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ABSTRACT: Numerical computations are commonly used for better understanding the unsteady processes in 
internal combustion engine components and their acoustic behavior. The acoustic characterization of a system 
requires that reflections from duct terminations are avoided, which is achieved either by using highly dissipative 
terminations or, when an impulsive excitation is used, by placing long ducts between the system under study and the 
duct ends. In the latter case, the simulation of such a procedure would require a large computational domain with the 
associated high computational cost, unless non-reflecting boundary conditions are used.  In this paper, first the 
different non-reflecting boundary conditions available in ANSYS-FLUENT are evaluated. Then, the development 
and implementation of an anechoic termination in a 3D-CFD code is presented. The performance of the new 
implementation is first validated in the classic Sod's shock tube problem, and then checked against numerical and 
experimental results of the flow and acoustic fields in automotive exhaust mufflers. The results obtained compare 
favorably with those from the conventional CFD approach and experiments, while the computational cost is 
significantly reduced.  

Keywords: non-reflecting boundary condition, CFD simulation, method of characteristics, anechoic end, acoustic 
response, exhaust muffler 

1. INTRODUCTION 

In the last few decades, increasingly restrictive 
legislation and the need to reduce development 
costs of internal combustion engines (ICE) have 
led to considerable efforts seeking the 
improvement of the fluid-dynamic and acoustic 
behavior of the different components of an ICE. 
In particular, the use of numerical simulations for 
muffler evaluation and design has become 
common practice. 
Among the different techniques available, those 
most used are based upon a one-dimensional 
(plane-wave) approach, due to their extremely 
low computational cost. Such codes are 
particularly well suited for the computation of 
wave action in the ducts of intake and exhaust 
systems and its effects on ICE performance and 
noise emissions. However, these do not deal with 
the actual geometry and rely upon quasi-steady 
assumptions. In cases in which the geometry is 
relatively simple, one-dimensional (1D) codes 
provide good resolution even in compressible 
unsteady flows. However, for more realistic 
geometries, it is imperative to resort to the 
numerical solution of three-dimensional (3D) 
wave propagation. 

3D analyses are usually achieved in the linear 
regime, by means of the Finite Element Method 
(FEM), as described in Patil et al. (1996), or the 
Boundary Element Method (BEM), in order to 
obtain magnitudes in the frequency domain, such 
as the transmission loss. These methods have 
been extensively used for design purposes, even if 
they present some limitations when handling 
anisotropy or when describing the coupling 
between the mean flow and the fluctuations (Tsuji 
et al., 2002). 
A further step is the use of full 3D-CFD 
simulations in order to describe the unsteady flow 
behavior of a system. In these codes, the full flow 
equations are solved in the time domain, and then 
the information can be transformed into the 
frequency domain for its analysis. The main 
advantage of these methods is that, since 
turbulence is modeled, its dissipative effects are 
also taken into account. Some previous work by 
Broatch et al. (2005) and Montenegro and Onorati 
(2009) showed the potential benefits of CFD, with 
good agreement with experiments when modeling 
both mean and pulsating flow in actual exhaust 
mufflers. The main problem when using 3D-CFD 
codes is the CPU time consumed during the 
computations given that an extension of the 
computational domain, by means of long ducts, is 
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required in order to capture isolated pressure 
signals upstream and downstream of the system 
under study in order to compute its acoustic 
response. Onorati et al. (2006) and Galindo et al. 
(2011) solved this problem by performing 
coupled 1D-3D CFD computations, which 
allowed for the use of 1D codes in some regions 
of the domain while still conserving a good 
geometrical resolution where required. 
In this frame of ideas, the development of non-
reflecting boundary conditions (NRBCs) for their 
use in 3D-CFD acoustic computations appears to 
be a suitable alternative. With these boundary 
conditions the use of long ducts to capture the 
acoustic response of the system analyzed is not 
necessary, so that the CPU-time required is 
considerably reduced. This methodology has 
similar advantages to those of using 1D models to 
simulate the flow in the ducts, and the full 3D-
CFD calculations are performed where required to 
take into account the singularity of complex 
geometries. Of course, NRBCs are used in a wide 
range of different applications (Givoli, 2004; 
Lindquist et al., 2010). 
The literature on the implementation of NRBCs 
usually groups the boundary conditions into three 
categories. The first one comprises the methods 
based on a decomposition into Fourier modes 
(Atassi, 2004; Hagstrom and Hariharan, 1988; 
Dorodnicyn, 2010). In the second category the 
conservation equations are extrapolated in order 
to obtain asymptotic solutions (Tam, 1995; Bogey 
and Bailly, 2002; Dea et al., 2009). Methods that 
follow the classical absorbing boundary condition 
developed by Engquist and Majda (1977) fall into 
this category. Finally, the third category includes 
methods based on the Method of Characteristics 
(MoC) (Thompson, 1987 and 1990; Liu and 
Vasilyev, 2010), which is also the basis of the 
work presented here. 
While some NRBCs have been developed for 
internal flow problems (Atassi, 2004; Moríñigo 
and Salvá, 2010), most of the existing NRBCs 
were conceived for their application to external 
flow problems (Hagstrom and Hariharan, 1988), 
and cannot be used in a straightforward manner in 
internal flow simulations. CFD commercial codes 
usually include some boundary conditions 
claimed to be non-reflecting. However, as will be 
shown later, the performance of those included in 
ANSYS-FLUENT is not the most appropriate for 
the problem under consideration.  The objective 
of this paper is to develop and implement a new 
non-reflecting boundary condition for its use in 
ANSYS-FLUENT. The main difficulty involved 

arises from the dependence of the implementation 
on the flow variables arriving at the boundary. 
The paper is organized as follows: First, the 
theoretical definition of NRBCs is described. 
Then, the non-reflecting boundary conditions 
available in ANSYS-FLUENT are analyzed, 
showing their limitations when a non-
homentropic problem is considered. In order to 
overcome those limitations, the issues associated 
with the inclusion of a new boundary condition in 
a commercial 3D-CFD code are addressed, and a 
first validation of the procedure for an existing 
NRBC is shown. An improved NRBC is proposed 
and implemented in ANSYS-FLUENT. In the last 
section, this boundary condition is applied to 
reproduce the acoustic behavior of a real 3D 
muffler. The results obtained, comprising both the 
pressure evolution in the time domain and the 
transmission loss in the frequency domain, are 
evaluated by comparison with experimental 
measurements and with the results from 
conventional full 3D CFD calculations indicating, 
in view of the quality of the results and the 
substantial reduction achieved in the computation 
time, the suitability of the proposed methodology 
for design and evaluation purposes. 

2. NON-REFLECTING BOUNDARY 
CONDITIONS 

As stated in the previous section, an NRBC 
renders unnecessary the use of a long duct in 
order to avoid the reflection of pressure waves at 
the boundary, and therefore it may be expected to 
work as an infinite duct. The implementation of 
such a boundary condition in a 3D-CFD code will 
reduce considerably the computation time. This 
reduction gains importance if the main interest of 
the problem lies in a particular section of the 
domain and the rest of the elements are 
geometrically simple, such as ducts. A good 
example of this kind of application could be the 
simulation of an impulse test rig (with about 20 m 
of ducts both at the inlet and outlet) (Payri et al., 
2000) or a turbocharger test rig (Luján et al., 
2002). The reduction in computation time 
achieved when the ducts are removed is related to 
two different aspects. First, the number of cells in 
the domain is reduced and hence the CPU time 
per time-step. Secondly, and even more important, 
one may save all the time required for the 
information to propagate along the ducts and 
reach the system under study. 
Once the flow variables are known, it is possible 
and convenient to decompose them in order to 
identify separately the information propagating in 
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both forward  fp and backward  bp   

directions. Such a decomposition might be 
performed by applying Eq. (1), as shown by Payri 
et al. (1995). 
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Then it is possible, according to Mucklow and 
Wilson (1955), to recover the pressure from its 
forward and backward components as follows:  

  1 1 1

2 2 2

0 0 0

1.f b
p pp

p p p

  
  
  

     
       

           (2) 

This decomposition will be referred to frequently 
in the rest of the discussion. Returning to the 
NRBCs, two different kinds can be defined: 
i. The incident pressure boundary condition, 

which is an inlet condition in which the flow 
variables at the boundary are not known, but 
instead information is available on the 
pressure component coming from upstream of 
the boundary (pf). Therefore, computing the 
flow field is required in order to recover the 
pressure boundary condition by means of Eq. 
(2). 

ii. An anechoic end, which is an outlet boundary 
condition in which information does not 
propagate upstream of the boundary. 

In view of Eq. (1) the previous definition of an 
anechoic end may suggest setting p = pf  (whence 
pb = p0) at the boundary. However, it will be 
shown later that this is incorrect. It is remarkable 
that an anechoic end is physically meaningful 
only when the flow goes out of the domain. The 
main contributions of this paper are related with 
the anechoic condition, but the conclusions may 
be easily extended to the incident pressure 
boundary condition. 

2.1 Assessment of NRBCs available in 
ANSYS-FLUENT 

Three different kinds of NRBC are currently 
available in ANSYS-FLUENT (ANSYS Inc., 
2009): 

1. Turbo-specific non-reflecting boundary 
condition, which is not considered in this 
paper as it can only be used for steady-
state calculations with the density-based 
solver and structured meshes. 

2. General non-reflecting boundary 
condition, which is applicable only with 
the density-based solver but can be used 
in both steady and unsteady simulations 
without any geometric restrictions. This 
boundary condition is based on the 
characteristic analysis developed by 
Thompson (1987 and 1990), after which 
the Linear Relaxation Method (LRM) is 
used to determine the value of the 
incoming wave amplitude, as shown by 
Poinsot and Lele (1992) and Selle et al. 
(2004). There are two versions of this 
boundary condition: 

a. Pressure at infinity, in which the 
pressure at the boundary is relaxed 
toward the imposed pressure at 
infinity. 

b. Average boundary pressure, in which 
the average pressure on the boundary 
is forced to approach the exit pressure 
value. 

3. Pressure far-field boundary condition, 
which uses Riemann invariants to 
determine the flow variables at the 
boundaries and has no constraints 
regarding solver or mesh type. 

In order to check the validity of the NRBCs 
available in ANSYS-FLUENT, they were 
checked against the well-known Sod’s shock tube. 
The solver used for these simulations was a 
density based solver with an explicit time 
discretization. Sod’s problem (Sod, 1978) is a 
shock tube problem commonly used to test the 
accuracy of computational fluid codes (Wang and 
Xu, 2007; Elfaghi et al., 2010; Qamar et al., 2010). 
The interest of this problem lies in the fact that an 
analytical solution is available when viscosity is 
neglected. The test consists in the transient 
evolution in a shock tube, divided initially by 
means of a membrane into two separate regions 
which are set to different pressures and 
temperatures (for the sake of simplicity, here the 
same temperature was initially set in both 
regions). At time zero, the membrane is removed 
and the flow inside the tube starts to evolve. Sod’s 
shock tube is quite a challenging problem, since 
the boundary has to deal with changes in entropy, 



Engineering Applications of Computational Fluid Mechanics Vol. 6, No. 3 (2012) 

 450

which are not present in homentropic flow but are 
likely to be found in the conditions expected in an 
ICE. In the case studied, a tube of 1 m length was 
simulated with an outlet NRBC, as can be seen in 
Fig. 1. The membrane was located at x = 0.8 m 
and fluid-flow variables were registered at a 
measuring section at x = 0.9 m. The behavior of 
the NRBCs previously described was then 
checked. 

 
Fig. 1 Computational domain of Sod's problem used 

to validate the NRBCs. 

As indicated above, an anechoic end is expected 
to behave as an infinite duct. Therefore, the 
results obtained in the simulations were compared 
with those of simulating a duct sufficiently long 
so as to avoid any possible reflection at the 
boundary, thus behaving locally as an infinite 
duct. In Fig. 2, the pressure decomposition and 
the Riemann variables at the measuring section of 

the long duct are shown. At 30.22 10   s, a   -
wave arrives and pressure rises. Then, at 

30.69 10   s, the entropy discontinuity modifies 

fp  and bp without any change in the static 

pressure. The other Riemann variables (  and  ) 
are also modified due to the entropy variation. 
After that, everything remains unchanged. 
Performance of the different NRBCs is presented 
in Fig. 3. It appears that none of them can be 
regarded as a proper anechoic boundary condition, 
since they do not represent satisfactorily the 
behavior of a long duct. Both general non-
reflecting boundary conditions produce a spurious 

  rise at 30.77 10 s when the  -wave reaches 
the boundary. As a consequence, a non-physical 
pressure jump is produced. Moreover, the 
pressure at infinity version, even if it is 
considered as more adequate for unsteady flow 
simulations than its counterpart (ANSYS Inc., 
2009), actually exhibits some noise after the 
spurious rise in pressure. Finally, the pressure far 
field version does not produce any reflection upon 
arrival of a   -wave. However, it produces an 

unreal pressure rise at  31.87 10  s, due to the 
spurious   variation originated when the entropy 
discontinuity reaches the boundary, as shown in 
Fig. 3. The error underlying this boundary 
condition is that the backward invariant, i.e.,   , 
is regarded as constant, whereas in Fig. 2 it can be 
seen that it is modified due to variations in the 
entropy level. This consideration is taken into 
account in section 3 below for the development of 
the proposed anechoic boundary condition.  

 
Fig. 2 Values of flow variables: pressure and decomposed pressure (left) and Rieman variables (right) in ideal 

infinite tube. 
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Fig. 3 Values of flow variables: pressure (left) and   (right) in short tube using different NRBCs implemented in 

ANSYS-FLUENT and in ideal infinite tube. 

2.2 Implementing boundary condition in 
CFD commercial code 

One of the main drawbacks when dealing with 
commercial CFD codes is the lack of access to the 
fluid variables in the entire domain, as they are 
necessary to compute the proper values at the 
boundary. The methodology used in the following 
to account for information exchange across the 
boundary is based on that described in Galindo et 
al. (2011), where the Method of Characteristics 
(MoC) was applied in order to perform a coupled 
1D-3D CFD simulation. The MoC is a 
mathematical technique for solving hyperbolic 
systems of partial differential equations (PDEs), 
in which the system of PDEs is reduced to a 
family of ordinary differential equations (ODEs), 
thus enabling one to obtain a solution from some 
initial data. The MoC establishes that there are 
certain flow variables, known as Riemann 
invariants (  ,  , and aA  ), which remain 

constant along certain lines, known as 
characteristic lines. In the case of homentropic 
flow the Riemann invariants are given by 

ߣ ൌ ܽ ൅
ߛ െ 1
2

ߚ      ,  ݑ ൌ ܽ െ
ߛ െ 1
2

 ݑ

ܽܣ ൌ ܽ ൬
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݌
൰

െ1ߛ
ߛ2
 

            (3) 

The approach used in the present study is similar, 
but there is no need to perform the coupled 

simulation, since the problem is decoupled, i.e. 
different elements of the domain can be calculated 
independently, given that the direction of the flow 
does not change and that the incident conditions 
are known. In order to check the viability of the 
implementation of an NRBC, the anechoic end 
implemented in OpenWAM was considered. This 
boundary condition is based on the developments 
of Payri et al. (1995), which lead to the condition 

aA    at the boundary. Once the values of the 

flow variables are obtained for the domain, it is 
possible to compute the Riemann invariants   
 and aA . The value of    is then obtained from 

the application of the non-reflecting condition, as 
shown by Benson et al. (1964). 
The results obtained from such a procedure are 
shown in Fig. 4, where it is clear that the relevant 
information has been successfully transferred 
from and to the computational domain. 
Nevertheless, a certain numerical error is found 
(marked with an A in Fig. 4), which might be 
attributed to the discretization, as suggested by 
Galindo et al. (2011). However, it is interesting to 
remark that this error vanishes after a few time-
steps and therefore it only affects the solution 
momentarily. Comparing the result computed 
with this anechoic condition, plotted in Fig. 4, 
with the expected result presented in Fig. 2, it is 
possible to observe that this boundary condition 
does not truthfully represent an anechoic 
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condition, since a pressure wave is reflected from 
the boundary. This can be seen in the changes that 
appear in the curves representing the reflected 
pressure, bp  and   , which follow from setting  

aA   at the boundary (mark B in Fig. 4). 

3. PROPOSAL OF NEW NON-
REFLECTING BOUNDARY CONDITION 
FOR NON-HOMENTROPIC FLOW 

3.1 Modifications for non-homentropic flow 

For each Riemann invariant to remain constant 
along its characteristic line, the flow must be 
assumed to be not only isentropic (i.e. inviscid 
and with negligible heat transfer) but also 
homentropic. If these assumptions do not hold, 
then the value of the Riemann invariants is not the 
same at two different points along their respective 
characteristic line and, therefore, they are referred 
to as Riemann variables instead of Riemann 
invariants. The corresponding expressions can be 
modified to account for entropy non-uniformity in 
the flow-field, and for the existence of wall 
friction or heat transfer through the walls. For 
instance, the variation of    between two points 
of a characteristic line is provided by the 
following modifiers, which take into account 
friction ( f ), heat transfer ( Q ) and entropy 

variation ( S  ), respectively: 
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Similar expressions may be obtained for the 
modifiers of the other two Riemann variables, as 
can be seen in Benson (1982). Particularly 
interesting in the case under consideration is the 
modification of the Riemann variables due to a 
change in the entropy of the flow along a 
characteristic line. The expression which allows 
one to compute such a variation may be 
discretized as: 
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Fig. 4 Values of flow variables: pressure and pressure components (left) and Riemann variables (right) using former 
implementation of anechoic end, β = Aa. 
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Fig.5 Modification of β values due to changes of 

entropy occurring at crossing points of two 
characteristic lines. 

 
Fig.6 Schematic representation of characteristic 

lines at anechoic end. The points N
jP  are 

defined following the criteria used in Eq.(7). 

3.2 Implementation of anechoic condition 

As previously stated, an anechoic end is expected 
to behave as an infinite duct. In terms of the MoC, 
such an infinite duct would always send back the 
same value of βout, corresponding to the initial 
value of β at the boundary, which hereinafter will 
be denoted as β∞. Thus, in the homentropic case 
one must keep the value of βin constant and equal 
to its value at the start of the simulation, i.e. β∞. 
Should a change of the entropy level happen, the 
actual value of βin would be no longer β∞. In this 
case, βin would be obtained by adding to β∞ the 
modifiers associated with the variation of the 
entropy level, corresponding to Eq. (5). 
Therefore, the value of β along the characteristic 
line (C¯) will be modified every time a different 
entropy level reaches this line. It is interesting to 
note that entropy levels are transported along the 
(C0) characteristic lines and thus the changes of 
entropy occur at the crossing points of the two 
characteristic lines (see Fig. 5). The 
corresponding changes in β can be computed by 
applying Eqs. (4), (5) and (6). In this way, the 
value of β at the C¯ characteristic line that will 
arrive at the boundary condition at the  N -th 
time-step, just after crossing the C0 characteristic 
line  that passed through the boundary condition 
at the j -th time-step, is given by: 

1
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where subscript i  represents the time-step at 
which the different C0 characteristic lines crossed 
the boundary condition. This can be seen in Fig. 5, 
where the characteristic lines have been 
represented as straight and parallel lines for the 
sake of simplicity. It is important to remark that 
ܰߚ
ܰ , which will be referred to as ݊݅ߚ

ܰ , 

corresponds to the value of β that arrives at the 
boundary condition at the N  -th time-step. For 

0i  , the values of the Riemann variables are 
those computed at the boundary condition at 

0t    , which are marked with subscript   . 
Eq. (7) represents all the evolution along a 
characteristic line, from the downstream infinity 
to the boundary condition, so that it would be 
necessary in principle to compute the flow in the 
whole duct. Nevertheless, if the first time-steps 
are examined carefully (Fig.6), an approximate 
procedure can be devised. This is described next. 

Applying Eq. (7) to the first time step  1N    

and discretizing the modifiers according to Eq. (6), 
one gets 
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condition is readily obtained: 
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allows one to compute 1
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way, for the second time step, it is possible to 
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In order to obtain an equation for 2
2  involving 

only the variables arriving at the boundary 
condition, it may be assumed that 
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which, taking into account Eqs. (9), (10) and (11), 

gives the following approximation for   2
2 : 
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Recalling Eqs. (10), (11) and (13), the relative 
error of this approximation can be written as: 
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       (14) 

A detailed analysis of Eq. (14) indicates that the 
worst-case scenario corresponds to the presence 
of discontinuities in Aa. Within the expected 
application scope of this new NRBC, such a case 
could be the simulation of the exhaust system of 
an ICE. According to Bermúdez et al. (2011), the 
maximum value along the whole cycle of the 
logarithm of the entropy level ratio at the exhaust 
pipe is 0.3  at N 2500  rpm. Considering this 
upper bound, Eq. (14) becomes: 
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    (15) 

showing that the importance of the error 
committed when assuming Eq. (12) is relatively 
small, since the corresponding differences are 
multiplied by coefficients much smaller than 
unity. 
Therefore, it can be concluded that, for an 
anechoic case, the value of   arriving at the 

boundary condition at the N -th time-step can be 
computed as: 
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    (16) 

In this way, an anechoic end can be modeled, thus 
removing the need for computing the flow in the 
downstream duct. One only needs to know    
and aA  arriving at the boundary at a given time 

t  , the value of    and aA   which arrived at time 

t t and the speed of sound in the boundary at 
time t t . 

 

Fig. 7 Values of flow variables: pressure and pressure components (left) and Riemann variables (right) using new 
implementation of the NRBC. 
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It is remarkable that the proposed approach is 
quite similar to that used in subsection 2.2, since 
in both cases the value of    is varied only when 

there is a change in aA . However, this variation is 

not directly aA  but the expression given in Eq. 

(16). Moreover, stating that aA   would also 

be incorrect when having pressure pulses 
superimposed on a mean flow, since at the initial 
time-step ( 1) / 2 aa u a A      , because 

u is positive (considering that the reference 
pressure has been set equal to the initial pressure 
p0 = p (t = 0), as discussed in Galindo et al. 
(2011)). 
The validity of the new implementation was again 
checked by applying it to Sod's problem. The 
results obtained with the new NRBC are 
presented in Fig. 7. It may be seen that now the 
behavior is the same as for the ideal infinite duct, 
shown in Fig. 2. Again, some small disturbances 
appear when the discontinuity reaches the 
boundary (mark A), but these disturbances are 
damped and tend to disappear within a few time-
steps. 

3.3 Incident pressure condition 

A similar treatment could be applied to an 
incident pressure boundary condition. However, 
in this case it is more difficult to find some non-
homentropic flow in which the problem could be 
solved in an independent way (i.e. not in the 
whole domain, but imposing boundary conditions 
from previous computations or experiments). A 
possible example might be a decoupled problem 
with a domain in which some regions are 1D 
elements. In such a situation, it would be possible 
to follow the same approach used for the anechoic 
end in order to reproduce the behavior of a non- 
reflecting incident pressure boundary condition in 
cases where changes in entropy are present. 

4. APPLICATION TO ANALYSIS OF 
ACOUSTIC RESPONSE OF MUFFLER 

In this section, a real application of the proposed 
NRBC is presented. The case chosen was the 
computation of the acoustic response of a 3D 
geometry similar to an exhaust muffler of an ICE. 
The results of the simulation were compared to 
experimental data obtained in an impulse test rig 
as described by Payri et al. (2000) and to the 
results obtained by using long inlet and outlet 
ducts to isolate the pressure signals (Broatch et al., 
2005). The muffler analyzed (Fig. 8) was a 

rectangular parallelepiped with a volume of 
around 10  liters, which is adequate for the level 
of excitation imposed in the experiment. Inlet and 
outlet openings were located on the front and side 
surfaces, respectively, in order to capture the 
propagation of transversal modes (Munjal, 1987; 
Denia et al., 2001). 
 

 

 
Fig. 8 Geometry of 3D muffler. 

4.1 Experimental facility 

In the experiments, the muffler is excited by 
means of a pressure pulse that provides a similar 
excitation at all the frequencies of interest. The 
incident pulse is generated by means of a solenoid 
valve that controls the discharge from a high 
pressure air tank (see Fig. 9). Three transducers 
are installed upstream and downstream of the 
muffler: transducer 1 records a reference pulse, 
while the pulse transmitted by the system is 
obtained with the third transducer. An additional 
test has to be carried out by removing the muffler 
from the set-up in order to obtain the isolated 
incident pressure pulse from the measurement 
recorded by transducer 2. Once the incident and 
transmitted signals are obtained, the fast Fourier 
transform (FFT) is applied in order to compute 
different parameters such as the Transmission 

Loss  TL   of the system tested: 

( )
( ) 20log 10log

( )
u

d

SA f
TL f

C f S
                (17) 
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where A(f ) and C(f ) are the complex amplitudes 
of the incident and transmitted pulses, 
respectively, and Su and Sd are the duct cross-
sections upstream and downstream of the muffler, 
respectively. 

4.2 Full three-dimensional simulation 

The commercial code ANSYS-FLUENT was 
used to perform the CFD calculations that 
simulate the experimental facility described above. 
ANSYS-FLUENT is based on a finite-volume 
discretization of the Navier-Stokes equations 
which, in this study, were solved with the so-
called density-based coupled solver that uses flux-
difference splitting. For the time discretization a 
second order implicit scheme was used. The time 
step was set to 1×10-5, which is smaller than the 
sampling frequency used in the test rig. The 
Realizable k-ε turbulence model for high 
Reynolds numbers with wall function was chosen 
for closure. 
The actual geometry and experimental conditions 
of the impulse test bench, described in the 
preceding section, were reproduced for the 3D-
CFD simulations. The computational domain was 
a structured hexahedral mesh consisting of the 
muffler ( 51.6 10  cells) and the inlet and outlet 
ducts. The length of the inlet and outlet ducts 
(each 20  m, 50.6 10  cells) is the same as that 

used in the experimental facility in order to avoid 
reflections and to allow the isolated monitoring of 
the pulses. At the inlet, the pulse was represented 
by a temporal variation of the pressure at the inlet 
boundary condition. The outlet duct is needed to 
allow for the development of the flow before the 
pulse reaches the boundary. Since the temperature 
in the interior of the domain does not differ 
noticeably from the ambient temperature, the heat 
transfer through the wall was neglected. 
The solution was monitored at the points 
corresponding to the locations of the transducers 
in order to obtain the response of the muffler. The 
methodology is essentially the same as in the 
experiments. Consequently, an additional 
simulation in which the muffler was replaced by a 
straight duct was performed in order to obtain the 
isolated incident pulse. Finally, the Transmission 
Loss (TL) was calculated by applying Eq. (17). 
Broatch et al. (2005) proved that this 
methodology gives very accurate results when 
compared with the experiments in terms of (TL), 
furthermore providing additional information on 
the 3D flow features in either the time or the 
frequency domains. Nevertheless, as previously 
stated, the computational cost of this 
methodology in real 3D geometry is high, which 
justifies the use of an NRBC to speed-up the 
calculation process. 

 

Fig. 9 Scheme of measurement setup. 

 
Fig. 10 Scheme of combined 1D-3D methodology. 
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Fig. 11 Reference, incident and transmitted pulses obtained with full 3D CFD methodology.  

4.3 Proposed methodology 

As already mentioned, the aim of the proposed 
methodology, based on NRBCs, is to reduce the 
computational cost by avoiding the 3D flow 
computation of ducts. Since, in this particular 
case, the propagation of pressure waves in the 
inlet duct is not interesting, the problem was 
solved in a decoupled way, the inlet duct being 
calculated with a 1D CFD code: OpenWAM. This 
1D-code computes the internal flow in pipes 
under the assumption of non-linear inviscid one-
dimensional flow, and has been extensively used 
(Galindo et al., 2009) to model transient 
compressible flows in simple geometries with 
very low computational requirements. The 
isolated incident pulse was therefore obtained 
with this simple, low computational cost model, 
and then incorporated into the 3D model by 
means of an incident pressure NRBC. 
Additionally, the anechoic end presented in this 
paper was used at the outlet duct, so that a long 
duct was not required. Other parameters defining 
the three-dimensional model such as mesh, 
turbulence or discretization schemes among 
others were the same as those chosen for the full 
three-dimensional calculations. 
As indicated in section 2, the reduction in CPU-
time with respect to the full 3D computation is 
due to two different effects. CPU-time per time-
step is reduced in this case by around 35%   
which is fairly close to the corresponding 
decrease in the number of cells. Of course, the 
importance of this reduction depends on the 
number of mesh elements corresponding to the 
system under study. The second source of CPU-
time reduction comes from the reduction in the 
total simulated time achieved when pulse 

propagation along the ducts is not computed.  Fig. 
11 shows the temporal evolution of the pulses 
along the system. The reference pulse needs about 
0.06   seconds to arrive at the second transducer, 
where the incident pulse is monitored. During this 
time the system under study does not receive any 
pressure excitation, so that no useful information 
is extracted from the computation in this period, 
which amounts to about half of the duration of the 
full 3D computation. Consequently, the CPU-time 
consumed will decrease down to values close 
to 50% . Therefore, the overall reduction in 
computation time due to the combination of both 
effects in the present case was about 67.5%  . 
This reduction depends on the pulse duration, and 
on the characteristic length of the ducts and the 
element being tested. 
Finally, comparison of the experimental 
Transmission Loss and the results obtained with 
both numerical methods (full 3D and combined 
1D-3D with NRBCs) is presented in Fig. 12. 
Good agreement between measurement and 
calculations can be observed. Both calculation 
methods accurately predict the peaks and the 
pass-band frequencies. The results obtained with 
the full 3D and the combined 1D-3D simulations 
are quite similar (less than 1 dB of difference) 
except in the maximum attenuation of the first 
narrow peak, in which the error is about 3 dB. It 
is worth mentioning that recovering the exact 
value of a peak in an acoustic analysis is not as 
important as capturing the general behavior. In 
fact such peaks are not relevant when the muffler 
is subject to a broadband excitation, which is the 
most usual case in practice. Additionally, this 
error is justified in the current application when 
the savings in CPU-time are considered. 
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Fig. 12 Comparison of measured transmission loss with those from proposed methodology and full 3D model. 

5. SUMMARY AND CONCLUSIONS 

In this paper, both a methodology to implement 
NRBCs in a 3D CFD commercial code (such as 
ANSYS-FLUENT) for its application to internal 
flow simulations, and the development of a new 
NRBC, were presented. The transfer of 
information across the boundary was accounted 
for by means of the MoC. One of the key points 
solved in the implementation of a boundary 
condition in a commercial code was the 
acquisition of the values of the flow variables in 
the domain. The performance of the new proposal 
was compared with a former definition proposed 
by the authors, and also with the NRBCs 
available in ANSYS-FLUENT, through their 
application to Sod's shock tube. Comparison of 
the solution obtained for an ideal infinite tube 
with the results obtained with the different non-
reflecting boundary conditions analyzed, 
indicated that the non-reflecting boundary 
conditions available in ANSYS-FLUENT show 
some spurious reflections, especially when 
dealing with changes in entropy level. The 
proposed formulation showed improved 
performance with respect to the former definition 
and also to ANSYS-FLUENT built-in boundary 
conditions. In this paper, only the particular case 
of an anechoic end was addressed, however, the 
same conclusions might be extracted for an 
incident pressure boundary condition. 
Finally, a realistic application to the 
determination of the acoustic behavior of a 3D 

muffler was considered, comparing the results 
obtained with those of experimental tests and a 
full 3D CFD computation. The comparison 
indicated that the results in both the time and the 
frequency domains are very similar to those 
obtained with the full 3D-CFD simulation. 
Moreover, the computational cost is reduced by a 
factor of 3  67.5%  when simulating an NRBC 

in the way presented on this paper. This suggests 
that the proposed methodology might constitute a 
suitable tool for design and evaluation purposes. 

ACKNOWLEDGEMENT 

This work has been partially supported by 
Ministerio de Ciencia e Innovación through grant 
No. DPI2009-14290. The authors wish to thank 
Dr. David R. Perry for his kind assistance in 
manuscript editing. 

REFERENCES 

1. ANSYS Inc. (2009). Ansys Fluent 12.0 User's 
Guide. Canonsburg, PA: ANSYS Inc. 

2. Atassi OV (2004). Nonreflecting boundary 
conditions for the time-dependent convective 
wave equation in a duct. Journal of 
Computational Physics 197(2):737-758. 

3. Benson RS (1982). The Thermodynamics and 
Gas Dynamics of Internal Combustion 
Engines. Volume 1, Oxford: Oxford 
University Press. 



Engineering Applications of Computational Fluid Mechanics Vol. 6, No. 3 (2012) 

 459

4. Benson RS, Garg RD, Woollatt D (1964). A 
numerical solution of unsteady flow problems. 
International Journal of Mechanical Sciences  
6(1):117-144. 

5. Bermúdez V, Serrano JR, Piqueras P, García-
Alfonso O (2011). Assessment by means of 
gas dynamic modelling of a pre-turbo diesel 
particulate filter configuration in a 
turbocharged HSDI diesel engine under full-
load transient operation. Proceedings of the 
Institution of Mechanical Engineers Part D – 
Journal of Automobile Engineering 
225(9):1134-1155.  

6. Bogey C, Bailly C (2002) Three-dimensional 
non-reflective boundary conditions for 
acoustic simulations: far field formulation and 
validation test cases. Acta Acustica united 
with Acustica 88(4):463-471. 

7. Broatch A, Margot X, Gil A, Denia FD 
(2005). A CFD approach to the computation 
of the acoustic response of exhaust mufflers. 
Journal of Computational Acoustics 
13(2):301-316. 

8. Dea JR, Giraldo FX, Neta B (2009). High-
order non-reflecting boundary conditions for 
the linearized 2-D Euler equations: No mean 
flow case. Wave Motion 46(3):210-220. 

9. Denia FD, Albelda J, Fuenmayor FJ, 
Torregrosa AJ (2001). Acoustic behaviour of 
elliptical chamber mufflers. Journal of Sound 
and Vibration 241(3):401-421. 

10. Dorodnicyn LW (2010). Artificial boundary 
conditions for high-accuracy aeroacoustic 
algorithms. SIAM Journal on Scientific 
Computing 32(4):1950-1979. 

11. Elfaghi AM, Asrar W, Omar AA (2010). 
Higher order compact-flowfield dependent 
variation (HOC-FDV) solution of one-
dimensional problems. Engineering 
Applications of Computational Fluid 
Mechanics 4(3):434-440. 

12. Engquist B, Majda A (1977). Absorbing 
boundary conditions for the numerical 
evaluation of waves. Mathematics of 
Computation 31(139):629-651. 

13. Galindo J, Tiseira A, Fajardo P, Navarro R 
(2011). Coupling methodology of 1D finite 
difference and 3D finite volume CFD codes 
based on the Method of Characteristics. 
Mathematical and Computer Modelling 54(7-
8):1738-1746. 

14. Galindo J, Serrano JR, Arnau FJ, Piqueras P 
(2009). Description of a semi-independent 
time discretization methodology for a one-
dimensional gas dynamics model. Journal of 

Engineering for Gas Turbines and Power – 
Transactions of the ASME 131(3):034504. 

15. Givoli D (2004). High-order local non-
reflecting boundary conditions: a review. 
Wave Motion 39(4):319-326. 

16. Hagstrom T, Hariharan SI (1988). Accurate 
boundary conditions for exterior problems in 
gas dynamics. Mathematics of Computation 
51(184):581-597. 

17. Lindquist JM, Neta B, Giraldo FX (2010). A 
spectral element solution of the Klein-Gordon 
equation with high-order treatment of time 
and nonreflecting boundary. Wave Motion 
47(5):289-298. 

18. Liu Q, Vasilyev OV (2010). Nonreflecting 
boundary conditions based on nonlinear 
multidimensional characteristics. 
International Journal for Numerical Methods 
in Fluids 62(1):24-55. 

19. Luján JM, Bermúdez V, Serrano JR, Cervelló 
C (2002). Test bench for turbocharger groups 
characterization. SAE Paper 2002-01-0163. 

20. Montenegro G, Onorati A (2009). Modeling 
of silencers for IC engine intake and exhaust 
systems by means of an integrated 1D-multiD 
approach. SAE International Journal of 
Engines 1(1):466-479. 

21. Moríñigo JA, Salvá JJ (2010). Robust non-
reflecting boundary conditions for the 
simulation of rocket nozzle flow. Aerospace 
Science and Technology 14(6):429-441. 

22. Mucklow GF, Wilson AJ (1955). The 
attenuation and reflection of compression 
waves propagated in pipes. Proceedings of 
the Institution of Mechanical Engineers 
169:69-80. 

23. Munjal ML (1987). Acoustics of Ducts and 
Mufflers. New York: Willey. 

24. Onorati A, Montenegro G, D’Errico G (2006). 
Prediction of the attenuation characteristics of 
IC engine silencers by 1-D and multi-D 
simulation models. SAE Paper 2006-01-1541. 

25. OpenWAM. URL: http://www.OpenWAM. 
org. 

26. Patil AR, Sajanpawar PR, Masurekar VV 
(1996) Acoustic three dimensional finite 
element analysis of a muffler. SAE Paper 
960189. 

27. Payri F, Desantes JM, Broatch A (2000). 
Modified impulse method for the 
measurement of the frequency response of 
acoustic filters to weakly nonlinear transient 
excitations. Journal of the Acoustical Society 
of America 107(2):731-738. 

28. Payri F, Desantes JM, Torregrosa AJ (1995). 
Acoustic boundary condition for unsteady 



Engineering Applications of Computational Fluid Mechanics Vol. 6, No. 3 (2012) 

 460

one-dimensional flow calculations. Journal of 
Sound and Vibration 188(1):85-110. 

29. Poinsot TJ, Lele SK (1992). Boundary 
conditions for direct simulations of 
compressible viscous flows. Journal of 
Computational Physics 101(1):104-129. 

30. Qamar A, Hasan N, Sanghi S (2010). A new 
spatial discretization strategy of the 
convective flux term for the hyperbolic 
conservation laws. Engineering Applications 
of Computational Fluid Mechanics 4(4):593-
611. 

31. Selle L, Nicoud F, Poinsot T (2004). Actual 
impedance of non-reflecting boundary 
conditions: implications for computation of 
resonators. AIAA Journal 42(5):958-964. 

32. Sod GA (1978). A survey of several finite 
difference methods for systems of nonlinear 
hyperbolic conservation laws. Journal of 
Computational Physics 27(1):1-31. 

33. Tam CKW (1995). Computational 
aeroacoustics: issues and methods. AIAA 
Journal 33(10):1788-1796. 

34. Thompson KW (1987). Time-dependent 
boundary conditions for hyperbolic systems. 
Journal of Computational Physics 68(1):1-24. 

35. Thompson KW (1990). Time-dependent 
boundary conditions for hyperbolic systems, 
II. Journal of Computational Physics 
89(2):439-461. 

36. Tsuji T, Tsuchiya T, Kagawa Y (2002). Finite 
element and boundary element modelling for 
the acoustic wave transmission in mean flow 
medium. Journal of Sound and Vibration 
255(5):849–866.  

37. Wang B, Xu H (2007). A method based on 
Riemann problem in tracking multimaterial 
interface on unstructured moving grids. 
Engineering Applications of Computational 
Fluid Mechanics 1(4):325-336. 


