⇒ sequentially complete.

However, the converse implications do not hold, in general. For instance, the Sorgenfrey
quasi-metric space (see, e.g., [], p. or Example .. in []) provides a distinguished ex-
ample of a complete T quasi-metric space which is not Smyth complete, while Stoltenberg
presented in Example . of [] an example of a sequentially complete T quasi-metric
space which is not complete.

On the other hand, Caristi proved in  the following important and well-known gen-
eralization of the Banach contraction principle.

Theorem  ([]) Let T be a self-mapping of a complete metric space (X, d). If there is a
lower semicontinuous function ϕ : X → [,∞) satisfying

d(x, Tx) ≤ ϕ(x) – ϕ(Tx)

for all x ∈ X, then T has a fixed point in X.

Kirk showed in [] that the validity of Caristi’s fixed point theorem in a metric space
characterizes its completeness. More exactly, he proved the following.

Theorem  ([]) For a metric space (X, d), the following conditions are equivalent:
() (X, d) is complete.
() If T is a self-mapping of X such that there is a lower semicontinuous function

ϕ : X → [,∞) satisfying d(x, Tx) ≤ ϕ(x) – ϕ(Tx) for all x ∈ X , then T has a fixed
point in X .

Extensions and generalizations of Theorems  and  to partial metric spaces, cone metric
spaces, quasi-metric spaces and probabilistic metric spaces have been obtained by several
authors (see, e.g., [–]). In particular, Cobzaş ([], Theorem .) proved, among other
interesting results, the following quasi-metric generalization of Caristi’s fixed point theo-
rem.
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Theorem  ([]) Let T be a self-mapping of a sequentially complete T quasi-metric space
(X, d). If there is a function ϕ : X → [,∞) which is lower semicontinuous for τd– and
satisfies

d(x, Tx) ≤ ϕ(x) – ϕ(Tx)

for all x ∈ X, then T has a fixed point in X.

Since complete and Smyth complete non-T quasi-metric spaces provide efficient tools
in several areas as asymmetric functional analysis, domain theory, theoretical computer
science, complexity analysis of algorithms defined by recurrence equations, etc. (see, e.g.,
[, , , , , ] and their references), it seems natural to discuss the question of gener-
alizing Theorem  to (non-necessarily T) quasi-metric spaces. In this direction, we shall
give an example of a sequentially complete quasi-metric space for which Theorem  does
not hold. We shall show that, nevertheless, Theorem  remains valid for complete quasi-
metric spaces. A suitable and slight modification of the proof of that result will be used to
deduce a characterization of Smyth complete quasi-metric spaces which provides a gener-
alization to the quasi-metric framework of Kirk’s characterization of metric completeness.
As an application, we obtain a procedure which allows to easily deduce the existence of
solution for the recurrence equation of certain algorithms.

2 Results and examples
In order to simplify the terminology and the statements of our results, we shall use the
following notions.

A self-mapping T of a quasi-metric space (X, d) will be called a d-Caristi mapping (resp.
a ds-Caristi mapping) on (X, d) if there is a function ϕ : X → [,∞) which is lower semi-
continuous for τd– (resp. for τds ) and satisfies d(x, Tx) ≤ ϕ(x) – ϕ(Tx) for all x ∈ X.

Clearly, every d-Caristi mapping is a ds-Caristi mapping. The following example shows
that the converse is not true in general.

Example  Let d be the quasi-metric on the set N of all positive integer numbers, given
by d(x, x) =  for all x ∈ N and d(x, y) = /x for all x, y ∈ N with x �= y. Clearly (N, d) is a
T quasi-metric space such that τd , and hence τds is the discrete topology on N. Define
T : N → N as Tx = x for all x ∈ N. Then d(x, Tx) = /x = ϕ(x) – ϕ(Tx), where ϕ : N →
[,∞) is defined as ϕ(x) = /x for all x ∈ N. Since τds is the discrete topology on N, ϕ is
lower semicontinuous for τds and thus T is a ds-Caristi mapping on (N, d). Finally, suppose
that T is also a d-Caristi mapping. Then there exists a function ϕ : N → [,∞) which
is lower semicontinuous for τd– and satisfies d(x, x) = /x ≤ ϕ(x) – ϕ(x) for all x ∈ N.
We easily deduce that ϕ() ≥  + ϕ(x) for all x ∈ N, which contradicts that ϕ is a lower
semicontinuous function for τd– because the sequence (n)n∈N converges to  for τd– .

Our next example, based on Example . in [], shows that condition T cannot be re-
moved in Theorem .

Example  Let (A, d) be the non-T quasi-metric space such that A is the family of all
nonempty countable subsets of the set R of all real numbers, and d is the quasi-metric on
A defined as d(A, B) =  if A ⊆ B, and d(A, B) =  otherwise. Let (An)n∈N be a left K-Cauchy
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sequence in (A, d). Assume, without loss of generality, that d(An, Am) =  whenever n ≤ m,
i.e., An ⊆ Am whenever n ≤ m. Since

⋃
n∈N An ∈ A and d(An,

⋃
n∈N An) =  for all n ∈ N,

we deduce that (A, d) is sequentially complete. Now let

� = {A ∈A : A is a nonempty finite subset of R consisting of irrational numbers}

ordered by inclusion. Then the net (A)A∈� is left K-Cauchy in (A, d) (see Example . in
[]) but it does not converge for τd– because the elements of A are countable subsets of R.
We conclude that (A, d) is not complete.

However, we have the following extension of Theorem  whose proof is based on a
classical technique used by Kirk [], which is inspired in the partial order of Brøndsted
[, ].

Theorem  Every d-Caristi mapping on a complete quasi-metric space (X, d) has a fixed
point in X.

Proof Let (X, d) be a complete quasi-metric space and let T : X → X be a d-Caristi map-
ping on (X, d). Then there exists a function ϕ : X → [,∞) which is lower semicontinuous
for τd– and satisfies

d(x, Tx) ≤ ϕ(x) – ϕ(Tx)

for all x ∈ X. As in the classical metric case, define a binary relation � on X by

x � y ⇐⇒ d(x, y) ≤ ϕ(x) – ϕ(y)

for all x, y ∈ X. Clearly � is a partial order on X. Note also that x � Tx for all x ∈ X.
We shall prove that every (nonempty) linearly ordered subset of the partially ordered

set (X,�) has an upper bound. Indeed, let A be a (nonempty) linearly ordered subset of X.
We show that the net (xx)x∈A is a left K-Cauchy net in (X, d) where we have defined xx := x
for all x ∈ A. To this end, put r = infx∈A ϕ(x). Given an arbitrary ε > , choose x ∈ A such
that ϕ(x) < r + ε. Thus, for any y, z ∈ A with x � y � z, we obtain

d(y, z) ≤ ϕ(y) – ϕ(z) ≤ ϕ(x) – ϕ(z) < r + ε – r = ε.

Consequently, (xx)x∈A is a left K-Cauchy net in (X, d), and hence it converges, for τd– , to
some p ∈ X. Fix x ∈ A and let ε >  be arbitrary. Then there is y ∈ A such that d(z, p) < ε

and ϕ(p) –ϕ(z) < ε whenever z ∈ A and y � z. Choose z ∈ A with x � z and y � z. Hence

d(x, p) ≤ d(x, z) + d(z, p) < ϕ(x) – ϕ(z) + ε

< ϕ(x) – ϕ(p) + ε.

Since ε is arbitrary, we deduce that d(x, p) ≤ ϕ(x) – ϕ(p), i.e., x � p, so p is an upper bound
of A. It follows from Zorn’s lemma that (X,�) has a maximal element, say a. Since a � Ta,
we conclude that a = Ta, so a is a fixed point of T . The proof is finished. �
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Of course, Caristi’s fixed point theorem is a consequence of Theorem  when (X, d) is a
metric space. Next we present two examples of complete quasi-metric spaces (X, d) with
appropriate d-Caristi mappings, for which Caristi’s fixed point theorem cannot be applied
to the metric space (X, ds).

Example  Let X = N ∪ {∞}. Define a nonnegative real-valued function d on X × X by
d(∞,∞) = , d(x, y) = |/x – /y| if x, y ∈ N, d(x,∞) = /x and d(∞, x) =  for all x ∈ N.
It is easily seen that (X, d) is a complete T quasi-metric space (in fact, note (X, τd– ) is
a compact topological space). Define T : X → X as T∞ = ∞, and Tx = x for all x ∈ N.
Now define ϕ : X → [,∞) as ϕ(∞) = , and ϕ(x) = /x for all x ∈ N. Then ϕ is clearly
a lower semicontinuous function for τd– . Since d(∞, T∞) = d(, T) = , and for every
x ∈ X\{,∞},

d(x, Tx) =

x

–

x = ϕ(x) – ϕ(Tx),

we conclude that T is a d-Caristi mapping on (X, d). Hence, we can apply Theorem  to
this case. In fact, T has  and ∞ as fixed points. However, we cannot apply Caristi’s fixed
point theorem to the metric space (X, ds) because it is not complete. Indeed, (x)x∈N is a
Cauchy sequence in (X, ds) that does not converge for τds .

In the above example the metric space (X, ds) is not complete. Now, we give an example
of a complete quasi-metric space (X, d) where the metric space (X, ds) is complete and
there is a d-Caristi mapping on (X, d) which is not a Caristi mapping for the metric space
(X, ds).

Example  As in Example , let X = N∪ {∞}. Define a nonnegative real-valued function
d on X ×X by d(x, y) =  if x ≤ y, and d(x, y) = y if y < x (here, ≤ denotes the usual order on
X). It is routine to check that (X, d) is a complete quasi-metric space (note that every net in
X converges to ∞ for τd– ). Define T : X → X as Tx = x +  for all x ∈N and T∞ = ∞. Then
d(x, Tx) =  for all x ∈ X, so that T is trivially a d-Caristi mapping on (X, d). Hence, we can
apply Theorem . Finally, suppose that there exists a lower semicontinuous function, for
τds , ϕ : X → [,∞), such that ds(x, Tx) ≤ ϕ(x) – ϕ(Tx) for all x ∈ X. Then

ds(x, x + ) = x +  ≤ ϕ(x) – ϕ(x + )

for all x ∈ N. We deduce that ϕ() = ∞, a contradiction. Hence, we cannot apply the clas-
sical Caristi fixed point theorem in this case.

Observe that the aforementioned example of Stoltenberg and Example  (or Example )
above show that Theorems  and  are independent of each other.

Although we do not know whether the converse of Theorem  holds, i.e., if Kirk’s the-
orem can be generalized to complete quasi-metric spaces, we are going to show that it is
possible to obtain such a generalization for Smyth complete quasi-metric spaces. To this
end, the following essentially well-known fact (see, e.g., Proposition .. in []) will be
useful.

Proposition  Let (xn)n∈N be a left K-Cauchy sequence in a quasi-metric space (X, d). If
(xn)n∈N has a subsequence convergent to x ∈ X for τds , then (xn)n∈N converges to x for τds .
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Theorem  A quasi-metric space (X, d) is Smyth complete if and only if every ds-Caristi
mapping on (X, d) has a fixed point in X.

Proof Suppose that (X, d) is a Smyth complete quasi-metric space, and let T be a ds-Caristi
mapping on (X, d). Then there exists a function ϕ : X → [,∞) which is lower semicon-
tinuous for τds and satisfies d(x, Tx) ≤ ϕ(x) – ϕ(Tx) for all x ∈ X. Exactly as in the proof
of Theorem , we construct a left K-Cauchy net in (X, d), which converges for τds to an
element p ∈ X by Smyth completeness of (X, d). Finally, we deduce that p is a fixed point
of T again as in the proof of Theorem  and taking into account that ϕ is now lower semi-
continuous for τds .

Conversely, it will be enough to prove, by Proposition , that every left K-Cauchy se-
quence in (X, d) converges for τds . Assume the contrary. Then there exists a left K-Cauchy
sequence (xn)n∈N in (X, d) which is not convergent for τds . For each k ∈ N, there exists
nk ≥ k such that d(xnk , xn) < –(k+) for all n ≥ nk . Therefore d(xnk , xnk+ ) < –(k+) for all
k ∈ N. Put yk := xnk for all k ∈ N. Then, by Proposition , we can suppose, without loss of
generality, that yk �= yj whenever k �= j, and that the sequence {yk : k ∈N} does not have any
convergent subsequence for τds .

We want to show that the self-mapping T of X given by Tyk = yk+ for all k ∈ N, and
Tx = y for all x /∈ {yk : k ∈ N}, is a ds-Caristi mapping. To this end, construct a function
ϕ : X → [,∞) as follows: ϕ(yk) = –k for all k ∈N, and ϕ(x) = ds(x, y) + / whenever x /∈
{yk : k ∈N}. Since, for each k ∈ N, ϕ(yk) < ϕ(x) whenever x /∈ {yk : k ∈N}, and the function
x → ds(x, y) is continuous for τds , we immediately deduce that ϕ is lower semicontinuous
for τds . Moreover, we have

d(yk , Tyk) = d(yk , yk+) < –(k+) = ϕ(yk) – ϕ(Tyk)

for all k ∈N, and

d(x, Tx) = d(x, y) ≤ ds(x, y) = ϕ(x) – ϕ(Tx)

for all x /∈ {yk : k ∈ N}, so T is a ds-Caristi mapping on (X, d). However, T has no fixed
point. This contradiction concludes the proof. �

As in the metric case, we are going to deduce a multivalued version of Theorem .
Given a quasi-metric space (X, d), we denote by P(X) the collection of all nonempty

subsets of X. A multivalued mapping T : X → P(X) will be called ds-Caristi on (X, d) if
there is a function ϕ : X → [,∞) which is lower semicontinuous for τds and satisfies the
following condition: For each x ∈ X, there exists yx ∈ Tx such that d(x, yx) ≤ ϕ(x) – ϕ(yx).

As usual, we say that a point z ∈ X is a fixed point of T : X →P(X) if z ∈ Tz.

Corollary A quasi-metric space (X, d) is Smyth complete if and only if every ds-Caristi
multivalued mapping on (X, d) has a fixed point.

Proof Suppose that (X, d) is Smyth complete, and let T : X → P(X) be a ds-Caristi mul-
tivalued mapping. Then there is a function ϕ : X → [,∞) which is lower semicontinuous
for τds and satisfies that for each x ∈ X there exists yx ∈ Tx such that d(x, yx) ≤ ϕ(x) –ϕ(yx).
Define a self-mapping f on X as follows: fx = yx for all x ∈ X. Obviously f is a ds-Caristi
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mapping on (X, d), so, by Theorem , there is z ∈ X such that z = fz. Therefore z = yz . Since
yz ∈ Tz, we conclude that z is a fixed point of T .

Conversely, suppose that every ds-Caristi multivalued mapping on (X, d) has a fixed
point. Then every ds-Caristi mapping on (X, d) has a fixed point, so (X, d) is Smyth com-
plete by Theorem . �

Note that if (X, d) is a quasi-metric space and T is a self-mapping of X such that
d(x, Tx) =  for all x ∈ X, then T is a ds-Caristi mapping on (X, d). If, in addition, (X, d)
is Smyth complete, then T has a fixed point by Theorem . Our next example illustrates
this situation.

Example  Let � be a nonempty alphabet. Denote by �∞ the set of all finite and infinite
words (sequences) over �, and denote by φ the empty word. For each x, y ∈ �∞, we define
x � y as the longest common prefix of x and y, and for each x ∈ �∞, we denote by 
(x) the
length of x. Then 
(x) ∈ [,∞] whenever x �= φ and 
(φ) = . Now, for each x, y ∈ �∞, let
d(x, y) =  if x is a prefix of y, and d(x, y) = –
(x�y) otherwise. Then d is a quasi-metric on
�∞ [, ]. In fact, the quasi-metric space (�∞, d) is Smyth complete [], Example ..
Define T : �∞ → �∞ as follows: For each x ∈ �∞, Tx is an element of �∞ such that x is
a prefix of Tx with 
(Tx) = 
(x) + . Then d(x, Tx) =  for all x ∈ �∞. By Theorem , T has
a fixed point. In fact, Tx = x if and only if 
(x) = ∞.

Observe that if (X, d) is a non-Smyth complete quasi-metric space such that (X, ds) is
complete, we can apply Caristi’s fixed point theorem to (X, ds). However, by Theorem ,
there exists a ds-Caristi mapping on (X, d) without fixed point. We conclude this section
with an example illustrating this fact.

Example  Let d be the quasi-metric on R given by d(x, y) = y – x if x ≤ y, and d(x, y) = 
if x > y. Then (R, d) is the Sorgenfrey quasi-metric space. Since ds(x, y) ≥  for all x, y ∈
R with x �= y, we deduce that the metric space (R, ds) is complete and τds is the discrete
topology on R. As we indicated in Section , (R, d) is not Smyth complete (indeed, note
that the sequence ((n – )/n)n∈N is left K-Cauchy but it does not converge for τds ). Define
T : R → R as Tx =  for all x > , T = –, and Tx = x/ for all x < . Although T has no
fixed point, we show that it is a ds-Caristi mapping on (R, d). To this end, define ϕ : R →
[,∞) as ϕ(x) =  for all x > , ϕ() = , and ϕ(x) = –x for all x < . Obviously ϕ is lower
semicontinuous for τds . Moreover, for x > , we obtain

d(x, Tx) = d(x, ) =  = ϕ(x) – ϕ(Tx).

For x = , we obtain

d(x, Tx) = d(, –) =  = ϕ(x) – ϕ(Tx),

and for x < ,

d(x, Tx) = d
(

x,
x


)

= –
x


= ϕ(x) – ϕ(Tx).
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Hence T is a ds-Caristi mapping on (X, d) without fixed point. Finally, observe that for
x = – one has

ds(x, Tx) =  >



= ϕ(x) – ϕ(Tx).

3 An application
In this section we shall apply Theorem  to obtaining a general fixed point theorem in the
setting of the complexity space, from which we shall deduce, in a unified and fast way, the
existence of solution for a large class of algorithms defined by recurrence equations that
includes Hanoi, Largetwo (average case), and Quicksort (worst case), (see, e.g., [] for a
detailed study of these algorithms).

Let us recall that the so-called complexity space was introduced by Schellekens in []
to the development of a topological foundation for the complexity analysis of algorithms
and programs. Further contributions to the study of this space and its applications may be
found in [, , –], etc.

The complexity space is the quasi-metric space (C, dC), where

C =

{

f : N → (,∞] :
∞∑

n=

–n 
f (n)

< ∞
}

,

and dC is the quasi-metric on C given by

dC(f , g) =
∞∑

n=

–n max

(


g(n)
–


f (n)

, 
)

for all f , g ∈ C . (We adopt the convention that /∞ = .)
The set {f ∈ C : f (n) < ∞ for all n ∈N} is denoted by C.
The elements of C are called complexity functions. According to Schellekens [], p.,

given two complexity functions f and g , the numerical value dC(f , g) (the complexity dis-
tance from f to g) can be interpreted as the relative progress made in lowering the com-
plexity by replacing any program P with complexity function f by any program Q with
complexity function g . Therefore, condition dC(f , g) = , with f �= g , can be read as the pro-
gram P is at least as efficient as the program Q because dC(f , g) =  if and only if f (n) ≤ g(n)
for all n ∈ N. Obviously, the metric (dC)s is not able to give this information since in the
case that dC(f , g) = , with f �= g , we deduce that dC(g, f ) = (dC)s(f , g), and thus the last
measure does not indicate that program is more efficient. However, we know that the pro-
gram with complexity function f is more efficient than the one with complexity function
g (see [], p.).

Now let c and a be positive real constants and h ∈ C. Define

Ccah =
{

f ∈ C : f () = c and f (n) ≥ af (n – ) + h(n) for all n ≥ 
}

.

Observe that Ccah �= ∅ since the complexity function f defined by f() = c and f(n) = ∞
for all n ≥  clearly belongs to Ccah.

The restriction of the quasi-metric dC to Ccah will be denoted by dCcah .
The following auxiliary results will be useful in the proof of the main result of this section

(Theorem  below).
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Lemma  Let (fk)k∈N be a sequence in C such that limk→∞(dC)s(f , fk) =  for some f ∈ C ,
and let m ∈N.

(a) If f (m) < ∞, then fk(m) < ∞ eventually, and limk→∞ fk(m) = f (m).
(b) f (m) = ∞ if and only if limk→∞ fk(m) = ∞.

Proof Since limk→∞(dC)s(f , fk) = , for each ε > , there is kε ∈N such that

∞∑

n=

–n
∣
∣
∣
∣


f (n)

–


fk(n)

∣
∣
∣
∣ < ε

for all k ≥ kε . In particular

–m
∣
∣
∣
∣


f (m)

–


fk(m)

∣
∣
∣
∣ < ε ()

for all k ≥ kε .
Suppose that f (m) < ∞. Taking ε = –m/f (m), it follows from () that fk(m) < ∞ for all

k ≥ kε . Hence limk→∞ fk(m) = f (m) by Proposition  of []. Thus, we have shown (a).
If f (m) = ∞, relation () gives –m/ε < fk(m) for all k ≥ kε . Since ε >  is chosen arbitrarily,

we deduce that limk→∞ fk(m) = ∞. Conversely, if limk→∞ fk(m) = ∞, again it follows from
() that /f (m) = , i.e., f (m) = ∞. Thus, we have shown (b). �

Lemma  ([]) The quasi-metric space (C, dC) is Smyth complete.

Lemma  Let c and a be positive real constants and h ∈ C. Then the quasi-metric space
(Ccah, dCcah ) is Smyth complete.

Proof We first show that Ccah is a closed subset of the metric space (C, (dC)s). Indeed, let
(fk)k∈N be a sequence in Ccah and f ∈ C such that limk→∞(dC)s(f , fk) = . We shall show that
f () = c and f (m) ≥ af (m – ) + h(m) whenever m ≥ .

To this end, we distinguish the following cases.
Case . m = . Then fk() = c for all k ∈ N, so by Lemma (b), f () < ∞. Then f () = c by

Lemma (a).
Case . m >  and f (m) = ∞. Then f (m) ≥ af (m – ) + h(m), obviously.
Case . m >  and f (m) < ∞. Then, by Lemma (a), there is k ∈ N such that fk(m) < ∞

for all k ≥ k, and limk→∞ fk(m) = f (m). From this equality and the fact that fk ∈ Ccah, we
deduce the existence of k ≥ k such that for each k ≥ k,

 + f (m) ≥ fk(m) ≥ afk(m – ) + h(m). ()

Consequently, fk(m – ) < ∞ for all k ≥ k, and by Lemma (b), f (m – ) < ∞ (otherwise,
limk fk(m – ) = ∞, which contradicts ()). Therefore, we also have limk→∞ fk(m – ) =
f (m – ), by Lemma (a).

Now choose an arbitrary ε > . Then there exists kε ∈N such that

∣
∣fk(m – ) – f (m – )

∣
∣ < ε and

∣
∣fk(m) – f (m)

∣
∣ < ε
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for all k ≥ kε . Hence

ε + f (m) > fk(m) ≥ afk(m – ) + h(m) ≥ a
(
f (m – ) + ε

)
+ h(m)

for all k ≥ kε . Thus ε + f (m) > a(f (m – ) + ε) + h(m) for any ε > , so f (m) ≥ af (m – ) +
h(m). Consequently, f ∈ Ccah, and hence Ccah is closed in the metric space (C, (dC)s). Then
(Ccah, dCcah ) is Smyth complete by Lemma . �

Theorem  Let c and a be positive real constants with a ≥ , let h ∈ C, and let � be the
mapping on Ccah defined as

�(f )(n) =

{
c if n = ,
f (n – ) + h(n) if n ≥ .

()

Then the following hold:
(A) � is a self-mapping on Ccah.
(B) For each f ∈ Ccah,

dCcah (f ,�f ) = ϕ(f ) – ϕ(�f ),

where ϕ : Ccah → [,∞) is the lower semicontinuous function for τ(dCcah )s given by

ϕ(f ) =
a + 
ac

–
∞∑

n=

–n 
f (n)

for all f ∈ Ccah.
(C) � has a fixed point in Ccah.

Proof (A) Let f ∈ Ccah. Then �f () = c by definition of � . We also have �f () = af () +
h() = a�f () + h().

Now let n > . Then

�f (n) = af (n – ) + h(n)

≥ a
[
af (n – ) + h(n – )

]
+ h(n)

= a�f (n – ) + h(n).

We conclude that �f ∈ Ccah.
(B) We first observe that, in fact, ϕ(f ) ≥  for all f ∈ Ccah. Indeed, since a ≥ , we have

f (n) ≥ f (n – ) for all n ≥ , and thus f (n) ≥ f () ≥ ac for all n ≥ . Therefore

∞∑

n=

–n 
f (n)

=


c
+

∞∑

n=

–n 
f (n)

≤ 
c

+


ac
=

a + 
ac

.
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Let now f ∈ Ccah and (fk)k∈N be a sequence in Ccah such that limk→∞(dCcah )s(f , fk) = . Since

ϕ(f ) – ϕ(fk) =
∞∑

n=

–n 
fk(n)

–
∞∑

n=

–n 
f (n)

≤
∞∑

n=

–n
∣
∣
∣
∣


fk(n)

–


f (n)

∣
∣
∣
∣ ≤ (dCcah )s(f , fk),

we deduce that ϕ(f ) ≤ lim infk→∞ ϕ(fk). Therefore ϕ is lower semicontinuous for τ(dCcah )s .
Furthermore, for each f ∈ Ccah, we have f ≥ �f , and hence

dCcah (f ,�f ) =
∞∑

n=

–n max

(


�f (n)
–


f (n)

, 
)

=
∞∑

n=

–n
(


�f (n)

–


f (n)

)

=
∞∑

n=

–n 
�f (n)

–
∞∑

n=

–n 
f (n)

= ϕ(f ) – ϕ(�f ).

(C) From (B) we deduce that � is a (dCcah )s-Caristi mapping on (Ccah, dCcah ). Then � has
a fixed point by Lemma  and Theorem . �

It follows from Theorem  that those algorithms defined by recurrence equations, whose
associated functional is a mapping � of type (), admit a solution. We conclude the paper
by applying this fact to deduce the existence of solution for the three algorithms mentioned
at the beginning of this section.

Example  The algorithm Hanoi solves the celebrated Towers of Hanoi problem. The
running time of computing of this algorithm is the solution of the recurrence equation
S : N→ (,∞) given by

S(n) =

{
c if n = ,
S(n – ) + d if n ≥ ,

with c, d >  (see, e.g., []). The functional �S naturally associated to S is defined as

�S(f )(n) =

{
c if n = ,
f (n – ) + d if n ≥ .

Clearly �S is a mapping of type () for a = , and h ∈ C defined as h(n) = d for all n ∈N. By
Theorem , there exists fS ∈ Ccah such that fS = �fS . Hence fS is a solution of the recurrence
equation S.

Example  The algorithm Largetwo is a typical example of average case behavior whose
running time of computing is the solution of the recurrence equation S : N → (,∞) given
by

S(n) =

{
c if n = ,
S(n – ) +  – /n if n ≥ ,
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with c >  (see, e.g., []). The functional �S naturally associated to S is defined as

�S(f )(n) =

{
c if n = ,
f (n – ) +  – /n if n ≥ .

Clearly �S is a mapping of type () for a = , and h ∈ C defined as h(n) =  – /n for all
n ∈N. By Theorem , there exists fS ∈ Ccah such that fS = �fS . Hence fS is a solution of the
recurrence equation S.

Example  The running time of computing of the well-known algorithm Quicksort is,
for the worst case, the solution of the recurrence equation S : N → (,∞) given by

S(n) =

{
c if n = ,
S(n – ) + bn if n ≥ ,

with c, b >  (see, e.g., []). The functional �S naturally associated to S is defined as

�S(f )(n) =

{
c if n = ,
f (n – ) + bn if n ≥ .

Clearly �S is a mapping of type () for a = , and h ∈ C defined as h(n) = bn for all n ∈ N. By
Theorem , there exists fS ∈ Ccah such that fS = �fS . Hence fS is a solution of the recurrence
equation S.
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