
Achieving Autonomic

Computing through the Use of

Variability Models at Run-time

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Carlos Cetina Englada

Thesis advisors:

Dr. Vicente Pelechano Ferragud

Dr. Joan Fons i Cors

Supervisors:

Dr. Vicente Pelechano Ferragud (Universidad Politécnica de Valencia)

Dr. Joan Fons i Cors (Universidad Politécnica de Valencia)

Dissertation Committee:

Prof. Dr. Óscar Pastor López (Universidad Politécnica de Valencia)

Dr. Pedro José Valderas Aranda (Universidad Politécnica de Valencia)

Dr. Antonio Ruiz Cortés (Universidad de Sevilla)

Prof. Dr. Antonio Vallecillo Moreno (Universidad de Málaga)

Prof. Dr. Jesús Joaquín García Molina (Universidad de Murcia)

Classification (ACM 1998):

Categories and subject descriptors: D.2.13 [Software Engineering]: Reusable

Software: Domain Engineering; D.2.1 [Software Engineering].

Requirement/Specifications: Languages, Tools.

General Terms: Design.

Additional Key Words and Phrases: Software Product Lines, Model Driven

Development, Autonomic Computing.

iii

ABSTRACT

Increasingly, software needs to dynamically adapt its behavior at run-time in re-

sponse to changing conditions in the supporting computing infrastructure and in

the surrounding physical environment. Adaptability is emerging as a necessary un-

derlying capability, particularly for highly dynamic systems such as context-aware

or ubiquitous systems. These systems have reached a level of complexity where

the human effort required to get the systems up and running and keeping them

operational is getting out of hand.

By automating tasks such as installation, adaptation, or healing, Autonomic

Computing envisions computing environments that evolve without the need for hu-

man intervention. Even though there is a fair amount of work on architectures and

their theoretical design, Autonomic Computing was criticised as being a “hype topic”

because very little of it has been fully implemented. Furthermore, given that the

autonomic system must change states at runtime and that some of those states may

emerge and are much less deterministic, there is a great challenge to provide new

guidelines, techniques and tools to help autonomic system development.

This thesis shows that building up on the central ideas of Model Driven De-

velopment (Models as first-order citizens) and Software Product Lines (Variability

Management) can play a significant role as we move towards implementing the key

self-management properties associated with autonomic computing. The presented

approach encompass systems that are capable of modifying their own behavior with

respect to changes in their operating environment, by using variability models as if

they were the policies that drive the system’s autonomic reconfiguration at runtime.

Under a set of reconfiguration commands, the components that make up the archi-

tecture dynamically cooperate to change the configuration of the architecture to a

new configuration.

v

vi

This work also provides the implementation of a Model-Based Reconfiguration

Engine (MoRE) to blend the above ideas. Given a context event, MoRE queries the

variability models to determine how the system should evolve, and then it provides

the mechanisms for modifying the system architecture accordingly. The presented

work has been validated from three different perspectives: (1) Scalability of the

approach, (2) reliability-based risk of run-time reconfigurations and (3) degree of

autonomic behavior achieved. This evaluation was performed with the participation

of human subjects by means of a Smart Hotel case study which was deployed with

real devices.

Experimentation shows that our approach achieves satisfactory results with re-

gard to scalability and reliability-based risk; nevertheless, we found some scenarios

which required a greater level of detail to define the autonomic behaviour since

these scenarios deal more directly with user preferences and tastes. However, even

though this lack of coverage could be complemented by the development of specific

components for the unsupported cases, it does not seem economically realistic to

build individual features to suit each user. Our intent is to focus on commonalities

and abstractions that are valid across a set of users, looking for a trade-off between

personalization and reusability.

RESUMEN

Cada vez más los sistemas software necesitan adaptar su comportamiento dinámi-

camente como respuesta a eventos de su propia infraestructura o del entorno físico

que los rodea. La adaptabilidad se está convirtiendo en una capacidad básica para

los sistemas software, particularmente para los sistemas altamente dinámicos como

es el caso de los sistemas sensibles al contexto o los sistemas ubicuos. Sin embargo,

estos sistemas han alcanzado un nivel de complejidad donde el esfuerzo requerido

para mantenerlos operativos es demasiado elevado.

Mediante la automatización de tareas como la instalación, adaptación o reparación,

la Computación Autónoma propone entornos de computación que evolucionan sin la

necesidad de intervención por parte de los usuarios. Sin embargo, pese a que existe

una razonable cantidad de trabajo en el ámbito de su diseño teórico, la Computación

Autónoma ha sido criticada como un “tema demasiado ambicioso” debido a la falta

de implementaciones que materialicen las ideas propuestas. Además, la naturaleza

de los sistemas de computación autónoma (donde su estado cambia en tiempo de

ejecución de una manera dinámica) plantea un gran desafío para dar soporte al

desarrollo de los mismos mediante guías, técnicas y herramientas.

Esta tesis propone que la combinación de las ideas principales del Desarrollo

de Software Dirigido por Modelos (los modelos como artefactos de primer orden)

y las Líneas de Producto Software (la gestión de la variabilidad) puede jugar un

papel importante para implementar las propiedades de autogestión propuestas por la

Computación Autónoma. La propuesta presentada en esta tesis desarrolla sistemas

que son capaces de modificar su propio comportamiento de acuerdo a cambios en su

entorno. Esto se consigue utilizando modelos de variabilidad que juegan el rol de las

políticas que dirigen la reconfiguración autónoma del sistema en tiempo de ejecución.

Bajo un conjunto de comandos de reconfiguración, los componentes que forman la

vii

viii

arquitectura software cooperan dinámicamente para cambiar la configuración del

sistema.

Este trabajo también proporciona la implementación de un Motor de Recon-

figuración basado en Modelos (MoRE por sus siglas en inglés) para materializar

las ideas propuestas. Dado un evento de contexto, MoRE consulta los modelos de

variabilidad para determinar cómo debe evolucionar el sistema y luego proporciona

mecanismos para modificar la arquitectura del sistema en consecuencia. El trabajo

presentado ha sido validado desde tres perspectivas diferentes: (1) la escalabilidad

de la propuesta, (2) los riesgos basados en la seguridad de las reconfiguraciones y

(3) el nivel de comportamiento autónomo conseguido. Esta evaluación fue realizada

con la participación de usuarios mediante el caso de estudio de un Hotel Inteligente

que utilizaba dispositivos reales.

Los experimentos muestran que la propuesta obtiene resultados satisfactorios

respecto a escalabilidad y riesgo de la reconfiguraciones; sin embargo, encontramos

algunos escenarios que requirieron un mayor nivel de detalle para definir el compor-

tamiento autónomo, ya que estos escenarios entraban en conflicto con preferencias de

los usuarios. Aunque estos escenarios podían ser abordados mediante componentes

específicos para los casos no soportados, no parece realista construir características

del sistema para satisfacer a cada usuario de forma individual. Nuestra intención es

céntranos en generalizaciones y abstracciones que sean válidas a lo largo de conjuntos

de usuarios, buscando un equilibrio entre personalización y reutilización.

RESUM

Cada vegada més els sistemes de programari necessiten adaptar el seu comportament

dinàmicament com a resposta a esdeveniments de la seua pròpia infraestructura o

de l’entorn físic que els envolta. L’adaptabilitat s’està convertint en una capacitat

bàsica per als sistemes de programari, particularment per a aquells sistemes altament

dinàmics, com és el cas dels sistemes sensibles al context o els sistemes ubicus. No

obstant, aquests sistemes han arribat a un nivell de complexitat on l’esfoç requerit

per a mantindre-los operatius es massa elevat.

Mitjançant l’automatització de tasques com la instal⋅lació, l’adaptació o la reparació,

la Computació Autònoma proposa entorns de computació que evolucionen sense la

necessitat d’intervenció per part dels usuaris. No obstant, malgrat que existeix

una raonable quantitat de treball en disseny teòric d’arquitectures, la Computació

Autònoma ha estat criticada com “un tema massa ambiciós” a causa de la falta

d’implementacions que materialitzen les idees proposades. A més, la naturalesa dels

sistemes de Computació Autònoma (on el seu estat canvia en temps d’execució d’una

manera dinàmica) planteja un gran desafiament per a suportar el desenvolupament

d’aquest tipus de sistemes mitjançant guies, tècniques i eines.

Aquesta tesi mostra que la combinació de les idees principals del Desenvolupa-

ment de Programari Dirigit per Models (models com artefactes de primer ordre) i

les Línies de Producte de Programari (gestió de la variabilitat) pot jugar un pa-

per important cap a la implementació de les propietats d’autogestió proposades per

la Computació Autònoma. La proposta presentada proposa sistemes que són ca-

paços de modificar el seu propi comportament d’acord a canvis en el seu entorn.

Açò s’aconsegueix emprant models de variabilitat com si fossen les polítiques que

dirigeixen la reconfiguració autònoma del sistema en temps d’execució. Sota un con-

junt de comandaments de reconfiguració, els components que formen l’arquitectura

ix

x

de programari cooperen dinàmicament per a permetre canviar el sistema d’una con-

figuració a una altra.

Aquest treball també proporciona la implementació d’un Motor de Reconfigu-

racions basat en Models (MoRe per les seues sigles en anglés) que materialitza les

idees proposades. Donat un esdeveniment de context, MoRe consulta els models

de variabilitat per a determinar com ha d’evolucionar el sistema i després propor-

ciona mecanismes per a modificar l’arquitectura del sistema en conseqüència. El

treball presentat ha estat validat des de tres perspectives diferents: (1) escalabilitat

de la proposta, (2) riscos basats en la seguretat de les reconfiguracions i (3) nivell

de comportament autònom aconseguit. Aquesta avaluació va ser realitzada amb la

participació d’usuaris mitjançant el cas d’estudi d’un Hotel Intel⋅ligent que utilitzava

dispositius reals.

Els experiments mostren que la proposta obté resultats satisfactoris respecte

a escalabilidad i risc de les reconfiguracions; no obstant això, vam trobar alguns

escenaris que van requerir un major nivell de detall per a definir el comportament

autònom, ja que aquests escenaris entraven en conflicte amb algunes preferències dels

usuaris. Encara que aquests escenaris podien ser abordats mitjançant components

específics per als casos no suportats, no sembla realista construir característiques

del sistema per a satisfer a cada usuari de forma individual. La nostra intenció és

centrar-nos en generalitzacions i abstraccions que siguen vàlides per al conjunt total

d’usuaris, cercant un equilibri entre personalització i reutilització.

CONTENTS

1 Introduction 2

1.1 Overview of the Chapter . 2

1.2 Motivation . 3

1.3 Problem Statement . 7

1.4 Contribution . 8

1.5 Research Methodology . 10

1.6 Thesis Context . 11

1.7 Outline . 12

2 Background 16

2.1 Overview of the Chapter . 16

2.2 Autonomic Computing . 17

2.2.1 Definition . 17

2.2.2 Properties of Autonomic Computing 18

2.2.3 The MAPE-K Autonomic Loop 20

2.3 Model Driven Development . 26

2.3.1 Definition . 27

2.3.2 Model Driven Software Development Initiatives 27

2.3.3 Domain Specific Languages . 29

2.4 Software Product Lines . 31

2.4.1 Definition . 31

2.4.2 Software Product Line Processes 32

2.4.3 Dynamic Software Product Lines 34

2.5 Conclusions . 35

xi

CONTENTS xii

3 State of the Art 38

3.1 Overview of the Chapter . 38

3.2 Classification Criteria . 39

3.2.1 Adoption Level of Autonomic Computing 39

3.2.2 Relevance of the Autonomic Computing 40

3.2.3 Reinforcement of the Autonomic Knowledge 41

3.2.4 Maturity of the Software Engineering Approach 41

3.3 Analysis of Approaches for System Family Reconfiguration 44

3.3.1 Gomaa and Hussein Approach 45

3.3.2 Lee and Kang Approach . 47

3.3.3 Hallsteinsen et al. (MADAM) Approach 50

3.3.4 White et al. Approach . 52

3.3.5 Trinidad et al. Approach . 55

3.3.6 Mori et al. Approach . 57

3.3.7 Hallsteinsen et al. (MUSIC) Approach 59

3.3.8 Parra et al. Approach . 62

3.3.9 Istoan et al. Approach . 64

3.4 Discussion . 66

3.4.1 Architectural Patterns . 68

3.5 Conclusions . 71

4 Overview of the Approach 74

4.1 Overview of the Chapter . 74

4.2 Introduction . 75

4.3 Main Building Blocks . 78

4.4 Application . 80

4.5 Implementation . 85

4.6 Validation . 86

4.7 Conclusions . 88

5 Autonomic Computing through the Use of Variability Models 90

5.1 Overview of the Chapter . 90

CONTENTS xiii

5.2 Variability Modelling . 91

5.2.1 Variability and Software Product Lines 91

5.2.2 Model Driven Software Product Lines 93

5.3 Specifying Reconfigurations through Feature Models 100

5.3.1 Evaluation of the Autonomic Behaviour through Feature Mod-

els. 103

5.4 Model-Based Validation of Reconfigurations 104

5.5 Applying the approach to other Variability Language: Autonomic

Behaviour through Common Variability Language 106

5.6 Conclusions . 110

6 Achieving Autonomic Computing through Models at run-time 112

6.1 Overview of the Chapter . 112

6.2 Renconfigurable System Architectures 113

6.2.1 The OSGi Framework: A Realization of the Renconfigurable

System Architecture . 116

6.3 Reconfiguring the System Architecture through Feature Models 119

6.4 MoRE: Model-based Reconfiguration Engine 123

6.4.1 MoRE Model Operations . 124

6.4.2 MoRE Reconfiguration Actions 131

6.5 Scalability Evaluation of Model-management Technologies at Run-time138

6.6 Conclusions . 141

7 Strategies for Variability Transformation at run-time 144

7.1 Overview of the Chapter . 144

7.2 From Design Variability to run-time Variability: Challenges 145

7.3 Managing Variability at Run-time . 148

7.3.1 Feature-based Approach . 148

7.3.2 Fragment-based Approach . 150

7.3.3 Assessment between Feature-based and Fragment-based 152

7.4 Strategies for Variability Transformation 154

7.4.1 Common Operations of the Strategies 154

CONTENTS xiv

7.4.2 Regenerative Strategy . 157

7.4.3 Incremental - Copy Strategy . 159

7.4.4 Incremental - Move Strategy . 160

7.4.5 Implementation of the Strategies 161

7.5 Validating the Strategies Implementation 162

7.5.1 Tool Support for Testing Strategies 164

7.6 Extra-Functional Properties of Strategies 166

7.7 Applying the Strategies to Smart Homes 168

7.8 Conclusions . 169

8 Evaluation of the Proposal 172

8.1 Overview of the Chapter . 172

8.2 Background on DSPL evaluation . 174

8.3 The Smart Hotel Case Study . 175

8.3.1 Reconfiguration Scenarios of the Smart Hotel 176

8.4 Evaluation Logistics of the Case Study 179

8.4.1 Participants and Training . 179

8.4.2 Challenges to involve Human participants in DSPL Evaluation 180

8.4.3 Experiment Operation . 184

8.4.4 Data Collection . 186

8.4.5 Keeping Track of the Reconfigurations 186

8.5 Evaluation . 189

8.6 Discussion . 191

8.6.1 Introducing User Confirmations to Reconfigurations 192

8.6.2 Improving Reconfiguration Feedback 194

8.6.3 Introducing Rollback Capabilities to Reconfigurations 195

8.7 Conclusions . 196

9 Conclusions and Future Work 198

9.1 Overview of the Chapter . 198

9.2 Contributions . 199

9.3 Research Visits . 202

CONTENTS xv

9.4 Assessment and Future Work . 203

9.4.1 Enabling End-user participation in the Design of Reconfig-

urable Systems . 203

9.4.2 Enhancing Run-time Reconfigurations to Take into Account

End-user Preferences . 204

9.4.3 Providing Metrics to Quantify System Reconfiguration Capa-

bilities . 205

9.4.4 Guarantying Quality Properties on Run-time Reconfigurations 205

9.4.5 Addressing other Application Domains 206

9.5 Publications . 207

9.6 Senior Theses Codirected . 211

9.7 Seminars . 212

9.8 Final Conclusion . 213

Appendix 214

A The Smart Hotel

Case Study 214

A.1 Overview of the Case Study . 215

A.2 Scenarios of the Smart Hotel . 217

A.3 Functionality of the Smart Hotel . 220

A.4 Software Architecture of the Smart Hotel 221

A.5 Reconfigurations in the Smart Hotel . 223

A.5.1 Check-in . 224

A.5.2 Entering the room . 229

A.5.3 Working . 232

A.5.4 Watching a Movie . 235

A.5.5 Sleeping . 238

A.5.6 Leaving the room . 241

A.5.7 House Keeping . 244

A.5.8 Check-out . 247

A.6 Summary . 250

CONTENTS xvi

B Tool Support 254

B.1 Support for Designing Autonomic Behaviour 254

B.1.1 Support for Reconfiguration Analysis 258

B.2 Support for Model-based Run-time Reconfigurations 259

Bibliography 264

LIST OF FIGURES

1.1 Scope of Chapter 1 . 2

1.2 Research methodology followed in this thesis. 11

1.3 Roadmap of this Thesis. 12

2.1 Scope of Chapter 2 . 16

2.2 IBM’s MAPE-K reference model for autonomic control loops 20

3.1 Scope of Chapter 3 . 38

3.2 Gomaa and Hussein Approach . 46

3.3 Lee and Kang Approach . 48

3.4 Hallsteinsen et al. Approach . 51

3.5 White et al. Approach . 53

3.6 Trinidad et al. Approach . 56

3.7 Mori et al. Approach . 58

3.8 Hallsteinsen et al. Approach . 61

3.9 Parra et al. Approach . 63

3.10 Istoan et al. Approach . 65

3.11 Classification of the Approaches: Maturity - Autonomic Level 67

3.12 Connected DSPL Overview . 69

3.13 Disconnected DSPL Overview . 70

3.14 Classification of DSPL: Scope - Infrastructure 72

4.1 Scope of Chapter 4 . 74

4.2 Main Building Blocks of the Approach 78

4.3 Simplified overview of the Process to Apply the Approach 81

4.4 Overview of the Process to Apply the Approach 82

xvii

LIST OF FIGURES xviii

4.5 Overview of the Run-time Reconfiguration of the Approach 85

5.1 Scope of Chapter 5 . 90

5.2 SPL main concepts . 92

5.3 SPL following the MDD Approach . 94

5.4 Feature model of a smart home. 96

5.5 Main concepts of PervML Pervasive Systems 97

5.6 Two configurations of a Pervsive System. 98

5.7 Snapshot of a Feature Model. 99

5.8 OWL Ontology for Autonomic Homes. 101

5.9 Visualizing variability as an adaptation space. 104

5.10 Base-Variation-Resolution Approach. 107

5.11 Modelling Varibility with CVL. 108

5.12 Applying CVL for Autonomic Homes. 109

5.13 Feature Modelling and CVL. 110

6.1 Scope of Chapter 6 . 112

6.2 Reconfiguration Pattern of a DSPL Architecture. 114

6.3 The Smart Home from an OSGi perspective. 118

6.4 Overview of the model-based reconfiguration process. 120

6.5 Architecture Increment and Decrement given a Resolution. 122

6.6 The model-based reconfiguration process overview. 123

6.7 Calculating A(A△▽) through the Model Operations. 130

6.8 Experimental results. 140

7.1 Scope of Chapter 7 . 144

7.2 Managing Varibility. 148

7.3 Overview of Feature-based superimposition. 149

7.4 Overview of the Variability Transformation. 151

7.5 Common operations for fragment substitution. 154

7.6 Regenerative Strategy. 158

7.7 Incremental-Copy Strategy. 159

7.8 Incremental-Move Strategy. 160

LIST OF FIGURES xix

7.9 Possibility Space. 163

7.10 Testing Tool for Strategies. 165

8.1 Scope of Chapter 8 . 172

8.2 Reconfigurations among Scenarios. 178

8.3 Context Cards for triggering DSPL reconfigurations. 182

8.4 Visualizing reconfiguration effects by means of the Configuration Viewer.183

8.5 Experimentation set-up. 185

8.6 Information of the Reconfigurations is Stored as Model-based Traces. 187

8.7 Snapshot of MoRE Traces tool. 188

8.8 Overall results from the Case Study. 190

8.9 Categories for confirmation of reconfigurations. 193

9.1 Scope of Chapter 9 . 198

A.1 Hotel’s Smart Room . 217

A.2 Reconfiguration through the Smart Hotel Scenarios 219

A.3 Feature Model of the Smart Hotel . 221

A.4 PervML Model of the Smart Hotel . 222

A.5 Mapping between features and PervML 223

A.6 Another mapping between features and PervML 224

A.7 Feature model of the Check-in Scenario 225

A.8 PervML model of the Check-in Scenario 226

A.9 Feature model of the Entering the room Scenario 230

A.10 PervML model of the Entering the Room Scenario 231

A.11 Feature model of the Working Scenario 233

A.12 PervML model of the Working Scenario 234

A.13 Feature model of the Working Scenario 236

A.14 PervML model of the Working Scenario 237

A.15 Feature model of the Working Scenario 239

A.16 PervML model of the Working Scenario 240

A.17 Feature model of the Leaving the Room 242

A.18 PervML model of the Leaving the room 243

LIST OF FIGURES xx

A.19 Feature model of the Housekeeping Scenario 245

A.20 PervML model of the Housekeeping Scenario 246

A.21 Feature model of the Check-out Scenario 248

A.22 PervML model of the Check-out Scenario 249

B.1 Tool Support for Design Time. 255

B.2 Screenshots of the Tool Support for Design Time 256

B.3 Screenshot of the Resolution Editor . 258

B.4 Screenshot of the Reconfiguration Analysis Tool 259

B.5 MoRE implemented as OSGi Bundles. 260

B.6 Package Diagram of MoRE Implementation 261

B.7 Class Diagram of MoRE Implementation 263

LIST OF TABLES

3.1 Template for Approach Classification. 44

3.2 Classification of Gomaa and Hussein Approach. 47

3.3 Classification of Lee and Kang Approach. 49

3.4 Classification of Hallsteinsen et al. Approach. 52

3.5 Classification of White et al. Approach. 54

3.6 Classification of Trinidad et al. Approach. 57

3.7 Classification of Mori et al. Approach. 59

3.8 Classification of Hallsteinsen et al. Approach. 62

3.9 Classification of Parra et al. Approach. 64

3.10 Classification of Istoan et al. Approach. 66

7.1 Extra-Functional Properties of the Strategies 166

8.1 Scale Definition of Reliability Metrics. 180

A.1 Reconfiguration Table: Check-in Scenario. 228

A.2 Reconfiguration Table: Entering the Room. 232

A.3 Reconfiguration Table: Working. 235

A.4 Reconfiguration Table: Watching a Movie. 238

A.5 Reconfiguration Table: Sleeping. 241

A.6 Reconfiguration Table: Leaving the Room. 244

A.7 Reconfiguration Table: Housekeeping. 247

A.8 Reconfiguration Table: Check-out. 250

xxi

Chapter 1. INTRODUCTION

“The real voyage of discovery consists not in seeking new lands but seeing with new

eyes.”
– Marcel Proust (1871-1922).

1.1 Overview of the Chapter

Software
Engineering

for
Autonomic
Computing

Model Driven
Development

Software
Product Lines

Models as
first-order

citizens

Variability
Management

Figure 1.1: Scope of Chapter 1

This thesis brings together the fields of Soft-

ware Product Lines and Model Driven Devel-

opment with the purpose of addressing the

creation of autonomic computing systems. A

system with autonomic capabilities installs,

configures, tunes, and maintains its own com-

ponents at run-time, envisioning computing

environments that evolve without the need for

human intervention. However, there is a great

challenge to provide implementations of cur-

rent theoretical designs as well as support for

autonomic system development [1].

The contribution of this work is not only an execution platform but also tech-

niques and tools to support autonomic system engineers from system design to ex-

ecution. At desing time, we provide variability modelling techniques to design and

validate the autonomic behaviour. At run-time, we provide an enhanced model-

based implementation of the reference model for autonomic control [2], which also

enables a posteriori analysis of the overall running of the system by means of both

debugging and execution traces capabilities.
2

1.2. Motivation 3

In this work, autonomic computing is achieved by leveraging variability models

at run-time. In this way, the modelling effort made at design time provides a richer

semantic base for autonomic behavior during execution. Variability models specify

the possible configurations of the system, while a reconfigurable architecture can be

rapidly retargeted to a specific configuration.

In order to support the proposal, a Model-based Reconfiguration Engine (named

MoRE) was developed. In response to context conditions, MoRE uses at run-time

the variability models from design time to determine how the system should move

from a consistent architecture to another consistent architecture by means of recon-

figuration strategies. Given the fact that these strategies provide different extra-

funcitonal properties (such as different performances), we also provide a catalog of

these strategies in order to enable engineers to set up MoRE with the most suitable

strategy for each particular concern such as debugging or performance.

The rest of this chapter is organized as follows. First, we introduce the motivation

of this thesis. Then, the problem that this work resolves is stated in detail. Next,

the main contributions of this thesis are summarized. The research methodology

that we have followed is also presented. Finally we explain the context in which the

work of this thesis has been performed, and we present the outline of the thesis.

1.2 Motivation

Increasingly, software needs to dynamically adapt its behavior at run-time in re-

sponse to changing conditions in the supporting computing infrastructure and in

the surrounding physical environment [3]. Adaptability is emerging as a necessary

underlying capability, particularly for highly dynamic systems such as context-aware

[4, 5] or ubiquitous [6, 7] systems. These systems have reached a level of complexity

where the human effort required to get the systems up and running and keeping

them operational is getting out of hand. With more and more digital services be-

ing added to our surroundings, simplicity is highly appreciated by users, as stated

in [8, 9].

Autonomic computing [10] envisions computing environments that evolve with-

1.2. Motivation 4

out the need for human intervention. A system with autonomic capabilities installs,

configures, tunes, and maintains its own components at run-time. The term “au-

tonomic” comes from biology. In the human body, the autonomic nervous system

takes care of unconscious reflexes, i.e. body functions that do not require our at-

tention such as the size of the pupil, the digestive functions, the rate and depth of

respiration and dilatation or constriction of the blood vessels. Without the auto-

nomic nervous system, we would be constantly busy consciously adapting our body

to its needs and to the environment.

Inspired by biology, autonomic computing has evolved as a discipline to create

software systems and applications that self-manage in a bid to overcome the com-

plexities and inability to maintain current and emerging systems effectively. To

this end autonomic endeavours cover the broad span of computing from end-to-end

applications to infrastructure middlewares, and it is already demonstrating its fea-

sibility and value by automating tasks such as installation [11], healing [12], and

updating [13].

However, although there is a fair amount of work on architectures and their

theoretical design, very little of it has been fully implemented, which is currently

one of the main challenges of Autonomic Computing as stated in a recent survey

[1] (Challenge 1). Furthermore, defining appropriate abstractions and models for

understanding, controlling, and designing autonomic behavior is another important

challenge at the heart of AC [10] (Challenge 2). Another challenge facing this

community lies in the ability to carry out robust software engineering to provide

solidly built autonomic systems [14] (Challenge 3).

Current software engineering practice defines a system in a more or less preim-

plementation state where requirements have been agreed a priori. Given that the

autonomic system must change states at run-time and that some of those states may

emerge and are much less deterministic, there is a great challenge to provide new

guidelines, techniques and tools to help autonomic system development.

Consequently, autonomic computing needs software engineering approaches that

better handle abstraction while being suitable in their ability to represent dynam-

icity in a ever-changing system. To this end, we suggest that the combination of

1.2. Motivation 5

both Model Driven Development [15] and Software Product Lines [16] can lead to a

systematic software engineering approach for the development of such systems.

• Model Driven Development is a paradigm capturing every important as-

pect of a software system through appropriate models. This models are not

just auxiliary documentation artifacts; rather, they are source artifacts and

can be used for automated analysis and/or code generation.

The use of model-driven techniques can contribute to realize the vision of

autonomic computing, since models can be used as the autonomic knowledge

of the system in order to provide a richer semantic base for run-time decision-

making related to system adaptation [17].

• Software Product Lines shift from the development of an individual sys-

tem to the development of reusable assets that are used to develop a family

of systems. Variability management is the fundamental principle of Software

Product Lines, which involves separating the product line into three parts

–common components, parts common to some but not all products, and in-

dividual products with their own specific requirements– and managing these

throughout development.

The use of Software Product Lines techniques can also contribute to realize

the vision of autonomic computing. Variation points can be bind at run-time,

initially when software is launched to adapt to the current environment, as

well as during operation to adapt to changes in the environment [18].

On the one hand, Model Driven Development can contribute to address Chal-

lenge 2 by appropriate model abstractions to represent the important aspects of the

autonomic behaviour. On the other hand, Software Product Lines (specially Dy-

namic Software Product Lines) can contribute to address Challenge 3 by handling

the dynamicity of autonomic systems in a systematic manner. Finally, both Model

Driven Development and Software Product Line communities have been highly pro-

ductive with several tools now entering the commercialisation phase which can also

contribute to Challenge 1 by applying the former tools to produce Autonomic Com-

puting implementations.

1.2. Motivation 6

Building on the central ideas of Model Driven Development and Software Product

Lines can play a significant role as we move towards implementing the key self-

management properties associated with autonomic computing. Our research shows

that autonomic behavior can be achieved by leveraging variability models at run-

time. In this way, the modelling effort made at design time is not only useful

for producing the system but also provides a richer semantic base for autonomic

behavior during execution. The use of variability models at run-time brings new

opportunities for autonomic capabilities as follows.

• Use of model driven development techniques to control the auto-

nomic behaviour. The knowledge previously captured in variability models

can be used to describe the variants in which a system can evolve. In re-

sponse to changes in the context, the system itself can query these models to

determine the necessary modifications to its architecture.

• Use of Product Line architectures to support the autonomic be-

haviour. Variation points and dynamic binding enables the creation of soft-

ware architectures that can be rapidly retargeted to a specific configuration.

When the system enters a particular context that requires adaptation, the

product line architecture allows an easy reconfiguration since architecture com-

ponents can dynamically appear or disappear from configurations, and com-

munication channels can be established dynamically between the components.

The combination of the above ideas give birth to a Model-Based Reconfiguration

Engine (MoRE). Given a context event1, this engine can query the variability models

to determine how the system should evolve, and it also provides the mechanisms

for modifying the system architecture accordingly. Thus, MoRE-enabled systems

can use the knowledge captured by variability models to drive its own autonomic

evolution at run-time.

The smart home domain is a candidate to validate the above approach. This

domain is suited for variability modelling techniques because of the high degree

1We understand context event as any observable property by sensors that can impact system

execution, e.g. end-user input, hardware devices, network connection properties.

1.3. Problem Statement 7

of similarities among different systems; also, autonomic computing capabilities can

address some of the domain’s limitations such as minimal support for evolution

as new technologies emerge or as an application type matures [19]. A planned

reutilization of the modelling efforts invested at design time by MoRE can contribute

to alleviate the former limitations of smart homes.

1.3 Problem Statement

The development of Autonomic Computing Systems is not a closed research topic.

We can see from the above discussion how some problems still need to be considered.

The work that is presented in this thesis help to improve the development of Au-

tonomic Systems by addressing the Challenges presented above. In particular, the

problems that this thesis addresses can be stated by means of the following problem

statements.

• Research Question 1. How to carry out a software engineering approach

for the development of autonomic systems in order to provide not only an

execution platform but also techniques and tools to support engineers from

system design to execution?

• Research Question 2. How model abstractions should be defined for con-

trolling, and designing autonomic behavior as well as enabling the analysis of

the autonomic behaviour before implementing it?

• Research Question 3. How to realize current theoretical design architectures

for autonomic computing into executable implementations?

In conclusion, although autonomic computing has become increasingly interest-

ing and popular it remains as a relatively immature topic from the point of view

of Software Engineering. We believe that the research related to the above ques-

tions can contribute to push both researchers and practitioners towards a sound and

seamless engineering support for autonomic computing.

1.4. Contribution 8

1.4 Contribution

The main contributions of this thesis have been developed to answer the three re-

search questions presented above. Next we summarize the main contributions of our

research work.

1. The major contribution of this thesis is a software engineering approach

for autonomic computing which combines the main ideas of Model Driven

Development (models as first-order citizens) and Software Product Lines (vari-

ability management). This approach provides not only an execution platform

but also techniques and tools to support autonomic system engineers from

system design to execution.

On the one hand, we suggest the application of Scope, Commonality and Vari-

ability analysis [20] by means of variability modelling to specify the autonomic

knowledge in terms of variants that are associated to context conditions. On

the other hand, we demonstrate that the executing system can make use of

the knowledge captured by variability models as if they were the policies that

drive the autonomic behaviour of the system.

2. We show how to design and validate the autonomic behaviour by

means of variability modelling techniques. Since the models that form the

basis for reconfiguration strategies are available at design time, we are able to

validate configurations in an early stage of the development process without

first implementing them. Furthermore, we have automated this step using the

analysis operations of the FAMA framework [21]. Specifically, we design the

autonomic behaviour by means of modelling techniques as follows.

(a) Variability models describe the system configurations and its variants.

(b) Domain specific languages describe the system architecture.

(c) Weaving models map system variants to software architecture compo-

nents.

1.4. Contribution 9

(d) Ontologies for context modelling connect context conditions to system

variants.

We also show the feasibility of leverage as is the above models at run-time to

drive the autonomic behaviour. That is, we keep the same model representa-

tion at run-time that is used at design time: the XML Metadata Interchange

(XMI) standard. This avoids the definition of technological bridges, because

the same technologies used at design time for manipulating XMI models can be

applied at run-time. In particular, our approach queries and updates the mod-

els at run-time using the widespread tools of the Eclipse Modelling Project2.

3. We provide a model-based implementation of the reference model for

autonomic control [2]. The four phases of this reference model (Monitor,

Analyse, Plan and Execute) have been implemented in our Model-based Re-

configuration Engine: MoRE. By means of the former phases and the above

models at run-time, MoRE determines how a system should be reconfigured

for a target operational context, and then it modifies the system architecture

accordingly. MoRE features different startegies to implement the former re-

configuration. These strategies have different extra-functional properties in

order to address particular concerns such as debugging or performance.

The presented approach encompass systems that are capable of modifying their

own behavior with respect to changes in their operating environment by using run-

time reconfigurations. The presented work has been validated from three different

perspectives as follows.

• Scalability of the approach. Since model manipulation at run-time, is

subject to the same efficiency requirements as the rest of the system, we have

evaluated this approach from the point of view of efficiency achieving positive

results.

• Reliability-based risk of run-time reconfigurations. A failure in the

reconfigurations can directly impact the user experience since the reconfig-

2http://www.eclipse.org/modeling/

1.5. Research Methodology 10

urations are performed when the system is already under the users control.

Therefore, we also evaluated the reliability-based risk of run-time reconfigu-

rations, specifically, the probability of malfunctioning (Availability) and the

consequences of malfunctioning (Severity).

• Degree of autonomic behavior achieved. This evaluation was performed

with the participation of human subjects by means of a Smart Hotel case study

which was deployed with real devices.

Moreover, we successfully identified and addressed two challenges associated with

the involvement of human subjects in reconfiguration evaluation: enabling partici-

pants to (1) trigger the run-time reconfigurations and to (2) understand the effects

of the reconfigurations. The evaluation of the case study reveals positive results re-

garding both Availability and Severity. However, the participant feedback highlights

issues with recovering from a failed reconfiguration or a reconfiguration triggered by

mistake. To address these issues, we provide some guidelines learned in the case

study. Finally, we conclude that our approach achieved satisfactory results with

regard to reliability-based risk; nevertheless, system engineers must provide users

with more control over the reconfigurations or the users will not be comfortable with

the resulting autonomic behaviour.

1.5 Research Methodology

In order to perform the work of this thesis, we will apply a research project following

the design methodology for performing research in information systems as described

by [22] and [23]. Design research involves the analysis of the use and performance

of designed artefacts to understand, explain and, very frequently, to improve on the

behaviour of aspects of Information Systems [23].

The design cycle consists of 5 process steps: (1) awareness of the problem, (2)

suggestion, (3) development, (4) evaluation, and (5) conclusion. The design cy-

cle is an iterative process; knowledge produced in the process by constructing and

evaluating new artefacts is used as input for a better awareness of the problem.

1.6. Thesis Context 11

Problem
Awareness

Software
Engineering for
Autonomic

Evaluation of performance,
autonomic behaviour and
reliability‐based risk

Conclusions
Solution

ofSuggestion State of the
Art Review

Implementation of

Step 1 Step 2 Step 3 and 4 Step 5

Computing

Computing
Autonomic

the architecture for
Autonomic Computing

Variability
Modelling for

Figure 1.2: Research methodology followed in this thesis.

Following the cycle defined in the design research methodology, we started with

the awareness of the problem (see Figure 1.1): we identified the problem to be

resolved and we stated it clearly.

Next, we performed the second step which is comprised of the suggestion of a

solution to the problem, and comparing the improvements that this solution intro-

duces with already existing solutions. To do this, the most relevant approaches were

studied in detail. Once the solution to the problem was described, we plan to de-

velop and validate it (steps 3 and 4). These two steps will perform in several phases

(see Figure 1.1).

Finally, we will analyze the results of our research work in order to obtain several

conclusions as well as to delimitate areas for further research (step 5).

1.6 Thesis Context

This thesis has been developed in the context of the Research Center for Software

Productions Methods (Pros) of the Technical University of Valencia. The work that

has made the development of this thesis possible is in the context of the following

research projects.

• SESAMO: Construcción de Servicios Software a partir de Modelos. CYCIT

project referenced as TIN2007-62894 (National Project).

• OSAMI Commons: Open Source Ambient Intelligence Commons. ITEA 2

project referenced as TSI-020400-2008-114 (European Project).

1.7. Outline 12

1- Introduction

2- Background

3- State of the Art

4- Overview

5- Design Time

6- Run-time

7- Run-time
Strategies

8- Evaluation

9- Conclusions

Preface Background Contribution Final Remarks Appendices

A1- Case Study

A2- Tool Support

Brief version Complete version

Figure 1.3: Roadmap of this Thesis.

Furthermore, this thesis builds up on other works that we have been developing

during the last years. In particular, we have been applying model driven devel-

opment to the Pervasive System domain. As a result, we introduced (1) a Domain

Specific language for the specification of Smart Homes (PervML) [24], and (2) a tool

(PervGT) [25] for the definition of PervML models and automatic code generation

from these models to the final system implementation. For more information about

this previous work, see http://www.pros.upv.es/labs/projects/pervml.

1.7 Outline

Figure 1.3 shows a roadmap for this thesis. It consists of nine chapters and two

appendices as follows.

Chapter 2, Background. This Chapter presents the main concepts and charac-

teristics of the approaches related with this thesis, in order to provide to the reader a

basic background for understanding the overall thesis work. Specifically, this chapter

presents autonomic computing, Model Driven Development and Software Product

Lines.

Chapter 3, State of the Art. This chapter shows an analysis of the most im-

portant approaches that have been proposed to support run-time reconfiguration

of system families. These approaches are classified according to criteria for evalu-

1.7. Outline 13

ating both the achieved autonomic behaviour and the methodology to achieve this

behaviour.

Chapter 4, Overview of the Approach. This chapter introduces the present

approach for the development of autonomic systems through the use of variability

models at run-time. This overview covers the main building blocks of the approach

as well as the process to apply it. In addition, the chapter also introduces how the

approach has been evaluated throughout the case study of a Smart Hotel.

Chapter 5, Autonomic Computing through the use of Variability Models. This

chapter argues how the knowledge captured in variability models is used for pro-

viding autonomic behaviour during execution. The chapter also shows how our

approach is able to conduct a thorough analysis of the variability models for the

purpose of validation.

Chapter 6, Achieving Autonomic Computing Through Models at Run-time.

This chapter shows the model operations to query and update variability models

at run-time in order to drive the reconfiguration of the architecture in response to

context events. These varibility models at run-time determine how a set of compo-

nents can cooperate to change from one architecture configuration to another.

Chapter 7, Strategies for Variability Transformation at Run-time. This chapter

presents different strategies (with different extra-functional properties) to implement

the reconfiguration functionality provided by the model operations of Chapter 6. For

example, MoRE can use an strategy with debugging support as long as the system

is under development. When the development is finished and the system is going to

be deployed, MoRE can use another strategy with better performance (but without

debugging support).

Chapter 8, Evaluation of the Proposal. This chapter shows the evaluation of

the proposal in terms of reliability-based risk of the run-time reconfigurations, which

depends on both the probability that the reconfigurations will fail in the operational

environment and the adversity of that failure.

Chapter 9, Conclusions and Future Work. This chapter presents the main con-

tributions, results and publications of this work. In addition, this chapter discusses

future research directions in connection to the limitations of the work.

1.7. Outline 14

Appendix A, The Smart Hotel Case Study. This appendix presents the case

study of a Smart Hotel, which reconfigures its services according to changes in the

surrounding context. This case study has been specifically developed to exercise

reconfigurations that support the autonomic behaviour.

Appendix B, Tool Support. This appendix shows a general view of the tools

proposed in this thesis to support the approach. These tools enable autonomic

system engineers to specify the autonomic behaviour by means of variability mod-

els, and to take advantage of these specifications at run-time to drive the system

evolution.

Chapter 2. BACKGROUND

“We shall not cease from exploration And the end of all our exploring Will be to

arrive where we started And know the place for the first time. ”
– Thomas Stearns Eliot (1888-1956).

2.1 Overview of the Chapter

h

eT

s

s

iBackground

Figure 2.1: Scope of Chapter 2

In this chapter the background of the Thesis

is introduced. The background in our case is

conformed by the approaches that are related

to the objective of this work: to achieve au-

tonomic computing through the use of vari-

ability models at run-time. Therefore, this

chapter presents the main concepts and char-

acteristics of these approaches in order to

provide a basic background for understand-

ing the overall thesis work. Specifically, we

present autonomic computing (target) and

both model driven development and Software

Product Lines (means). These approaches are briefly introduced as follows.

First, we present Autonomic Computing, which is an initiative started by

IBM in 2001. Its ultimate aim is to develop computer systems capable of self-

management, to overcome the rapidly growing complexity of computing systems

management, and to reduce the barrier that that complexity poses to further growth.

Second, we present Model Driven Development, which is a paradigm where

we can construct a model of a software system that we can then transform into
16

2.2. Autonomic Computing 17

the real thing. The goal of this paradigm is to automatically translate an abstract

specification of the system into a fully functional software product.

Finally, we present Software Product Lines engineering, which intends to

produce a set of products that share a common set of assets in an specific domain.

These techniques allow to adapt a product to the customer needs while its pro-

duction costs and time to market are decreased. SPL promotes the shift from the

development of a stand-alone systems to the development of a systems family.

2.2 Autonomic Computing

In October 2001, IBM released a manifesto [10] describing the vision of Autonomic

Computing. The purpose is to countermeasure the complexity of software systems

by making systems self-managing. The paradox has been spotted, that systems

need to become even more complex to achieve this. The complexity, it is argued,

can be embedded in the system infrastructure, which in turn can be automated.

The similarity of the described approach with the autonomic nervous system of the

body, which relieves basic control from our consciousness, gave birth to the term

Autonomic Computing.

2.2.1 Definition

Inspired by biology, autonomic computing has evolved as a discipline to create soft-

ware systems and applications that self-manage in a bid to overcome the complexities

and inability to maintain current and emerging systems effectively. To this end au-

tonomic endeavours cover the broad span of computing from end-to-end applications

to infrastructure middlewares, and are already demonstrating their feasibility and

value.

In 2001, IBM suggested the concept of autonomic computing. In their man-

ifesto, complex computing systems are compared to the human body, which is a

complex system, but has an autonomic nervous system that takes care of most bod-

ily functions, thus removing from our consciousness the task of coordinating all our

bodily functions. IBM suggested that complex computing systems should also have

2.2. Autonomic Computing 18

autonomic properties, i.e. should be able to independently take care of the regu-

lar maintenance and optimization tasks, thus reducing the workload on the system

administrators. IBM also distilled the four properties of a self-managing (i.e. auto-

nomic) system: self-configuration, self-optimization, self-healing and self-protecting.

As stated by Alan Ganek who is on behalf of Autonomic Computing in IBM:

“Autonomic computing is the ability of systems to be more self-managing.

The term autonomic comes from the autonomic nervous system, which

controls many organs and muscles in the human body. Usually, we are

unaware of its workings because it functions in an involuntary, reflexive

manner – for example, we don’t notice when our heart beats faster or

our blood vessels change size in response to temperature, posture, food

intake, stressful experiences and other changes to which we’re exposed.

And, by the way, our autonomic nervous system is always working”

2.2.2 Properties of Autonomic Computing

The main properties of Autonomic Computing as portrayed by IBM are self-configuration,

self-optimisation, self-healing and self-protection. Here is a brief description of these

properties (for more information, see [26, 27]):

• Self-configuration. An autonomic computing system configures itself ac-

cording to high-level goals, i.e. by specifying what is desired, not necessarily

how to accomplish it. This can mean being able to install and set itself up

based on the needs of the platform and the user.

• Self-optimization. An autonomic computing system optimises its use of

resources. It may decide to initiate a change to the system proactively (as op-

posed to reactive behaviour) in an attempt to improve performance or quality

of service.

• Self-healing. An autonomic computing system detects and diagnoses prob-

lems. The kinds of problems that are detected can be interpreted broadly:

they can be as low-level as bit-errors in a memory chip (hardware failure) or

2.2. Autonomic Computing 19

as high-level as an erroneous entry in a directory service (software problem)

[28]. If possible, it should attempt to fix the problem, for example by switching

to a redundant component or by downloading and installing software updates.

However, it is important that as a result of the healing process the system is

not further harmed, for example by the introduction of new bugs or the loss

of vital system settings. Fault tolerance is an important aspect of self-healing.

That is, an autonomic system is said to be reactive to failures or early signs

of a possible failure.

• Self-protection. An autonomic system protects itself from malicious attacks

but also from end users who inadvertently make software changes, e.g. by

deleting an important file. The system autonomously tunes itself to achieve

security, privacy and data protection. Security is an important aspect of self-

protection, not just in software, but also in hardware. A system may also be

able to anticipate security breaches and prevent them from occurring in the

first place. Thus, the autonomic system exhibits proactive features.

The concepts behind the self-* properties were not entirely new to IBM’s auto-

nomic computing initiative. For example, a query optimiser, resource manager or

routing software in Data Base Management Systems (DBMS), operating systems

and networks, respectively, all allow those systems to self-manage. However the

Self-Managing systems’ community are coming to an agreement that the term au-

tonomic computing is not being used to describe these systems but those in which

the query plan, resource management or routing decision changes to reflect the cur-

rent environmental context; reflecting dynamism in the system. That is, the DBMS

query plan changes as the query is running.

In addition, other Adaptive systems have contained some elements of the above

properties for some time, especially to provide self-optimisation. Early examples of

this can be seen in streaming media systems where the codec of the stream changes

with network bandwidth fluctuations, the goal being to keep music or video playback

as high a quality as possible, e.g. Kendra [29] and Real Surestream [30]. However

the autonomic community is more and more identifying a system as autonomic if it

2.2. Autonomic Computing 20

Autonomic Manager

Analyze

Monitor

Plan

Execute
Knowledge

Managed
System

Sensors Actuators

Figure 2.2: IBM’s MAPE-K reference model for autonomic control loops

exhibits more than one of the self-management properties described earlier [31].

2.2.3 The MAPE-K Autonomic Loop

To achieve autonomic computing, IBM has suggested a reference model for auto-

nomic control loops [2], which is sometimes called the MAPE-K (Monitor, Analyse,

Plan, Execute, Knowledge) loop and is depicted in Figure 2.2. This model is being

used more and more to communicate the architectural aspects of autonomic systems.

The MAPE-K autonomic loop is similar to, and probably inspired by, the generic

agent model proposed by Russel and Norvig [32], in which an intelligent agent per-

ceives its environment through sensors, and uses these percepts to determine actions

to execute on the environment.

In the MAPE-K autonomic loop, the managed element represents any software

or hardware resource that is given autonomic behaviour by coupling it with an

autonomic manager. Thus, the managed element can for example be a web server or

database, a specific software component in an application (e.g. the query optimiser

in a database), the operating system, a cluster of machines in a grid environment,

a stack of hard drives, a wired or wireless network, a CPU, a printer, etc.

Sensors, often called probes or gauges, collect information about the managed

element. For a web-server, that could include the response time to client requests,

network and disk usage, CPU and memory utilisation. A considerable amount of

research is involved in monitoring servers [33, 34, 35, 36, 37].

2.2. Autonomic Computing 21

Actuators carry out changes to the managed element. The change can be coarse

grained, e.g. adding or removing servers to a web server cluster [38], or fine-grained,

e.g. changing configuration parameters in a web server [36, 39].

Autonomic manager

The data collected by the sensors allows the autonomic manager to monitor the man-

aged element and execute changes through actuators. The autonomic manager is a

software component that ideally can be configured by human administrators using

high-level goals and uses the monitored data from sensors and internal knowledge

of the system to plan and execute, based on these high-level goals, the low-level

actions that are necessary to achieve these goals. The internal knowledge of the

system is often an architectural model of the managed element, and the goals are

usually expressed using Event Condition Action (ECA) policies, goal policies or

utility function policies [40].

• ECA policies take the form “when event occurs and condition holds, then ex-

ecute action”, e.g. when 95% of web servers response time exceeds 2s and there

are available resources, then increase number of active web servers. They have

been intensely studied for the management of distributed systems. A notable

example is the PONDER policy language [41]. A difficulty with ECA policies

is that when a number of policies are specified, conflicts between policies can

arise that are hard to detect. For example, when different tiers of a multi-tier

system (e.g. web and application server tiers) require an increased amount of

resources, but the available resources cannot fulfill the requests of all tiers, a

conflict arises. In such a case, it is unclear how the system should react, and

an additional conflict resolution mechanism is necessary, e.g. giving higher

priority to the web server. As a result, a considerable amount of research on

conflict resolution has arisen [42, 43, 44]. However, a complication is that the

conflict may only become apparent at run-time.

• Goal policies are more high level in that they specify criteria that characterise

desirable states, but leave to the system the task of finding how to achieve that

2.2. Autonomic Computing 22

state. For example, we could specify that the response time of the web server

should be under 2s, while that of the application server under 1s. The auto-

nomic manager uses internal rules (i.e. knowledge) to add or remove resources

as necessary to achieve the desirable state. Goal policies require planning on

the part of autonomic manager and are thus more resource-intensive than ECA

policies. However, they still suffer from the problem that all states are clas-

sified as either desirable or undesirable. Thus when a desirable state cannot

be reached, the system does not know which among the undesirable states is

least bad.

• Utility functions solve the above problem by defining a quantitative level

of desirability to each state. A utility function takes as input a number of

parameters and outputs the desirability of this state. Thus, continuing our

example, the utility function could take as input the response time for web

and application servers and return the utility of each combination of web and

application server response times. This way, when insufficient resources are

available, the most desirable partition of available resources among web and

application servers can be found. The major problem with utility functions is

that they can be extremely hard to define, as every aspect that influences the

decision by the utility function must be quantified. Research is being carried

out on using utility functions, particularly in automatic resource allocation

[45] or adaptation of data streaming to network conditions [46].

Monitoring

The monitoring component of the MAPE-K loop involves capturing properties of

the environment (either physical or virtual, e.g. a network) that are of signifi-

cance to the self-* properties of the system. The software or hardware components

used to perform monitoring are called sensors. For instance, network latency and

bandwidth measure the performance of web servers, while database indexing and

query optimisation affect the response time of a DBMS, which can be monitored.

The Autonomic Manager requires appropriate monitored data to recognise failure or

sub-optimal performance of the Autonomic Element, and effect appropriate changes.

2.2. Autonomic Computing 23

The types of monitored properties, and the sensors used, will often be application-

specific, just as actuators used to execute changes to the Managed Element are

also application-specific. Autonomic computing systems are based on two types of

monitoring as follows.

• Passive monitoring. Passive monitoring systems do not require any mea-

surement code in the system to be added, but rather observe the actual in-

teraction of the running system. For example, passive monitoring tools exist

for most operating systems, e.g. Windows 2000/XP returns memory and cpu

utilisation statistics.

• Active monitoring. Active monitoring means engineering the software at

some level, e.g. modifying and adding code to the implementation of the

application or the operating system, to capture function or system calls. This

can often be to some extent automated. For instance, ProbeMeister can insert

probes into the compiled Java bytecode.

More recent work has examined how decide which subset of the many performance

metrics collected from an dynamic environment can be obtained from the many

performance tools available to it (e.g. dproc). Interestingly they observe that a

small subset of metrics provided 90% of their application classification accuracy

[47]. Agarwala et al. [48] propose QMON, an autonomic monitor that adapts its

monitoring frequency and data volumes so to minimise the overhead of continu-

ous monitoring while maximising the utility of the performance data. That is, an

autonomic monitor for autonomic systems.

Planning

The planning aspect of the autonomic loop involves taking into account the monitor-

ing data from the sensors to produce a series of changes to be effected on the managed

element. For instance, event-condition-action (ECA) rules directly produce adapta-

tion plans from specific event combinations. Examples of such policy languages and

applications in autonomic computing include [41, 49, 50, 51, 52, 53, 54].

2.2. Autonomic Computing 24

However, applying this approach in a stateless manner, i.e. where the autonomic

manager keeps no information on state of the managed element, and relies solely

on the current sensor data to decide whether to effect an adaptation plan, is very

limited. Indeed, it is far better for the autonomic manager to keep information on the

state of the managed element in a context model that can be updated progressively

through sensor data and reasoned about.

Regarding the state information that the autonomic manager should keep about

the managed element, much research has examined model-based approaches. In

these approaches some form of model of the entire managed system is use by the

autonomic manager. The model may also represent some aspect of the operating

environment in which the managed elements are deployed, where operating environ-

ment can be understood as any observable property (by the sensors) that can impact

its execution, e.g. end-user input, hardware devices, network connection properties.

The model is updated through sensor data and used to reason about the man-

aged system to plan adaptations. A great advantage of a model-based approach to

planning is that, under the assumption that the model correctly mirrors the man-

aged system, the architectural model can be used to verify that system integrity is

preserved when applying an adaptation, i.e. we can guarantee that the system will

continue to operate correctly after the planned adaptation has been executed [55].

This is because changes are planned and applied to the model first, which will show

the state of the system resulting from the adaptation, including any violations of

constraints or requirements of the system present in the model. If the new state of

the system is acceptable, the plan can then be effected onto the actual managed sys-

tem, thus ensuring that the model and implementation are consistent with respect

to each other.

The use of the model-based approach does not however necessarily eliminate

ECA rules. Indeed, repair strategies of the architecture model may be specified as

ECA rules, where an event is generated when the model is invalidated by sensor

updates, and an appropriate rule specifies the actions necessary to return the model

to a valid state, i.e. the adaptation plan.

In practice however, there is always a delay between the time when a change

2.2. Autonomic Computing 25

occurs in the managed system and this change is applied to the model. Indeed, if

the delay is sufficiently high and the system changes frequently, an adaptation plan

may be created and sent for execution under the belief that the actual system was in

a particular state, e.g. a web server overloaded, when in fact the system has already

changed in the meantime and does not require this adaptation anymore (or requires

a different adaptation plan) [56].

Knowledge

The knowledge in an autonomic system can come from sources as diverse as the

human expert (in static policy based systems [57]) to logs that accumulated data

from probes charting the day-to-day operation of a system to observe its behaviour,

which is used to train predictive models [58, 59]. This section lists some of the main

methods used to represent Knowledge in autonomic systems.

• Concept of Utility. Utility is an abstract measure of usefulness or benefit

to, for example, a user. Typically a systems operation expresses its utility as

a measure of things like the amount of resources available to the user (or user

application programs), and the quality, reliability or accuracy of that resource

etc. For example in an event processing system allocating hardware resources

to users wishing to run transactions, the utility will be a function of allocated

rate, allowable latency and number of consumers, e.g. [11]. Another example

is in a resource provisioning system where the utility is derived from the cost

of redistribution of workloads once allocated or the power consumption as a

portion of operating cost [60, 61].

• Reinforcement learning. Reinforcement learning is used to establish poli-

cies obtained from observing management actions. At its most basic it learns

policies by trying actions in various system states and reviewing the conse-

quences of each action [62]. The advantage of reinforcement learning is that

it does not require an explicit model of the system being managed, hence its

use in autonomic computing [63, 64]. However it suffers from poor scalabil-

ity in trying to represent large state spaces, which also impacts on its time

2.3. Model Driven Development 26

to train. To this end, a number of hybrid models have been proposed which

either speed up training or introduce domain knowledge to reduce the state

space, e.g. [65, 66].

• Bayesian Techniques. As well as rule-based classification of policies to drive

autonomicity, probabilistic techniques have been used throughout the self-

management literature to provide a way to select from numbers of services or

algorithms etc. For example, Guo [67] shows how Bayesian Networks (BNs)

are used in autonomic algorithm selection to find the best algorithm, whereas

cost sensitive classification and feedback has been used to attribute costs to

self-healing equations to remedy failures [68].

Using knowledge about the system configuration, a problem- diagnosis compo-

nent (for example, based on a Bayesian network) would analyze information from

log files, possibly supplemented with data from additional monitors that it has re-

quested. The system would then match the diagnosis against known software patches

(or alert a human programmer if there are none), install the appropriate patch, and

retest.

All the techniques presented in this and the above sections contribute to increas-

ingly achieve sophisticated autonomic managers for managed elements. Ultimately,

the distinction between the autonomic manager and the managed element may be-

come merely conceptual rather than architectural, or it may melt away, leaving fully

integrated, autonomic elements with well-defined behaviors and interfaces, but also

with few constraints on their internal structure.

2.3 Model Driven Development

Model Driven Development (MDD) is a paradigm where models are central in the

development. Model Driven Architecture (MDA) is a framework for software de-

velopment proposed by the Object Management Group (OMG) in 2001 [69] (i.e.,

MDA is a concrete realization of MDD). The notion of Model Driven Engineering

(MDE) emerged later as a paradigm generalizing the MDA approach for software

development [15].

2.3. Model Driven Development 27

2.3.1 Definition

The arrival of the MDD and MDA are changing the way of using models in the devel-

opment of software. Model-driven is a paradigm where models are used to develop

software. This process is driven by model specifications and by transformations

among models. It is the ability to transform among different model representations

that differentiates the use of models for sketching out a design from a more exten-

sive model-driven software engineering process where models yield implementation

artifacts. As stated by Agrawal [70]:

“the models are not merely artifacts of documentation, but living doc-

uments that are transformed into implementations. This view radically

extends the current prevailing practice of using UML: UML is used for

capturing some of the relevant aspects of the software, and some of the

code (or its skeleton) is automatically generated, but the main bulk of

the implementation is developed by hand. MDA, on the other hand,

advocates the full application of models, in the entire life-cycle of the

software product.”

The goal of these approaches is to automatically translate an abstract specifica-

tion of the system into a fully functional software product.

2.3.2 Model Driven Software Development Initiatives

Model-Driven Software Development (MDSD) is the notion that we can construct

a model of a software system that we can then transform into the real thing [71].

Models have been used for a long time in the software development field. From

formal and executable specification languages (like OBLOG [72], TROLL [73] or

OASIS [74]), to the most accepted notations (like UML [75]) and processes (like

RUP [76]) models are present in the software development area.

Stuart Kent [15] defines Model Driven Engineering (MDE) by extending MDA

with the notion of software development process (that is, MDE emerged later as a

generalization of the MDA for software development). MDE refers to the systematic

2.3. Model Driven Development 28

use of models as primary engineering artifacts throughout the engineering lifecycle.

Kurtev provides a discussion on existing MDE processes [77] (refer to [78, 79] for

a specific approach). In general, these approaches introduce concepts, methods and

tools [80]. All of them are based on the concept of model, meta-model, and model

transformation.

Model Driven Architecture (MDA) is a concrete realization of MDD. MDA clas-

sifies models into two classes: Platform Independent Models (PIMs) and Platform

Specific Models (PSMs) [81]. A PIM is a view of a system from a platform-

independent viewpoint. Likewise, a PSM is a view of a system from a platform-

dependent viewpoint [81]. Doing so, the definition of platform becomes fundamen-

tal.

Although the contribution of MDA has been critical, other initiatives under

different descriptive terms have pushed on the MDSD direction. These initiatives

(or specic paradigms) highlight distinct aspects and/or follow specic strategies for

applying MDSD. The following are remarkable examples of these initiatives.

• Automatic programming. According to Balzer [82], who is considered the

initiator of the modern automatic programming paradigm, automatic pro-

gramming is based on the use of methods and tools which support the ac-

quisition of high level of abstraction specifications, their validation and the

generation of executable code. He was focused on the generation of eficient

implementations, since the hardware resources (CPU power, memory size, etc.)

were limited. Therefore, he proposes a semi-automated (interactive) transla-

tion approach which facilitates the specification of optimizations by human

developers. It is important to note that he considers that the application of

this paradigm to a narrower area (like expert systems) allows an “attempt to

eliminate the need for interactive translations”.

• Generative Programming. This paradigm was proposed by Czarnecki in

his PhD Thesis [83] although the term was coined by Eisenecker in [84]. In

Eisenecker words, Generative Programming “is a comprehensive software de-

velopment paradigm to achieving high intentionality, reusability, and adapt-

2.3. Model Driven Development 29

ability without the need to compromise the run-time performance and com-

puting resources of the produced software”. It is highly based on domain specic

engineering and product line development, using techniques like generic pro-

gramming, domain-specic languages and aspect-oriented programming. Unlike

other more general paradigms, Generative Programming suggests very specic

techniques and steps for developing methods which follow this approach.

In general, MDSD initiatives promote a paradigm of reuse and automation. This

emerges through the extensive use of models and model transformations, which

replaces cumbersome (and usually repetitive) implementation activities. In this

way, model-driven approaches improve development practices by accelerating them.

2.3.3 Domain Specific Languages

Domain specic languages play a key role in several of the MDSD approaches that

have been presented above. According to [85], a domain specific language (DSL) is

a programming language or executable specification language that offers, through

appropriate notations and abstractions, expressive power focused on, and usually

restricted to, a particular problem domain.

DSLs are not a new topic, but the current stress on MDSD have focused the

interest of both academy and industry on this kind of languages. Examples of DSLs

abound, including well-known and widely-used languages such as LATEX, YACC,

Make, SQL, and HTML. As state by [85], the older programming languages (Cobol,

Fortran, Lisp) all came into existence as dedicated languages for solving problems in

a certain area (respectively business processing, numeric computation and symbolic

processing).

DSLs are tightly related to the Domain Engineering. In words of Tolvanen [86],

the main focus of Domain Engineering is finding and extracting domain terminology,

architecture and components. It is important to note that two points of view when

dealing with the domain concept can be considered, as highlighted by Simos [87].

• Conceptual domain. From this point of view, a domain is a set of inter-

related real-world concepts. For instance, the health-care domain contains

2.3. Model Driven Development 30

concepts like medical center, patient, disease, medicament, etc. As another

example, the industrial factory domain contains concepts like stock, suplier,

client, worker, etc.

• Systems domain. From this point of view, a domain is characterized by a

set of systems that share some common features [87]. These systems usually

address a common problem area and conceivably share a common solution

structure. In this case, we can talk about the expert systems domain, the

database-based systems domain, the control/monitoring systems domain, the

software games domain, etc.

Note that a software system can be seen as the combination of both a concep-

tual domain and a system domain. For instance, we can find experts system for

health-care and control/monitoring systems for industrial factories, but also exists

expert systems for industrial factories and control/monitoring systems for health-

care. Specific languages exists both for conceptual domains and systems domains.

Many benefits due to the use of DSLs can be found in the literature. For instance,

according to [85].

• DSLs allow solutions to be expressed in the idiom and at the level of abstrac-

tion of the problem domain. Consequently, domain experts themselves can

understand, validate, modify, and often even develop DSL programs.

• DSL programs are concise, self-documenting to a large extent, and can be

reused for different purposes.

• DSLs enhance productivity, reliability, maintainability, and portability.

• DSLs embody domain knowledge, and thus enable the conservation and reuse

of this knowledge.

• DSLs allow validation and optimization at the domain level.

But some drawbacks have been also identified. These drawbacks are related

to the associated costs (for designing, implementing and learning the DSL) and

2.4. Software Product Lines 31

the specific nature of the language (possible lack of expressiveness and/or loss of

efficiency).

Some researchers suggest that the success of visual notations as commonly used

domain-specific languages is contingent on making similar tools and concepts for

visual languages a commodity that can be readily used and understood by a wide

audience, effectively lowering the initial hurdle to adoption [88]. Hopefully, the

number and quality of tools for implementing DSLs is growing and, therefore, a

widely use of DSLs could be foreseen.

2.4 Software Product Lines

Mass production was popularized by Henry Ford in the early 20th Century. McIlroy

coined the term software mass production in 1968 [89]. It was the beginning of

Software Product Lines. In 1976, Parnas introduced the notion of software program

families as a result of mass production [90]. The use of features (to drive mass pro-

duction) was proposed by Kang in the early 1990s [91]. Shortly, the first conferences

appeared turning SPL into a new body of research [92, 93].

2.4.1 Definition

SPLs are defined as “a set of software-intensive systems, sharing a common, managed

set of features that satisfy the specific needs of a particular market segment or

mission and that are developed from a common set of core assets in a prescribed

way” [16]. This definition can be redefined into five major issues:

1. Products. SPL shift the focus from single software system development to

SPL development. The development processes are not intended to build one

application, but a number of them (e.g., 10, 100, 10,000, or more). This forces

a change in the engineering processes where a distinction between domain

engineering and application engineering is introduced. Doing so, the construc-

tion of the reusable assets (platform) and their variability is separated from

production of the product-line applications.

2.4. Software Product Lines 32

2. Features. Features are units (i.e., increments in application functionality) by

which different products can be distinguished and defined within an SPL [94].

3. Domain. An SPL is created within the scope of a domain. A domain is a

specialized body of knowledge, an area of expertise, or a collection of related

functionality [95].

4. Core Assets. A core asset is an artifact or resource that is used in the

production of more than one product in a software product line [16].

5. Production Plan. It states how each product is produced. The production

plan is a description of how core assets are to be used to develop a product

in a product line and specifies how to use the production plan to build the

end product [96]. The production plan ties together all the reusable assets to

assemble (and build) end products. Synthesis is a part of the production plan.

2.4.2 Software Product Line Processes

Software product lines (or system families) provide a highly successful approach to

strategic reuse of assets within an organization. A standard software product line

consists of a product line architecture, a set of software components and a set of

products. A product consists of a product architecture, derived from the product line

architecture, a set of selected and configured product line components and product

specific code.

Therefore, software product line engineering is about producing families of simi-

lar systems rather than the production of individual systems. Software product line

engineering consists of three main processes: domain engineering (also called core

asset development), application engineering (also called product development) and

management. These three processes are complementary and provide feedback to

each other.

• Domain Engineering is defined as “the activity of collecting, organizing and

storing past experience in building systems or parts of systems in a particular

domain in the form of reusable assets (e.g., architecture, “models, code, and

2.4. Software Product Lines 33

so on), as well as providing an adequate means for reusing these assets (...)

when building new systems” [97]. That is, Domain engineering is, among

others, concerned with identifying the commonality and variability for the

products in the product line and implementing the shared artefacts such that

the commonality can be exploited while preserving the required variability.

Using a “design-for-reuse” approach, domain engineering (core asset develop-

ment [16]) is on charge of determining the commonality and the variability

among product family members. In general, domain engineering is divided

into domain analysis, domain design and domain implementation.

Application Engineering is “the process of building a particular system in

the domain” [97]. Application engineering (a.k.a., product Development [16])

is responsible for deriving a concrete product from the SPL using a “design-

with reuse” approach. To achieve this, it reuses the reusable assets developed

previously.

During application engineering, individual products are developed by selecting

and configuring shared artefacts and, where necessary, adding product-specific

extensions. This process is subdivided into application analysis, application

design and application implementation.

Management is a separated process where organizational issues are handled

specifically [16]. This process is responsible for giving resources, coordinating,

and supervising domain and application engineering activities.

See [16, 98] for more details about the above processes. In SPL processes, vari-

ability is made explicit through variation points. A variation point represents a

delayed design decision. When the architect or designer decides to delay the design

decision, he or she has to design a variation point. The design of the variation point

requires several steps: (1) the separation of the stable and variant behaviour, (2)

the definition of an interface between these types of behaviour, (3) the design of a

variant management mechanism and (4) the implementation of one or more vari-

ants. Given a variation point, it can be bound to a particular variant. For each

variation point, the set of variants may be open, i.e. more variants can be added,

2.4. Software Product Lines 34

or closed, i.e. no more variants can be added. Overall, during domain engineering

new variation points are introduced, whereas during application engineering these

variation points are bound to selected variants

Behind the software product line approach we can find the economies of scope

principle. While economies of scale arise when multiple identical instances of a single

design are produced collectively, economies of scale arise when multiple similar but

distinct designs are produced collectively [99]. In this context, the same practices,

processes, tools and materials are used to design and build similar unique products.

This methodical reuse is the responsible productivity and quality increase.

2.4.3 Dynamic Software Product Lines

SPL main objective is producing products while costs and time-to-market are re-

duced by an intensive reuse of commonalities and a suitable variability management.

Products are commonly produced by selecting the features that are part of a prod-

uct and removing those that are not part of it. To make this decision, features are

selected and/or discarded at different binding times. Those features thought to be

bound at run-time are kept in the final product even when they may not be used by

the final product. The product must provide the mechanisms to select the suitable

feature at run-time and optionally reconfigure the product. After the production,

no automated activity is specified in SPL development to maintain a product in

connection with the SPL so it may not eventually benefit from feature updates.

In modern computing and network environments, a high degree of adaptability

from software systems is demanded. Computing environments, user requirements

and interface mechanisms between software and hardware devices like sensors may

change dynamically during run-time. Therefore, in these kinds of dynamic envi-

ronments, application of SPL needs to be changed from a static perspective to a

dynamic perspective, where systems capable of modifying their own behavior with

respect to changes in its operating environment are achieved by dynamically rebind-

ing variation points at run-time. This is the idea of Dynamic Software Product

Lines (DSPL) [18].

DSPL development mainly intends to produce configurable products [100] whose

2.5. Conclusions 35

autonomy allows to reconfigure themselves and benefit from a constant updating.

In a DSPL, a configurable product (CP) is produced from a product line similarly to

standard SPL. However, the reconfiguration ability implies the usage of two artifacts

to control it: the decision maker and the reconfigurator. The decision maker is in

charge of capturing all the information in its environment that suggests a change

such information from external sensors or even from users. The analyser must

know the whole structure of a CP so it makes a decision on which features must

be activated and deactivated. The reconfigurator is responsible of executing the

decision by using the standard SPL run-time binding. A CP may be considered as

an extension to traditional SPL products where there are no bound features but

the decision maker and the reconfigurator and the remaining features are bound at

run-time. As a consequence, new features may be added to an existing product or

even existing features may be updated at run-time.

Interest in DSPLs is growing as more developers apply the SPL approach to

dynamic systems. The first workshop on DSPLs was held at the 11th International

Software Product Line Conference in Kyoto in 2007, and currently, the workshop

on DSPLs is in its fourth edition.

2.5 Conclusions

T
he purpose of this chapter was to provide a brief introduction to the existing

background on top of which this work is built on. Inspired by biology, Au-

tonomic Computing has evolved as a discipline to create software systems and

applications that self-manage in a bid to overcome the complexities and inability

to maintain current and emerging systems effectively. Model Driven Develop-

ment is a paradigm to develop programs based on modelling. Software models

are specified, from which other models or even code are derived. This paradigm

eases cumbersome and repetitive tasks, and achieves productivity gains. Software

Product Lines offer a paradigm to develop a family of software products. The

focus shifts from the development of an individual program to the development of

reusable assets that are used to develop a family of programs.

2.5. Conclusions 36

TLAs You Need

OMG: The Object Management Group is an international, not-for-profit industrial

consortium that creates and maintains software interoperability specifications.

UML: The Unified Modelling Language is an industry standard visual language for

modelling software systems. These models capture knowledge about a system at vari-

ous abstraction levels, ranging from requirements and analysis models to design mod-

els.

MDA: The Model-Driven Architecture is a set of OMG standards that enables the

specification of models and their transformation into other models and complete sys-

tems.

MDD: Model Driven Development is an emerging paradigm for software construc-

tion that uses models to specify programs, and model transformations to synthesize

executables.

DSL: A domain-specific language is a programming language or executable specifica-

tion language that offers, through appropriate notations and abstractions, expressive

power focused on, and usually restricted to, a particular problem domain.

OWL: The Web Ontology Language is an ontology markup language that enables con-

text sharing and context reasoning. In the artificial intelligence literature, an ontology

is a formal, explicit description of concepts in a particular domain of discourse.

XMI: The XML Metadata Interchange is an OMG standard for exchanging metadata

information via Extensible Markup Language (XML). The most common use of XMI is

as an interchange format for UML models, although it can also be used for serialization

of models of other languages (metamodels).

SPL: A software product line is a set of software-intensive systems that share a com-

mon, managed set of features satisfying the specific needs of a particular market

segment or mission and that are developed from a common set of core assets in a

prescribed way.

CVL: The common language of variability expresses variability in a language inde-

pendently of the base modelling language. This base-model can be a doamin-specific

language as well as a general purpose languages like UML.

TLA: Three-letter acronym.

Chapter 3. STATE OF THE ART

“If I have seen farther than others, it is because I was standing on the shoulder of

giants.”
– Isaac Newton (1643-1727).

3.1 Overview of the Chapter

Gomma

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

White

Morin

Trinidad

HallsteinsenLee

ParraHallsteinsen Isotan

2
0
0
9

Figure 3.1: Scope of Chapter 3

Dynamic system reconfiguration refers to

making changes to a deployed system af-

ter it has started operation. Dynamic addi-

tion, deletion, or modification of system fea-

tures, or dynamic changes of architectural

structures [101] are some examples of dy-

namic reconfiguration. This dynamic sys-

tem reconfiguration has been studied in var-

ious research areas such as self-healing sys-

tems [102, 103, 55], context-aware computing

[4, 5] or ubiquitous computing [6, 7]. When a

change in the operational context is detected,

it may trigger system reconfiguration to accommodate context events or to meet

quality requirements.

However, dynamic reconfiguration approaches in the literature have focused on

reconfiguration of a single system, not on a family of systems. That is, accommoda-

tion of system-specific dynamic needs that may differ from one system to another.

Different from statically configured systems, a reconfigurable system family is

able to: (1) monitor the system operational context, (2) validate a reconfiguration
38

3.2. Classification Criteria 39

request with consideration of change impacts and available resources, (3) determine

strategies to handle currently active services during reconfiguration, and (4) perform

dynamic reconfiguration while maintaining system integrity.

In this chapter, we present an analysis of the most important approaches that

have been proposed to support run-time reconfiguration of system families. These

run-time reconfigurations enable the system to adhere to different degrees of Au-

tonomic Computing. To analyse these approaches, we suggest criteria to evaluate

both the achieved autonomic behaviour and the methodology to achieve this be-

haviour. Finally, we discuss the resulting analysis and we also identify patterns in

the reconfiguration infrastructures.

3.2 Classification Criteria

This section provides criteria to classify system family approaches that achieve some

sort of autonomic behavior. Specifically, the three first criteria evaluate the achieved

autonomic behaviour, and the last criterion evaluates the methodology to achieve

the autonomic behaviour.

3.2.1 Adoption Level of Autonomic Computing

This criterion is based on the scale proposed by IBM to evaluate the adoption

of autonomic computing [2]. IBM has proposed a set of Autonomic Computing

Adoption Levels that spans from Level 1: Basic, to Level 5: Autonomic. Briefly,

these levels are presented as follows.

• Level 1 defines the state whereby system elements are managed by highly

skilled staff who utilise monitoring tools and then make the require changes

manually. IBM believes this is where most IT systems are today.

• Level 2 is known as Managed. This is where the system’s monitoring tools

collage information in an intelligent enough way to reduce the systems admin-

istration burden.

3.2. Classification Criteria 40

• Level 3 is entitled Predictive whereby more intelligent monitoring than Level

2 is carried out to recognise system behaviour patterns and suggest actions

approved and carried out by IT staff.

• Level 4 is the adaptive level. Here the system uses the types of tools available

to Level 3 system’s staff but is more able to take action. Human interaction is

minimised and it is expected that the performance is tweaked to meet service

level agreements.

• Level 5 is the full autonomic level, where systems and components are dy-

namically managed by business rules and policies, thus freeing up IT staff to

focus on maintaining ever changing business needs.

Since we focus on self-managing systems we are precluding work that would

conform to Levels 1 through to 3 and focus on what would be deemed by IBM as

Adaptive and Autonomic Computing only (Levels 4 and 5).

3.2.2 Relevance of the Autonomic Computing

This criterion evaluates the relevance of the autonomic behavior in comparison with

the overall functionality of the system. Autonomic computing can play the role of

the core functionality or it can play the role of supporting functionality. Both Core

and Support relevance are described as follows.

• Core. This is where the self-management function is driving the core applica-

tion itself. That is, if the application’s focus is to deliver multimedia data over

a network and the work describes an end-to-end solution including network

management and display, audio, etc., then we identify the self-management as

core.

• Support. This is where the self-management function focuses on one partic-

ular aspect or component of the architecture to help improve the behaviour of

the complete architecture using autonomicity. For example, focus on resource

management or network support only.

3.2. Classification Criteria 41

3.2.3 Reinforcement of the Autonomic Knowledge

This criterion evaluates whether the knowledge that drives the autonomic behaviour

is static (Autonomous reinforcement) or it is updated with context information (Au-

tonomic reinforcement). On the one hand, Autonomous reinforcement provides the

same system response to a particular event always. On the other hand, Autonomic

reinforcement can provide different responses to a particular event depending on the

current state of the system knowledge.

• Autonomous. This is where the system self-adapts to the environment to

overcome challenges that require adaptation, but it is not feeding its own

knowledge with context information in order to better fit next adaptations.

• Autonomic. This is where not only higher-level human based policies are

taken into account, but the knowledge is feeded with context information in

order to adapt itself accordingly.

Finally, there is also possible that the system would evolve the policies that

drives the system depending on how well the “old” policies did. This is connected

to the work carried out in Artificial Intelligence, which is an area of research that

falls out of the scope of this work.

3.2.4 Maturity of the Software Engineering Approach

Since the specification of the adaptation behavior is a complex and error prone task,

a systematic software engineering approach for the development of such systems

is required. The maturity criterion [104] presents four typical stages of software

engineering for dynamic adaptation as follows.

• Stage 0: non-adaptive systems. In this stage, the system realizes no kind of

dynamic adaptation. This applies only to those systems that do not (need to)

adapt to any kind of environmental changes.

• Stage 1: implicit adaptation. Most systems are at least at evolution this stage

one. At this stage, the adaptation behavior is modeled as indistinguishable

3.2. Classification Criteria 42

part of the functionality. Any system at this evolution stage or beyond can

be considered an adaptive system. The motivation to use dynamic adaptation

at this stage is mainly the necessity to adapt to dynamic environments. If

we regard a vehicle stability controller, it is necessary to estimate the current

driving situation. Decisions and control strategies then depend on this con-

text information. This example is implicit dynamic adaptation, since there

is definitely an adaptation although most developers do neither know that

they currently develop an adaptive system nor that they have an idea of the

implications of dynamic adaptation. Since the adaptation behavior is not ex-

plicitly modeled, adaptations often happen locally at a component level. The

dependencies between different components cannot be captured and are often

not considered at all. This leads to serious problems since adaptations in one

component usually have an influence on the quality of the provided services

of the component. Not communicating this influence to relying components

often leads to serious failures. The latter are difficult to reconstruct and it is

hardly possible to identify the causing faults.

• Stage 2: explicit adaptation, no engineering of adaptation. Starting at stage

2, dynamic adaptation is explicitly considered in system development. Most

of the research of recent years has been focused on this stage. Also in industry

some systems have already reached this stage. The main characteristic that

makes a system belonging to this stage is the presence of a dedicated run-time

adaptation framework. This framework could be a central component in the

system coordinating all adaptation processes or it could be a decentralized

aspect that is scattered to different components. In any case, however, the

dynamic adaptation is explicitly controlled and/or coordinated. For indus-

try, the main reason to evolve into this stage is the system quality. Some

companies already noticed that implicitly used dynamic adaptation is a ma-

jor cause for the troubles they have. The adaptation frameworks are usually

quite simple and require a model or specification telling them under which

condition which adaptation strategy has to be chosen. For complex systems

it is hardly possible to define such a specification ad hoc without applying

3.2. Classification Criteria 43

an appropriate, constructive development methodology. Therefore this leads

to another challenge. The complexity of dynamic adaptation that has been

neglected at stage 1 is now made visible. Although the quality problem can be

encountered, an immense effort is required to manage the complexity of the

adaptation behavior.

• Stage 3: software engineering of adaptive systems. This constitutes the cur-

rently final stage. In this stage not only an execution platform or mechanism

to realize dynamic adaptation at run-time is provided, but also a dedicated

methodology enabling developers to systematically develop adaptive embed-

ded systems. First, this includes a seamless modelling methodology. In this

regard, it is important to make the complexity manageable, e.g. by supporting

the modular and hierarchical definition of adaptation. Second, the seamless

software engineering approach also includes the model based analysis, valida-

tion and verification of dynamic adaptation. For dependable systems, it is

indispensable to have a means to analyze the adaptation behavior already at

design time and to guarantee certain properties. Therewith this model-driven

approach makes it possible to identify reasonable configurations in an early

stage of the development process without first implementing them. Further-

more, this stage also benefits from the whole range of typical gains brought

by model-driven engineering (MDE) approaches (i.e. validation, verification,

reuse, automation). As for any other software engineering approach it is partic-

ularly possible to analyze and to predict the quality of the adaptation behavior

to enable systematic control of the development process.

The above stages enable us to evaluate to what extent an approach provide

a methodology to guide the developer systematically from the requirements to a

validated and verified adaptive system.

3.3. Analysis of Approaches for System Family Reconfiguration 44

3.3 Analysis of Approaches for System Family Re-

configuration

In this section, we use the above criteria to analyse the most relevant approaches

for System Family Reconfiguration, paying special attention to how the variability

is managed. The approaches are presented chronologically according to the year in

which they appeared. For each one of these approaches, we present the following

information:

• A description of the Variability Specification that the approach uses to describe

the system family.

• The reconfiguration infrastructure provided by the approach.

• Successful case studies that the approach has carried out.

For each approach, the most relevant information is presented following the lay-

out of Table 3.1. Top of Table 3.1 shows the Scope, Variability Specification and

Reconfiguration Infrastructure of the approach. Bottom of Table 3.1 shows the clssi-

fication of the approach according to the criteria introduced on Section 3.2.

Approach Authors - Approach Name

Scope Scope of the approach.

Variability

Specification

Approach techniques for Variability Specification.

Reconfiguration

Infrastructure

Approach infrastructure for reconfiguration.

AC Adoption [Level 4 ∣ Level 5] AC Relevance [Core ∣ Support]

Reinforcement [Autonomous ∣

Autonomic]

Maturity [Stage 0 ∣ Stage 1 ∣

Stage 2 ∣ Stage 3]

Table 3.1: Template for Approach Classification.

3.3. Analysis of Approaches for System Family Reconfiguration 45

3.3.1 Gomaa and Hussein Approach

Gomaa and Hussein Gomaa and Hussein (see Table 3.2) address the problem

of dynamic system reconfiguration by changing the configuration of the running

system from one member of the product family to another. Specifically, they focus

on changing the application configuration at run-time after it has been deployed

from the software product line.

In order to support dynamic software reconfiguration, the Reconfigurable Evo-

lutionary Product Family Life Cycle (REPFLC) is a new life cycle which builds on

previous research into software product families [105] and extends it significantly to

support dynamic reconfiguration. Figure 3.2 right shows the REPFLC.

The REPFLC method consists of three major activities: (1) Product Family

Engineering. (2) Target System Configuration. (3) Target System Reconfiguration.

1. During Product Family Engineering, similarities and variations among the

members of the product family are established through modelling and analysis

of the product family requirements. By considering appropriate software pat-

terns in the product family, members of the product family are designed to be

reconfigurable using the configuration change management modelling method.

The product family architecture is designed in terms of components and their

interconnections (see Figure 3.2 left).

2. During the first System Configuration, the components of the product fam-

ily are configured on the basis of user-required features.

3. During System Reconfiguration, users can specify run-time configuration

changes so that an executable system is dynamically changed from the old

configuration to the new configuration.

To support reconfiguration, Gomaa and Hussein suggest to design components

in order to be capable of transitioning to a state where it can be reconfigured. In

reconfigurations, these components can be manipulated by means of Reconfiguration

Commands. Reconfiguration commands describe reconfiguration actions associated

3.3. Analysis of Approaches for System Family Reconfiguration 46

with user required changes, or reconfiguration scenarios. The reconfiguration com-

mands are passivate, checkpoint, unlink, remove, create, link, activate, restore, and

reactivate.

Line
Workstation

Controller M - 1

Line
Workstation

Controller M + 1

Line
Workstation

Controller M - 1

Line
Workstation
Controller M

Line
Workstation

Controller M + 1

Manufacturing
Robot M

Pick & Place
Robot M

.

Dynamic SoftwareReconfiguration in SoftwareProduct Families 437

specific. During Target System Configuration, specific target systems (i.e., family
members) are configured on the basis of user-required features. During Target System
Reconfiguration, users can specify runtime configuration changes so that an executa-
ble system is dynamically changed from the old configuration to the new configura-
tion.

3 Dynamic SoftwareReconfiguration

In order to address the systematic design of the dynamic reconfiguration of product
families, the following general approach is taken. By considering component func-
tionality and application characteristics, each component is designed to be capable of
transitioning to a state where it can be reconfigured. Although this approach could be
used on an application-by-application basis, it benefits greatly if reuse concepts are
applied. The approach used in this paper is to provide software reconfiguration pat-
terns [9] for dynamic software reconfiguration in software product families. Software
reconfiguration patterns provide a solution to a recurring dynamic reconfiguration
problem.
The approach is to develop the software product line architecture by reusing ap-

propriate software architecture and design patterns and then designing corresponding
software reconfiguration patterns. The resulting reconfiguration patterns may then be
reused in other product family architectures that require dynamic reconfiguration ca-
pabilities. Reconfiguration Patterns address smaller sections of large dynamically
reconfigurable software architectures and are therefore more manageable. The ap-
proach also incorporates a systematic design method that models possible configura-
tions of an application as a product family capable of automatically reconfiguring
from one configuration of the family to another. The solution takes the following ap-
proach: (a) Design intended reconfiguration behavior needed for a given architecture
or design pattern. (b) Reuse resulting reconfiguration patterns in the design of product
family architectures.

Product Family
Engineering

Target System
Configuration

Product Family
Requirements

ReconfigurableProduct Family Specification

Target System
Requirements

Product Family
Reuse Library

Executable Target
System

Reconfiguration
Requirements

Reconfigured
Executable Target

System

Target System
Reconfiguration

ReconfigurableComponent Types,
Reconfiguration Patterns

Fig. 1. ReconfigurableEvolutionary Product Family LifeCycle (REPFLC).

Unsatisfied Requirements

Figure 3.2: Gomaa and Hussein Approach

For example, a component that receives a passivate command with no parameters

must eventually transition to a passive state. If the command has parameters, the

component must go idle, i.e., be inactive as long as there is an interconnection with

the components denoted by the parameters.

To support this reconfiguration approach a proof-of-concept prototype has been

developed: the Reconfigurable Product Line UML Based Software Engineering Envi-

ronment (RPLUSEE). The RPLUSEE prototype uses the commercial Rational Rose

Real Time1 (Rose RT). Components are mapped to Rose RT capsules. In Rose RT,

capsules execute Rose RT statecharts which represent transitions as events guarded

by conditions. Actions are implemented with Rose RT functions and C++ code.

Capsules communicate through exchange of messages sent and received through

ports.

Two product families were developed using the REPFLCmethod and the RPLUSEE

tool in order to validate the approach.

1http://www-01.ibm.com/software/awdtools/developer/technical/

3.3. Analysis of Approaches for System Family Reconfiguration 47

• A reconfigurable automobile cruise control product family was designed.

• A reconfigurable factory automation product family architecture was designed

and implemented.

As part of the validation process, three techniques, provided by the model exe-

cution capability of Rose RT, were employed: execution control, visual component

instance monitoring, and analysis of message trace outputs. The validation process

confirmed that reconfiguration scenario change transactions executed correctly and

that component reconfigurations took place as planned.

Gomaa and Hussein - REPFLC Approach

Scope System automation: cruise and factory control

Variability

Specification

Architecture model designed in terms of components and

their interconnections.

Reconfiguration

Infrastructure

Reconfiguration Commands implemented by Rational Rose

RT functions and C++ code.

AC Adoption Level 4 AC Relevance Support

Reinforcement Autonomous Maturity Stage 2

Table 3.2: Classification of Gomaa and Hussein Approach.

3.3.2 Lee and Kang Approach

Lee and Kang [106] (see Table 3.3) introduce a feature binding analysis step in

SPLs to achieve the development of dynamically reconfigurable core assets. Feature

binding analysis consists of two activities: feature binding unit identification and

feature binding time determination. These activities refine feature models through

grouping of features into feature binding units that has the same binding time.

Once features are grouped into feature binding units, their binding times are

determined. In Lee and Kang approach, feature binding time is analyzed based

on two view points: the product lifecycle view, in which the focus is given to the

lifecycle phase in which a feature is incorporated into a product, and the binding

state view, in which the focus is given to represent the inclusion, availability, and

3.3. Analysis of Approaches for System Family Reconfiguration 48

activation states of features. (Note that a feature may not be available for use even

if it is physically included in a product.)

The refined feature model from the feature binding analysis (see Figure 3.3 left)

is the key design driver to develop the product line reconfigurable components.

For dynamic reconfiguration of feature binding units, variation points correspond-

ing to each binding unit should be identified in the design component model and

implemented with appropriate binding techniques. For example, dynamic binding

of objects, menus, and plugins are techniques that support dynamic binding their

reconfigurable components.

Home Service Robot

Security
Monitoring

Capture
Photo
Image

Tele
Presence

Remote
Position
Tracking

SECURITY
MONITORING

CAPTURE
PHOTO
IMAGE

TELE-
PRESENCE

Traverse
Predefined-

Path
Traverse
Shortest

Path

Optional feature

Alternative feature

Composed-of relationship

Generalization relationship
Implemented-by relationship

Legend
Binding unit

Feature Biding
Unit’s Name

NAME

User
Notify

USER
NOTIFY

executed and tested independently from other control
components. The global behavior control component
(e.g., HSR Mode Manager) defines system modes (e.g.,
initialization, termination, and power saving modes)
and an interaction policy (e.g., priority, concurrency)
of local control components.

Data plane of product plane (related guidelines:
one and four): The data plane consists of computa-
tional bricks, which read input data from sensors and
process them to make outputs such as events and tem-
porary data. Event data are sent to HSR Mode Manager
to determine global states of a system. Temporary data
are sent to other computational bricks as inputs.

Functionalities that are allocated to the bricks in the
data plane can be found in the DFD specifications of
feature binding units. This means that an explicit map-
ping between feature binding units and bricks in the
data plane can also be established. Therefore, change
effects from addition or removal of a feature binding
unit can also be traced clearly in the data plane. For
instance, dynamic removal of SM should also remove
the User Message Manager brick, as the brick is used
only by SM.

As we pointed out in the guideline four, we should
be careful about common functionalities between fea-
ture binding units. For example, the functionality of
Front Camera Controller is allocated to the Front
Camera brick but this brick is also used by the Tele-
Presence control brick, as we had identified in the
DFD in Figure 5. For the separation of management
policy of such a shared functionality, we added a FC
QoS Manager component inside the computational
brick: it specifies a priority scheme that determines
which one of the control bricks will receive its compu-
tation results at a certain point in time.

Configuration plane (related guideline: five): The
configuration plane is in charge of detecting contextual
changes, determining and validating a reconfiguration
strategy, and executing reconfiguration. The plane con-
sists of two types of components: Master Configurator
and Local Configurator. Master Configurator collects
information from Local Configurators and/or external
probes to detect contextual changes. If a contextual
change that requires product reconfiguration is de-
tected, Master Configurator processes a relevant re-
configuration transaction to change the current product
configuration. Each Local Configurator is connected to
a connector, and monitors the product by inspecting
messages between bricks.

As we applied the guidelines for architecture de-
sign, mappings between feature binding units and ar-
chitectural components could be established easily and
clearly, and interactions of feature binding units be-
came visible and manageable. Also, separation of re-
configuration concerns from product service concerns

could alleviate complexity of component behavior
specifications, as the role of each component became
simple and clear.

Local
Conf igurator

Local
Configurator

Master
Conf igurator

Call
and

Come

<<v>>
Securi ty

Monitoring

<<v>>
Tele-

Presence

HSR Mode
Manager

<<v>>
Front

Camera
Audio

Manager
Vision

Manager

<<v>>
User

Message
Manager

FC QoS Manager

Computation
Component k

Computation
Component 1

Actuator

User
Following

Connector

Name
Computational

Brick
Component

Legend

Name Control Brick
Component

<<v>> Variant

Figure 6. Architecture Model for HIS Product L ine

In the next section, product line component devel-
opment is explained.

2.3.3 Product line component development. The
primary input to product line component development
includes a feature model, feature binding units and
their binding time, architecture models, and a design
object model. For dynamic reconfiguration of feature
binding units, variation points corresponding to each
binding unit should be identified in the design object
model and implemented with appropriate binding tech-
niques. Dynamic binding of objects, menus, and plug-
ins are techniques that support dynamic binding of
components.

We also need to analyze the change impact of a re-
configuration carefully. For example, behavior of HSR
Mode Manager should be changed for a new product
configuration. As shown in Figure 7, we applied the
Template Method pattern to dynamically change the
behavior of HSR Mode Manager (Figure 7 shows the
component specification.): it has four different behav-
ior specifications that cover combinations of optional
service features (e.g., a selection of TP and/or SM).
After Master Configurator determines a product con-
figuration at run time, an appropriate behavior control
component is bound to HSR Mode Manager to manage
interactions among service features.

In this section, we have illustrated how a product
line is analyzed and core assets are developed through
the product line asset engineering process. In the next

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

Figure 3.3: Lee and Kang Approach

As a result of the above activities, a set of reconfigurable components is obtained.

These components are reconfigured following a dynamic reconfiguration strategy in

response to context events. That is, decisions of when to start a reconfiguration are

analyzed through an operational context analysis. This context analysis consists

of three subactivities: contextual parameter identification, situation definition, and

mapping of each situation to a reconfiguration request.

Given a reconfiguration request, the dynamic reconfiguration strategy is about

“how” to perform dynamic reconfiguration. The strategy is specified with consider-

3.3. Analysis of Approaches for System Family Reconfiguration 49

ation of binding dependencies (i.e., require and exclude), change impacts to other

binding units, and required resources (e.g., components). The reconfiguration strat-

egy is specified for six reconfiguration phases as follows: (1) check pre-conditions,

(2) send a Suspend event to currently active binding units that are involved in re-

configuration, (3) remove or parameterize binding units that have to be deleted or

changed, (4) instantiate and bind binding units that are newly added, (5) check post-

conditions, and (6) resume suspended binding units and start newly added binding

units.

The execution of the dynamic reconfiguration strategy depends on a Master Con-

figurator and Local Configurators (see Figure 3.3 right). The Master Configurator

is responsible for monitoring the context and product status, and processing re-

configuration requests. The Local Configurators provides Master Configurator with

product state information by analyzing messages at each connector and executes

reconfiguration commands received from the Master Configurator. There is a pro-

totype implementation of the dynamic reconfiguration strategy using this Master

Configurator and Local Configurators approach [107].

Lee and Kang overall approach has been applied to the development of home

service robot control software. These home service robots (HSR) utilize various

technology-intensive computational components such as speech recognizers, vision

processors, and actuators to offer feature binding units.

Lee and Kang - Feature Binding Units

Scope Pervasive systems: home service robot control software

Variability

Specification

Feature models refined into feature binding units that has

the same binding time.

Reconfiguration

Infrastructure

Reconfigurable components and dynamic reconfiguration

strategy (supported by Master Configurator and Local Con-

figurators)

AC Adoption Level 5 AC Relevance Support

Reinforcement Autonomic Maturity Stage 2

Table 3.3: Classification of Lee and Kang Approach.

3.3. Analysis of Approaches for System Family Reconfiguration 50

3.3.3 Hallsteinsen et al. (MADAM) Approach

Hallsteinsen et al. [108] (see Table 3.4) present the MADAM approach to building

adaptive systems. They target distributed applications accessed through handheld

networked devices which have to adapt to context changes such as variation in net-

work capacity and periods of network absence, hands and eyes becoming temporarily

busy with other things, batteries running low, and devices running out of memory.

The MADAM approach is based on ideas from software product line engineer-

ing. Adaptive applications are built as component oriented system families with

variability modeled explicitly as part of the family architecture. By representing the

family architecture at run-time, they are able to offload much of the complexity of

adaptation to a generally reusable adaptation platform.

Hallsteinsen et al. extend SPLs by adding the ability to automatically derive

changed configurations by monitoring the context, and to automatically reconfigure

the application while it is running.

The adaptation platform of the MADAM approach provides (1) a conceptual

model and (2) reference architecture for adaptive applications as follows.

1. The conceptual model (see Figure 3.4 left) is based on entities which interact

with other entities by providing and making use of services through ports.

A port represents a service offered by an entity or a service needed by an

entity. Entities may be composed of smaller entities, allowing for a hierarchic

structure. To model variation, both in the application and in its context,

the conceptual model provides the concept of entity type. An entity type

defines a class of entities with equivalent ports which may replace each other

in a system. With these concepts the conceptual model is able to model an

adaptive application architecture as a possibly hierarchic composition of entity

types, which defines a class of application variants as well as a class of contexts

in which they may operate.

2. The reference architecture (see Figure 3.4 right) provides components for mon-

itoring user needs and available resources, for deriving a more suitable variant

when the user needs or available resources change such that the current vari-

3.3. Analysis of Approaches for System Family Reconfiguration 51

ants is rendered unsuitable, and for transforming the current variant into the

preferred one by reconfiguration at the component level. To enable the deriva-

tion of the variant that best fits a given context, the MADAM approach is

based on property annotations associated with ports. Property annotations

allow us to reason about how well an application variant matches its context,

by comparing the properties of the services provided by the application with

the properties required by the user and the properties expressing the resource

needs of the application with the property annotation describing the resources

provided by the current computing infrastructure. The match to user needs

is expressed in a utility function. By default the utility function is a weighted

mean of the differences between properties representing user needs and prop-

erties describing the service provided by the application, where the weights

represent priorities of the user.

The conceptual model and the variability modeled there is represented by plat-

form components. Following the reference architecture, the platform components

launch adaptive applications on request (by the user or another application) and

manage the running applications which are competing for the resources of the de-

vice. Specifically, the platform components monitor the context and when significant

changes occur they reconfigure the running applications accordingly.

Figure 1: Adaptation conceptual model

Property annotations allow us to reason about how

well an application variant matches its context, by

comparing the properties of the services provided by

the application with the properties required by the user

and the properties expressing the resource needs of the

application with the property annotation describing the

resources provided by the current computing
infrastructure. The match to user needs is expressed in

a utility function. By default the utility function is a

weighted mean of the differences between properties

representing user needs and properties describing the

service provided by the application, where the weights

represent priorities of the user. However, the developer

may also provide a tailored utility function for an

application.

2.2. The adaptive application reference

architecture
The platform components rely on a runtime

representation of the application architecture and the

variability modeled there. The adaptation application

reference architecture defines architectural rules that

the applications must comply to in order to i) allow the

platform to construct the runtime representation of the

architecture and ii) enable consistent dynamic
reconfiguration of the application [9]. In addition it

defines a common vocabulary of context entity types

and properties. Since we aim to support independent

development of adaptive applications and individual

components, a common vocabulary is necessary to

ensure that shared resource and user context entities

are named and modeled consistently. It is based on the

UML QoS profile model [10].

The runtime representation of the application

architecture model is constituted by type and plan

objects. Each plan describes an implementation of a

component type. A component type implements the
entity type concept of the conceptual model. As shown

in Figure 2, there are two main types of plans. A

Blueprint Plan represents a component that is atomic

from the architectural point of view, and typically

refers to one or more classes that can be used to

instantiate the component. A Composition Plan

describes a component which will be realized as a
composition of other components. The composition is

described through a set of roles played by the internal

components, where each role refers to the component

type which a component playing the internal role must

match. As the type of a role can match to a new

composition plan, any level of hierarchical structure

nesting can be achieved. In addition to the roles, the

composition plan defines the connections to establish

between ports of the contained components

(Connection Spec), and also defines how interactions

with ports of the composite component are delegated to

ports of the contained components (Port Delegation
Spec). Further, as the application can be part of a

distributed system, for each role the composition plan

describes on which node the component filling the role

will be instantiated (Node Deployment Spec). We

chose the name plan because a plan object serves as a

recipe for instantiating a component of a given type.

Blueprint Plan

Component

Type

Plan

1..*
Property Predictor

Function
0..*0..*

Connection

Spec

Node Deployment

Spec

Role

2
1

2
1

Composition

Plan

1..*1..*

0..*0..*
1..*1..*

Port Delegation

Spec

0..*0..*

1..*

matches

has

Figure 2: Plans

Each component type represents a potential

variation point, and variation is achieved by allowing a

set of plans to match the same component type

(opening also for runtime extensibility of the

application). This variation mechanism can be used at

any level of the hierarchy, for example directly to
define different variants matching the type representing

the adaptive application, or to match the component

type of a role used in a composition plan.

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on December 5, 2009 at 06:00 from IEEE Xplore. Restrictions apply.

Property annotations from the conceptual model are

implemented as property predictor functions associated

with the plan objects. Such functions can be specified

as constants, or as expressions involving the properties

of collaborating components, of part components or of

resources that the component needs.
To enable dynamic reconfiguration of applications

at runtime we have adopted a specialization of the

component configuration pattern [11]. Before starting

reconfiguration, the application must be forced into a

state where reconfiguration can be performed safely.

To support this, each component must implement an

interface allowing the platform to control whether the

component is active, suspended, or in an intermediate

state. The configurable component is responsible for

notifying the platform when it is finished initiating or

suspending its activity. When a component is in its

suspended state, the internal state of the component can
be retrieved and set, allowing transfer of the state of

components when one component is replaced by

another, or when the component migrates to another

node. In addition to the interfaces for controlling the

state, the components must also implement interfaces

allowing connections to be added and removed to the

component’s ports at runtime.

2.3. The Platform Architecture

Figure 3 shows the architecture of the adaptation

platform in terms of its main components and the

interactions between them.

Adapt-

ation

mgr

Config-

urator

Context

mgr

Planner

Core

Context

access

Instance

mgmt

Config-

uration

Context

sensor

Context

listener

Component

mgmt

Iteration

Resource

mgmt

Figure 3: Platform architecture

2.3.1. The platform components. The Core abstracts

the underlying execution platform and component

middleware and provides services for Component

Management, Instance Management and Resource

Management.

Component management supports publishing new

component implementations (atomic components or

compositions), and retrieving all published
implementations of a given component type during

application launch or adaptation. Since component

retrieval is done at runtime, new component

implementations will be considered as soon as they are

published and thus dynamic evolution of applications,

both in terms of functional and adaptation capabilities,

is supported.

Instance management supports controlling

components life cycle such as instantiate, remove,
bind, unbind, setting parameters, and start and stop of

component instances. This is made possible by reifying

the structure of components that is plugged into the
component framework. These components can be

either application components or context components

(i.e. context sensors and context reasoners).

Resource management reifies the underlying

computational resources by providing a uniform

resource model for access and monitoring. This service

also supports resources discovery, which is useful for

mobile applications where resources can be discovered

and added dynamically just like any other component.

The Context manager represents the active part of

the middleware architecture. It is responsible for
managing and monitoring a set of contexts in the

system environment relevant for the adaptation.

Context includes execution platform context elements

such as network and memory resources, the

environment context elements such as light and noise,

and user context elements such as location and stress

level. This information is collected, represented, and

stored using Context sensors. There are three main

kinds of context sensors: context probes that senses

context directly, context reasoners that aim to

aggregate, predict and derive new context information,

and resource sensors that uses the resource
management services of the core to monitor the

resources of the execution platform. Context elements

are delivered to the Adaptation Manager component

when appropriate. Further details on the context

management framework can be found in [12] where we

argue that context management should not be provided

as standalone context management modules but rather

be specified as an integral part of the platform.

The Adaptation manager is responsible for

reasoning on the impact of context changes on the

application, determining when there is a need to trigger
adaptation of the application, and for selecting an

application variant that best fits the current context. In

this process, it uses the Planner to find the set of

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on December 5, 2009 at 06:00 from IEEE Xplore. Restrictions apply.

Figure 3.4: Hallsteinsen et al. Approach

To demonstrate the practical applicability and usefulness of the MADAM ap-

proach, Hallsteinsen et al. have implemented a prototype adaptation platform and

3.3. Analysis of Approaches for System Family Reconfiguration 52

two industrial pilot applications in collaboration with the MADAM industrial part-

ners Condat and Integrasys. The pilot applications are based on existing commercial

mobile applications. The implementation was done in Java J2ME/CDC and some

experiments have been done on an iPAQ 5550 in a simulated context environment.

Hallsteinsen et al. Approach - The MADAM Approach

Scope Pervasive systems: Mobile devices

Variability

Specification

Conceptual model based on the notion of entities connected

through ports and the concept of entity type to represent

varibility.

Reconfiguration

Infrastructure

Property annotations associated with ports and a utility

function to determine the properties which matches a given

context.

AC Adoption Level 4 AC Relevance Support

Reinforcement Autonomos Maturity Stage 2

Table 3.4: Classification of Hallsteinsen et al. Approach.

3.3.4 White et al. Approach

White et al. [109] (see Table 3.5) address SPL that allow mobile devices to download

software configurations on-demand. When a device enters a particular context, the

application provider service must deduce and create a variant for the device. Given

the large array of device types and rapid development speed of new devices and

capabilities, the SPL will not be able to know about all device types a priori. As

devices enter a context, their unique capabilities must be discovered and dealt with

efficiently and correctly.

To address these SPL for online mobile software variant selection, White et al.

have developed a tool called Scatter that first captures the resources of a mobile de-

vice and then constructs a custom variant from the SPL to the device. That is, they

are addressing a cycle of device discovery, variant selection based on requirements,

and variant deployment.

First of all, White et al. specify the variant composition rules by means of a

3.3. Analysis of Approaches for System Family Reconfiguration 53

domain-specific language (DSL) named Scatter (see Figure 3.5 Left). Scatter allows

developers to visually model (1) the components of their PLA, (2) the dependencies

and composition rules of components, and (3) the nonfunctional requirements of

each component.

1. The Component element is the basic building block in the Scatter DSL that

represents an indivisible unit of functionality, such as a Java class or specific

feature.

2. Dependencies between components can be created by specifying a composi-

tion predicate (Required, Exclusive OR, Cardinality, or Exclusion) and the

Components to which the predicate should be applied.

3. The child requirement elements of a component specify the non-functional

requirements that must be satisfied by a device’s resources. Each requirement

has a Name, Type, and Value attribute associated with it.

Fig. 2: Scatter PLA Composition and Non-functional Require-

ments

variability in the PLA, developers build Component and Predi-

cate graphs that show the dependencies and composition rules

of the applications and their constituent pieces.

By capturing PLA compositional variability, developers can

formally specify how valid variants are composed. With a

formal specification of the variant construction rules, Scatter

can then automatically explore the variant solution space to

discover all valid compositional variants of the PLA for a given

device, as discussed in Section IV.

C. Non-functional Requirements Capture

One challenge when building a tool to model a PLA’s non-

functional requirements is providing a mechanism that not

only allows modelers to express a wide variety of constraint

types, but also captures them in a form that can be operated on

by a constraint solver. At one end of the spectrum are textual

specifications, such as “this component should only be de-

ployed to devices located in the first-class cabin running Palm

OS.” Although these specifications are intuitive to produce and

understand, they are imprecise in meaning and require manual

translation to the format expected by a constraint solver.

At the other end of the spectrum are the native formats,

such as matrices representing systems of linear equations or

constraint networks, used by constraint solvers to specify

requirements, such as required OS. These native constraint

solver formats are easy to operate on with a constraint solver.

It is hard, however, to map these formats back to the variant

selection for mobile devices, which makes it hard for applica-

tion developers and quality engineers to use.

Scatter provides a graphical modeling tool to address this

challenge and allow developers to express requirements. To

specify non-functional requirements, users drag-and-drop re-

quirements from the palette onto components. The child re-

quirement elements of a component specify the non-functional

requirements that must be satisfied by a device’s resources.

Each requirement has a Name, Type, and Value attribute

associated with it:

• The Name specifies the name of the resource on the

device that it is restricting.

• The Type specifies the type of requirement, either ’>’,

’<’, ’=’, ’=<’, ’>=’, or ’−’.
• The Value indicates the target amount of the resource to

which constraint is being applied.
For example, if a JVM with a version greater than 1.2 is

needed, the requirement would have the Name ’JVMVersion’,

Type ’>’, and Value ’1.2’. For a Resource constraint, such as

the amount of memory consumed by a software component,

the ’−’ Type is used, e.g., if a component consumed 200kb

of memory, the constraint would be Name ’RAM’, Type ’−’,
and Value ’200’.

Scatter’s approach strikes a careful balance between expres-

sivity and formalness outlined above by blending both the

flexibility and intuitiveness of a textual approach with the

concrete meaning of a constraint solver format. The Name

can be any string and thus modelers can create meaning by

providing very descriptive names. The Type provides a clear

definition of how the constraint is compared to the resources

available on a candidate device. The Type also indicates

exactly which constraint solver must be used to analyze the

constraint.

All types, except the ’-’ type, are local constraints gov-

erning the placement of one component and are solved by

an inferencing engine. These constraints are considered local

because their satisfaction is independent of the satisfaction of

constraints for other components. For example, if a component

requires a specific OS, that constraint does not restrict which

other components it can be deployed with. If a component

consumes a certain amount of memory, however, its placement

on a device will restrict the other components that can be

placed with it.

A key challenge in a pervasive environment is that variant

selection must take into account requirements based on busi-

ness and context data. For example, on a train, the first-class

and coach-class cabins may offer different meal services. In

coach, travelers may be able to pre-order food via a mobile

phone application, but still must physically go and pickup the

food. In first-class, however, train staff may be required to

deliver food orders to a traveler’s seat.

For first class, therefore, a variant that provides a component

for notifying the ordering system of where the traveler is

sitting may be required while it would not be required in

coach. Cabins may also offer different meal selections or meal

prices, in which case the variant selection must account for

the location-based rules when selecting which menu to deliver

with the ordering service. This train variant selection scenario

is shown in Figure 3.

At one extreme, a tool can limit the types of constraints

that can be solved to a small subset that is considered most

important. At the other extreme, a tool can allow developers

to capture any type of constraint, but provide no guarantee

of having a way of deducing a variant that satisfies them.

Capturing a wide variety of these types of non-functional

business and location-based constraints is hard.

Fig. 3: Cabin Class Constraints for Train Menu Variant Selec-

tion

Scatter employs a strategy that focuses on allowing the

datasources to change while the types of constraints remain

constant. This strategy allows it to capture and solve a wide

variety of constraint types. For example, a modeler could

specify the constraints:

JVMVersion > 1.2

WifiCapable = true

CabinClass = first

CPU - 100

RAM - 200

DisplayHResolution > 128

DisplayVResolution > 64

This specification mixes multiple different types of domain

constraints. A segment of a Scatter requirements model show-

ing these constraints is seen in Figure 4. The JVMVersion

constraint relates to the software stack on the device, CPU

and RAM are resource consumption constraints, WifiCapable

and DisplayXResolution are hardware capability constraints,

and CabinClass is a business/location based constraint.

The restrictions imposed by the specification format are

only on the types of comparisons that can be done and not

on the data that the comparison is based upon. This freedom

in constraint specification allows Scatter’s variant selection to

incorporate a large array of datatypes that a device discovery

service could provide. This setup allows other services to pre-

process the data used by the variant selector and thus allow it

to operate on very complex data sets.

For example, context processors based on GPS or RFID

can calculate a device’s position or type and correlate cabin

class. Business-rule engines can calculate customer priorities

and provide business analysis. Scatter’s architecture thus holds

constant the complex portions of variant selection—the con-

straint solvers—while still allowing the incorporation of new

datatypes from a discovery service. For scenarios where other

Fig. 4: Capturing Mixed Non-functional Requirement Types

in Scatter

types of constraints are needed, Scatter provides mechanisms

for plugging in new types and solvers.

D. Discovery and Device Signatures

The non-functional properties of a device, such as

JVMVersion and CabinClass, can be used by the variant

selection engine to select a variant only if values are provided

for them. The values for these variables can be obtained from

a mobile device discovery service, as shown in Figure 5.

Fig. 5: Scatter Integration with a Discovery Service

Scatter exposes a SOAP-based web service and a CORBA

remoting mechanism for remotely communicating device char-

acterizations as they are discovered. The properties of a device

are reported back to Scatter as key/value pairs. The keys match

the names of the non-functional properties constrained by the

non-functional requirements in the Scatter graphical model.

As discussed in Section IV, these constraints and key/value

Figure 3.5: White et al. Approach

Given a Scatter specification, a compiler converts the graphical models from

the Scatter modelling tool into a both a Prolog knowledge base and a Constraint

Satisfaction Problem (CSP) [110] that can be operated on using a Prolog constraint

solver.

This knowledge base about a system family of devices, is used by the variant

selection engine to select an optional variant for a discovered mobile device. The

3.3. Analysis of Approaches for System Family Reconfiguration 54

properties of the discovered device can be obtained from a mobile device discovery

service.

The device discovery service communicates discovered devices to Scatter’s variant

selection engine. The remoting mechanism allows the discovery service to report

back key device nonfunctional properties, such as OS, memory, and CPU speed.

Scatter exposes a SOAP-based web service for remotely communicating device

characterizations as they are discovered. The properties of a device are reported

back to Scatter as key/value pairs (see Figure 3.5 right). The keys match the names

of the non-functional properties constrained by the non-functional requirements in

the Scatter graphical model. Then, these constraints and key/value pairs are used

by the variant selection engine to filter the list of variants that can be deployed to

a device.

The variant selection engine, based on a Prolog constraint solver, automati-

cally select a correct and optimal variant for the discovered device. The Scatter

selection engine feeds the device specification, provided by a discovery service, and

Prolog knowledge base created by the Scatter compiler, to the constraint solver.

The selection engine then translates the results from the constraint solving back

into configuration decisions for the variant.

The configuration decisions determine the software components that conform the

variant for the discovered mobile device. Finally, these components are send and

deployed in the mobile device.

White et al. Approach - The Scatter Tool

Scope Pervasive systems: Mobile devices

Variability

Specification

Scatter DSL: Specification of the Components and Resources

of the Mobile Device

Reconfiguration

Infrastructure

Device discovering through SOAP-based web service and

variant selection by Prolog constraint solver

AC Adoption Level 5 AC Relevance Core

Reinforcement Autonomic Maturity Stage 2

Table 3.5: Classification of White et al. Approach.

3.3. Analysis of Approaches for System Family Reconfiguration 55

3.3.5 Trinidad et al. Approach

Trinidad et al. [111] (see Table 3.6) argue that a SPL may be the approach that fits

better to build dynamically adaptable products, because modelling techniques that

represent an SPL can be used to describe all the products which can derive from

the original one.

In particular, they suggest to use feature models to model the potential states

or configurations of a product. Then, they propose a process for the generation

of a component architecture from a feature model. The generated architecture is

able to activate or deactivate features making use of a configurator component that

performs some analysis operations on feature models to make decisions.

Overall, Trinidad et al. map each feature of the feature model (see Figure 3.6

left) into a component of the architecture (see Figure 3.6 right). This mapping is

a two step proces: (1) Defining the core architecture (features that are common to

every product), and (2) Defining the dynamic architecture (features that are specific

of a particular set of products).

1. Defining the core architecture. To perform this mapping, they create a

component for each feature. The components will connect among them de-

pending on the relationships among features in the feature model. For each

hierarchical relationship between a parent feature and a child feature, a depen-

dency from the parent component to the child component is created. For each

cross-tree constraint (depends and excludes relationships) a dependency in the

direction of the constraint is created between the respective components.

2. Defining the dynamic architecture. To introduce dynamic adaptation in

the architecture, a feature component will provide a set of interfaces that will

vary from its responsibilities, and will require some functionalities to its child

features by means of input interfaces. To connect the features each other,

a relationship component will be created for each relationship in the feature

model. A relationship component provides and requires the interfaces of the

feature components that it joins, acting as an intermediary among feature

components.

3.3. Analysis of Approaches for System Family Reconfiguration 56

Furthermore, each feature component is coupled with relationship components

that must be aware of any de/activation that affects the features it links. For this

reason, all the relationship components must also provide a Relationship interface

for the coupled features to communicate any change in their state.

��������	
�

��
�
� ���
�����
����
�������

��������
� ��� �����

�������� ������

����������

���� �!

"����
��
	���#�

���$%�����	�

%&
%'

%(

%)

%*
%+

,-..(/ %0

%1

������	

������
� 2���	���������
�

%�3��
�� �4������

,-..'/,&..'/

������#�

Figure 2. Feature Model describing the TV platform SPL case study

Step 2: Defining the dynamic architecture

For each remaining features, a feature component is cre-

ated that provides the Feature interface. The relationship

components must be added now. R4, R6, R7 and R8 rela-

tionship components are created and connect the respective

feature components. As R4, R6 and R7 relationships in the

feature model link a core feature with a non–core one, they

are considered as part of the core architecture.

Step 3: Adding the configurator

The configurator component is added and coupled with the

non–core features. As it can be seen, the configurator is not

coupled with the relationships, as it is responsibility of the

feature components to communicate them any change in the

configuration.

The component model is generated at this point and de-

picted in Figure 3. Although it is not depicted in the com-

ponent model, it is important to remark that the Basic UI

component is in charge of de/activating any non–core fea-

ture and controlling any update of the feature components.

Step 4: Defining the initial product

Depending on the customer, the initial product have to be

defined. For example, we can just activate the features

needed to broadcast a TV signal with no effect, that will

imply to initially activate only the TV Capture compo-

nent.

Case Study Conclusions

In the resultant component model, if a customer demands

a new kind of layer, only a component that implements the

Layer interface must be developed. However, this change

will affect the feature model by adding a new feature in

the R4 relationship, so the configurator component must be

conscious of that change. This process will be analogous

for effects and user interfaces.

5 Feature Models Analysis Operations

In any resultant model following the proposed mapping,

the configurator component plays a determinant role in the

dynamic behaviour of a product. This component must

know the SPL feature model and extract relevant informa-

tion to make decisions. From the responsibilities assigned

to the to the configurator component and the operations

needed for the mapping process, we determine the analysis

operations on feature models that we need, and how current

proposals give solutions to them:

• Determining the core–assets: in the first step to pro-

duce the component model, it is necessary to deter-

mine which are the features that compose the core ar-

chitecture. Commonly, the core architecture is com-

posed by those features that are shared by every prod-

uct. However in some cases there are features which

commonality is so high that it is interesting to consider

them to be core features. In [13] a solution is given

for this operation supported by the commonality fac-

tor which calculus and implementation based on con-

straint satisfaction problems(CSP) is described in [4].

R7

Effects

Relationship

Core Architecture

Black&White

Lumma Key

Chroma Key

Feature

Feature

Feature

Configurator

Figure 3. Component model for the TV platform SPL case study

• Determining if a product is valid: either for the initial
configuration of aproduct or for any changesuggested
to the configurator, it must be checked whether it is
possible to configure the product with the demanded
features. Thisanalysisoperation isdescribed by Bena-
vides et al. [4] and an implementation that uses CSP
solvers isproposed.

• Propagating decisions: when a feature is de/activated
it usually has consequences for other features and
relationships. To determine which are the features
affected, Logic Truth Maintenance Systems(LTMS)
and SAT solvers can be used to propagate feature
de/activation[1].

• Explanations: in some cases, some features are de-
manded to be de/activated but the resultant product is
not valid. In productssuch as real–timeor critical sys-
tems it is important to de/activate a feature indepen-
dently from the current configuration. The configura-
tor must de/activatethefeaturesand reachavalidprod-
uct. Explanations are used to determinewhich are the
additional featuresthat must bede/activated to become

theproduct valid. Thisoperation isfirstly described in
[2] and implemented to detect and explain modeling
errors in featuremodels in [15]. The proposed imple-
mentation that uses CSP solvers, could be adapted to
support the forementioned caseof explanation.

Theseoperationsimplementation reliesonbothCSPand
SAT solvers to implement the solutions. The configurator
could make use of the multiparadigm structure of FAMA
tool [5] to support all theseoperations. However, thequick-
est response is needed for every operation, as they must be
performed at run–time. As commented in Section 6, it is
needed a benchmark of current implementations to deter-
mine thebest techniquesand algorithms that could be inte-
grated into Configurator component.

6 Conclusionsand FutureWork

A process to automatically build a component model
from a featuremodel is proposed based on the assumption
that a feature can be modeled as a component. This ap-
proach can be useful in a service-oriented SPL where each

Figure 3.6: Trinidad et al. Approach

To provide the dynamic behaviour, Trinidad et al. incorporate a reconfigurator

component in the architecture. This reconfigurator communicates with every feature

for de/activation. This is the reason why every feature component must provide a

Feature interface that allows the feature de/activation.

Determining if a target configuration is valid is also responsibility of the reconfig-

urator. Either for the initial configuration of a system or for any change suggested,

it must be checked whether it is possible to configure the system with the demanded

features. This analysis operation is described by Benavides et al. [21] and an im-

plementation that uses CSP solvers is proposed.

Finally, the initial configuration of the product will be defined by a selection of

the non-core features that will be initially active. The reconfigurator component will

be in charge of activating the selected features when the product is firstly launched.

Trinidad et al. approach has successfully been applied to generate an industrial

real-time television. The system broadcasts a video composed by software, mixing

TV signals, stored videos, Flash animations and any other kind of images or layers.

Some kinds of effects can applied to the layers, such as black and white effect and

lummakey and chromakey effects. Different user interfaces (UI) are needed to inter-

act with the application. At least a basic UI that allows managing layers and effects

3.3. Analysis of Approaches for System Family Reconfiguration 57

is required. Other UI are demanded to schedule TV compositions and to download

SMS messages from a server and sending it to a Flash animation.

Trinidad et al. Approach - Mapping features intro components

Scope Multimedia systems: Industrial real-time television

Variability

Specification

Feature Model taking into account the cross-tree constrains

(requires and excludes)

Reconfiguration

Infrastructure

Feature componentes with multiple interaces, relationship

components to connect the former components and a recon-

figurator to drive the dynamic behaviour.

AC Adoption Level 4 AC Relevance Core

Reinforcement Autonomous Maturity Stage 2

Table 3.6: Classification of Trinidad et al. Approach.

3.3.6 Mori et al. Approach

Mori et al. [112] (see Table 3.7) present a new approach where they address chal-

lenges in adaptive system construction and execution by combining certain aspect-

oriented and model driven techniques. Models cope with complexity through ab-

stractions and are used both to specify the dynamic variability at design time and

to manage run time adaptations.

The variant models capture the variability of the adaptive application. The

actual configurations of the application are built at run-time by selecting and com-

posing appropriate variants. An adaptation model specifies which variant have to

be selected depending on the context of the running application.

Specifically, they propose to model the variants instead of the configurations.

Then, the configurations can then be built by automatically combining the variants.

In practice this is achieved using Aspect-Oriented Modelling techniques for archi-

tecture models. Aspect oriented techniques are utilized to model the adaptation

concerns separately from the other aspects of the system. The architecture models

is a generic component model representing the main concepts needed to describe the

topology of running systems: components, binding, ports, etc (see Figure 3.7 left).

3.3. Analysis of Approaches for System Family Reconfiguration 58

Figure 3.7 right presents the conceptual model of the proposed approach. The

approach is divided in two phases; design time and run-time. At design-time, the

application base and variant architecture models are designed and the adaptation

model is built. At run-time, the adaptation model is processed to produce the

system configuration that should be executed.

is a generic component model representing the main concepts needed to describe the
topology of running systems: components, binding, ports, etc.

In SMARTADAPTERS, an aspect is composed of three parts:i) a graft model, rep-
resenting what wewant to weave, ii) an interfacemodel, representing wherewewant
to weave the aspect and iii) a composition protocol specifying how to weave the graft
model into the interface model. The graft model is a model fragment representing a
given concern. The interfacemodel is amodel fragment parameterized by roles allow-
ing theinterfacemodel to bematched in different basemodels. Finally, thecomposition
protocol isdescribedby model transformationprimitivesthat manipulateelementsfrom
thegraft and the interfacemodels.

4.2 Application to theServiceDiscovery Example

For handling the functionalities of the service discovery, the application is separated
into abasemodel and two aspects. Thebasemodel contains thecommon components:
Policy, Cacheand Network.

The first aspect corresponds to the user agent (UA) role and is illustrated in the
left part of Figure4. Thegraft model containsall thecomponentsand bindingsneeded
to realize the functionality of the UA role. The interface model contains all the base
componentsneeded to integrate thegraft model: Policy, CacheandNetwork. Thecom-
position protocol, represented by the interconnecting lines, specifies how to weave the
graft model into the interface model. It consists in binding components of the graft
model to components of the interfacemodel, and vice-versa. Similarly, the second as-
pect corresponds to the service agent (SA) role and is illustrated in the right part of
Figure4.

Fig. 4. User Agent and ServiceAgent aspect

These two aspects allow building the three functional configurations of the service
discovery application. Weaving only the User Agent aspect leads to the User Agent
configuration, weaving only the Service Agent aspect leads to the Service Agent con-
figuration and weaving both aspects leads to theDiscovery Agent configuration.

We have illustrated the approach using the variability on the functionalities of the
application but the variability on the network protocols is handled similarly. Four as-
pects have to be defined for each of the four protocols and these aspects have to be

Fig.3. Conceptual model of theapproach

the requirements of the system, refined during design and used at runtime to manage
adaptation. It ismadeof four main elements:

– Var iants. This part of the model makes references to all the available variability
for theapplication. Depending on the complexity of the system, it can beasimple
list of variants, adatastructure likeahierarchy or acomplex featuremodel.

– Dependencies. The dependencies specify constraints on variants that can be used
inaconfiguration. For example, theuseof aparticular functionality (variant model)
might require or excludeothers. Theseconstraints reduce the total number of con-
figurationsby rejecting invalid configurations.

– Context model. The context model is a minimal representation of the environ-
ment of the adaptive application to support the definition of adaptation rules. We
only consider elementsof theenvironment relevant for expressing adaptation rules.
Theseelementsareupdated by sensorsdeployed on the running system.

– Adaptation rules. These rules specify how the system should adapt to its envi-
ronment. In practice these rules are relations between the values provided by the
sensorsand thevariants that should beused.

During runtime appropriate configurations of the application have to be built from the
base and variant models. To select the appropriate configuration, the reasoning frame-
work processestheadaptationmodel andmakesadecisionbasedon thecurrent context.
Theoutput of thereasoning framework isoneor moreoptionsthat match theadaptation
rules and satisfies the dependency constraints. For each of these options the complete
model of the corresponding configuration can be built at runtime using model compo-
sition.

Because the idea of the approach is to build configurations on demand rather than
enumerating all configurations, each new configuration has to be validated at runtime.

Figure 3.7: Mori et al. Approach

During run-time appropriate configurations of the application have to be built

from the base and variant models. To select the appropriate configuration, the

reasoning framework processes the adaptation model and makes a decision based on

the current context. The output of the reasoning framework is one or more options

that match the adaptation rules and satisfies the dependency constraints. For each

of these options the complete model of the corresponding configuration can be built

at run-time using model composition.

Because the idea of the approach is to build configurations on demand rather than

enumerating all configurations, each new configuration has to be validated at run-

time. The role of the validation framework is to process the configuration proposed

by the reasoning framework in order to select the ones that are safe to deploy in the

running system. The validation framework checks that the architecture model of

the configuration is correct with respect to the constraints and protocols associated

to the components it contains.

Once a configuration has been selected by the reasoning framework and checked

3.3. Analysis of Approaches for System Family Reconfiguration 59

by the validation framework, it can be deployed in the running system. To ease the

adaptation of the running system, a model representing the system at a higher level

of abstraction is causally connected to it. This model is transformed to match the

configuration that has been selected for adaptation. The running system is adapted

thanks to the causal connection. Because the connection goes in both directions, it

also allows checking that the system is actually running the required configuration.

Mori et al. Approach has been successfully applied in the context of mobile com-

puting environments applications. These applications need to dynamically discover

services from a wide range of options that may be unknown during design. How-

ever, their approach is applicable on many execution platforms since their models

at run-time are provided as platform independent models.

Mori et al. Approach - Combining model driven and aspect oriented

Scope Dynamic service discovery for mobile applications

Variability

Specification

Architecture models and Aspect-oriented modelling tech-

niques

Reconfiguration

Infrastructure

A reasoning framework decides on a set of aspects according

to the new context, and a new configuration the application

should adapt to is created by weaving these aspects. Then,

reconfiguration commands are responsible for adding and/or

removing bindings and/or components, etc.

AC Adoption Level 5 AC Relevance Support

Reinforcement Autonomic Maturity Stage 3

Table 3.7: Classification of Mori et al. Approach.

3.3.7 Hallsteinsen et al. (MUSIC) Approach

Hallsteinsen et al. [113] (see Table 3.8) argue that Dynamic Software Product Lines

offers a suitable development model for developing configurations of many inde-

pendently developed systems which use services from and provide services to each

other.

They propose to combine (1) DSPL Architectures and (2) Service Level Agree-

3.3. Analysis of Approaches for System Family Reconfiguration 60

ments (SLAs). SLA negotiation coordinates the configuration of a set of interacting

systems by introducing service requests and service offers as a kind of dynamic

variation point. This combination is realized in the MUSIC approach as follows.

1. DSPL Architectures. In the MUSIC framework the adaptation middleware

monitors relevant context and resources. When significant changes occur it re-

configures the application to the configuration which has the highest utility in

the new situation among the ones satisfying the resource constraints. Variation

points are characterized by properties which vary between their variants (see

Figure 3.8 left). These properties express functional and/or QoS properties

of the provided service. The properties and the resource needs of an applica-

tion variant are computed by predictor functions based on the properties and

resource needs of the included component variants.

2. SLA negotiation. This negotiation enables late binding of services at run-

time between a consumer and a provider. Through SLA negotiation, both

the provider of the service and the conditions of the service usage may vary.

Service bindings is a natural extension of the repertoire of variation points

supported by the MUSIC framework and fits into the model. The discovered

services with different offered SLs will be the variants that can be selected

from and bound by SLA negotiation (see Figure 3.8 right). This is different

from component variant binding since the client does not need to provide the

resources to execute the service implementation.

Assuming a system of systems where all systems are built as DSPLs with util-

ity and property predictor based decision models as described above, Hallsteinsen

et al. propose that each system is configured separately but the configuration is

coordinated through SLA negotiation.

In the system of systems, each system has a reasoner or planner working indepen-

dently for local reconfiguration based on the decision models and run-time context.

The planners also collaborate with each other to achieve best utilities by selecting

and binding services via SLA negotiation. High level policies are applied to govern

3.3. Analysis of Approaches for System Family Reconfiguration 61

2. Variation points and decision models

There are basically three main approaches which

have been proposed for the description of decision

models for self-adaptation: (i) situation-action

approaches where adaptation rules specify exactly

what to do in certain situations [2], (ii) goal-based

approaches where goals describe high-level objectives

that the self-adapting system should attempt to fulfill

[3], and (iii) utility functions-based approaches where

utility functions assign a utility value to each

application variant as a function of application

properties, context and goals [4][5].

We have chosen to apply utility functions in the

MUSIC approach [6] for several reasons. Firstly, the

analysis of mobile scenarios shows that the selection of

the “best configuration” is complex as it requires

reasoning on dependencies between context elements,

adaptation forms and concurrent forms. Utility

functions enable us to express such dependencies.

Secondly, unlike situation-action approaches, the

actions needed to reconfigure to a new configuration

are not explicitly described, but derived at runtime by

the middleware. Thirdly, a decision model for a set of

applications competing for shared resources can be

built automatically from the model associated with

each application by simply combining the variation

and decision models.

The drawback, however, is that the computational

complexity of finding a variant is exponential in the

number of variation points. Ways to deal with this has

been discussed elsewhere [7] [9] and are outside the

scope of this paper.

In the following we describe the MUSIC approach

in more detail. Variation points are modelled explicitly

in the architecture model. This model is represented at

runtime and is exploited by the adaptation middleware

to reconfigure the software dynamically in response to

changes in the user needs and available computing and

communication resources.

Variation points are characterized by properties

which vary between their variants. These properties

express functional and/or QoS properties of the

provided service. In addition, software variants differ

in terms of the computing and communication

resources they need in order to execute. Hardware

variants differ in terms of energy consumption, which

is of great importance in underwater sensor networks.

annotation of the architecture model has to be

provided by the developer.

Rm+1 Rm+2

r
i,1,m

+1

 Pk

AiAiAi

 Pk+1 Pk+2

User

c
k ,w

k

ck+2,wk+2

Aivi,1

p i,1
,k+2

Vi+1Vi

ri,1,m+2

Resources:

Variants:

Properties:

Utility:

Rm

r
i,1

,m

p
i,

1
,k

r
i+1,1,m+3

Rm+3

vi+1,1

Variation

points:

Figure 1. Relation between basic concepts

The properties and the resource needs of an

application variant are computed by predictor

functions based on the properties and resource needs

of the included component variants. Such property

More formally, the basic concepts in the MUSIC

approach are represented in Figure 1. A system has I

variation points V1,…,VI. Each variation point Vi has

N(i) variants vi,1,…,vi,N(i). The variants of a variation

point vi,j requires ri,j,m resources of resource type m. In

total, there are M resource types 1,…, M. Each

resource type m has its resource limitation Rm.

Examples of resource dimensions are processing

requirements in terms of average instructions per

second, disk and memory storage requirements, and

network bandwidth requirements. For each resource

type m, the total resources consumed must be less than

or equal to the available resources Rm:

MmRr m

I

i

i ,,1,
1

 !"
#

$
%
&

'
(

The variants of a variation point are characterised

by one or more properties. There are K varying

properties Pk, and each variant vi,j has the properties

pi,j,k.

Based on the predicted properties of an application

variant and the user preferences, a utility U is

calculated. This utility is a number between 0 and 1

and the function to calculate it is defined by the

developer. Typically it has the form of a weighted sum

of dimensional utility functions uk, each expressing

how well the variant satisfies the user preferences in

that dimension:

29

Adaptive provider system B

service
Adaptive client systemAdaptive provider system A

Application

variant 2

Middleware for Planner

Service S

Middleware for Planner

Service discovery

Monitor SLA

SLA negotiation

Service discovery

Monitor SLA

SLA negotiation

Application

variant 1

S{a}

S{b}

bind

S’

S’

select

Figure 2: Coordination by SLA negotiation

When a planner selects a service with a certain SL

in a configuration, a negotiation process for the desired

SL will be initiated with the corresponding service

provider. If the negotiation process is successful, a

SLA is established, and the service is provisioned and

can be used with the SL agreed. If a SLA could not be

created, the local planner will select another variant

and enter into a similar negotiation process.

SLAs need to be monitored to ensure that the

provided QoS conforms to the service level guarantees

defined in the SLAs. If a SLA is violated, the SLA will

be terminated and a re-adaptation will be triggered at

client side. The client planner will discard the related

service variant and replace it with another service

variant by new SLA negotiations. In this way, the

systems will collaborate in the service provision and

use dynamically.

High level policies can be defined and incorporated

into the decision model. The goal is to maximize the

local utility or global utilities. Policies can guide the

planner to balance between satisfying local user’s

needs and providing services to other systems. For

example to decide whether to provide and publish a

service to others to achieve better combined utilities

for the whole system or withdraw a published service

to maximize the local utility. In the MUSIC

framework, such policies can be launched through

context distribution and works by influencing the

utility functions of the involved systems, either directly

or through the relative weighting of properties.

With this approach we alleviate the variant

explosion problem, but at the expense that we cannot

guarantee an optimal solution at the system of systems

level. However, by building into the local decision

models the ability to take into account global goals and

policies, we think we can achieve systems of systems

which tend to respect global concerns to a sufficient

degree.

5. Case study

The case study is from the domain of environmental

monitoring of the seas, and involves a number of

underwater sensor nodes taking measurements, and

communicating these to a central measurement

database, either through buoys, passing ships or

autonomous underwater vehicles (AUVs) which

collect data from the sensors more or less regularly.

The sensor nodes collaborate with the buoys, AUVs

and ships through data transfer services offered by

each of these. Acoustic communication is employed

under water. This implies a highly limited transmission

capacity, long delays and a high ratio of energy per bit

compared with electromagnetic communication.

Furthermore these parameters vary over time and with

the depth due to variations in the temperature and

salinity of the water. Communication modes include

both directional and broadcast links. Service discovery

uses a broadcast message to find all potential service

providers, while directional links are preferred for

transfer of measurement data in order to save energy

and to minimize interference with other nodes.

The transferring nodes (buoys, boats and AUVs)

will vary the quality of service offered depending on

the current situation. For example, if the AUV is close

to a ship or buoy which has radio connection to the

central database, the transfer delay (Pdl) is short, while

if it has no outward connection and need to buffer the

received data until a possibility to transfer them occurs,

the delay is longer. If a transfer node is short of power

or memory it will signal this by increasing the

forwarding cost (Pfw).

Both the sensor nodes and the transfer nodes may

choose to do data compression to reduce

communication and forwarding cost, at the expense of

increased local processing.

AUV
Sensor

Node

Buoy

Ship

Satellites

Measurement

database

Figure 3: Sketch of scenario

31

Figure 3.8: Hallsteinsen et al. Approach

the planner’s decision, in particular, on adjusting the weights of the utility functions

according to the run-time context.

Typically, a node is considered as a system. Each node can provide services to

others (as a provider or server). At the same time, it can also use services provided

by others (as a consumer or client). When a node is hosting a service, it will publish

the service using specific service discovery technologies.

The client can discover published services based on service discovery mecha-

nisms. Discovered services with published SLs are considered variants which the

local planner can incorporate into the planning and adaptation process for local

reconfiguration. Services of the same type with different providers are considered as

different variants. In addition, if a service is published with optional SLs, each SL

is considered to be a variant.

When a planner selects a service with a certain SL in a configuration, a nego-

tiation process for the desired SL will be initiated with the corresponding service

provider. If the negotiation process is successful, a SLA is established, and the

service is provisioned and can be used with the SL agreed. If a SLA could not

be created, the local planner will select another variant and enter into a similar

negotiation process.

The MUSIC approach using the SLA negotiation introduced above has been

validated in a sea monitoring case study. This case study involves a number of un-

derwater sensor nodes taking measurements, and communicating these to a central

measurement database, either through buoys, passing ships or autonomous under-

3.3. Analysis of Approaches for System Family Reconfiguration 62

water vehicles (AUVs) which collect data from the sensors more or less regularly.

Hallsteinsen et al. Approach - MUSIC + SLA negotiation

Scope Service-Oriented Architectures: Sea monitoring case

study

Variability

Specification

Conceptual model based on the notion of entities connected

through ports and Service Level Agreements

Reconfiguration

Infrastructure

(1) Property annotations associated with ports and a utility

function to determine the properties which matches a given

context, and (2) Service Level Agreement negotiation

AC Adoption Level 5 AC Relevance Support

Reinforcement Autonomic Maturity Stage 2

Table 3.8: Classification of Hallsteinsen et al. Approach.

3.3.8 Parra et al. Approach

Parra et al. [114] (see Table 3.9) argue that using an SPL paradigm to build context-

aware systems based on SOA services, enables a complete service development from

requirements to implementation, and a management of context throughout the soft-

ware lifecycle.

Specifically, Parra et al. propose an homogeneous Context- Aware Dynamic

Service-Oriented Product Line (DSOPL) named CAPucine. Their goal is to define at

the same time a service-oriented and context-aware product derivation that monitors

the context evolution in order to dynamically integrate the appropriate assets in a

running system. This target platform follows the service-oriented approach.

CAPucine is based on a model-driven approach. For every selected feature in a

Feature model (see Figure 3.9 left), there is an associated asset that in CAPucine

case, corresponds to a partial model of the product itself. Afterwards, CAPucine

compose the selected partial models to have one integrated model that represents

the product.

The next step is to transform this model to enrich it with concepts of the plat-

form, and the implementation language. This is done by performing a series of model

3.3. Analysis of Approaches for System Family Reconfiguration 63

to model transformations towards the platform and the implementation domains.

Finally, the product is built by generating the code from the target domains.

The code generation produce the context-aware assets that can be integrated at

run-time. The run-time integration depends on the environment state. Context-

aware assets own the different alternative architectures of a system and their con-

ditions of existence that depend on the environment state.

Our claim is that using an SPL paradigm to build
context-aware systems based on SOA services, enables a
complete service development from requirements to imple-
mentation, and a management of context throughout the
software lifecycle.

In this paper, we propose an homogeneous Context-
Aware Dynamic Service-Oriented Product Line (DSOPL)
named CAPucine. Our goal is to define at the same time
a service-oriented and context-aware PD that monitors the
context evolution in order to dynamically integrate the ap-
propriate assets in a running system. Our target platforms
follow the service-oriented approach. We use FraSCAti
[24], an SCA platform with dynamic properties enabling
binding and unbinding of components at runtime. We also
emphasize in the use of sensed information from the envi-
ronment, to dynamically realize the PD. In particular, we
are based on COSMOS [26], which is a context-aware
framework connected to theenvironment by theuseof sen-
sors. Thanksto COSMOS, theenvironment isabstracted by
aset of softwarecomponents— theso called context nodes
— that offer runtime operations reflecting the environment
state.

The reminder of this paper is organized as follows. In
section 2, we present a motivating scenario that will be re-
ferred throughout the paper to illustrate our approach. Sec-
tion 3 introduces our proposal for a context-aware product
derivation. Section 4 describes the product derivation tech-
nologies and implementation for the motivating scenario.
In section 5, webriefly compareand position our work with
other proposals found in the literature. Finally, in section 6,
weconcludeand present some ideas for futurework.

2 Motivation

Theobjectiveof thispaper isto provideaContext-Aware
DSOPL. The DSOPL needs to be able to derive service-
oriented products and to monitor their context in order to
adapt their architecture at runtime. In this section, we
present amotivation scenario (seesubsection 2.1) that high-
lights thechallenges (seesubsection 2.2) to beaddressed in
order to build such DSOPL.

2.1 Scenar io

Our scenario consists in defining a DSOPL that builds
a family of systems used to obtain and display information
about movies. In SPL, feature diagrams are used to clas-
sify all the requirements that can be fulfilled by the prod-
uct family [29]. Figure 1 presents such a diagram for the
movie system family, using the notation presented in [10].
In this diagram, features are presented in a tree-like form.
Dark circles of every connection represent mandatory fea-
tures whereas white circles represent optional features. An

MoviesApp

DB

Remote

Network

Wifi BluetoothLocal

CachePolicy

Figure 1. Feature model of the Movie System

inverted arc represents a set of alternative features meaning
that exactly one featurehas to bechosen.

The feature diagram of Figure 1 expresses the fact that
all movie systems derived from the SPL require a Graphic
User Interface (GUI), a Database (DB), a Net wor k
I nt er f ace, and optionally a GPS. Moreover, it defines
that the DB can be either Remot e or Local . If the
database is remote, then the movie system has a Cache
Pol i cy. The Cache Pol i cy enables the system to de-
cide whether it first queries the information in the cache
or in the Remot e DB. Finally, the feature diagram defines
that theGUI can beeither Ri ch or Thi n, that theGPSmay
be present as a Bui l t - i n device and that the network in-
terfacemay correspond either to Bl uet oot h or Wi f i .

To deriveafinal product, thefirst step is to select from a
featurediagram the list of features that has to besupported.
This list of featuresshould becompliant with theconstraint
of the feature diagram. For our scenario, we propose to se-
lect the following features: Ri ch GUI , Remot e DB with
Cache Pol i cy and Wi f i Net wor k. This list is com-
pliant with the constraints defined by the feature diagram.
Indeed, all mandatory featureshavebeen selected (GUI , DB
and Net wor k), the Remot e DB has been selected as the
Cache Pol i cy was also selected. Once the features se-
lection is done, the final product can be derived. The two
approaches that can befollowed to perform thisstep are the
Selection approach or the Assembly approach [12]. What-
ever the approach, this step mainly consists in (1) either
generating or creating software assets, (2) assembling and
configuring them in order to build the final product and fi-
nally, (3) validating the result to be sure that the selected
features are supported. For our scenario, we propose that
the assets are composed of services realized by software
components following theSCA architecturestyle [23].

Figure 2 illustrates an assembly of components that rep-
resents the architecture of this product. Following the SCA
notation, arrows to the left of each component represent the
services that it provides, arrows to the right represent the
referencesor services it requires. In thiscasethere isaGUI

in
ria

-0
04

25
58

6,
 v

er
si

on
 1

 -
 2

2
O

ct
 2

00
9

3.2.2 Context-aware variability realization techniques

In [30], Svahinberg et al. define that variability realiza-
tion techniques are used to integrate assets while build-
ing the final products. Moreover, authors clearly identify
Component-Based Software Engineering (CBSE) as one of
the variability realization techniques that can be used at run-
time. In this section, we propose a CBSE platform as a vari-
ability realization technique. This platform is similar to an
SCA platform where applications are constituted by com-
ponents that offer services. This platform will support both
acquisition of context information and dynamic adaptation:

• Acquisition of context information: As it was ex-
plained in subsection 3.2.1, the context-aware assets
include a definition of a context information that cor-
responds to the decision whether or not to adapt the
system. Hence, the platform needs a context aggre-
gation mechanism. Such a mechanism is in charge of
getting the information from multiple sources and to
provide a high-level view of information, so that, it can
be evaluated.

• Dynamic Adaptation: Successful product derivation
depends also on the ability of the platform to re-
configure the system. The platform has to be able
to suspend and resume the execution of the system,
modify its structure by performing different operations
like deploy, add, bind or delete components. This en-
ables dynamic adaptation for each context-aware asset.

The platform architecture is depicted in Figure 8. The
Context Manager element is composed of several nodes.
Every node is in charge of recovering context information
from different sources like a sensor layer who captures raw
data from the environment, user preferences, and the Run-
time Platform who provides information about current state
and configuration of applications. Eventually, the Context
Manager can also perform a processing of data, so that, it
is presented as single values which can be evaluated in the
condition of each context-aware asset.
The Decision Maker element is in charge of evaluating the
context and decide whether or not to modify the application.
It is linked to a repository of rules. The rules represent the
clauses of each context-aware asset.
Finally, the Runtime Platform element is where Application
Components are executed. It controls the life cycle of all
the application components and has access to their control
mechanisms.

4 Validation

To validate our approach, we have designed and imple-
mented the Context-Aware DSOPL CAPucine. Given that

RECONFIGURE

DECIDE LISTEN FOR CHANGES

CADA

Repository

Decision Maker

Node

Application

Layer

Application Components

Node Node

Context updates

observables

Reconfiguration

operations

Context

information

Sensor

Layer

context-aware

dynamic adaptations
Aggregated

context

information

Context

Manager

User

Preferences

Context

information

Figure 8. Platform Architecture

CAPucine target applications present context-aware fea-
tures, we have implemented the initial and iterative phases
of product derivation. The next subsections describe the
technologies and implementation details of each phase.

4.1 Initial phase

In the initial phase we implement two main processes:
(1) a composition of assets (related to selected features)
using the application metamodel, and (2) a transformation
from this metamodel to the platform and implementation
domains, and later on, to source code. To explain these
processes we refer to the example of section 2. We start
by selecting a set of features. Figure 9 illustrates this pro-
cess. For every feature, there is an associated asset that in
our case corresponds to a partial model of the product it-
self. Dashed arrows link the features with their model part.
The application model that results from the chosen features
conforms with the application metamodel detailed in sec-
tion 3. Stereotype notation (<<>>) is used to represent
the conforms-to relationship of every element of the model
with a given meta-class in the application metamodel. For
example, the feature CachePolicy is represented by several
elements in the model. First, there is a link to the context
manager to verify the bandwidth, represented as the band-
width observable. Also, there is a FullLimitedConnectivity
element that references both the bandwidth and the Full-
Connectivity and LowConnectivity activities. These activi-
ties represent the binding of the getDesc reference of the
user interface with the remote database and the cache re-
spectively. This enables switching between both activities
and changing the architecture of the product from one activ-
ity accessing directly to the remote database to another one
accessing a local cache during disconnection or weak signal
periods.

in
ri
a
-0

0
4
2
5
5
8
6
,
v
e
rs

io
n
 1

 -
 2

2
 O

c
t
2
0
0
9

Figure 3.9: Parra et al. Approach

The context-aware assets include a definition of a context information that cor-

responds to the decision whether or not to adapt the system. Hence, CAPucine

platform provides a context aggregation mechanism. Such a mechanism is in charge

of getting the information from multiple sources and to provide a high-level view of

information, so that, it can be evaluated.

The CAPucine platform is also able to suspend and resume the execution of

the system, modify its structure by performing different operations like deploy, add,

bind or delete components. This enables dynamic adaptation for each context-aware

asset.

Overall, the platform architecture is depicted in Figure 3.9 right. The Context

Manager element is composed of several nodes. Every node is in charge of recovering

context information from different sources like a sensor layer who captures raw data

from the environment, user preferences, and the Run-time Platform who provides

information about current state and configuration of applications. Eventually, the

Context Manager can also perform a processing of data, so that, it is presented

3.3. Analysis of Approaches for System Family Reconfiguration 64

as single values which can be evaluated in the condition of each context-aware as-

set. The Decision Maker element is in charge of evaluating the context and decide

whether or not to modify the application. It is linked to a repository of rules. The

rules represent the clauses of each context-aware asset. Finally, the Run-time Plat-

form element is where Application Components are executed. It controls the life

cycle of all the application components and has access to their control mechanisms.

Parra et al. has aplied CAPucine to an scenario which consists in a family of

systems used to obtain and display information about movies. CAPucine is imple-

mented using FraSCAti [115], an SCA platform with dynamic properties enabling

binding and unbinding of components at run-time. Finally, for context sensing, CA-

Pucine is based on COSMOS [116], which is a context-aware framework connected

to the environment by the use of sensors.

Parra et al. Approach - CAPucine DSPL

Scope Service-Oriented Architectures: Movie System

Variability

Specification

Feature Model without taking into account the cross-tree

constrains (requires and excludes)

Reconfiguration

Infrastructure

CAPucine platform which features: (1) COSMOS a con-

textaware framework connected to the environment by the

use of sensors, and (2) FraSCAti, a Service Component Ar-

chitecture with dynamic properties that enables to bind and

unbind components at run-time

AC Adoption Level 5 AC Relevance Core

Reinforcement Autonomic Maturity Stage 2

Table 3.9: Classification of Parra et al. Approach.

3.3.9 Istoan et al. Approach

Istoan et al. [117] (see Table 3.10) argue that a convergence of Service Oriented

Architecture (SOA)) and Software Product Lines is highly possible. They suggest

atomic services that are used to represent basic system features. A composition of

such services creates a configuration, which is a product of the product line.

3.3. Analysis of Approaches for System Family Reconfiguration 65

Fig. 2. System feature diagram

constraints. A valid internet connection requires the use of an
internet address book. If communication is offered as GSM or
RTC, a phonebook is required. Due to limitations in space,
we have introduced two ”require” constraints between the
composite feature alarm and the atomic features camera and
open/closed detector. Normally, textual constraints are applied
only between atomic features. We notice an interdependency
between the alarm feature and the communication one, mod-
eled using textual constraints. The difficulty here is that these
connections will change, because the system is adaptive.

V. CHALLENGES

Establishing the connections between SOA and SPL is
currently just in its incipient phases. Therefore, applying an
SPL approach to a service based platform presents numerous
challenges. We try to classify them in two categories, accord-
ing to the phase in the SPL process they belong to: domain
and application engineering.

Concerning domain engineering, the issues arise mostly
due to dynamic aspect of the system, which needs to have
self adaptive capabilities. In combination with monitoring, it
initiates state-triggered reconfigurations to adapt to changes
in the environment or in user needs. Most importantly, this
has to be done at runtime. For example, when a service stops
offering the needed functionality, it has to be replaced by a
new one, allowing the system to keep performing normally.
Replacement of a service by a new one may also be triggered
by quality of service criteria. This change needs to happen
without stopping or interrupting system functioning. Service
replacement helps therefore enhance system availability and
meet agreed QoS standards. This challenge in monitoring
and adapting system at runtime joins the work done in the
WP-JRA-1.2 of S-Cube1. To solve the problem of failing
services, the use of a backup service was introduced. A list
of such backup services could actually be established, based
on different quality and availability factors. The ENTIMID

1http://www.s-cube-network.eu/about-s-cube

platform offers possible methods and facilities for monitoring
the state of the system, determining services that need to
be replaced and performing the actual replacement under the
appropriate conditions.

In our example application, an interdependency between the
alarm feature and the communication one can be noticed. This
was modelled using textual constraints. The difficulty here is
that these connections will change, due to the adaptive nature
of the system. Changes in the environment or user needs will
cause the system to pass from one configuration to another.
When this happens, the previously described connections
will also change. Modeling correctly these dynamic types of
connections between different groups of services, the inherent
inter-dependencies and restrictions, the way they evolve as
the system configuration changes, is a major challenge that
needs to be overcome. At this phase, we also need to choose
which service to use for implementing an atomic feature. Such
a choice depends on service availability, quality of service
requirements and user preferences.

The approach needs to continue naturally with the appli-
cation engineering phase, also known as product derivation.
It consists of building configurations, based on the results
of the Domain Engineering phase. Based on user require-
ments, different configurations are assembled from the existing
reusable components, the atomic services. Developing a flexi-
ble, model driven product derivation technique using Kermeta
[18], that addresses the product line’s customer specific and
unanticipated requirements, is one of the essential steps that
we consider in our future work.

VI. CONCLUSION

Domains like ambient intelligence or house automation
have taken advantage of the recent introduction of software
solutions in their areas. This has lead to an increase in software
complexity, with extensive variations in both requirements and
resource constraints. In addition, modern applications require
a higher degree of adaptability from their software systems.
Developers are pressured to deliver high-quality software with

Figure 3.10: Istoan et al. Approach

To support this convergence of SOA an DSPLs, Istoan et al. present ENTIMID a

service-based middleware designed to solve house automation issues such as devices

interoperability, linkage facilities or scenarios descriptions. The aim of this middle-

ware, is to offer a level-sufficient abstraction of inhouse devices, making it possible

for high level services to interact with physical devices (such as lamps, heater or

temperature sensors) and ease their management.

To introduce variability in ENTIMID, they capture the commonalities and vari-

abilities among different configurations in terms of features (see Figure 3.10). In

particular, they distinguish between two types of features: composite and atomic.

Atomic features, present at the leaf level of the feature model, are directly mapped

and implemented by existing services. For implementing a particular atomic feature,

they choose between multiple existing services offering the same general function-

ality. Several atomic features are grouped together into a composite one. Such a

composite feature may also include other composite features. Its role is to offer a

new service to the user, not available before, whose functionality is derived from

that of the atomic services it encompasses. Finally, a product of our SPL, called a

configuration, contains one or more composite services.

Variability in ENTIMID requires a particular restriction on the feature mod-

elling technique: a configuration will be ultimately decomposed, at the leaf level of

the feature models. That is, only leaf features can represent services. These leaf

features are implemented as atomic services. The choice of a particular service for

a given feature depends on service availability, quality of service requirements and

user preferences

3.4. Discussion 66

The different configurations are assembled from the existing atomic services by

the ENTIMID platform. ENTIMID offers possible methods and facilities for mon-

itoring the state of the system, determining services that need to be replaced and

performing the actual replacement under the appropriate conditions.

Istoan et al. plan to apply the ENTIMID platform extended with run-time

reconfiguration capabilities to the building automation domain. At the moment

of writing this thesis, the extended ENTIMID platform is work on progress and it

lacks an implementation of the reconfiguration infrastructure. Istoan et al. plan to

implement this infrastructure by means of MDD techniques using Kermeta [118].

Istoan et al. Approach - Extended ENTIMID with DSPL Architecture

Scope Service-Oriented Architectures: Home automation

Variability

Specification

Feature Model with the restriction of only leaf features can

represent services

Reconfiguration

Infrastructure

The extended ENTIMID platform is work on progress and it

lacks an implementation. The platform is planed to be imple-

mented by means of model driven techniques using Kermeta.

AC Adoption Level 4 AC Relevance Support

Reinforcement Autonomous Maturity Stage 1

Table 3.10: Classification of Istoan et al. Approach.

3.4 Discussion

Inspired by biology, autonomic computing has evolved as a discipline to create soft-

ware systems and applications that self-manage in a bid to overcome the complexities

and inability to effectively maintain current and emerging systems. To this end, the

presented approaches enable the production of systems which adhere to different

degrees of Autonomicity.

We have compiled a graphic representation (see Figure 3.11) in which we place

the approaches presented in this Chapter. These approaches are categorised by the

Maturity of their methodology (horizontally) and the level of autonomic computing

3.4. Discussion 67

Le
ve

l 4

A
u

to
n

o
m

ic
 C

o
m

p
u

ti
n

g
A

d
o

p
ti

o
n

Maturity of the Approach

Gomma

White
Morin

Trinidad

Hallsteinsen09

Lee

Parra

Hallsteinsen06Isotan

Le
ve

l 5

Stage 1 Stage 2 Stage 3

Reinforcement of
the Knowledge

Core Support

Autonomous Autonomic

Relevance of the
AC Functionality

Figure 3.11: Classification of the Approaches: Maturity - Autonomic Level

adoption (vertically). In addition, the graphic representation of the approaches

denotes their type of Reinforcement of the Knowledge (shape), and the relevance

of the Autonomic Computing functionality (colour). While some of the choices are

highly subjective, we have tried to place them in a category that highlights the

major contribution of the approach.

According to the classification of the approaches presented in this Chapter, we

can claim that there are many open challenges which are receiving less attention at

the point in time we write this thesis as follows:

• Most approaches provide an execution platform or mechanism to realize recon-

figuration at run-time, but they lack a dedicated methodology enabling devel-

opers to systematically develop the reconfigurable systems. That is, developer

guidance from the requirements to a validated and verified reconfigurable sys-

tem.

Challenge 1 Develop guidelines, techniques and tools to support engineers

from system design to execution.

• Only Mori et al. approach [112] is at beginning of Stage 3, but they focuses

on reducing the number of configurations that need to be considered and their

3.4. Discussion 68

approach (as the approaches of Stage 2 and 1) lacks support for other notable

concerns such as validation analysis, debugging or tracking capabilities.

Challenge 2 Further studies about how to address concerns such as valida-

tion analysis, debugging or tracking capabilities.

• Furthermore, all of the analysed approaches are also missing (and we believe

the community should be considering) the evaluation of the safety and re-

liability of run-time reconfigurations. These properties are essential for the

development of reliable reconfigurable systems.

Challenge 3 Carry to successful evidences about of the safety and reliability

of run-time reconfigurations.

Overall, we believe it is indispensable to come to a seamless software engineering

approach which supports autonomic system engineers from design time to run-time

in order to address the former open challenges.

3.4.1 Architectural Patterns

According to the approaches presented in this Chapter, we have also identified in-

teresting patterns in the reconfiguration architectures presented in this chapter.

Specifically, these reconfiguration architectures can be classifies into two categories

according to the way in which system reconfigurtation is considered: (1) Connected

DSPL (the DSPL is in charge of the product reconfiguration), and (2) Disconnected

DSPL (The system itself is in charge of the product reconfiguration).

Connected DSPLs stay in touch with systems in order to send them updates.

These updates enable systems to deal with context changes. Figure 3.12 shows the

steps to send the updates from the DSPL to the systems.

1. The system senses a relevant change which starts the reconfiguration process.

Both changes in the environment and in the system itself can trigger the

reconfiguration process.

3.4. Discussion 69

Decision
Maker

Assets

Production
Operation

1

There is not a valid
configuration

Valid
configuration

2

3

4

5

6

3.1

SystemDynamic Software Product Line

Reconfiguration
Trigger

Reconfiguration

New Requirement

Product Update

Adaptation Fails

Figure 3.12: Connected DSPL Overview

2. The system sends information about the change to the SPL. Optionally, the

system can locally preprocess the information in order to send a more specific

information to the SPL.

3. The SPL incorporates the acquired information to the product requisites and

then it calculates a new system variant.

(a) If there is no variant that satisfies the product requisites, then the SPL

notifies the system and the reconfiguration process fails.

4. The SPL generates the system update. This update can be the whole calcu-

lated variant or the difference between the old variant and the new one.

5. The SPL sends the update to the system.

6. The system updates itself using the update information from the SPL.

The main characteristics of this pattern for reconfiguration infrastructures are

as follows:

• Autonomic degree. The system depends on the SPL availability in order to

get the system updates to perform the adaptation.

3.4. Discussion 70

Embedded
Decision
Maker

Active Components

1

There is not a valid
configuration

Valid configuration

2

3

2.1

System

Reconfiguration
Trigger

Reconfiguration

Adaptation Fails

Quiescent Components

Decision
Maker

Assets

Production
Operation

Dynamic Software Product Line

Figure 3.13: Disconnected DSPL Overview

• Adaptation capabilities. To address adaptation, variability knowledge in-

dicates the involved components. However, some of these components are not

in the system. In this case, the system has to get these components from the

SPL. Hence, it is necessary a bidirectional connection between the DSPL and

the system. If this connection becomes unavailable then the adaptation cannot

be performed.

• Computational overload. An disconnected DSPL approach introduces the

following additional overload in the system execution: (1) the communica-

tion with the SPL (to get system updates) and (2) the on-line installation of

updates.

Disconnected DSPLs produce systems which can reconfigure itself to deal

with contextual changes in a autonomic manner. Compared with connected DSPLs,

the system reconfigures itself without any DSPL interaction. Specifically, systems

are augmented with variability knowledge and extra components in order to perform

the reconfiguration as Figure 3.13 shows.

1. The system senses a relevant change which starts the reconfiguration process.

Both changes in the environment and in the system itself can trigger the

reconfiguration process.

3.5. Conclusions 71

2. The system calculates a new configuration to deal with the sensed change.

(a) If there is no configuration that satisfies the product requisites, then the

reconfiguration process fails.

3. The system reconfigures itself to apply the calculated configuration. The

reconfiguration operation implies (1) start/stop components and (2) estab-

lish/destroy connections between them.

The main characteristics of this pattern for reconfiguration infrastructures are

as follows.

• Autonomic degree. The system has no dependency of the SPL to perform

the reconfiguration because there is no connection required between the SPL

and the system. The reconfiguration only depends on the system resources.

• Reconfiguration capabilities. In general, the more variability knowledge

the system has about itself, the more adaptable the system will get. This

knowledge is captured in the variability models incorporated to the system.

However, the variability models must be complemented with extra system

components. Some components conform the initial system configuration, while

others are used in system reconfiguration. Therefore, the adaptation capabil-

ities depends on the knowledge captured in the models and on the number of

components for system reconfiguration.

• Computational overload. A connected DSPL approach introduces a com-

putational overload to the system execution when the reconfiguration is trig-

gered. This overload comes from (1) the variability queries and (2) the execu-

tion of the reconfiguration (starting stopping and linking system components).

3.5 Conclusions

At the time of writing this thesis, it has been five years since first attempts to

address run-time reconfiguration of system families, and we are now beginning to

observe concentrations of research emerging in key application domains. According

3.5. Conclusions 72

to the approaches presented in this chapter, the main application domains are mo-

bile devices and Service Oriented Architectures. In addition, there are also valuable

contributions in other domains such as: system automation, smart homes and mul-

timedia services. Figure 3.14 classifies the presented approaches by the application

domains (horizontally) and the reconfiguration infrastructure type (vertically).

D
is

co
n

n
e

ct
e

d

D
SP

L
A

rc
h

it
e

ct
u

re

Scope

Gomma

White

Morin

Trinidad Hallsteinsen09Lee

Parra

Hallsteinsen06

Isotan

C
o

n
n

e
ct

e
d

Automation Mobile Home Multimedia SOA

Figure 3.14: Classification of DSPL: Scope - Infrastructure

Overall, the above application domains concern the building of intelligent envi-

ronments from a number of, potentially, heterogeneous devices such as sensor nodes

or mobile devices. The complexity of installing and maintaining such a system

and keeping it running in a robust way, lends the approaches to achieve autonomic

computing.

Although autonomic computing has become increasingly interesting and popular

it remains a relatively immature topic its achievement in a systematic manner.

However, as more approaches become involved, the established research can be reuse,

adding to the maturity of the area. Furthermore, we believe that in the future the

topic will become integrated into general SPL and MDD communities and not be

seen as the separate area it is today (DSPL community).

Chapter 4. OVERVIEW OF THE APPROACH

“If we knew what we were doing, it wouldn’t be called research, would it?.”

– Albert Einstein (1879-1955).

4.1 Overview of the Chapter

Variability
Models

Variability
Transformation

Reconfiguration
Analyser

Reconfiguration
Engine

Reconfigurable
System

Reconfiguration
Tracker

Figure 4.1: Scope of Chapter 4

Autonomic Computing transfers maintenance

responsibilities to the software itself. By

automating tasks such as installation, heal-

ing or updating, system operation is simpli-

fied at the expense of increasing its inter-

nal complexity. Our work provides an ap-

proach for the development of autonomic sys-

tems through the use of variability models

at run-time. The purpose of these models

at run-time is that variability models can be

used to provide a richer semantic base for run-

time decision-making related to autonomic

behaviour. Based on the widespread mod-

elling tools of the Eclipse Modelling project, a software infrastructure has been

developed to support our approach. This chapter briefly introduces an overview

of this approach, which is developed in the next Chapters. Then, we identify and

overview the main building blocks of the approach. We also propose a process to

apply this approach. Finally, we show how the approach has been put into practice

and evaluated throughout the case study of a Smart Hotel.

74

4.2. Introduction 75

4.2 Introduction

Previous studies have highlighted that people continuously reconfigure domestic

spaces and the technologies involved in order to support their activities [19]. In

order to reduce this configuration effort, the following autonomic capabilities can be

provided:

Self-configuring. New kinds of devices can be incorporated to the system.

For example, when a new movement/presence detector is added to a home loca-

tion, the different smart home services such as security or lighting control should

automatically make use of it without requiring configuration actions from the user.

Self-healing. When a device is removed or fails, the system should adapt itself

in order to offer its services using alternative components to reduce the impact of

the loss of the device. For example, if an alarm fails, the Smart Home can make the

home lights blink as a replacement for the failed alarm.

Self-adaptation. The needs of users are different and change over time. The

system should adjust its services in order to fulfill user preferences. For example,

when all users leave home, services in the home should be reorganized to give priority

to security.

We consider this autonomic behaviour to be closely related to context adapta-

tion. Context adaptation is a system’s capability to gather information about the

domain that it shares an interface with, to evaluate this information and to change

its observable behavior according to the current situation [119]. The individual capa-

bilities of autonomic systems (i.e., self-configuring, self-healing and self-adaptation)

also require the system to infer knowledge from the current situation and to trigger

an appropriate response. However, autonomic computing places the emphasis on

freeing system users from the details of system operation and maintenance and on

providing users with systems that run 24/7 [26].

To achieve this autonomic behaviour, we argue to leverage the models produced

as artifacts from Model Driven Engineering (MDE) methodologies as if they were

the policies that drive the autonomic behaviour of the system at run-time. In MDE,

a model is an abstraction or reduced representation of a system that is built for

4.2. Introduction 76

specific purposes. For example, technology-independent models of software describe

systems using concepts that abstract over the underlying computing technologies.

We share this view of what constitutes a model and explore the use of models at run-

time to drive the autonomic behaviour of the system. Our decision to use models

at run-time to achieve Autonomic computing comes for two reasons.

• If the model reflects the system architecture and its operational context, then

the model can provide up-to-date and exact information to drive subsequent

adaptation decisions.

• If the model is system-connected1, then adaptations can be made at the model

level rather than at the system level.

That is, under the assumption that the model correctly mirrors the managed

system, the model can be used to verify that system integrity is preserved when

applying an adaptation, i.e. we can guarantee that the system will continue to

operate correctly after the planned adaptation has been executed. This is because

changes are planned and applied to the model first, which will show the state of

the system resulting from the adaptation, including any violations of constraints or

requirements of the system present in the model. If the new state of the system

is acceptable, the plan can then be effected onto the actual managed system, thus

ensuring that the model and implementation are consistent with respect to each

other.

In particular, our approach makes use of (1) Variability Models [20] and (2)

Dynamic Product Line Architectures [18]. Variability models specify the possible

configurations of a Smart Home, while a Dynamic Product Line Architecture can

be rapidly retargeted to a specific configuration. Below, we provide a brief overview

of Variability Modelling and a Dynamic Product Line Architecture.

Variability Modelling: From the different techniques that are suited for variabil-

ity analysis, we have chosen feature-based model languages. Feature modelling

1The model is linked in such a way that it constantly mirrors the system; if the system changes,

the model must also change, and vice versa.

4.2. Introduction 77

is widely used for the specification of system functionality in a coarse-grained

fashion by means of the feature concept (an increment in system functionality).

The features are hierarchically linked in a tree-like structure through variability

relationships such as optional, mandatory, single-choice and multiple-choice.

Some of the features denote the initial system configuration, while the other

features represent potential variants since they may be activated in the future.

Dynamic Product Line Architecture: In order to allow a flexible reconfigura-

tion, we have considered the architecture of a Dynamic Product Line. This ar-

chitecture is based on different components and their communication channels.

We classify these components into two categories: Services and Devices. This

architecture allows an easy reconfiguration since communication channels can

be established dynamically between the components, and these components

can dynamically appear or disappear from configurations.

Our research shows that these variability models can be used at run-time to assist

the system in determining the steps that are necessary to reconfigure itself. In par-

ticular, we argue that a system can activate/deactivate its own features dynamically

at run-time according to the fulfilment of Context Conditions.

In order to turn into reality the proposal, a Model-based Reconfiguration Engine

(named MoRE) was developed. MoRE enables the symbiosis between Variability

Modelling at run-time and Dynamic Product Line Architectures to pay dividends

in the field of Autonomic Computing. Specifically, MoRE implements the model

operations to management models at run-time. These operations are in charge of

determining how the system should evolve and the mechanisms for modifying the

system architecture accordingly. Thus, systems make use of the knowledge captured

by variability models as if they were the policies that drive the autonomic evolution

of the system at run-time.

For validation purposes, the current proposal has been applied to the Smart

Home domain (see www.autonomic-homes.com). We have selected the Smart Home

domain because AC capabilities can address some of the adaptation and reconfig-

urations challenges of this domain [19]. First, because of its nature as a shared

4.3. Main Building Blocks 78

Design
Time

Run-time

Context
Modelling

Variability
Modelling

Reconf.
Analysis

DSPL
Architecture

Reconf.
Engine

Reconf.
Strategies

Reconf.
Tracker

Approach

<<Requires>>

Optional

Mandatory

Figure 4.2: Main Building Blocks of the Approach

environment, different users use the same room over time. Each user has its own

preferences for the room, which should be adjusted to improve the quality of their

stay; second, the preferences of the users change depending on the activity per-

formed (e.g., the users usually have different preferences when they are watching a

movie than when they are working).

4.3 Main Building Blocks

Figure 4.2 presents the main building blocks of the proposed approach. Each build-

ing block is denoted by an hexagon and these building blocks are related to the

approach by mandatory, optional and requires relationships. From a methodologi-

cal perspective the approach is divided in two phases; design time (black hexagons)

and run-time (blue hexagons). At design-time, the models that specify the system

variability and the system context are built. At run-time, these models are queried

in response to context events to produce the system reconfiguration that should be

executed. The main building blocks of the approach are:

• Design time building blocks.

4.3. Main Building Blocks 79

– Variability Modelling. Variability models enable us to describe the

variants in which a system can evolve. We argue that in response to

changes in the context, the system itself can query these variability mod-

els in order to determine the necessary modifications to its architecture.

Regarding Variability Modelling techniques, we have successfully applied

our work to both Feature Models [120] and Common Variability Language

specifications [121].

– Context Modelling. For context modelling, we use an ontology-based

context model that leverages Semantic Web technology and OWL (Web

Ontology Language) [122]. Given such ontology, we define context condi-

tions as querys that check for values in the system context ontology. The

fulfillment of these conditions triggers the system reconfiguration.

– Reconfiguration Analysis. For dependable systems, it is indispensable

to have a means to analyze the reconfigurations before performing them.

To address the above problem, our approach validates the configurations

resulting from the simultaneous fulfillment of context events at design

time. Therefore, unexpected configurations can be avoided. In particular,

we analyse Variability Models by means of the FAMA framework [21]

for variability analysis.

• Run-time building blocks.

– DSPL Architecture. The Reconfigurable architecture of a DSPL pro-

motes that each architecture component is designed to be capable of

transitioning to a state where it can be reconfigured. Under a set of re-

configuration commands, the components that make up the architecture

dynamically cooperate to change the configuration of the architecture to

a new configuration.

– Reconfiguration Engine. To enable autonomic behaviour, the system

must evolve from one configuration to another by itself. Since the recon-

figuration in our approach is driven by variability models at run-time,

a Model-based Reconfiguration Engine (MoRE) is provided to address

4.4. Application 80

context changes. MoRE uses the variability models to determine how the

system should move from a consistent architecture to another consistent

architecture by means of reconfiguration actions. These reconfiguration

actions modify the system components accordingly.

∗ Reconfiguration Strategies. The model operations which manage

the run-time variability models are grouped in a so called variability

transformation. We propose a set of alternative strategies for im-

plementing this variability transformation. These strategies imple-

ment the same reconfiguration functionality but they have different

extra-functional properties. For instance, they do not offer the same

performances. These strategies enable engineers to set up MoRE

with the most suitable strategy for each particular concern such as

debugging or performance.

∗ Reconfiguration Tracker. Given a system reconfiguration and the

variability model, the Reconfiguration Tracker records a run of the

reconfiguration at the abstraction level that the variability model

induces. These trace entries provide a way to formally and quanti-

tatively characterize and investigate the concrete reconfiguration the

trace was generated from, and also the overall running of the system.

The above building blocks that leverage software models extends the aplicability

of MDE techniques to the run-time enviroment, bluring the line between develop-

ment models and run-time models.

4.4 Application

To achieve autonomic computing, we have used the above building blocks to provide

support to autonomic system engineers from system design to execution. At design

time (see top of Figure 4.3), we take advantage of current variability and context

modelling techniques in order to specify the context and architecture of the system,

and how the system architecture can be adapted to manage context changes. Fur-

thermore, this stage also benefits from the whole range of typical gains brought by

4.4. Application 81

Design Time

Variability
Modelling

Context
Modelling

Reconfiguration
Analysis

Run-time

Reconfiguration
Strategy A

DSPL
Architecture

Debugging Deployment

Models are produced as artefacts
from MDE methodologies.

Tr
ac

ke
r Reconfiguration

Strategy B

DSPL
Architecture

The role MDE models play in
Autonomic Computing can be
analysed before leveraging the
models at run-time.

Engineers can use a strategy with
debugging support and a model-
based tracker as long as the system
is under development.

When the development is finished,
engineers can use another strategy
with better performance (but
without debugging support).

Given the analysis results, engineers
can either update MDE models or
leverage the models at run-time.

Figure 4.3: Simplified overview of the Process to Apply the Approach

MDE approaches (i.e. validation, verification, reuse and automation). In fact, we

also take advantage of current techniques for variability analysis in order to conduct

a thorough analysis of the models for the purpose of validation.

At run-time (see bottom of Figure 4.3), the design knowledge and existing model-

based technologies can be used to support Autonomic Computing. In this way, the

modelling effort made at design time is not only useful for producing the system but

also for providing autonomic behaviour during execution. This stage covers both

debugging and deployment and it involves the building blocks of DSPL Architecture,

Reconfiguration Strategy and Reconfiguration tracker.

Figure 4.4 presents an overview of the process to apply the approach. Specifically,

this process features six tasks. For each one of these tasks, we provide the following

information: name of the task, a brief description, involved Building Blocks and tool

support.

1. Task. To specify the variability of the reconfigurable system.

Description. We propose to guide the design of a reconfigurable system

4.4. Application 82

Commonality

Variability

Context Conditions

Validation

1

<<Excludes>>
Explanation

2

Analyze

Monitor

Plan

Execute

Reconfiguration Strategy:
Debugging

Analyze

Monitor

Plan

Execute

Reconfiguration Strategy:
Performance

Analyze

Monitor

Plan

Execute

Tracker

Reconfiguration
Traces

Design Time
Variability Modelling Context Modelling Reconfiguration Analysis

MOSKitt Protégé-OWL FaMa Framework

Run-time

Reconfiguration Strategy Reconfiguration Tracker Reconfiguration Strategy

MoRE MoRE- Tracker MoRE

Update Variability Constraints

Update Context Conditions

Leverage Models at Run-time

Debugging Deployment

1 2 3

4 5 6

Scope = Variability
+ Commonality

Analysis Results

Decision

Figure 4.4: Overview of the Process to Apply the Approach

by scope, commonality, and variability (SCV) analysis [20]. SCV captures

key characteristics of the reconfigurable system, including its (1) scope, which

defines the domain of the system, (2) commonalities, which describe the at-

tributes that come up across all feasible configurations of the system, and (3)

variabilities, which describe the attributes unique to the different configura-

tions of the system.

Involved Building Blocks. Variability Modelling.

Tool Support. MOSKitt2 is a free Modelling platform, built on Eclipse which

2http://www.moskitt.org/eng/moskitt0/

4.4. Application 83

is being developed by the Valencian Regional Ministry of Infrastructure and

Transport. This modelling platform provides editors for several modelling lan-

guages such as Feature models or PervML (a DSL for Smart Homes), as well

as code generation capabilities.

2. Task. To specify the context of the reconfigurable system.

Description. The context of the reconfigurable systems is specified by means

of the OWL language. This language provides a vocabulary for describing

system context knowledge, and for specifying conditions in the context. The

fulfillment of these context conditions triggers a set of changes in the variants

that conform the system configuration.

Involved Building Blocks. Context Modelling.

Tool Support. Protege-OWL is a free open source ontology editor and

knowledge-base framework. An OWL ontology may include descriptions of

classes, properties and their instances. Given such an ontology, the knowledge-

base framework specifies how to derive its logical consequences, i.e. facts not

literally present in the ontology, but entailed by the ontology instances.

3. Task. To analyze the reconfigurations before performing them.

Description. The configurations resulting from the simultaneous fulfillment

of context conditions are validated at design time. This enables us not only

to obtain a valid-invalid tag for each configuration, but also to know the rea-

sons why a particular configuration is invalid. Given this information, we can

update either the variability constrains or the context conditions to achieve a

invalid-configurations free specification that can be used at run-time.

Involved Building Blocks. Reconfiguration Analysis.

Tool Support. FaMa is a Framework for automated analysis of feature mod-

els that integrates some of the most commonly used logic representations and

solvers proposed in the literature. This framework enables to determine if a

system configuration is valid (according to variability constraints), and it can

also provide explanations about invalid configurations.

4. Task. To debug the run-time reconfigurations.

4.4. Application 84

Description. Given the fact that not all potential run-time failures can be

anticipated during system design [123], we can set up MoRE with a debugging-

enabled reconfiguration strategy. This strategy keeps the history of system

configurations. Therefore, we should use this strategy as long as the system is

under development.

Involved Building Blocks. DSPL Architecture, Reconfiguration Engine and

Reconfiguration Strategies.

Tool Support. MoRE featuring a debugging-enabled reconfiguration strat-

egy.

5. Task. To Keep Track of the Reconfigurations.

Description. In the context of experimentation, MoRE can store trace entries

about the reconfigurations. This provide us with information for a posteri

analysis, which ranges from context conditions to reconfiguration plans.

Involved Building Blocks. DSPL Architecture, Reconfiguration Engine and

Reconfiguration Tracker.

Tool Support. MoRE featuring the Reconfiguration Tracker.

6. Task. To deploy the system in the target platform.

Description. Once the development is finished, we are not interested in de-

bugging information any longer. Therefore, we can set up MoRE with another

reconfiguration strategy which lacks debugging support but achieves better

performance.

Involved Building Blocks. DSPL Architecture, Reconfiguration Engine and

Reconfiguration Strategies.

Tool Support. MoRE featuring a debugging-enabled reconfiguration strat-

egy.

Although some of the steps that conform the process to apply the approach

can be skipped (for instance, variability analysis or reconfiguration debugging), we

strongly recommend to perform all of the them. The whole process (as is proposed

in this section) is conceived to achieve a system free of unexpected reconfigurations

at run-time.

4.5. Implementation 85

Inserting
context events
into the Ontology

Evaluating the Ontology
to trigger conditions

Querying run-time models
to generate a plan

Executing
the actions

of reconfiguration

Smart Home

Model-based Reconfiguration Engine

EMFMQ

OSGI

SPARQL

SPARQL

Analyze

M
o

n
it

o
r

Plan
Exe

cu
te

Models at Run-Time
Knowledge

A

A

A

Autonomic
Computing

Our approach

Technology
OSGI

Managed System

OWL-Ontology/
Variability Model/DSL

Figure 4.5: Overview of the Run-time Reconfiguration of the Approach

4.5 Implementation

To achieve autonomic computing, we also provide an execution platform for vari-

ability models at run-time. In particular, we have developed a model-based version

of the IBM reference model for autonomic control, which is called the MAPE (Mon-

itor, Analyse, Plan, Execute) loop (see Chapter 2 for a detailed description). The

overall reconfiguration steps are outlined in Figure 4.5. A Context Monitor uses the

run-time state as input to check context conditions. If any of these conditions is

fulfilled, then MoRE queries the run-time models about the necessary modifications

to the architecture. Given the model response, MoRE elaborates Reconfiguration

Actions which modify the system architecture and maintain the consistency between

the models and the architecture.

The above model-based version of IBM’s reference model for autonomic control

makes an intensive use of models. Context events and system variability are repre-

sented by models. Context events are represented by means of OWL ontologies, and

system variability is captured by means of variability models. For performing the

system reconfiguration, information is extracted from these models. Different model

query technologies are used at run-time by MoRE depending on the modes involved.

4.6. Validation 86

MoRE uses SPARQL for OWL manipulation and Eclipse Model Query (EMFMQ)

for variability model manipulation. Next, we briefly present both SPARQL and

EMFMQ technologies.

• SPARQL is the W3C recommendation query language for RDF triples. This

query language is based on graph-matching techniques. Given a data source,

a query consists of a pattern which is matched against the data source, and

the values obtained from this matching are processed to give the answer. The

data source to be queried can be an OWL model as is the one of our ontology

for system context.

• EMFMQ provides an API to construct and execute query statements in a

SQLlike fashion. These query statements can be used for discovering and

modifying model elements. Queries are first constructed with their query

clauses and then they are ready to be executed.

Finally, the reconfiguration of the system is performed by executing reconfigura-

tion actions that deal with the activation/deactivation of components and the cre-

ation/destruction of channels among components. Although our general approach

is not platform-dependent, we take advantage of the concrete platform to imple-

ment the reconfiguration actions. MoRE makes use of the OSGi framework [124] for

implementing the reconfiguration actions by means of the the OSGi capabilities to

install, start, restart and uninstall components without having to restart the entire

system.

4.6 Validation

The presented work has been validated from three different perspectives: (1) Scala-

bility of the approach, (2) reliability-based risk of run-time reconfigurations and (3)

degree of autonomic behavior achieved as follows.

1. Scalability of the approach. The introduced model-based reconfiguration

is still subject to the same efficiency requirements as the rest of the system

4.6. Validation 87

because the execution of the reconfiguration impacts the overall system per-

formance. Therefore, we were interested in analyzing to what extent system

performance could be affected using complex models at run-time. Experi-

mentation results show that our approach gathers the necessary knowledge

from the run-time models to perform the reconfiguration without drastically

affecting the system response.

2. Reliability-based risk of run-time reconfigurations. The presented ap-

proach encompass systems that are capable of modifying their own behavior

with respect to changes in their operating environment by using run-time

reconfigurations. However, a failure in these reconfigurations can directly im-

pact the user experience. Thus, we were concerned with reliability-based risk

of run-time reconfigurations, which depends on both the probability that the

software product will fail in the operational environment (availability) and the

consequences of malfunctioning (severity). Experimentation revealed that the

reconfigurations achieved a high level of reliability

3. Degree of autonomic behavior achieved. To determine the level of au-

tonomic behaviour that can be achieved with our proposal, we have obtained

theoretical results about the autonomic behaviour specified by Feature Mod-

els at run-time. Furthermore, we have also asked users whether or not they

considered the system reaction to be adequate taking into account the defined

context events. Acceptance for the reconfiguration scenarios was high. Most

of the users considered the behaviour provided to be a good response to the

context events.

To evaluate the above concerns, we have developed a Smart Hotel case study

(see Appendix A) following the guidelines for case study research by Runeson and

Höst [125]. The Smart Hotel reconfigures its services according to changes in the

surrounding context. In particular, a hotel room changes its features depending on

users’ activities to make their stay as pleasant as possible.

This case study was deployed with real devices (EIB-KNX and RFID), and it

was performed with the participation of human subjects. Two major challenges were

4.7. Conclusions 88

identified and addressed with the involvement of human subjects in this reconfigu-

ration evaluation.

• Run-time reconfigurations are triggered by context events, many of which are

difficult to be reproduced in practice (e.g., a fire starts). To successfully evalu-

ate reconfigurations, we must enable participants to trigger those reconfigura-

tions that are relevant for the experimentation, not only those reconfigurations

that can be easily triggered.

• When reconfigurations are performed some of the effects can be easily per-

ceived (e.g., an alarm is triggered) while others are not (e.g., some sensors

are deactivated). To successfully evaluate reconfigurations, we must enable

participants to understand and evaluate the effects of reconfigurations. If

participants misunderstand reconfiguration effects, they will not be able to

evaluate the system response.

Overall, the evaluation of the case study revealed positive results that can encour-

age researchers and practitioners to apply model-based run-time reconfigurations to

other promising areas of research such as mobile devices or automotive systems.

However, the participant feedback in this study highlights issues with recovery from

a failed reconfiguration or a reconfiguration triggered by mistake. To address these

issues, we also provided some guidelines learned in the case study.

Finally, we conclude that the approach achieved satisfactory results regarding

reliability-based risk; nevertheless, we must provide users with more control over

the reconfigurations or the users will not be comfortable with reconfigurations even

though they achieve a high level of reliability.

4.7 Conclusions

Autonomic Computing plays a key role in simplifying the use of systems by re-

ducing the need for maintenance. We see models at run-time as an important

contribution to the field of autonomic computing providing metainformation to drive

autonomic decision making. This is done by means of a planned reutilization of the

4.7. Conclusions 89

efforts invested at design time. The benefits are immediate, as the design knowl-

edge and existing model-based technologies can be reused at runtime. The runtime

variability models support the autonomic behaviour of systems when triggered by

changes in the environment. We have applied this approach to an application in the

smart-homes domain, obtaining valuable validation of the approach.

Chapter 5. AUTONOMIC COMPUTING

THROUGH THE USE OF

VARIABILITY MODELS

“The art of progress is to preserve order amid change, and to preserve change amid

order.”
– Alfred North Whitehead (1861-1947).

5.1 Overview of the Chapter

Variability
Models

Variability
Transformation

Reconfiguration
Analyser

Reconfiguration
Engine

Reconfigurable
System

Reconfiguration
Tracker

Figure 5.1: Scope of Chapter 5

Variability models enable us to specify not

only current features of a system but also po-

tential features since they may be activated

in the future. We argue that in response

to changes in the context, the system itself

can query these variability models in order

to determine the necessary modifications to

its architecture. For instance, a smart home

system can trigger the activation of both In

Home Detection and Occupancy Simulation

features when all the inhabitants leave the

home.

First, this chapter presents variability

modelling in the context of MDD-SPLs. Then, we argue how the modelling ef-

fort made at the MDD-SPL is not only useful for producing the system but also for

90

5.2. Variability Modelling 91

providing autonomic behaviour during execution. The knowledge previously cap-

tured in variability models is used to describe the variants in which a system can

evolve.

Second, to determine the level of autonomic behaviour that can be achieved with

our approach, we have obtained theoretical results about the autonomic behaviour

specified by the variability Models. Specifically, we make use of a state machine for

this purpose since, in practice, engineers use state machines to represent and check

adaptation policies [112].

Third, since the Variability Models, which determine the autonomic behaviour,

are available at design time, we are able to conduct a thorough analysis of the

specifications for the purpose of validation. We are able to guarantee deterministic

reconfigurations at run-time, which is essential for reliable systems.

Finally, we have validated our work using two different variability modelling

techniques: Feature Models and the Common Variability Language (CVL) [121].

At [126], we have successfully applied our approach using CVL.

5.2 Variability Modelling

Variability modelling is regarded as the enabling technology for delivering a wide

variety of software systems in a consistent and comprehensive way. The key is to

build a base on the commonalities and efficiently express and manage the variability

of the systems. According to [20], a commonality is an assumption held uniformly

across a given set of systems. Frequently, such assumptions are components with

the same specification for all the systems. Conversely, a variability is an assumption

true in only some the systems, such as a component with different specification for

at least two systems.

5.2.1 Variability and Software Product Lines

Variability modelling is closely related with product lines. Software Product Lines

refer to methods, tools and techniques for creating and maintaining a collection of

similar software systems from a shared set of software assets. Software product lines

5.2. Variability Modelling 92

Assets
Production

Mechanism

Software

Product

Decision

Model

Figure 5.2: SPL main concepts

can be described in terms of four concepts, as illustrated in Figure 5.2.

• Software asset inputs. A collection of software assets (such as requirements,

source code components, test cases, architecture, and documentation) that can

be configured and composed in different ways to create all of the products in a

product line. Each of the assets has a well defined role within a common archi-

tecture for the product line. To accommodate variation among the products,

some of the assets may be optional and some of the assets may have internal

variation points that can be configured in different ways to provide different

behavior.

• Decision Model. Decisions describe optional and variable features for the

products in the product line. Each product in the product line is uniquely

defined by its product decisions (choices for each of the optional and variable

features in the decision model).

• Production mechanism and process. The means for composing and con-

figuring products from the software asset inputs. Product decisions are used

during production to determine which software asset inputs to use and how to

configure the variation points within those assets.

• Software product outputs. The collection of all products that can be

produced for the product line. The scope of the product line is determined by

the set of software product outputs that can be produced from the software

assets and decision model.

Some of these ideas have it roots in approaches such as Program Factoring [127]

or Domain Engineering [128]. The characteristic that distinguishes software product

5.2. Variability Modelling 93

lines from previous efforts is predictive versus opportunistic software reuse. Rather

than put general software components into a library in hopes that opportunities for

reuse will arise, software product lines only call for software artifacts to be created

when reuse is predicted in one or more products in a well defined product line. To

this end, the main objectives of software product lines are as follows.

• Capitalize on commonality through consolidation and sharing within the

software asset inputs, thereby avoiding duplication and divergence.

• Manage variation to reduce the time, effort, cost and complexity of creating

and maintaining a product line of similar software systems. This is achieved

by clearly defining the variation points and decision model, thereby making

the location and dependencies for variation explicit.

That is, Software Product Line Engineering (SPLE) optimizes the development

of individual systems within an application domain by leveraging their common

characteristics and managing their differences in a systematic way. In SPLE, indi-

vidual systems can be built rapidly from reusable assets, such as a set of components

and/or a common platform.

5.2.2 Model Driven Software Product Lines

Generative software development [129] and related approaches, such as Software

Factories [130], have been propagating the integration of software product lines

and model-driven software development; also, entire workshops have been recently

dedicated to this topic [131, 132].

Model-Driven Development (MDD) aims at capturing every important aspect of

a software system through appropriate models. Compared to implementation code,

models capture the intentions of the stakeholders more directly, are free from acci-

dental implementation details, and are more amenable to analysis. In MDD, models

are not just auxiliary documentation artifacts; rather, they are source artifacts and

can be used for automated analysis and/or code generation.

SPL engineering and MDD are not only complementary, but their integration

bears the potential for significant synergies. While MDD can help us represent

5.2. Variability Modelling 94

II. PervML

Model

III. Weaving

Model

Pervasive

System

I. Feature

Model

M2T

Figure 5.3: SPL following the MDD Approach

different aspects of a product line more abstractly, SPL engineering provides a well-

defined application scope, which puts the development and selection of appropriate

modelling languages on a sound basis. Furthermore, the automated analysis and

code generation afforded by precise models can help us to automate the creation of

system configurations. MDD provides effective techniques for conveying the results

of specifying variability as follows:

• Metamodelling, which defines type systems that precisely express key abstract

syntax characteristics and static semantic constraints associated with product-

lines for particular application domains, such as pervasive systems, mobile

computing or resilience systems.

• Domain-specific languages (DSLs), which provide notations that are guided

by and extend metamodels to formalize the process of specifying product-line

structure, behavior, and requirements in a domain.

• Model transformations and code generators that ensure the consistency of

product-line implementations with analysis information associated with func-

tional and QoS requirements captured by structural and behavioral models.

Key advantages of using MDD in conjunction with variability of SPLs are (1)

rigorously capturing the commonalities and variabilities in a family of systems and

(2) helping automate repetitive tasks that must be accomplished for each product

instance.

Figure 5.3 shows how to combine modelling and model transformations to de-

velop an MDD-SPL for Smart Homes. First, the assets of the MDD-SPL are model

5.2. Variability Modelling 95

elements which describe a family of Smart Homes. These model elements conform

to the metamodel of PervML which is a DSL for Smart Homes. Second, the decision

model is another model which specifies the aspects or characteristics (named fea-

tures) of a particular Smart Home. Third, a weaving model projects the features on

the DSL for the purpose of scoping the domain model. Finally, the output system

is obtained through a model (scoped DSL) to text (Java code) transformation.

Given such MDD-SPL, we argue that the modelling effort made to define the

MDD-SPL is not only useful for producing the system but also for providing auto-

nomic behaviour during execution. The knowledge previously captured in variability

models can be used to describe the variants in which a system can evolve. Further-

more, variability models can assist the execution to determine the steps that are

necessary to reconfigure a software system. Next, we describe the models which

conform our MDD-SPL (see Figure 5.3), and how these models can enable a system

to achieve autonomic behaviour.

I. Feature Modelling

Feature Modelling is widely used to describe the set of products in a software product

line in terms of features. In these models, features are hierarchically linked in a tree-

like structure through variability relationships such as optional, mandatory, single-

choice and multiple-choice, and are optionally connected by cross-tree constraints

such as requires or excludes.

There are many proposals about the type of the relationships and the graphical

representation of feature models [133]. We have chosen the MOSKitt Feature Model

as the modelling language because it supports feature reasoning (by means of the

FAMA framework [21]) and also because it has good tool support1.

The Feature Model of Figure 5.4 describes a Smart Home with Automated Illumi-

nation, Blind Control and Security. The grey features represent the features of the

smart home, while the white features represent potential variants since they may be

activated in the future. For instance, the smart home initially provides automated

1http://www.pros.upv.es/labs/projects/mfm

5.2. Variability Modelling 96

Smart Home

Occupancy Simulation Security

Siren

Automated Illumination

Silent
Alarm

Visual
Alarm

Variation Point
Current Config.

In Home
Detection

Blind Control

Lighting
by Occupancy

Alarm

Sensing
Outside
Detector

Perimeter
Detection

Blinking
Lights

In Home
Security

Optional

Mandatory

Single Choice

Multiple Choice

Requires

Excludes

Figure 5.4: Feature model of a smart home.

lighting and a security system. This security system relies on in-home detection

(inside the home) and a silent alarm. The system can potentially be upgraded with

perimeter presence presence detection and other alarm to enhance home security.

Let JFMK denote the set of all Features (active or inactive) in a Feature Model;

we define the Current Configuration (CC) of a system as the set of all active features

(F) in its Feature model.

CC
def
= {F} ∣ F ∈ JFMK ∧ F.state = Active ∧CC ⊆ FM

For example, the CC of the Feature Model in Figure 5.4 is expressed as follows:

CCFigure5.4 = {SmartHome,Security, InHomeSecurity

Sensing,Alarm,AutomatedIllumination,

SilentAlarm,LightingByOccupancy}

II. Pervasive System Modelling

Pervasive Modelling Language2 (PevML) [24] is a Domain Specific Language (DSL)

for describing pervasive systems using high-level abstraction concepts. This language

is focused on specifying heterogeneous services in concrete physical environments

such as the services of a smart home. These services can be combined to offer

more complex functionality by means of interactions, and services can also react to

2http://www.pros.upv.es/labs/projects/pervml

5.2. Variability Modelling 97

Service1 Service2 Service3

Trigger1 Trigger2

BP1 BP2 BP3 BP4 BP5

Interaction1

Sensor1 Actuator1 External

Software1

External

Software2

Actuator2

Figure 5.5: Main concepts of PervML Pervasive Systems

changes in the environment. This DSL have been successfully applied to develop

solutions in the smart home domain [134].

The main concepts of the PervML language are: (1) a Service coordinates the

interaction between devices to accomplish specific tasks (these devices can be hard-

ware o software entities); (2) a Binding provider is a device adapter that embeds the

issues of dealing with heterogeneous technologies; (3) an Interaction is a descrip-

tion of a set of ordered invocations between Services; and (4) a Trigger is an ECA

rule (Event Condition Action) that describes how a Service reacts to changes in its

devices. Figure 5.5 illustrates the relationships between these concepts.

The PervML language provides different models to specify the services (Service

and Interaction Models) and devices (Binding Provider and Functional Models) of

a pervasive system. See [135] for a detailed description of PervML models. To ad-

dress variability in pervasive systems, we focus on the Structural Model of PervML.

The Structural Model specifies (1) the components that conform a particular con-

figuration of the system (services and devices), and (2) how these components are

connected among them.

Figure 5.6 shows two Smart Home configurations according to the concrete syn-

tax of the Structural Model. Services are represented by a circle, devices are repre-

sented by a square, and the connections among services and devices are represented

by lines.

5.2. Variability Modelling 98

Lights

Lighting

Service

Alarm
Security

Service

TV

Multimedia

Service

Presence Sensors Presence Sensors

1

Security

Service

Presence

Simulator

Alarm

b c

e

f

a

TV Lights

Lighting

By Presence

Presence

Simulation

In Home

Detection

g

Second Scenario: Nobody is at home.First Scenario: The user is at home.

Figure 5.6: Two configurations of a Pervsive System.

Left of Figure 5.6 shows a User at Home configuration (which is the configura-

tion of Figure 5.4), while right of Figure 5.6 shows a Nobody at Home configuration.

Comparing both configurations, movement sensors are no used for lighting (left);

they are used for providing information to the security service instead (right). In

addition, the Occupancy simulation service is activated at Nobody at Home config-

uration, and the connections that are required for this service to communicate with

multimedia, lighting and security services are established.

III. Weaving Model: Tracing Features to PervML elements

Although a feature model can represent commonalities and variabilities in a very

concise taxonomic form, features in a feature model are merely symbols. Mapping

features to other models, such as behavioral or data specifications, gives them se-

mantics. Next, we show how to perform this mapping by means of a weaving model

[136]. This weaving approach enables us for scoping and configuring PervML models

from a set of given Features.

Weaving models are used to define and to capture relationships between models

elements. Relationships between model elements are present in many different ap-

plication scenarios, such as specification of transformations, traceability, or model

alignment. We use the weaving models to define the relationships between Features

and model elements of a DSL.

Consider a weaving model (Mw) between a Feature model (Fm) and a PervML

model (Pm), denoted by the triple <Mw, Fm, Pm>. Mw contains a set of elements

that link a set of elements of Fm with a set of elements of Pm. The elements of a

5.2. Variability Modelling 99

Feature Superimposition Components

1 2 3

Figure 5.7: Snapshot of a Feature Model.

Mw to support link management using weaving models are as follows.

• WModel represents the root element that contains all model elements. It is

composed by the weaving elements and the references to woven models.

• WLink express a link between model elements that has simple linking se-

mantics. Its semantic has to be refined according to the use of the weaving

model.

• WLinkEnd (also know as link endpoint) represents a linked model element.

This element enables the creation of N-ary links.

Since we are specifying links between Features and PervML elements, a Fm

contains Features from the JFMK set (active or inactive features), and Pm contains

elements of PervML such as: services, devices or connections among the formers. In

our case, a WLink ∈ Mw indicates that a given element p1 ∈ Pm will be included

in the resulting PervML configuration if and only if f1 ∈ Fm is active. That is, by

means of the weaving model, the PervML configurations is instantiated through the

activation/inactivation of features in the Feature Model.

Finally, the weaving model Mw does not contain the concrete elements p1, or f1,

but a reference that enables to access them in the containing models (Pm and Fm).

This is the minimum information to have a way to access and to uniquely identify

each linked element.

5.3. Specifying Reconfigurations through Feature Models 100

Figure 5.7 shows a weaving model between the Feature model and the PervML

model of a Smart Home using ATLAS Model Weaving tool [137]. The Structure

model of PervML (column 3, Figure 5.7) specifies the services, devices and connec-

tions among them. The Smart Home features are specified by MOSKitt Feature

Model (column 1) and Atlas Model weaving (column 2) establishes the relations

between features and architecture components.

In order to query a weaving model to identify which PervML elements support a

certain feature, the Superimposition operator (⊙) is defined. The Superimposition

takes a Feature and returns the set of components and channels related to this

Feature. Some examples of the relationship between Features and the Smart Home

of Figure 8.2 are as follows:

⊙(LightingByOccupancy) = {a, g}

⊙(OccupancySimulation) = {1, b, c, d}

⊙(InHomeDetection) = {e, f}

For example, LightingByOccupancy is supported by the connections labeled as

a and g in Figure 5.6. As well as, Occupancy Simulation is supported by the

connections b, c, d and the service 1.

5.3 Specifying Reconfigurations through Feature Mod-

els

In the context of Software Product Line engineering, the focus of variability mod-

els has been on the efficient derivation of customized product variants that, once

created, keep their properties throughout their lifetime. That is, although Software

Product Line engineering recognizes that variation points are bound at different

stages of development, and possibly also at run-time, it typically binds variation

points before delivery of the software.

We believe that variability models can be also used to provide a richer seman-

tic base for run-time decision-making related to system adaptation. For example,

5.3. Specifying Reconfigurations through Feature Models 101

Class

(n) # instances

Property

Figure 5.8: OWL Ontology for Autonomic Homes.

variability models can be used to determine how a system should move from a consis-

tent architecture to another consistent architecture. This model-based management

of executing systems can play a significant role as we move towards implementing

the key self-* properties associated with autonomic computing. Specifically, we ar-

gue that a system can activate/deactivate its own features dynamically at run-time

according to the fulfilment of Context Conditions.

For context modelling, we use an ontology-based context model that leverages

Semantic Web technology and OWL (Web Ontology Language) [122]. OWL is an

ontology markup language that enables context sharing and context reasoning. In

the artificial intelligence literature, an ontology is a formal, explicit description of

concepts in a particular domain of discourse. It provides a vocabulary for repre-

senting domain knowledge and for describing specific situations in a domain. An

ontology-based approach for context modelling lets us describe contexts semantically

and share common understanding of the structure of contexts among users, devices,

and services. The main benefit of this model is that it enables a formal analysis of

the domain knowledge, such as performing context reasoning using first order logic.

An ontology represents our context model structure. The ontology is described

in OWL as a collection of RDF triples, in which each statement is in the form

of (subject, predicate, object). The subject and object are the ontology objects

or individuals and the predicate is a property relation defined by the ontology. For

instance, (John, Location, garden) means that John is located in the garden. Figure

5.8 shows our current ontology for context modelling in Autonomic Homes. For more

information about the structure and population of this ontology see [138].

5.3. Specifying Reconfigurations through Feature Models 102

Given such ontology, we define context conditions as boolean expressions that

check for values in the Smart Home ontology. Examples of these contextual condi-

tions are:

1 NewVolumetricSensor = (Volu360 , state , "installed ") &&

2 (Volu360 , location , "In-Home")

3 AlarmFailure = (CentralAlarm , state , "failure ")

4 EmptyHome = (MovSensorMainDoor , movement , false) &&

5 (MovSensorStairs , movement , false)

The first condition (NewVolumetricSensor) detects that a movement sensor is

being connected in a specific location. The system can activate the appropriate

features to integrate the new device in order to offer self-configuration. The second

condition (AlarmFailure) detects the situation where the alarm is not working, so

an alternative mechanism can be used instead of the alarm (self-healing). Finally,

the third condition (EmptyHome) is fulfilled when none of the movement detection

sensors is perceiving movement. This can be used to trigger the activation of both

the In Home Detection and the Occupancy Simulation features when home members

leave home, to achieve self-adaptation.

Since a given condition can trigger the activation/deactivation of several features,

we define the Resolution concept (R) to represent the set of changes triggered by

a condition. A resolution is a list of pairs where each pair is conformed by a Feature

(F) and the state of the feature (S). Each resolution is associated to a context

condition and represents the change (in terms of feature activation/deactivation)

produced in the system when the condition is fulfilled.

R
def
= {(F,S)} ∣ F ∈ JFMK ∧ S ∈ {Active, Inactive}

For instance, the condition EmptyHome is associated to the following resolution:

REmptyHome = {(OccupancySimulation,Active),

(InHomeDetection,Active),

(LightingByOccupancy, Inactive)}

5.3. Specifying Reconfigurations through Feature Models 103

This means that when the Smart Home senses that it is empty (according to

the condition), it must reconfigure itself to deactivate LightingByOccupancy and to

activate both OccupancySimulation and In-HomeDetection. The Feature Model at

run-time enables the Smart Home to perform this reconfiguration.

Our approach argues the use of the above Feature Model as the knowledge to

drive the autonomic behaviour of the system. Specifically, we argue that a system

can query the above models in order to bind its own variation points, initially when

software is launched to adapt to the current context, as well as during operation to

adapt to changes in the context.

5.3.1 Evaluation of the Autonomic Behaviour through Fea-

ture Models.

To determine the level of autonomic behaviour that can be achieved by means of

Feature Model reconfigurations, we make use of a state machine since, in practice,

engineers use state machines to represent and check adaptation policies [112]. Fig-

ure 7.9 illustrates how a simple feature model, which consists of four features only

(see a), defines eight possible system configurations C1 to C8 (see c). When a

designer defines a condition for the activation of a system feature by means of a

resolution –RConditionX , RConditionY , or RConditionZ– (see b), he/she is expressing the

transitions between different system states (see d) in a declarative manner, with-

out the need for an exhaustive definition of each state transition or the transitions

derived from the composition of states. In the example, a single resolution such

as RConditionY results in eight transitions among system variants (represented as

dashed-arrow lines in the figure).

The presented parallelism shows how a Feature Model hides much of the com-

plexity in the definition of the adaptation space for an autonomic system. In the

example of Figure 5.4, the feature model containing 18 features represents more than

200,000 states, and the three resolutions for this feature model (NewVolumetricSen-

sor, AlarmFailure and EmptyHome) define more than 600,000 transitions among

system variants. Feature Models provide an intensional description of the possible

states of the system, as opposed to extensionally describing each possible state.

5.4. Model-Based Validation of Reconfigurations 104

1

2 43

C1 = {1}
C2 = {1,2}
C3 = {1,3}
C4 = {1,4}
C5 = {1,2,3}
C6 = {1,2,4}
C7 = {1,3,4}
C8 = {1,2,3,4}

RConditionX = { (2,True) }
RConditionY = { (3,True) }
RConditionZ = { (4,True) }

(a) (b)

(c) (d)

C1 C2 C3

C4 C5

C6 C7 C8

Figure 5.9: Visualizing variability as an adaptation space.

5.4 Model-Based Validation of Reconfigurations

For dependable systems, it is indispensable to have a means to analyze the reconfig-

urations before performing them. However, the simultaneous fulfillment of Context

Conditions leads to an exponential growth in the number of possible system recon-

figurations. This presents a major problem, since reasoning on a huge number of

reconfigurations becomes too time consuming at run-time when considering the re-

sponse time in the Smart Home domain that we are addressing [139]. Furthermore,

these activities are very complex and error prone and hence pose the need for a

sound and seamless engineering support.

To address the above problem, our approach validates the configurations re-

sulting from the simultaneous fulfillment of Resolutions at design time. Therefore,

unexpected configurations such as enabling in-home intrusion detection systems can

be avoided when inhabitants are at home. In particular, we analyse Feature Models

by means of the Feature Model Analyser Framework [21] (FAMA). This framework

implements the automated analysis of Feature Models using Constraint Satisfaction

Problems [110]. In particular, we focus on two operations: Check and Filter [140].

• The Check operation takes a configuration as input and it returns a value

5.4. Model-Based Validation of Reconfigurations 105

that determines whether or not the configuration is valid according to a Feature

Model. For instance, the RInvalid Config described below is not valid according

to the Feature Model of Figure 5.4 because OutsideDetector must already be

activated in order to activate PerimeterDetection.

RInvalid Config = {(PerimeterDetection,Active), (OutsideDetector, Inactive)}

• The Filter operation acts as a limitation for potential configurations. This

operation enables designers to identify the configuration that will arise from

the simultaneous fulfillment of several Resolutions. In the Smart Home exam-

ple, the simultaneous fulfillment of the conditions EmptyHome and Comfort

generates the following resolution:

REmpty & Comfort = {(OccupancySimulation,Active), (InHomeSecurity,Active),

(LightingByPresence, Inactive), (BlindControl,Active),

(AutomatedIllumination,Active)}

We can also apply the check operation to REmptyHome & Comfort. If both conditions

are true in the Smart Home context, then the check operation determines that the

resulting configuration is invalid. The configuration is invalid because Automate-

dIllumination and BlindControl cannot be in a configuration at the same time (see

Figure 5.4).

The combination of these two operations turns out to be a powerful mechanism

to identify potential problems at design time. Actually, even though variability

decisions are taken in multiple stages (resolutions) to form a complete configuration

iteratively, we can still identify invalid configurations.

However, it is interesting not only obtaining a valid-invalid conclusion but know-

ing the reasons why that conclusion is inferred. For example, if we find an error such

as the given by REmptyHome & Comfort, then we may be interested in the relationships

that make this error appearing. So we can use this information to assist on error

repairing. This transverse operation is commonly known in Feature model analy-

sis community as explanation [141, 109] and may be used in conjunction with any

deductive operation such as the Check operation.

5.5. Applying the approach to other Variability Language: Autonomic
Behaviour through Common Variability Language 106

Explanation operations intend to extract relevant information from feature mod-

els to assist on decision making. Specifically, this operations allow to obtain conjec-

tures about why things happen. FAMA framework provides a catalog of explanation

operations on Feature models [142]. For each deductive operation (i.e., Check op-

eration), FAMA propose “why?” and “why not?” questions. “Why?” questions are

asked when a deductive operation has a solution. “Why not?” questions intend to

find an answer for a deductive operation that has no solution.

The Check operation may obtain a negative response when inconsistencies are

found. Whenever the Check operation detects an invalid configuration. It is nec-

essary to obtain further information about the relationships that are making the

product impossible to derive. In the example of REmptyHome & Comfort, the Check op-

eration identifies that the resulting configuration is invalid. The explanation opera-

tion (“Why is a configuration not valid”) explains this unexpected result by detecting

the excludes constrain between AutomatedIllumination and PresenceSimulation as

the relationships that are causing it.

The objective of Explanation operations is to find the reasons that explain the

inconsistent situation. The results of this explanation operations help system de-

signer to refine both Feature model constraints and Resolutions. Hence, existing

techniques for variability analysis can be used as an step in obtaining safe systems

free of unsafe reconfigurations.

5.5 Applying the approach to other Variability Lan-

guage: Autonomic Behaviour through Common

Variability Language

The use of variability models for enabling autonomic behaviour is the central idea

of this work. Although feature models have been used for capturing variability, our

approach can be applied to other Variability modelling languages.

Variability models for system families come in two very different forms: as pure

feature models that are independent of any design or implementation model, or as

5.5. Applying the approach to other Variability Language: Autonomic
Behaviour through Common Variability Language 107

Adding Standardized Variability to Domain Specific Languages

Øystein Haugen Birger Møller-Pedersen Jon Oldevik Gøran K. Olsen Andreas Svendsen
SINTEF and
Univ. of Oslo

Oystein.Haugen

@sintef.no

University of Oslo
birger

@ifi.uio.no

Univ. of Oslo
and SINTEF

jonold

@ifi.uio.no

SINTEF
Goran.K.Olsen

@sintef.no

SINTEF
Andreas.Svendsen

@sintef.no

Abstract

We show how a common language of variability can

be used to enhance the expressiveness of a Domain

Specific Language (DSL). DSLs have been proposed as
a mechanism for expressing variability. Variability

between models in a given domain or of a family of

systems is captured by language constructs, implying

that all possible models in this language are the

allowed variations. We explore the possibility of

expressing variability in a language independently of
the base modeling language. We explore how this

works for small DSLs as well as for general purpose

languages like UML. Implications of this approach are

that the variability language can be standardized, and

that DSLs do not have to include variability

mechanisms.

1. Introduction

Variability models for system families come in two

very different forms: as pure feature models that are

independent of any design or implementation model, or

as variability models that are related to a base model:

elements of the base model will become elements of

specific models (or not) according to resolutions of

related variability models.

In this paper we focus on the second form for which

two main approaches have emerged:

! Annotating the base model by means of

extensions to the modeling language, e.g. UML

[16] profiles with stereotypes, see e.g. [6] and

[7]. The annotated models are unions of all

specific models in a family of models.

! Making separate, orthogonal variability models

that apply to a single base model. Examples are

[13] and [1]. In [1] this approach has been

coined the BVR-approach: Base-Variation-

Resolution.

The advantage with the annotation approach is that

model elements subject to variability is clearly marked,

while the disadvantage is that base models are cluttered

with variability specifications. The disadvantage with

the BVR approach is that base model elements subject

to variability are not clearly marked, however, the

main advantage is that there may be more than one

variability model for each base model, as indicated in

Figure 1.

 Base

Model

Variation

Model

Resolution

Model

Figure 1 BaseVariationResolution - BVR

The BVR approach described in [1] was developed

within the Families project [5]. The main focus in that

work was variability models for base models in general

purpose modeling languages like UML, so some of the

variability mechanisms in the language for making

variability models relied on the existence of certain

base model language mechanisms. This paper reports

on work within the ITEA project MoSiS (ITEA 2 -

ip06035) to apply (and thereby further elaborate) the

Families variability language also to DSLs that may

not have the language mechanisms of general purpose

languages. The aim is to come up with a variability

language that may enhance both DSLs and general

purpose languages.

2. Approaches

We have identified two different approaches to the

combination of a DSL (or any language) and a

variability language.

! Amalgamated language

! Separate languages

To exemplify our approaches we use a very simple

domain specific language called ARI that can model

arithmetic expressions. The metamodel for ARI is

given in Figure 2.

12th International Software Product Line Conference

978-0-7695-3303-2/08 $25.00 © 2008 IEEE

DOI 10.1109/SPLC.2008.25

139

12th International Software Product Line Conference

978-0-7695-3303-2/08 $25.00 © 2008 IEEE

DOI 10.1109/SPLC.2008.25

139

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 11, 2009 at 07:20 from IEEE Xplore. Restrictions apply.

Figure 5.10: Base-Variation-Resolution Approach.

variability models that are related to a base model: elements of the base model

will become elements of specific models (or not) according to resolutions of related

variability models.

In the above section, feature models were applied due to the availability of tool

support for analysis, but other modelling approaches may be more suitable for cer-

tain types of tasks. In this section, we introduce the key steps to apply our technique

to another representative modelling language: the Common Variability Language

(CVL) [121]. We have chosen CVL because it pursues OMG standardization of

variability modelling and management.

CVL is based in the Base-Variation- Resolution approach (BVR-approach) which

argues to define orthogonal variability models that apply to a single base model

(see Figure 5.10). The BVR approach described in [143] was developed within

the Families project [144]. The main focus in that work was variability models

for base models in general purpose modelling languages like UML, so some of the

variability mechanisms in the language for making variability models relied on the

existence of certain base model language mechanisms. CVL reports on work within

the ITEA project MoSiS (ITEA 2 - ip06035) to apply (and thereby further elaborate)

the Families variability language also to DSLs that may not have the language

mechanisms of general purpose languages. The aim is to come up with a variability

language that may enhance both DSLs and general purpose languages.

The motivation of CVL is to separate variability modelling from the base domain

modelling. CVL is suitable for modelling variability of models in any base language

such as DSLs or UML. The CVL approach leaves the base domain modelling to the

DSL while the variability is treated with CVL (see Figure 5.11). This separation

between the DSL and the variability language provides a good separation of concerns

5.5. Applying the approach to other Variability Language: Autonomic
Behaviour through Common Variability Language 108

DSL

Variation

model

CVL

Base

domain model

Generic &

Standardized

resolution

models

Focused on

a domain

Execute CVL

Transformations

Resolved

domain models

Description

of possible

variations in

the system

Domain

model of a

particular

family of

system

Selection of a set

of options in the

variation model

Family of systems

fully described in the

domain specific

language.

All regular DSL tools

can be applied to

these models

Figure 5.11: Modelling Varibility with CVL.

and of developing efforts. The domain experts can concentrate almost exclusively

on the DSL.

As illustrated in Figure 5.12, a CVL specification consists of one variation-model

that is applied to one base-model (DSL or UML), and several resolution-models. The

variation-model defines a set of alternatives for model fragments in the base-model.

A fragment can be any arbitrary part of the base model, including a set of elements

and their relationships. Finally, a resolution model specifies which fragments of the

base-model are replaced by fragments of the variability-model.

We have successfully applied our modelling approach using CVL [126]. First,

we built a base model using PervML (see left of Figure 5.12). Then, we specified

valid replacement fragments for this base-model: Simulation and Sensing. Finally,

we defined resolution models that specify substitutions between placements and

replacement in order to synthesize a new PervML configuration. For instance, to

achieve a nobody at home configuration (see right side of Figure 8.2), the following

fragment substitutions can be applied:

REmptyHome−CV L = {(Simulation,Basic), (Sensing,Security)}

The REmptyHome−CV L is performed as follows. Initially, an empty fragment is

connected to a multimedia service and a lighting service. This empty fragment is

5.5. Applying the approach to other Variability Language: Autonomic
Behaviour through Common Variability Language 109

Lights

Lighting Service

Alarm
Security
Service

TV

Multimedia
Service

Base-model: Placement Fragments

Presence Sensors Presence Sensors

Presence Simulation

Advance Simulation

Res-Model: Fragment
Substitutions

Simulation: Advance
Sensing: Lights

Simulation

Sensing

Basic

Lights Security

Simulation: Advance
Sensing: Security

Simulation: Basic
Sensing: Lights

Simulation: Basic
Sensing: Security

R
e

sA
R

e
sB

R
e

sC
R

e
sD

Var-model: Replacement Fragments

Description of possible variations in the system.Domain model of a particular family of system. Selections from Var-Model.

Advance

Si
m

u
la

ti
o

n
Se

n
si

n
g

Figure 5.12: Applying CVL for Autonomic Homes.

replaced with a fragment consisting of three model elements (presence simulation

service and two communication channels). Then, the empty fragment of Sensing is

replaced by the Security fragment. These two fragment substitutions lead to the

nobody at home configuration depicted on the right side of Figure 8.2.

The reconfiguration process based on model substitutions is supported by the

CVL tools, which implement this variability transformation. This transformation

generates a new and a modified base model, which contains the elements representing

the substitutions made.

Figure 5.13 shows both Feature modelling and CVL side by side. On the one

hand, Feature modelling specifies the whole system family by means of the DSL

model. Then, this family is scoped through the superimposition of features. On the

other hand, CVL specifies placements in a base DSL model. For each placement,

CVL also specifies a set of possible fragments. Then, the DSL is configured by

setting a particular fragment for each placement.

The advantage with the feature-based approach is that model elements subject

to variability are clearly marked, while the disadvantage is that base models are

cluttered with variability specifications. The advantage with the CVL approach

is that there may be more than one variability model for each base model, which

contributes to manage complex varibility specifications. However, the main advan-

tage disadvantage is that base model elements subject to variability are not clearly

marked.

Based on our variability modelling experience, expressing the whole family of sys-

5.6. Conclusions 110

Lights

Lighting Service

Alarm
Security
Service

TV

Multimedia
Service

Independent weaving model is required

Simulation

Sensing

Simulation: Advance
Sensing: Lights

Simulation: Advance
Sensing: Security

Simulation: Basic
Sensing: Lights

Simulation: Basic
Sensing: Security

R
e

sA
R

e
sB

R
e

sC
R

e
sD

Weaving model is built-in

Feature Modelling

Presence Sensors Presence Sensors

Presence Simulation

Advance Simulation

Basic

Lights Security

Advance

Si
m

u
la

ti
o

n
Se

n
si

n
g

Alarm2
Security

Presence Simulator

Alarm1

Lights

Advance

Occupancy Simulator

Alarm3

Presence Sensors

CVL
V

ar
ia

b
ili

ty
D

SL

Figure 5.13: Feature Modelling and CVL.

tem by means of a DSL model (as feature modelling promotes) leads to often fairly

complex models. Whereas, expressing variability by fragments of models leads to

compact and simple DSL models. We believe that the fragment-based approach

manages variability in a more structured manner, and it also simplifies the specifi-

cation of new variants as the system family evolves.

5.6 Conclusions

In this chapter, we have argued that the modelling effort made at an MDD-SPL

is not only useful for producing the system but also for providing autonomic be-

haviour during execution. The knowledge previously captured in variability models

is used to describe the variants in which a system can evolve. We have also obtained

theoretical results about the autonomic behaviour specified by Variability Models.

Since the models that form the basis for reconfiguration are available at design

time, we have shown how to validate configurations in an early stage of the devel-

opment process without first implementing them. Furthermore, we have automated

this step combining analysis operations of the FAMA framework. Besides, by means

of Explanation operations, we are able to get the reasons that explain inconsistent

5.6. Conclusions 111

situations.

We have also validated that our work can be applied to different modelling

languages. Specifically, we have applied our approach using both Feature Models

and the Common Variability Language. On the one hand, Feature models were

chosen due to the availability of tool support for analysis. On other hand, CVL

was chosen because it pursues OMG standardization of variability modelling and

management.

We believe that the use of variability models at run-time brings new opportunities

for achieving autonomic capabilities. Variability models provide a richer semantic

base for run-time decision-making related to system adaptation. This is done by

means of a planned reutilization of the efforts invested at design time.

Next chapter shows how Variability Models at run-time guide the choice of sys-

tem variants in response to context changes. Furthermore, we also show how the

model operations to query and update variability models for run-time reconfigura-

tion. These operations indicate how system components should be reorganized for

the reconfiguration in order to move from one configuration of the system to another

configuration.

Chapter 6. ACHIEVING AUTONOMIC

COMPUTING THROUGH

MODELS AT RUN-TIME

“Freedom to be your best means nothing unless you’re willing to do your best.”
– Colin Powell (1937-nowadays).

6.1 Overview of the Chapter

Variability
Models

Variability
Transformation

Reconfiguration
Analyser

Reconfiguration
Engine

Reconfigurable
System

Reconfiguration
Tracker

Figure 6.1: Scope of Chapter 6

To achieve Autonomic Computing, our work

makes use of models at run-time [145, 146]

(Variability Models and Ontologies) and Re-

configurable Architectures [18]. Run-time

models specify the possible configurations of

a Smart Home, while a Reconfigurable Archi-

tecture can be rapidly retargeted to a spe-

cific configuration. That is, this work use

modelling techniques to define the bounds in

which a system can evolve by using at run-

time the variability models that are available

at design time.

First, this chapter presents how a system

architecture can represent a family of software systems where the configuration

can be updated while the system is operational. Specifically, it defines how a set

of components cooperate to change from one configuration of the system family

112

6.2. Renconfigurable System Architectures 113

to another. The realization of this Reconfigurable System Architecture has been

performed by means of the OSGi Framework

Second, this chapter presents our approach based on Variability Models and

Ontologies to drive the reconfiguration of the system architecture in response to

changes in the environment. In response to these changes, the system itself can

query these variability models in order to determine the necessary modifications to

its architecture. The approach is presented in the context of a Smart Home whose

services are dynamically reconfigured.

Third, to support the proposal, a Model-based Reconfiguration Engine (named

MoRE) was developed. MoRE implements (1) the operations that are in charge of

determining how the system should evolve and (2) the actions for modifying the

system architecture accordingly. Thus, MoRE enabled systems make use of the

knowledge captured by variability models as if they were the policies that drive the

autonomic evolution of the system at run-time.

Finally, in our proposal, models are leveraged at run-time as is, without modi-

fication. That is, we keep the same model representation at run-time that we use

at design-time: the XML Metadata Interchange (XMI) standard. This is a novel

feature in the context of variability models at run-time since it avoids the definition

of technological bridges. Therefore, the same technologies used at design-time for

manipulating XMI models can be applied at run-time. Our experimentation shows

the feasibility of this approach from the point of view of efficiency.

6.2 Renconfigurable System Architectures

A software architecture can represent a family of software systems characterized by

the similarities and variations among the members of the system family. Software

configuration is the process of adapting the architecture of the system family to cre-

ate an architecture for a specific system family member. Many approaches of system

families address the configuration of a family member prior to system operation. A

more difficult problem is how to change the configuration of a product family mem-

ber after it has started to operate. Reconfigurable architectures can address this

6.2. Renconfigurable System Architectures 114
440 Hassan Gomaa and Mohamed Hussein

the component is processing a transaction, it transitions to Passivating state. When the
transaction ends, it either transitions to Passive state, because one of its neighbors is
still active, or it transitions directly to Quiescent state if all neighbors are passive. If
the control component receives a passivate command after it has requested its

neighbor to start a transaction but before it has received a response (i.e., while the
condition Waiting For Neighbor Response is true), then it sends a notification to its
neighbor component informing it that it wishes to cancel the outstanding request. It
then transitions to the Waiting For Acknowledgement state. If the neighbor responds

that the transaction has started, the component transitions to the Passivating state.
Otherwise, if the neighbor responds that the transaction was aborted, the component
transitions to the Passive state. The reason for the Waiting for Acknowledgement state
is to prevent a race condition. In this pattern, a Neighbor Component State Tracking

Statechart is also modeled with states representing whether or not the neighboring
component is active or passive.

6 Change Management Model

A Change Management Model is used to establish a region of quiescence so that Re-
configuration Scenarios may be executed. The change management model, which is
an extension of the change management protocol in [10], consists of:

a. Extended Change Rules which describe rules for component removal, component

interconnection linking and unlinking, and component creation. In the prior work
[10], a component’s interconnections could only be unlinked and the component
removed when it was Quiescent. In this research, a component can be allocated

extra interconnections if it is Quiescent. Moreover, some of the interconnections
of a component may be unlinked if the component is Quiescent with respect to
such interconnections because a component can be designed so that it can be par-
tially quiescent, i.e., quiescent with respect to some interconnections but not oth-

ers.
b. Change Transaction Model which describes reconfiguration actions required to

reconfigure applications. The Change transaction model consists of two parts:

Active Passivating Passive Quiescent

Waiting For

Acknowledgement

Passivate

[Processing

Transaction]

Transaction Ended

[At Least One

Neightbor Active]
Passive Ack From

All Neighbors

Transaction

AbortedTransaction

Started

Passivate [Waiting

For Neighbor

Response]

Activate

Main

Reconfiguration Statechart

Reactivate

Transaction Ended [All Neighbors Passive]

Reactivate

Fig. 2. Main Reconfiguration Statechart For Decentralized Control System Reconfiguration

Pattern. Figure 6.2: Reconfiguration Pattern of a DSPL Architecture.

problem by changing the configuration of the running system at run-time.

Reconfigurable architectures promotes that each architecture component is de-

signed to be capable of transitioning to a state where it can be reconfigured. To

achieve this behaviour, we apply software reconfiguration patterns [147] for dynamic

reconfiguration in system families. Software reconfiguration patterns provide a so-

lution to a reconfiguration problem where the configuration needs to be updated

while the system is operational.

Specifically, we use the Decentralized Control System Reconfiguration Pattern

[148], which is widely used in distributed control systems such as Smart Homes [149].

In this pattern, components notify each other if going to a passive state. Notified

components can cease the communicate with its neighbor component (which is going

to a passive state), but can continue with other component communications.

Figure 6.2 shows the reconfiguration pattern by means of a Reconfiguration Stat-

echart. A reconfiguration statechart defines the sequence of states that a component

goes through during reconfiguration. In a Reconfiguration Statechart a component

is either in the Active, Passive, Quiescent, Passivating or Waiting state .

• Active State. An operational component is in the Active state.

• Passive State. A component is in the Passive state when it is not currently

engaged in a transaction, and it will not initiate new transactions.

• Quiescent State. A component transitions to the Quiescent state if it (1)

is Passive, (2) is not currently engaged in servicing a transaction, and (3) no

6.2. Renconfigurable System Architectures 115

transactions have been or will be initiated by other components which require

service from this component.

• Passivating State. A component is in the Passivating state when it is disen-

gaging itself from any transactions that (1) it has been participating and (2)

it has been initiating.

• Waiting State. A component is in the Waiting For Acknowledgement state

if it has sent notification message(s) to interconnected components to inform

them of its need to go passive, and then it is waiting for positive acknowledge-

ments.

In this reconfiguration pattern (see Figure 6.2), if a passivate command arrives

while the component is processing a transaction, the component transitions to Pas-

sivating state. When the transaction ends, the component either transitions to

Passive state, because one of its neighbors is still active, or it transitions directly to

Quiescent state if all neighbors are passive. If the component receives a passivate

command after it has requested its neighbor to start a transaction but before it

has received a response (i.e., while the condition Waiting For Neighbor Response

is true), then it sends a notification to its neighbor component informing it that it

wishes to cancel the outstanding request. Then it transitions to the Waiting For

Acknowledgement state. If the neighbor responds that the transaction has started,

the component transitions to the Passivating state. Otherwise, if the neighbor re-

sponds that the transaction was aborted, the component transitions to the Passive

state. The reason for the Waiting for Acknowledgement state is to prevent a race

condition.

This Decentralized Control System Reconfiguration pattern enables a system ar-

chitecture to be reconfigured at run-time after it has been deployed. Furthermore,

this pattern provides the following properties to the resulting architecture: (1) Non

interference with those parts of the application that are not impacted by the re-

configuration, and (2) during reconfiguration, impacted components must complete

their current computational activity before they can be reconfigured.

6.2. Renconfigurable System Architectures 116

6.2.1 The OSGi Framework: A Realization of the Renconfig-

urable System Architecture

The Open Services Gateway Initiative (OSGi) framework [124] provides general-

purpose, support for deploying extensible Java-based service applications known as

bundles. An OSGi service platform is an instantiation of a Java virtual machine, an

OSGi framework, and a set of bundles.

Running on top of a Java virtual machine, the framework provides a shared

execution environment that installs, updates, and uninstalls bundles without needing

to restart the entire system. Bundles can collaborate by providing other bundles with

application components called services. An installed bundle might register zero or

more services with the framework’s service registry. This registration advertises the

services and makes them discoverable through the registry so that other bundles can

use them. The framework also manages dependencies among bundles and services

to facilitate coordination among them.

It is possible to deploy a new bundle in an OSGi service platform to provide

application functions to other bundles. A bundle can register services with the

framework service registry. In this case, the service implementation (that is, the

service object), which is represented by its service interface, is what actually gets

registered.

Bundles can discover services offered by each other by querying the service reg-

istry using a simple service discovery interface. When a bundle queries the registry,

it obtains references to actual service objects registered under the desired service

interface name.

The framework manages dependency among bundles that offer and use a given

service. For example, when a bundle is stopped, the framework automatically un-

registers all services that the bundle registered. Also, service events can notify a

bundle when a service from other bundles is registered, modified, or unregistered.

The OSGi capabilities to install, start, restart and uninstall components without

having to restart the entire system enabled us to implement theDecentralized Control

System Reconfiguration Pattern. This pattern describes how a component needs to

6.2. Renconfigurable System Architectures 117

transit from an active (operational state) to a quiescent (idle) state in order to

perform the system adaptation. All those components that are not relevant for the

current configuration are in a catalog of quiescent components. These quiescent

components do not consume processor or memory resources, but they are ready to

be started at any time.

Once a component transits to an active state, the Decentralized Control System

Reconfiguration Pattern specifies that the component has to establish communica-

tion with other components. These communication channels (also called bindings)

are implemented using the OSGi Wire Class. An OSGI Wire is an enhanced im-

plementation of the publish-subscribe pattern that is oriented to dynamic systems.

In particular, an OSGi Wire implements the whiteboard pattern. The whiteboard

pattern has event listeners that register themselves as a service within the OSGi

framework. When the event source has an event object to deliver, the event source

calls all event listeners in the service registry.

The Wire Admin Service in OSGi service platform addresses the intercomponent

eventing mechanism introduced by the reconfiguration pattern, which facilitates

component composition. A Wire object connects a Producer component and Con-

sumer component service. Data that a source component produces flows through

an event chain toward a sink component. A wire also supports advanced features

such as filter-based flow control and data type converters.

Figure 6.3 shows how the main concepts of OSGI (bundle, service and wire)

support two different Smart Home scenarios. OSGi bundles embed the services and

devices of the Smart Home. These bundles registers OSGi services which provides

the main system functionality. Finally, OSGi wires enable the communication be-

tween the services and devices of the Smart Homes. These wires manages the object

interchange through the Smart Home communication channels.

Furthermore, it is possible to enrich an OSGi framework by means of components

available in component discovery networks or by specific extensions for a vertical

domain [150, 151]. In particular, Prosyst Smart-Home extension1 provides a set of

1http://www.prosyst.com/products/osgi_ext_smart.html

6.2. Renconfigurable System Architectures 118

Lights

Lighting

Alarm Security

TV

Multimedia

Occupancy

Sensors

1

Occupancy Simulator

Bundle

b c

e

f

a

g

First Scenario: The user is at home.

Lights

Lighting

Alarm Security

TV

Multimedia

Occupancy

Sensors

Second Scenario: Nobody is at home.

Service WireOSGi

Service Channel DevicePervML

Figure 6.3: The Smart Home from an OSGi perspective.

generic components which enables the development of systems in the smart home

domain. This extension covers the following smart home technologies.

• KNX. This technology is an standard for applications in home and building

control, ranging from lighting and shutter control to various security systems,

heating, ventilation, air conditioning, monitoring, alarming, water control,

energy management, metering as well as household appliances and audio. This

technology can be used in new as well as in existing home and buildings.

• UPnP. This technology is a set of networking protocols promulgated by the

UPnP Forum. The goals of UPnP are to allow devices to connect seamlessly

and to simplify the implementation of networks in the home (data sharing,

communications, and entertainment) and in corporate environments for sim-

plified installation of computer components.

• Bluetooth. This technology is an open wireless protocol for exchanging data

over short distances from fixed and mobile devices, creating personal area net-

works (PANs). It was originally conceived as a wireless alternative to RS232

data cables. It can connect several devices, overcoming problems of synchro-

nization.

Therefore, OSGi can enable the integration of heterogeneous devices and sen-

6.3. Reconfiguring the System Architecture through Feature Models 119

sors in pervasive environments such as smart homes. It turns out that the OSGi

framework provides not only an infrastructure to implement the Decentralized Con-

trol System Reconfiguration Pattern but also a portfolio of ready-to-use extensions

for pervasive computing applications. Given this reconfigurable architecture, next

section shows how to drive architecture reconfigurations by means of Feature models

at run-time.

6.3 Reconfiguring the System Architecture through

Feature Models

This work suggest that variability models at run-time can assist the system to deter-

mine the steps that are necessary to reconfigure its own architecture. In particular,

we argue that a system can activate/deactivate its own features dynamically at

run-time according to the fulfillment of Context Conditions.

Feature models specify the possible configurations of the system, while a Re-

configurable Architecture can be rapidly retargeted to a specific configuration in

response to changes in the context. To achieve this goal, our approach follows the

Reconfiguration Process depicted in Figure 6.4.

The first step of our Reconfiguration Process is to feed the Ontology for context

modelling with context events. Context conditions check for values in this

ontology. For instance, the EmptyHome condition is fulfilled when none of the

presence detection sensors is perceiving presence. This can be used to trigger

the activation of both the In Home Detection and the Presence Simulation

features when all the inhabitants leave home. We can also define another

context condition, Comfort, to trigger the activation of features related to

ease and well-being.

The second step of the Reconfiguration Process is triggered when a context condi-

tion is fulfilled. Since a given condition can trigger the activation/deactivation

of several features, the Resolution concept (R) represents the set of changes

triggered by a condition. A resolution is a list of pairs where each pair is

6.3. Reconfiguring the System Architecture through Feature Models 120

Smart Home
(Reconfigurable

Architecture)

Trigger: Architecture Increments/Decrements are calculated

Trigger: New
Context Event

Effect: Inserting
Context Event into
the Ontology

Trigger: Fulfillment of
a Context Condition

Effect: Changes in
the state of features
(Resolution)

Run-Time System

Effect: DSPL reconfiguration

1

3

Variability
Modelling

(Feature Model)

Context
Ontology

(OWL)
2

Figure 6.4: Overview of the model-based reconfiguration process.

conformed by a Feature (F) and the state of the feature (S). Each resolution

is associated to a context condition and represents the change (in terms of

feature activation/deactivation) produced in the system when the condition is

fulfilled.

For instance, the conditions EmptyHome and Comfort are associated to the fol-

lowing resolutions:

REmptyHome = {(OccupancySimulation,Active), (InHomeDetection,Active),

(LightingByOccupancy, Inactive)}

RComfort = {(PipedMusic,Active), (AutomatedIllumination,Active)}

The REmptyHome resolution means that, when the Smart Home senses that it

is empty (condition), it must reconfigure itself to deactivate Lighting by Oc-

cupancy and to activate both Occupancy Simulation and In Home Detection.

The third step of the reconfiguration process (see Fig 6.4) addresses the archi-

tecture reconfiguration of the Smart Home. In the REmptyHome example, the

Smart Home queries the Feature Model to determine the architecture for that

specific context. The architecture increments and decrements are calculated

in order to determine the actions to modify the architecture. Specifically, we

have defined two operations: ArchitectureIncrement (A△) and Archi-

tectureDecrement (A▽). These operations take a resolution as input, and

they calculate the modifications to the architecture in terms of Components

and Channels.

6.3. Reconfiguring the System Architecture through Feature Models 121

Figure 6.5 shows the Increments and decrements (in terms of both Features

and Components) that come from the triggering of a Resolution (R). A Resolution

specifies two type of features: (1) features that have to be set to an active state

((F,S) ∈ R ∣ S = Active), and (2) features that have to be set to an inactive state

((F,S) ∈ R ∣ S = Inactive). The system feature increment is conformed by those

inactive features of the current configuration that are indicated as active in the

resolution. The system feature decrement is conformed by those active features of

the current configuration that are indicated as inactive in the resolution.

By means of the superimposition operation (⊙), it is possible to project a par-

ticular feature to the architecture components. If the feature increment is superim-

posed, some of the resulting components will be in a idle state (quiescent), and the

rest of resulting components (labeled as 1 in Figure 6.5) will be in an operational

state (active). The architecture increment (A△) is conformed by only the resulting

components that are in quiescent state.

If the feature decrement is superimposed, all the resulting components will be in

an active state. However, it is possible that the intersection between these compo-

nents and the components of the feature increment is not empty (intersection labeled

as 2 in Figure 6.5). That is, some of the components of the feature decrement might

be used by the active features of the feature increment. Therefore, the architecture

decrement (A▽) is conformed by only those components of the feature decrement

that are not required by the feature increment.

We define A(△▽) operations below by means of the superimposition (⊙) op-

erator and the relative complement (/) operator, (also known as the set-theoretic

difference).

A△
def
= ⊙ ((F,S) ∈ R ∣ S = Active) /⊙ (CC)

A▽
def
= ⊙ ((F,S) ∈ R ∣ S = Inactive) /⊙ ((F,S) ∈ R ∣ S = Active)

For example, the results of these operations, given RemptyHome of the First Recon-

figuration Scenario (see right side of Figure 6.3), are as follows:

A△EmptyHome = {c,3, d, e, f},

A▽EmptyHome = {a, b}

6.3. Reconfiguring the System Architecture through Feature Models 122

Current
Configuration:
Active Features

Current
Configuration:

Inactive Features

Resolution.Active

Resolution.Inactive

Active
Components
(Operational) Quiescent

Components
(Idle)

(Feature
Increment)

(Feature
Decrement)

1
2

Sy
st

em
 F
e
at
u
re
s

A
rc

h
it

ec
tu

re
 C
o
m
p
o
n
e
n
ts

Feature
Increment

Feature
Decrement

Architecture
Increment

Architecture
Decrement

Figure 6.5: Architecture Increment and Decrement given a Resolution.

These A(△▽) indicate how system components should be reorganized for the re-

configuration in order to move from one configuration of the system (User at Home,

see left side of Figure 6.3) to another configuration (Nobody at Home, see right side

of Figure 6.3). As illustrated in Figure 6.3, the occupancy sensors are no longer

used for lighting (communication channels a and b are disabled, as indicated in

A▽EmptyHome), and they are used for providing information to the security service

instead (communication channels e and f are enabled, as indicated in A△EmptyHome).

In addition, the occupancy simulator (labelled as 1) is activated, and the communi-

cation channels required for this service to communicate with multimedia (channel

c) and lighting (channel d) are established as A△EmptyHome indicates.

In this section, we have illustrated how the autonomic reaction of a system

can be calculated by taking the variability models as a basis. In the next section,

more detail is provided about how the required steps are supported by MoRE, our

reconfiguration engine.

6.4. MoRE: Model-based Reconfiguration Engine 123

Java Code

Model-Based
Reconfiguration Engine

Quiescent

Reconfiguration Plan

Action

Action Action
Action
Action

Variability and DSL Models

Smart Home GatewayKNX Device Bus

OSGI

CC, A A R, , ,

2

Model Operations

3

4

1

5

Ontology

Context Monitor
Condition1 Resolution1

ConditionN ResolutionN
Condition2 Resolution2

Figure 6.6: The model-based reconfiguration process overview.

6.4 MoRE: Model-based Reconfiguration Engine

To enable autonomic behaviour, the system must evolve from one configuration

to another by itself. Since the reconfiguration in our approach is performed in

terms of features, a Model-based Reconfiguration Engine (MoRE) is provided to

translate context changes into changes in the activation/deactivation of features.

Then, these changes are translated into the reconfiguration actions that modify the

system components accordingly.

The overall reconfiguration steps are outlined in Figure 6.6. The Context Monitor

uses the run-time state as input to check context conditions (step 1). If any of these

conditions are fulfilled (e.g., home becomes empty), then MoRE uses the associated

resolution and the previousModel Operations to query the run-time models about

the necessary modifications to the architecture (step 2). The response of the models

is used by the engine to elaborate a Reconfiguration Plan (step 3). This plan contains

a set of Reconfiguration Actions, which modify the system architecture and

maintain the consistency between the models and the architecture (step 4). The

execution of this plan modifies the architecture in order to activate/deactivate the

6.4. MoRE: Model-based Reconfiguration Engine 124

features specified in the resolution (step 5). The Quiescent Catalogue contains the

inactive components of the system (e.g., drivers of devices that are not in use).

Therefore, the devices considered in the variability scope can be incorporated in the

system at any time.

6.4.1 MoRE Model Operations

Our proposal makes an intensive use of models. Context events and system variabil-

ity are represented by models. Context events are represented by means of OWL

ontologies, and system variability is captured by means of feature models. For

performing the system reconfiguration, information is extracted from these models.

Different model query technologies are used at run-time by MoRE depending on the

modes involved. MoRE uses SPARQL for OWL manipulation and Eclipse Model

Query for Feature Model manipulation. This section introduces the role that both

SPARQL and Eclipse Model Query play in MoRE.

Operations for Context Models

Context conditions (e.g., the home being empty) are specified as SPARQL queries

to our ontology. SPARQL is the W3C recommendation query language for RDF.

This query language is based on graph-matching techniques. Given a data source, a

query consists of a pattern which is matched against the data source, and the values

obtained from this matching are processed to give the answer. The data source to

be queried can be and OWL model as is the one of our ontology for Smart Home

context.

A SPARQL query consists of three parts. (1) The pattern matching part, which

includes several features of pattern matching of graphs, like optional parts, union

of patterns, nesting, filtering (or restricting) values of possible matchings, and the

possibility of choosing the data source to be matched by a pattern. (2) The solution

modifiers, which once the output of the pattern has been computed (in the form

of a table of values of variables), allows to modify these values applying classical

operators like projection, distinct, order, limit, and offset. Finally, (3) the output

of a SPARQL query can be of different types: yes/no queries (ASK), selections of

6.4. MoRE: Model-based Reconfiguration Engine 125

values of the variables which match the patterns (SELECT), creation of new triples

(INSERT), and descriptions of resources (DESCRIBE).

By means of SPARQL queries, we have develop the two operations for manipu-

lating our Context model. On the one hand, the Inserting Context Event operation

is on behalf of keeping track of the Smart Home context events. On the other hand,

the Context Condition operation is on behalf of evaluating the values of the ontology.

To implement the Inserting Context Event operation, we use the INSERT form

to insert new triples in the RDF graph of the Ontology. Each new triple is in the

form of (subject, predicate, object). The subject and object are the ontology objects

or individuals and the predicate is a property relation defined by the ontology. For

example, Listing 6.1 shows the query to set that a given user is at home.

1 INSERT DATA INTO

2 <ht tp : // pros . com/ Inhab i tant>

3 { <ht tp : // on t o l o g i e s . com

4 /SmartHome . owl#John>

5 pros:name ‘ ‘ John’’ ;

6 pros: isAtHome ‘ ‘ t rue ’’ . }

Listing 6.1: Example of Inser Event operation

To implement the Context Condition operation, we use the ASK form to test

whether or not a query pattern has a solution. No information is returned about

the possible query solutions, just whether or not a solution exists. That is, ASK

returns a boolean indicating whether a query pattern matches or not. For example,

Listing 6.2 shows the query to evaluate the Empty Home condition.

1 ASK {

2 ? inhab i tant r d f : t y p e

3 p ro s : I nhab i t an t .

4 ? inhab i tant pros:name ?name ;

5 pros: isAtHome ?isAtHome .

6 FILTER (? isAtHome =

6.4. MoRE: Model-based Reconfiguration Engine 126

7 \"true\"^^xsd :boo l ean) }

Listing 6.2: Example of Context Condition

The combination of the previous operations enables MoRE to gather information

about the domain that it shares an interface with (Inserting Context Event opera-

tion), and to evaluate this information (Context Condition operation). Then, MoRE

can calculate an appropriate reconfiguration as a response to the current situation.

Operations for Varibility Models

The resolution associated to the EmptyHome condition (see the definition of REmptyHome

in Section 6.3) specifies which features should be activated or deactivated to manage

the change in the Smart Home context. To project this resolution to the system

architecture, MoRE queries the feature model in order to calculate the A(△▽) oper-

ations. We have used the EMF Model Query framework (EMFMQ) to define these

model operations.

EMFMQ provides an API to construct and execute query statements in a SQL-

like fashion (see Listing 6.3). These query statements can be used for discovering

and modifying model elements. Queries are first constructed with their query clauses

and then they are ready to be executed.

There are two query statements available: SELECT and UPDATE. The SE-

LECT statement provides querying without modification while the UPDATE state-

ment provides querying with modification. Every query statement requires some

query clauses. The SELECT statement requires two clauses, a FROM and aWHERE.

The former clause describes the source of model elements where SELECT can iter-

ate in order to derive results. The latter clause describes the criteria for a model

element that matches.

1 SELECT

2 FROM modelElements

3 WHERE cond i t i on

Listing 6.3: Template for Model Queries

6.4. MoRE: Model-based Reconfiguration Engine 127

The FROM clause is set to hierarchical iteration by default, which means that for

each element in the modelElements collection, the SELECT statement will traverse

its contained elements recursively until it reaches the leaves of the containment

subtree to find its matching elements.

The final part of a SELECT statement is the WHERE clause along with its

condition. This condition will be evaluated at each model element encountered by

the FROM clause to determine whether the element matches the criteria of the query.

The condition provided to the WHERE clause falls under a specialized condition

called an EObjectCondition that is a condition specially designed to evaluate model

elements.

We have implemented the model operations of our approach using the above

EMFMQ statements. Next, we show the implementation of both CC and ⊙ op-

erations. These two operations conform the basics to calculate the A(△▽). The

purpose for the CC operation is to find Features which state is set to Active. This

is implemented straight-ahead using the EObjectAttributeValueCondition which is

a condition specially designed to evaluate the value held by a model element (see

Listing 6.4).

1 SELECT statement = new SELECT(

2 new FROM(re sou r c e . getContents ()) ,

3 new WHERE(

4 new EObjectAttr ibuteValueCondit ion (

5 fm . getFeature_State () ,

6 new Object InstanceCondi t ion (

7 FeatureConf igurat ion .ACTIVE)))) ;

Listing 6.4: Implementation of the CC Model Operation

The ⊙ operation returns the set of components related to a feature. This opera-

tion is performed to the Model Weaving which main concept is the ElementEqual.

An ElementEqual has two members: the Left Element and the Right Element. Left

Elements are linked to Features while Right Elements are to Components. We use

the EObjectReferenceValueCondition to find those ElementEquals which Left Ele-

6.4. MoRE: Model-based Reconfiguration Engine 128

ment is related to a given Feature (FeatureIDREF). To navigate through the struc-

ture of the ElementEqual, we have compose several Query conditions as follows (see

Listing 6.5).

1 SELECT statement = new SELECT(

2 new FROM(re sou r c e . getContents ()) ,

3 new WHERE(

4 new EObjectReferenceValueCondit ion (

5 new EObjectTypeRelationCondition (

6 mw. getElementEqual ()) ,

7 mw. getEquiva lent_Left () ,

8 new EObjectReferenceValueCondit ion (

9 new EObjectTypeRelationCondition (

10 mw. getLeftElement ()) ,

11 mw. getWLinkEnd_Element () ,

12 new EObjectAttr ibuteValueCondit ion (

13 mw. getWRef_Ref () ,

14 new Str ingValue (FeatureIDREF)))))) ;

Listing 6.5: Implementation of the ⊙ Model Operation

Finally, the references to the model elements returned by the superimpose op-

eration enable the system to construct the Reconfiguration Actions. For instance,

the CreateChannel action needs the following information of a channel from the

PervML model: producer ID, consumer ID and the type of data that will manage

the channel (namely Flavour in OSGi terminology).

Combining both CC and ⊙, we have developed the A(△▽) operations. These

operations define the architecture modifications for moving between different con-

figurations. The core of these operations is the set of active features in a Resolution

(A△) and the set of inactive features in a Resolution (A▽). Given a Resolution,

Listing 6.6 shows how the to get the active features of the Resolution.

1 SELECT statement = new SELECT(

2 new FROM(r e s o l u t i o n . getContents ()) ,

6.4. MoRE: Model-based Reconfiguration Engine 129

3 new WHERE(

4 new EObjectAttr ibuteValueCondit ion (

5 fm . getFeature_State () ,

6 new Object InstanceCondi t ion (

7 FeatureConf igurat ion .ACTIVE)))) ;

Listing 6.6: Implementation of the Resolution-Active Operation

The relative complement (/) operator of the A(△▽) operations is also imple-

mented by means of EMF-Model query primitives. First, note the equivalence be-

tween this operator and the expression based on NOT and IN operators (see Listing

6.7). That is, the set-theoretic difference between SetA and SetB (SetA/SetB) is

the set of all members of SetA that are not members of SetB.

1 SetA\SetB = IN(SetA) and NOT(IN(SetB))

Listing 6.7: Implementation of the / Operator

The / operator is not implemented as is by EMF Model query, but both NOT

and IN operators are. The IN operator is an EObjectCondition specialization used

to test whether a given model element is present in a collection of model elements.

The NOT operator is an EObjectCondition that negates the result of evaluation of

another EObjectCondition. Listing 6.8 shows how to combine these operators and

the above model operations to make up the A(△▽) operations.

1 A. Increment = IN(Super impos i t ion (Reso lut ion −ActivedFeatures))

2 and NOT(IN(Super impos i t ion (CurrentConf igurat ion)))

3

4 A. Decrement = IN(Super impos i t ion (Reso lut ion − Inac t ivedFeature s))

5 and NOT(IN(Super impos i t ion (Reso lut ion −ActivedFeatures)))

Listing 6.8: Implementation of the A(△▽) Operations

Aplication of Model Operations

Model operations enable model querying at run-time in order to calculate architec-

ture reconfigurations. Figure 6.7 shows how Context Model operations and Vari-

6.4. MoRE: Model-based Reconfiguration Engine 130

Smart Home
(Reconfigurable Architecture)

CC
Res-

Active

IN NOT IN

and

Res-
Inactive

IN

and

NOT

Context ConditionContext ConditionContext ConditionContext Condition

Context ConditionContext ConditionContext ConditionInsert Event

Context
Knowledge

C
o

n
te

xt
 M

o
d

e
l O

p
e

ra
ti

o
n

s

A
rc

h
it

e
ct

u
re

 D
e

cr
e

m
e

n
t

C
o

n
te

xt
 M

o
d

e
l O

p
e

ra
ti

o
n

s A
rch

ite
ctu

re
 In

cre
m

e
n

t
Context Event

Resolution

Architecture
Decrement

Architecture
Decrement

Figure 6.7: Calculating A(A△▽) through the Model Operations.

ability Models operations take a context event as input, and they calculate the

architecture reconfiguration. Context Model operations manage the occurrence of

context events such as John leaves the Home. Given this context event, the In-

sert Event operation sets the new state of the user John in the ontology. Once

the ontology is updated, those Context conditions related with the previous event

are evaluated. If a context Condition (such as Empty Home) is fulfilled, then the

associated resolution (REmptyHome) is triggered.

A Resolution represents the set of changes triggered by a Context Condition

in terms of feature activation/deactivation. Varibility Model Operations take the

Resolution as input (Res-Active and Res-Inactive operations) and they query the

Feature Model (CC operation) to determine the architecture for that specific context.

6.4. MoRE: Model-based Reconfiguration Engine 131

Then, the ⊙ operation and the IN and NOT model operators are combined to

implement the A △▽ operations as described in Listing 6.8. The outputs of the

operations specified the architecture increments and decrements, which will be used

to create the actions to modify the architecture

6.4.2 MoRE Reconfiguration Actions

The reconfiguration of the system is performed by executing reconfiguration ac-

tions that deal with the activation/deactivation of components and the creation/de-

struction of channels among components. Although our general approach is not

platform-dependent, we take advantage of the concrete platform to implement the

reconfiguration actions. MoRE makes use of the OSGi framework for implementing

the reconfiguration actions.

We have developed reconfiguration actions that are classified in three main cat-

egories: ComponentActions, ChannelActions and ModelActions. Actions of the two

first categories are in charge of reconfigure the Smart Home architecture, while

ModelActions updates the Feature Model to reflect the new configuration. Recon-

figuration actions implement a common Interface (namely ReconfigurationAction)

which provide an homogeneous way to execute actions with independence of the ac-

tion category. Specifically, this interface provides the execute operation as an entry

point to launch the reconfiguration actions. Reconfiguration Action categories are

detailed as follows.

Component Actions

This actions enable a component to transit from an active (operational state) to a

quiescent (idle) [101] state in order to perform the system adaptation. These quies-

cent components do not consume processor or memory resources, but they are ready

to be started at any time. Therefore, Component Actions keep components that are

not relevant for the current configuration in the catalog of quiescent components.

Specifically, StartComponent actions drive a quiescent component to an active state,

and StopComponent actions perform the opposite action.

6.4. MoRE: Model-based Reconfiguration Engine 132

1 @Override

2 public void execute () {

3 //Gathering OSGi S e r v i c e s from Component

4 ArrayList OSGiServices = getOSGiServices (componetID) ;

5 // Sending Quiescent s i g n a l

6 I t e r a t o r i t e = OSGiServices . i t e r a t o r () ;

7 while (i t e . hasNext ()) {

8 OSGiService o s g i S e r v i c e = (OSGiService) i t . next () ;

9 o s g i S e r v i c e . s en tS i gna l (S i gna l s . GoToQuiescent) ;

10 }

11 // Stoping the Component Container

12 Bundle componentBundle = getServ iceBundle (componetID) ;

13 componentBundle . stop () ;

14 }

Listing 6.9: Implementation of the StopComponent Action

Listing 6.9 shows the implementation of the StopComponent action. First, this

action gathers those OSGi services related with a particular Component (note that in

an OSGi platform component bundles register several OSGi services). For each one

of these services, the StopAction sends a GoToQuiescent signal. An OSGi service

manages this signal according to the reconfiguration pattern, which is presented at

the beginning of this chapter. That is, an OSGi service may go through the Waiting

For Acknowledgement, Passivating, and Passive state before reaching the quiescent

state. This way, impacted components must complete their current computational

activity before they can be reconfigured.

For each Service in A△, a StartComponentAction is created. This action moves

a service from the catalogue to the configuration. Services in A▽ are mapped to

StopComponentActions which move services from the configuration to the catalogue.

As result, only the necessary services for each configuration are running.

6.4. MoRE: Model-based Reconfiguration Engine 133

Channel Actions

This actions enable a component to establish communication with other components

by means of communication channels. Given a new component, Channel Actions

register event listeners as services within the OSGi framework. When the new com-

ponent has an event object to deliver, it calls all event listeners in the service registry.

Specifically, CreateChannel actions create a channel between two components, which

is implemented by an OSGi wire between a producer and a consumer. Conversely,

DestroyChannel actions perform the opposite action.

1 @Override

2 public void execute () {

3 //WireAdmin comes with OSGi FW

4 WireAdmin wa = getWireAdmin () ;

5 Wire [] w i r e s = null ;

6 i f (wa != null) {

7 //Gathering wi re s between two given components

8 wi r e s = wa . getWires (producerID , consumerID) ;

9 i f (w i r e s != null) {

10 // De le t ing wi r e s

11 for (int pos = 0 ; pos < wire s . l ength ; pos

++) {

12 wa . de leteWire (w i r e s [pos]) ; }

13 }

14 } else

15 throw new NoWireAdminException () ;

16 }

Listing 6.10: Implementation of the DestroyChannel Action

Listing 6.10 shows the implementation of the Destroy Channel action. First,

this action gets the OSGi Wire Admin which manages the interconnecting eventing

mechanism of OSGi. Then, those wires between two particular components are

gathered in a Wire collection. For each one of these wires, the Wire Admin destroy

the event listeners of the channel and keeps the wire buffer alive until it is empty.

6.4. MoRE: Model-based Reconfiguration Engine 134

Therefore, DestroyChannelActions do not interference with those components that

are not impacted by the reconfiguration,

The Channels of A△ are created by CreateChannelActions which build OSGi

Wires between services. While Channels of A▽ are destroyed by DestroyChan-

nelActions which stop the communication between Services, destroying the OSGi

Wires.

Model Actions

After the system architecture has been modified, the Feature Model is updated

according to the new functionality of the system. This update is performed by

means of a partial reflection of the architecture using Model introspection. Model

introspection is a powerful feature of existing modelling frameworks like the EMF

Model Query. It allows a program to work with any model by querying its structure

dynamically at run-time. Model Actions apply this technique to update the Current

Configuration of the Feature Model. In particular, the UpdateFeature Action sets a

particular feature to a given state.

1 UPDATE statement =

2 new UPDATE(

3 new FROM(re sou r c e . getContents ()) ,

4 new WHERE(new EObjectAttr ibuteValueCondit ion (

5 featureModelPackagePackage . eINSTANCE.

getID () ,

6 new Str ingValue (f eature ID))) ,

7 new SET(se tFea tureSta t e ()

8) ;

Listing 6.11: Implementation of the Update Features Action

Listing 6.11 shows the implementation of the Update Features action. First, this

action is based on the UPDATE statement of EMF Model Query. This statement

extends the behaviour of the SELECT statement to include the SET clause that

allows some operation to be performed on the result model objects. The result

6.4. MoRE: Model-based Reconfiguration Engine 135

model element match the FeatureID given to the UpdateFeature, and its state it set

to either active or inactive.

Since the running A(△▽) are triggered by a particular Resolution, those fea-

tures of the resolution must be updated on the Feature model once the architecture

reconfiguration is finished. UpdateFeatureAction composes the Feature Model with

a resolution. The Features of the resolution overwrite the state of the Feature Model

and any other feature remains as is in the Feature Model.

Application of Reconfiguration Actions

Reconfiguration Actions provide the basic operations to dynamically change the sys-

tem architecture. For example, applying the above Reconfiguration Action mappings

to the Architecture(△▽) of Figure 6.3 will result in the following set of Actions.

A▽EmptyHome =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

a →DestroyChannelAction(a)

g →DestroyChannelAction(g)

A△EmptyHome =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 → StartComponentAction(1)

b → CreateChannelAction(b)

c → CreateChannelAction(c)

e → CreateChannelAction(e)

f → CreateChannelAction(f)

Furthermore, the Feature Model must also be updated in order to set the fea-

ture states of the resolution. The following action updates the Feature Model:

UpfateFeatures(REmptyHome).

In the example in Figure 6.3, when the users leave home, the system architecture

is reorganized to give priority to security. Given the context state as input, MoRE

is in charge of composing the suitable actions to perform this change in the archi-

tecture. First, MoRE identifies the resolution that is associated to the fulfilment

of the EmptyHome condition. This resolution (see the definition of REmptyHome)

specifies which features should be activated or deactivated to manage the change in

the Smart Home context. In this case, OccupancySimulation and InHomeDetection

6.4. MoRE: Model-based Reconfiguration Engine 136

features must be activated whereas the LightingByOccupancy feature must be de-

activated. This resolution is then projected to the system architecture by applying

the superimposition operator. MoRE queries the feature model in order to obtain

the A(△▽). These A(△▽) define the architecture modifications for moving from

a User at Home configuration to a Nobody at Home configuration as illustrated in

Figure 6.3. As a result of this reconfiguration, movement sensors in the house are

no longer used for the purpose of lighting; they are used for detecting intruders.

MoRE applies different reconfiguration actions to transit from the original con-

figuration to the new one. To achieve the A△, a component action is applied in order

to (1) find the components of the Occupancy simulator service in the catalogue of

quiescent components and (2) start these components. Thus, the components are

moved from the catalogue to the current configuration of the architecture. The Oc-

cupancy Simulator generates inputs for the Multimedia and Lighting services with

the aim of deterring thieves by acting as if there were people at home, so channel ac-

tions are required to connect these services. Additional channel actions are required

to connect the movement sensors with the security service. To achieve the A(▽),

the channels between the Movement sensors and the Lighting Service are destroyed

in order to deactivate the LightingByOccupancy feature.

Once the architecture has been successfully modified, the Feature Model must be

updated accordingly. The LightingByOccupancy Feature is set to inactive while both

OccupancySimulation and In-HomeDetection are set to active by a model action in

order to reflect the current state of the system. As a result, both the Feature model

and the system architecture are synchronized and support the desired behaviour

when nobody is at home.

Aggregating Reconfiguration actions in a Reconfiguration Plan

The consistence between the architecture and the Feature Model is critical, since

an unsynchronized model would drive to reconfiguration failures. For instance, if

we query the feature model about the A(△▽) of deactivating just the Occupancy

Simulation feature (see Figure 6.3), it will reply with one component (labeled as

1) and two channels (labeled as b and c). Once that the component is set to a

6.4. MoRE: Model-based Reconfiguration Engine 137

quiescent state and the channels are destroyed, the feature Occupancy Simulation

must be set to inactive in order to reflect the real state of the system. Otherwise,

the next time that we query the model, it will reply incorrectly as long as the model

is not synchronized with the system.

Activating or deactivating a feature involves performing a set of operations over

components and channels, and the entire set must be reconfigured with no exception.

Features are defined as atomic units of functionality, so it is not acceptable to

activate or deactivate partially a feature.

1 public class Reconf igurat ionPlan {

2 . . .

3 public void addReconf igurat ionAct ion (Recon f igurat ionAct ion

ac t i on) {

4 . . . }

5

6 public void execute () {

7 int i = 0 ;

8 try {

9 for (i = 0 ; i < plan . s i z e () ; i++) {

10 Recon f igurat ionAct ion

r e con f i gu ra t i onAc t i on = (

Recon f igurat ionAct ion) plan . get (i) ;

11 r e c on f i gu ra t i onAc t i on . execute () ;

12 }

13 } catch (Exception e) {

14 for (int c = 0 ; c < i ; c++) {

15 Recon f igurat ionAct ion r e con f i gu ra t i onAc t i on = (

Recon f igurat ionAct ion) plan . get (c) ;

16 r e con f i gu ra t i onAc t i on . ro l lBack () ; }}

17 }

18 }

Listing 6.12: Implementation of the Reconfiguration Plan

6.5. Scalability Evaluation of Model-management Technologies at
Run-time 138

To meet these consistency and atomic requirements, Reconfiguration Actions

are aggregated in a Reconfiguration Plan. This plan contains all the reconfiguration

actions related to a specific resolution. Therefore, if the execution of a specific action

fails, the plan can rollback previous actions within the same resolution (see Listing

6.12).

For the purpose of this work, rollback actions are defined to reverse the system

state to the point in which it was before the application of the resolution. That is,

for each performed reconfiguration action a complementary action it is performed.

For instance, the complementary action of StartComponent is StopComponet and

the other way around. Therefore, reconfiguration Plans provide an “all-or-nothing”

proposition stating that the set of actions within a resolution must be completed in

their entirety or take no effect at all.

However, for some actions with collateral effects (e.g., sending an SMS) com-

pensatory measures are required since they cannot be easily rolled back, but the

application of compensatory actions requires further research and falls out of the

scope of the present work.

6.5 Scalability Evaluation of Model-management Tech-

nologies at Run-time

Since our approach is mainly focused on reuse, we have decided to use the same

model representation at run-time that we use at design time. In this way, the need

for the definition of technological bridges between design and run-time is avoided.

Thus, effort is saved since there is no need to develop these bridges and validate their

correctness. Furthermore, this decision has enabled us to reuse the technologies from

the Eclipse Modelling Project to implement the model operations in MoRE.

However, model manipulation at run-time (as opposed to design-time) is still

subject to the same efficiency requirements as the rest of the system because the

execution of the model operations impacts the overall system performance. We

are interested in analyzing to what extent system performance could be affected

by keeping at run-time the technologies for model manipulation and representation

6.5. Scalability Evaluation of Model-management Technologies at
Run-time 139

that are used at design time (XMI in our case).

The execution of these model operations impacts the overall system performance.

In particular, the incorporated latency is determined by (a) the model manipulation

Frameworks, (b) the model population and (c) the metamodel (which defines the

model schema). In this section, we evaluate the performance of manipulating models

at run-time using EMF and EMF Model Query. Specifically, we demonstrate the

feasibility of using at run-time the models introduce in our approach.

Experimental Setup The target platform used in our experiments is the open

source implementation of OSGI Equinox Release 4. To run the instance of Equinox,

we used a host with an Intel Core 2 Duo 2.0 GHz processor and 2 GB RAM with

Windows Vista SP1 and Java 1.6.0_7 installed. EMF 2.4 and EMF Model Query

1.2 were deployed in Equinox as plug-ins.

When evaluating the running example of the Smart Home, the performance

penalization introduced by model processing was not significant. However, in order

to validate whether our proposal scales to large systems, we quantified this overhead

for large models that were randomly generated.

For evaluation, we used the following randomly generated models: a MOSKitt

Feature Model (metamodel version 1.0), AMW (metamodel version 2.0) and PervML

(metamodel version 1.0). These models started with one element and they were pop-

ulated with two hundred new elements each iteration. After the model population,

the following model operation were performed: GetFeatureByName, CurrentCon-

figuration, Superimposing, GetComponentByID and UpdateFeature. The four first

operations are the suboperations performed to calculate the A(△▽). The Update-

Feature is user by the model actions in order to set a feature state to active or

inactive.

Analyzing in detail the experimentation results (see Figure 6.8), we notice that

both CurrentConfiguration and GetFeatureByName get a similar time response.

These operations are implemented using the EObjectAttributeValueCondition of

EMF Model Query. This condition exhaustively navigates the model for elements

that fulfill the value condition. In the case of CurrentConfiguration, this is necessary

because we are interested in all the features which state is Active. However, we

6.5. Scalability Evaluation of Model-management Technologies at
Run-time 140

Figure 6.8: Experimental results.

can optimize the GetFeatureByName execution. As long as we can guarantee the

uniqueness of feature names, the operation just has to search for the first instance

with the given name.

Although, the UpdateFeature operation also navigates the whole Feature Model

to set the state of features, this operations gets significative different results com-

pared to GetFeatureByName and CurrentConfiguration. This is because Update-

Feature has to make persistent the model changes. This operation is implemented

by a UPDATE statement of the EMF Model Query and a call to the save resource

of the EMF API.

The Superimposing operation gets the worst time response. This is because of the

AMW metamodel. This metamodel specifies links between models by means of two

indirection levels. To get a component linked to a feature, first the operation has to

navigate from a ElementEqual metaelement to a LefElement metatelement. Second,

from this LefElement the operation has to navigate to a ElementRef metaelement.

Furthermore, this two steps have to be performed for each link between a feature

6.6. Conclusions 141

and component. On the other hand, the GetComponentById operation gets the

best time response. This is because Superimposition returns the XMI IDs of the

components. In fact, GetComponentById is implemented by means of the XML-

Resource Class of EMF. This class is in charge of serializing and deserializing the

models to XML files. Therefore, resolving a component by ID gets best time results.

Overall, even with a model population of 45000 elements in each model, the

model operations provide a time response (< 500 milliseconds) that can be consid-

ered fast in the Smart Home domain that we are addressing. It turns out that

our approach gathers the necessary knowledge from the run-time models without

drastically affecting the system response.

The response time offered by the model manipulation operations is acceptable

when compared to the performance of the devices and communication networks usu-

ally found in the Smart Home domain. Thus, we can conclude that this reuse-based

approach can also be applied in other domains with similar temporal constraints.

6.6 Conclusions

In this chapter, we have presented an approach based on Variability Models to

guide the choice of system variants in response to context changes in an autonomic

manner. In order to support the proposal, a Model-based Reconfiguration Engine

(named MoRE) was developed.

MoRE provides model operations that return the necessary Architecture(△▽) in

order to move the architecture from one configuration to a new one. The model op-

erations have been implemented in MoRE by means of technologies such as SPARQL

and EMFMQ.

MoRE also provides model reconfiguration actions that provide the basic oper-

ations to dynamically change the system architecture. The reconfiguration actions

have been implemented in MoRE by means of techniques such as the whiteboard

and quiescent patterns.

In our experiments, we used an XMI model at run-time in order to determine

how to query and update it using the widespread tools of the Eclipse Modelling

6.6. Conclusions 142

Project. Our experimentation shows the feasibility of this approach from the point

of view of performance in the Smart Home domain.

We consider that the techniques applied for the Smart Home domain can also

be applied to other mass-production environments with similar results. Whether

in smart homes, mobile devices or automotive systems, end-users require more and

more autonomic functionality.

Next chapter, evaluates a set of alternative strategies for implementing the model

operations of MoRE. Results show that the proposed strategies provide the same

reconfiguration service with significant differences in quality-of-service.

Chapter 7. STRATEGIES FOR VARIABILITY

TRANSFORMATION AT

RUN-TIME

“Rien ne se perd, rien ne se crée, tout se transforme.”
– Antoine Lavoisier (1743-1794).

7.1 Overview of the Chapter

Variability
Models

Variability
Transformation

Reconfiguration
Analyser

Reconfiguration
Engine

Reconfigurable
System

Reconfiguration
Tracker

Figure 7.1: Scope of Chapter 7

In this work, variability models are used at

run-time to specify the possible configurations

of a system, while a Reconfigurable Architec-

ture is rapidly retargeted to a specific config-

uration. That is, variability models at run-

time determine the steps that are necessary

for the migration of a software system from

one configuration to another. This opera-

tion is commonly known in Software Product

Line (SPL) community as Variability Trans-

formation, and it is implemented in the core

of our Model-Based Reconfiguration Engine

(MoRE).

This chapter proposes a set of alternative strategies for implementing the vari-

ability transformation. These strategies implement the same reconfiguration func-

tionality but they have different extra-functional properties. For instance, they do

not offer the same performances. These strategies enable SPL engineers to set up
144

7.2. From Design Variability to run-time Variability: Challenges 145

MoRE with the most suitable strategy for each concern. For example, MoRE can

use a strategy with debugging support as long as the system is under development.

When the development is finished and the system is going to be deployed, MoRE

can use another strategy with better performance (but without debugging support).

First, this chapter presents the challenges identified in the transition from de-

sign variability transformation to run-time variability transformation. For run-time

variability, we have applied existing variability modelling approaches based on Fea-

ture Models [152] and Fragment Substitutions of the Common Variability Language

(CVL) [121]. On the one hand, Feature Modelling provided us with a simple and

clear way to visualize variability (which is relevant for design time). On the other

hand, Fragment Substitutions enabled us to realize the variability transformation

by means of strategies with different extra-functional properties (which is relevant

for run-time).

Second, we present the different strategies for run-time variability transforma-

tions with significant differences in quality-of-service. Furthermore, we show how

these strategies were implemented and validated. Then, we detail the comparison

criteria used to evaluate the proposed strategies.

Finally, we present the application of these strategies on the smart-home case

study, and we also give recommendations to use the most suitable strategy for

different concerns of run-time reconfiguration.

7.2 From Design Variability to run-time Variability:

Challenges

A fundamental principle of SPLs is variability management, which involves separat-

ing the product line into three parts: common components, components common

to some but not all products, and individual products with their own specific re-

quirements. Variability management also involves the managing of the former parts

throughout development. In fact, this management has often widespread impact on

multiple artifacts in multiple lifecycle stages, making it a predominant engineering

challenge in software product line engineering (SPLE).

7.2. From Design Variability to run-time Variability: Challenges 146

In traditional SPLE approaches such as Pure::Variants [153], Gears [154, 155]

or PLUM [156], variability is mainly managed at design time using configuration

and building tools to set compile time variables and select variants of assets. These

approaches focuses on the development of statically configured systems using core

assets with variation points. That is, all variations are instantiated before the system

is delivered to customers, and once the decisions are made, they are hard to be

altered.

In emerging domains such as self-healing systems [102, 103, 55], context-aware

computing [4, 5], and ubiquitous computing [6, 7], software is becoming increasingly

complex with extensive variation in both requirements and resource constraints. In

addition, modern computing and network environments demand a higher degree of

adaptability from their software systems. Computing environments, user require-

ments, and interface mechanisms between software and hardware devices such as

sensors can change dynamically during run-time.

Because it is not feasible to foresee all the functionality or variability that the

above systems require, there is a need for Dynamic SPLs [18] (DSPLs) that produce

software capable of adapting to fluctuations in user needs and evolving resource

constraints. DSPLs bind variation points at run-time, initially when software is

launched to adapt to the current environment, as well as during operation to adapt

to changes in the environment.

Such DSPLs intensively use variability transformations at run-time in order to

adapt their configuration to a changing context and environment. For instance, in

the running case study of the smart-home, the system has to be able to accommodate

with different context scenarios, such as an empty home or a home wit several users

within it.

Although dynamic software product lines build on the central ideas of SPLs,

there are also differences. For example, the focus on understanding the market and

letting the SPL drive variability analysis is less relevant to DSPLs, whose primary

goal is to adapt to variations in individual needs and situations rather than market

forces.

DSPLs can benefit from modern middleware platforms and programming lan-

7.2. From Design Variability to run-time Variability: Challenges 147

guages which provide mechanisms to manage run-time variability. For example, the

Java virtual machine allows loading and unloading code dynamically and component

platforms allow loading, connecting and disconnecting component instances. How-

ever, these mechanisms are platform-specific as they allow for any kind of changes

in the running application. Implementing run-time variability at this level consists

of writing ad-hoc scripts to program the adaptation policy which remains possi-

ble for small applications but becomes tedious and error-prone as the number of

configurations for the system grows.

To overcome this problem, we propose the use of variability models at run-time

to describe the variants in which a system can evolve. Variability models provide

a richer semantic base for run-time decision-making related to system adaptation.

The major advantage of this approach is that Feature Model hides much of the

complexity in the definition of the adaptation space for an autonomic system as we

stated in Chapter 5. However, DSPL still presents other major challenges.

• Modelling the variability. The problem is similar to variability modelling in

traditional software product lines except for the variability transformation part

which has to be dynamic instead of static. This implies that the variability

transformation process has to be fully automated.

• Modelling the run-time adaptation policies, i.e. which configuration should

be used and when should the system adapt. Several approaches have been

proposed in the literature to express adaptation policies by means of complex

AI optimization algorithms [157]. Finding the optimal formalism for modelling

adaptation policies remains an open research question but is out of the scope

of this work.

• The safe and efficient migration of the system from one configuration to an-

other. At run-time, the variability transformation not only has to produce a

plain model of the configuration to run but it has to carry the migration from

the currently running configuration to the new one. This is a major difference

with typical static variability transformations. The reconfiguration has to be

efficient in order to avoid perturbations in the performances of the application

7.3. Managing Variability at Run-time 148

Feature-based

Fragment-based

Pure::Variants

Gears

Plum

Variations are
instantiated before the
system is delivered to

customers.

Variations are bound
during operation to adapt

to changes in the
environment.

The run-time
configuration is a

dynamic view through
the active features.

The run-time
configuration is a

composition of model
fragments.

Design Variability Run-time Variability

…

Figure 7.2: Managing Varibility.

and it has to be safe, i.e. avoid loss of data and should not disturb the actual

services.

Taking these challenges into account, we have evaluated different approaches for

managing variability at run-time as next section presents.

7.3 Managing Variability at Run-time

At run-time, existing variability modelling techniques can be applied if they in-

clude all necessary links to the domain model in order to automate the variability

transformation. As Figure 7.2 shows, these techniques include approaches based on

feature-models [152] which relates a domain model to the corresponding features and

the Common Variability Language (CVL) [121] which keeps the variability model

separated from the base model and expressed the variability by modelling the dif-

ferences between alternative configurations.

7.3.1 Feature-based Approach

As Chapter 6 shows, we have experimented with the idea of feature models as a

dynamic view on a system family model (see Figure 7.3). This view relationship is

precisely defined as a mapping characterized by a weaving model. This mechanism

can be used for scoping and configuring the system family.

A dynamic feature-based view enables the scoping of a system family model

for different context scenarios. The feature model defines a hierarchy of features

7.3. Managing Variability at Run-time 149

Java Code

Model-Based
Reconfiguration Engine

Reconfiguration
Plan

Gateway

OSGI

2

3

4

1

5

Context Monitor

Variability Modelling

Configuration 2

Configuration 1

Feature Model
System Family

(Domain Specific Language)

Feature

Configuration 1
Member of

System Family 1

Weaving Model

Weaving

Subset 1
references references

Feature Model
System Family

(Domain Specific Language)

Feature

Configuration 2
Member of

System Family 2

Weaving Model

Weaving

Subset 2
references references

Resolution
From: Context Monitor

2 Modifications
To: Reconfiguration Plan

4

3
Model-based Reconfiguration Engine

Model Actions: Update
Feature Configuration

Architecture Increments
& Decrements

Figure 7.3: Overview of Feature-based superimposition.

together with the constraints on their possible configurations. The system family

model contains the union of the model elements that conform the family members.

The set of the valid family members (according to the feature model constraints)

corresponds to the extent of the system family.

The elements of a particular family member are referenced using a weaving

model. The weaving model between a feature model and an system family es-

tablishes traceability links between features and family elements. We use this trace-

ability for representing existential dependency constraints. In general, an arbitrary

set of feature elements, i.e., features and relationships, are mapped to an arbitrary

set of family elements, i.e., services and devices in the smart home example. There

is a many-to-many association between feature elements and family elements, but

a typical mapping is where an one-to-one mapping is used to express an existential

dependency from a feature element to a family element.

This weaving provides traceability between features and their realization in the

system family model. In addition, the weaving is evaluated with respect to the

current feature configuration, which is determined by the system context. Only

7.3. Managing Variability at Run-time 150

those model elements that are related to an active feature are visible on the dy-

namic view of the model. That is, the active features through the weaving model

indicate whether or not a model element should be present in the current system

configuration. Given the duality of the weaving traceability (from features to the

system family and the other way around), the weaving can be seen from different

perspectives: (1) giving semantics to features in feature models by mapping them to

the system family and (2) using feature models to provide a concise representation

of variability contained the system family.

7.3.2 Fragment-based Approach

We have also experimented variability transformations based on the model fragment

substitutions of CVL. This transformation is domain-independent and therefore it

can be applied to any DSL such as the one of the Smart Home (PervML). The

Transformation takes a given resolution and then it performs the required fragment

substitutions to a base-model in order to synthesises the resulting configuration.

A placement fragment (original) of the base model is the fragment of the model

that may be replaced by replacement fragments (alternative). A fragment is defined

by a set of boundary elements that give the boundary between the fragment and the

rest of the model. When replacing a fragment by another fragment, these boundary

elements denote which references between model elements (in terms of meta objects)

should be updated in order to have a model according to the metamodel of the base

language.

The Fragment Substitution approach expresses the concept of iteration, similar

to multiplicity of parts in UML composite structures, and it is even possible to use

substitutions to express choice between variants since the substitution may point

out more than one model fragment as alternatives and these may be interpreted

as separate choices. In the case where a resolution defines more than one chosen

alternative for a substitution, this means that a copy of each replacement fragment

should be included. The Fragment Substitution concept is also applied to express

options. When the Placement has no chosen fragment this means that all the in-

volved objects of the original fragment are simply removed (and the hole closed by

7.3. Managing Variability at Run-time 151

Java Code

Model-Based
Reconfiguration Engine

Reconfiguration
Plan

Gateway

OSGI

2

3

4

1

5

Context Monitor

Variability Modelling

2

1

Configuration 1 Configuration 2

Trigger: Resolution
From: Context Monitor

Effect: Modifications
To: Reconfiguration Plan

Increments Decrements

Variability
Transformation

Modifications

Synthesis
Fragment Resolution 1:

ReplacementX->
PlacementA

Figure 7.4: Overview of the Variability Transformation.

the replacement boundary elements).

The fragment substitution concept can be seen as a generalization of several of

the central feature model concepts and it also incorporates the notion of staged

configurations of feature modelling [158].

At run-time, the variability transformation supports the reconfiguration of a

base-model from one context scenario to another. Context events are associated

to resolutions which drive the fragment substitutions. Specifically, the Variability

transformation takes as input a Resolution and then it performs two operations:

1. Synthesis. This operation generates a new Base-model configuration that

fulfills the given Resolution.

2. Modifications. This operation calculates the differences between the previ-

ous Base-model configuration and the new Base-model configuration.

Figure 7.4 shows this reconfiguration process using the State machines notation.

The states represent different configurations of a Base-model. While the transi-

tions indicate the possibility of Base-model reconfiguration. The reconfiguration of

7.3. Managing Variability at Run-time 152

Figure 7.4 is started by means of a Resolution (trigger of the transition), which

specifies the Replacements for each Placement. Given this Resolution as input, the

configuration calculates the effects of the fragment subtitutions in terms of model

increments/decrements (Modifications operation). Finally, the transition leads to a

state of which Base-model configuration is calculated by the Synthesis operation.

The target base-model configuration is calculated by manipulating a copy of

the original base model. In this copy of the model, model elements are deleted or

populated according to the resolution, resulting in the target configuration. To im-

plement Fragment Substitutions, model element references are modified, and model

elements might be moved from one element container to another.

The set of model elements from the base model to be moved are defined by the

Replacement Fragment. The transformation processes each boundary and modifies

the object structure as follows: for each toReplacement, the element referenced by its

outside-boundary element is modified to point to the element defined by its binding’s

inside-boundary element. Correspondingly, for each fromReplacement, the element

referenced by its inside-boundary-element is modified to point to the element defined

by its binding’s outside-boundary element.

7.3.3 Assessment between Feature-based and Fragment-based

Approaches at run-time

We have successfully applied the above approaches at run-time through the running

example of the Smart Home and the Smart Hotel case study (see Appendix A) Based

on our experience using these approaches, we provide several thoughts as follows.

Both approaches are general, they work for any model whose metamodel is ex-

pressed in the Meta-Object Facility (MOF) [159] or a comparable modelling formal-

ism, and they can be incorporated into existing model editors. From the usability

perspective, they are also intuitive. Both features and fragments abstractions suc-

cessfully enabled us to characterize specific configurations of the systems. However,

in both approaches, we required the use of coloring techniques to make easy to see

what will be contributed to the DSL model by selecting a given feature or fragment.

Regarding the feature-based approach, a possible concern is that defining the

7.3. Managing Variability at Run-time 153

weaving between features and the system family is not always simple and may

require several iterations; however, further tool support can be offered, e.g., for

filtering the system family parts relevant to certain features or subset of systems,

and automatic verification guaranteeing the well-formedness of all possible family

members instances.

In our case, the weaving was explored using a high abstraction-level DSL for

smart homes. That is, the feature model and the DSL were at similar levels of

abstraction. As a result, despite some complex weavings, most of the mappings

were manageable. While the weaving mechanism works for all kinds of mappings,

we can imagine, for example, when DSLs are closer to implementation and feature

models are closer to requirements, the weaving would become very complex and less

manageable.

At run-time, we have successfully applied feature models to scope a system family

model for different context scenarios. This enables the system itself to calculate the

increments/decrements between different scenarios. However, we mainly recommend

feature modelling for the design phase, as it directly shows the impact of selecting

a given feature on the resulting model. Feature modelling presents the system

designer with a superimposition of all variants whose elements are related to the

corresponding features. Therefore, the system designer can activate those features

related with a particular context and evaluate the resulting configuration.

Regarding fragment-based approaches, we discovered that there are many rel-

evant variables to perform the fragment substitutions at run-time. For example,

we can discard the replaced fragments o keep track of them. In addition, we can

work with copy of the fragments or use the same instances always. The combination

of the former variables turned out on different strategies to perform the variability

transformation at run-time. All these strategies ensure the same reconfiguration

service but have different extra-functional properties: for example they do not offer

the same performances or they do not offer the same history capabilities.

These strategies enabled us to set up MoRE with the most suitable strategy for

each concern, because these strategies cover specific extra-functional requirements

such as performance or support to reconfiguration debugging at run-time. Since

7.4. Strategies for Variability Transformation 154

B
as

e
-m

o
d

e
l Lights

Lighting Service

TV

Multimedia Service

Presence Simulation

Advance Simulation

Simulation

Basic

Advance
Fr

ag
m

e
n

t
Li

b
ra

ry

add2BaseModel

B
as

e
-m

o
d

e
l

Lighting Service

TV

Multimedia Service

Presence Simulation

Advance Simulation

Basic

Advance

Fr
ag

m
en

t
Li

b
ra

ry

updateBoundaries

Presence Simulation

fragmentSubstitution

Figure 7.5: Common operations for fragment substitution.

variability transformations are more and more applied to domains which require

extra-functional properties, we believe that a catalog of this strategies is also useful

for the SPL community that addresses run-time variability.

7.4 Strategies for Variability Transformation

Incrementally, more approaches apply SPLs to build run-time adaptive systems

[108, 160, 112]. Although the details are different, these approaches share that they

perform the variability transformation intensively at run-time. Furthermore, manag-

ing variability at run-time stresses concerns such as performance or reconfiguration

debugging. We argue that the variability transformation can be realized by means

of different strategies. These strategies implement the same functionality (synthesis

and modifications) but they have different extra-functional properties. For example,

they do not offer the same performances. In particular, we have implemented three

different strategies as follows.

7.4.1 Common Operations of the Strategies

The strategies for variability Transformation are based on the idea of model fragment

substitutions. Given a resolution, the placements of a base-model are dynamically

populated with different fragments. This fragment substitution is a common op-

7.4. Strategies for Variability Transformation 155

eration that the strategies apply in different manners to implement the variability

transformation.

Figure 7.5 shows an overview of the fragment substitution operation. This model

operation takes two steps to perform the fragment substitution. First, it gathers the

model components that conform the fragment selected by the resolution, and then

it adds this components from the fragment to the placement (see left of Figure 7.5).

Second, the model operation updated the boundaries of the components added to

the placement (see right of Figure 7.5).

Since the strategies for variability transformation are performed at run-time in

response to context events, they cannot be manually performed, and must be fully

automated. To automate the strategies we have implement them by means of the

reflective API of EMF for manipulating Model Elements generically.

Listing 7.1 shows the implementation of the fragment substitution operation.

This operation takes as input a replacement fragment, a placement and a boundaries

map. The boundaries map specifies the mapping between the fragment and the

placement boundaries. In the example of Figure 7.5, boundaries are depicted using

an small x. For each one of the components that conform a placement, the operation

adds this elements to the placement (add2BaseModel operation), and updates its

boundaries according to the mapping (updateBoundaries operation).

1 protected void f r agmentSubst i tut i on (

2 ReplacementFragment replacementEObject ,

3 PlacementFragment placementEObject , Map boundariesMap) {

4 L i s t components = getReplacementComponents (replacementEObject) ;

5 I t e r a t o r iteComponents = components . i t e r a t o r () ;

6 while (iteComponents . hasNext ()) {

7 EObject eObject = (EObject) iteComponents . next () ;

8 add2BaseModel (eObject , baseModelResource ,) ;

9 updateBoundaries (eObject , boundariesMap) ;}}

Listing 7.1: Implementation of the Fragment Substitution

In the context of run-time models manipulated by EMF, a model is defined as

a tree structure, as opposed to a directed acyclic graph or just a general graph

7.4. Strategies for Variability Transformation 156

with cycles. Except for the model root, every model element is contained by a

container element and each contained element knows the element that contains it.

The add2BaseModel operation takes advantage of the EMF capabilities to query

container and contained elements to add model elements from a fragment (which is

in a fragment library usually) to a placement (which is in the base-model). This

operation queries the base-model about the suitable container for each component

of the fragment (see Listing 7.2).

1 private void add2BaseModel (EObject eObject , Resource r e s ou r c e) {

2 EStructura lFeature conta in ingFeat=eObject . eContain ingFeature () ;

3 EObject conta ine r= eObject . eContainer () ;

4 Tree I t e ra to r<EObject> i t eResource = re sou r c e . getAl lContents () ;

5 boolean found = fa l se ;

6 while (! found && iteResource . hasNext ()) {

7 EObject i teEObject=i t eResource . next () ;

8 i f (i teEObject . g e tC la s s ()==conta ine r . g e tC la s s ()) {

9 Object eTargetReference= iteEObject . eGet (conta in ingFeat) ;

10 i f (eTargetReference instanceof EObjectContainmentEList) {

11 EObjectContainmentEList t a r g e tL i s t = eTargetReference ;

12 t a r g e tL i s t . add (eObject) ;

13 found=true ; }}}}

Listing 7.2: Adding components from a fragment to a placement

Once the fragment components are in the target base-model, the fragment bound-

aries have to be updated. By means of the reflexion API, the updateBoundaries

operation (see Listing 7.3) check whether or not a component field is a boundary

element. Those boundary elements are updated according to the boundary map.

The above model operations conform the basis of the strategies for variabil-

ity transformation at run-time. Next, we propose and evaluate three alternative

strategies for run-time variability transformations for the migration of an adaptive

application from one configuration to another. These strategies have been imple-

mented on top of the fragment-based approach and evaluated on the smart-home

case study. Results show that in different situations the proposed variability trans-

7.4. Strategies for Variability Transformation 157

formation strategies offer valuable quality-of-service trade-offs. Then, we compared

these strategies from the viewpoint of the extrafunctional properties, and we also

gave recommendations to use the most suitable strategy for different concerns of

run-time reconfiguration.

1 private void updateBoundaries (EObject eObject , Map boundaryMap) {

2 F i e ld [] f i e l d s = eObject . g e tC la s s () . g e tDec l a r edF i e ld s () ;

3 for (int i =0; i<f i e l d s . l ength ; i++){

4 f i e l d s [i] . s e tA c c e s s i b l e (true) ;

5 Object va lue = f i e l d s [i] . get (eObject) ;

6 i f (boundaryMap . containsKey (value)) {

7 f i e l d s [i] . s e t (eObject , boundaryMap . get (va lue)) ;}}}

Listing 7.3: Updating the boundaries of the added components

7.4.2 Regenerative Strategy

Overall, the Regenerative strategy (REG) takes a Resolution as input and it makes

a copy of the Base-model which is updated to conform the given Resolution. Figure

7.6 shows the operations of the REG strategy graphically.

In detail, the synthesis operation is implemented as follows (see left of Figure

7.6). Given a Resolution (in terms of CVL Fragment Resolutions), first the REG

strategy creates a copy of the Base-model (dashed line labeled as Copy). Then the

strategy iterates all the Fragment Resolutions. Each Fragment Resolution indicates

the Replacement Fragment of a Fragment Substitution in the Var-model. For each

Fragment Substitution the strategy updates the copy of the Base-model (dashed line

labeled as Update). In the update of the Base-model copy, those elements referenced

by a Placement of each Resolution are deleted, and those elements referenced by a

replacement of each Resolution are copied from the Library to the copy of the Base-

model. Once all the Fragment Substitutions have been processed, the updated copy

of the Base-model is conforming to the given Resolution.

To implement the modifications operation (see right of Figure 7.6), the REG

strategy calculates the model difference between the new Base-model and the previ-

7.4. Strategies for Variability Transformation 158

1
2

Res Var Base Library

New
configuration

Previous
Configuration

1
2

Res Var Base Library

New
configuration

Models
Difference

Copy

Update

Figure 7.6: Regenerative Strategy.

ous Base-model. The model differences are calculated by means of the EMF Model

Compare framewok. EMF Compare brings model comparison to the EMF frame-

work, this tool provides generic support for any kind of metamodel in order to

compare models.

1 public void modelComparison (EObject be fore , EObject a f t e r) {

2 Map opt ions = setComparisonOptions () ;

3 MatchModel match = MatchService . doMatch (be fore , a f t e r , opt ions) ;

4 Dif fModel d i f f = D i f f S e r v i c e . doDi f f (match , fa l se) ;

5 L i s t d i f f e r e n c e s = new ArrayList (d i f f . getOwnedElements ()) ;

6 I t e r a t o r i t e =d i f f e r e n c e s . i t e r a t o r () ;

7 while (i t e . hasNext ()) {

8 Dif fElement d i f fE l ement = (Dif fElement) i t e . next () ;

9 i f (d i f fE l ement instanceof DiffGroup) {

10 DiffGroup di f fGroup= (DiffGroup) d i f fE l ement ;

11 c l a s s i f y D i f f (di f fGroup , removedElements , addedElements) ;}}}

Listing 7.4: Implementation of the Model Comparison

The comparison process is divided in two phases: matching and differencing (see

Listing 7.4). The matching phase browses the model version figuring out which ele-

ment comes from which other one, then the differencing process browses the match-

ing result and create the corresponding delta. This delta is a set of DiffGroups. Each

7.4. Strategies for Variability Transformation 159

1
2

Res Var Base Library

1
2

Res Var Base Library

Delete From Base
Model

Copy From
Library To Base

Figure 7.7: Incremental-Copy Strategy.

DiffGroup is used as container for differences which are classified into removedEle-

ments and addedElemts between the source and the target configurations.

7.4.3 Incremental - Copy Strategy

Overall, the Incremental - Copy strategy (INC-C) modifies the Base-model of the

CVL specification to implement the synthesize and modifications operations. That

is, the strategy does not make a copy of the Base-model. All the required modifi-

cations are directly applied to the Base-model of the CVL specification. Figure 7.7

shows the INC-C strategy graphically.

The synthesis operation is implemented as follows (see left of Figure 7.7). Given

a Resolution, the INC-C strategy iterates all the Fragment Resolutions. For each

Resolution the strategy updates the Base-model. Those elements referenced by a

Placement are deleted (red dashed line), and those elements referenced by a Re-

placement Fragment are copied from the Library to the Base-model (green dashed

line). Finally the updated Base-model is according to the given Resolution.

To implement the modifications operation (see right of Figure 7.7), the strat-

egy iterates all the Fragments of the Resolution. Those elements referenced by

a Placement (which should be deleted from the Base-model) are copied to a list

of decrements, and those elements referenced by a Replacement (which should be

copied from the Library to the Base-model) are copied to a list of increments.

7.4. Strategies for Variability Transformation 160

1
2

Var Library

Move From Base
To Library

Base

Move From
Library To Base

Res

1
2

Res Var LibraryBase

Figure 7.8: Incremental-Move Strategy.

7.4.4 Incremental - Move Strategy

Overall, the Incremental - Move strategy (INC-M) modifies both the Base-model

and the Library of the CVL specification. The Library is updated because the

model fragments are not removed from the CVL specification. Instead, they are

moved from the Base-model to the Library. Figure 7.8 shows the INC-M strategy

graphically.

The synthesis operation is implemented as follows (see left of Figure 7.8). Those

elements referenced by a Replacement Fragment are moved from the Library to the

Base-model (green dashed line) and those elements referenced by a Placement are

moved from the Base-model to the Library (red dashed line). Therefore, changes

performed to the elements of the Base-model are not discarded by reconfigurations,

because model changes are saved in the Library.

To implement the modifications operation (see right of Figure 7.8), the strat-

egy iterates all the Fragments of the Resolution. Those elements referenced by a

Placement Fragment (which should be moved from the Base-model to the library)

are copied to a list of decrements, and those elements referenced by a Replacement

Fragment (which should be moved from the Library to the Base-model) are copied

to a list of increments.

7.4. Strategies for Variability Transformation 161

7.4.5 Implementation of the Strategies

We have implement these strategies by means of the run-time capabilities of the

Eclipse Modelling Framework [161]. Specifically, we take advantage of the model

manipulation, model compare and model query capabilities of Eclipse Modelling

Framework, Eclipse Model Compare and Eclipse Model Query respectively.

For instance, Listing 7.5 shows the implementation of the REG strategy. First,

this strategy combines the resolution triggered by a context event with the current

resolutions of the system. Then the updated resolutions are processed to elabo-

rate a resolution map. This map specifies the mapping between placements and

replacements.

Once the resolution map is calculated, the REG strategy performs a copy a of

the original Base-model. This copy of the Base-model describes the configuration

of the system where no fragment substitution has been performed. On this copy of

the Base-model, the strategy runs the fragment substitution operation which is a

common operation to all the presented strategies.

Finally, the copy of the base model is modified in such a way that fulfils all the

required resolution which include the last resolution triggered by a context event.

1 private void executeTrans format ion () {

2 L i s t cu r r en tRe so lu t i on s = getFragmentResolut ion () ;

3 combineResolut ions (cur r entReso lu t i ons , contextReso lu t i on) ;

4 I t e r a t o r i t e = cur r en tRe so lu t i on s . i t e r a t o r () ;

5 Map f ragmentSubs t i tu t i ons = new HashMap() ;

6 while (i t e . hasNext ()) {

7 FragmentResolution f ragmentReso lut ion = i t e . next () ;

8 Replacement replacement = fragmentReso lut ion . getReplacement () ;

9 Placement placement = fragmentReso lut ion . getPlacement () ;

10 f ragmentSubs t i tu t i ons . put (placement , replacement) ; }

11 Resource or ig ina lBaseMode l = getBaseModel () ;

12 Resource copyOfBaseModel = copyModel (or ig ina lBaseMode l) ;

13 runFragmentSubst itut ion (copyOfBaseModel , f r agmentSubs t i tu t i ons) ;

7.5. Validating the Strategies Implementation 162

14 saveBaseModelResource () ; }

Listing 7.5: Implementation of the REG Strategy

Although we have implement the strategies using the Eclipse Modelling Frame-

work at run-time, the strategies as such can be implemented with other technologies

such as ATLAS Transformation Language [162] or MOFScript [163]. For instance,

in a previous work [121], the fragment substitution operation is implemented by

means of MOFScript.

Next section shows how we have validated the implementation of the above

strategies. Then, we describe the extra-functional properties of each strategy and

we also give recommendations to use the most suitable strategy for different concerns

of run-time reconfiguration.

7.5 Validating the Strategies Implementation

Given a Resolution, we have three different strategies to calculate the same opera-

tions (synthesis and modifications). We argue that simultaneously comparing the

outputs of the strategies enables the validation of the strategy implementations.

Our approach tests for equality the operation results of the strategies. In our

case, equality means: (1) all the strategies got the same model modifications for each

reconfiguration and (2) there are no differences between the resulting base models.

To systematize the process, we perform the testing throughout the Possibility

Space of a CVL specification. This Possibility Space is the representation of all the

feasible configurations according to the CVL Specification. Top of Figure 7.9 shows

a simple CVL specification and bottom of Figure 7.9 shows the Possibility Space

using the State Machines Notation. States represent configurations and transitions

represent reconfigurations as introduced in the previous section.

Our approach for validating the strategies implementation is a three steps pro-

cess. First, from a CVL specification we calculate the skeleton of the Possibility

Space. This skeleton is conformed by the empty states of the state machine and

the transitions with their triggers (Resolutions). An empty state means that the

Base-model associated to this state is not calculated yet.

7.5. Validating the Strategies Implementation 163

Lights

Lighting Service

Alarm
Security

Service

TV

Multimedia

Service

Presence Sensors

a

b

Presence Sensors
e

f

1c d
Presence Simulation

1g d
Advance Simulation

cSimulation

Sensors

Advance

Basic

2

Lights Security

Simulation: Advance

Sensors: LightsR
es

A Simulation: Basic

Sensors: LightsR
es

C Simulation: Basic

Sensors: SecurityR
es

D

ResA ResB

ResC ResD

1 1 1 1 1 1

1 1 11 1 1

ResA 2 2 2

ResB 2 2 2

ResD 2 2 2

ResC 2 2 2

ResB 2 2 2

ResD 2 2 2

Initial

R
es

A
2

2
2

R
esC

2
2

2

R
es

B
2

2
2

R
esD

2
2

2

Simulation: Advance

Sensors: SecurityR
es

B
Base-model Fragment Library

Mapping between placements and fragments

Variability model

Feasible Resolutions

REG
Strategy

2

1

INC-M
Strategy

2

1

INC-C
Strategy

2

1

Strategies

placements fragments

Figure 7.9: Possibility Space.

Second, the Base-model associated to each state and the effects of the transitions

are calculated by means of the strategy operations (synthesis and modifications).

For each reconfiguration (transition), the strategies take the same Resolution as

input (transition trigger) and they calculate the model modifications (transition

effect) and the Base-model associated to the target state.

7.5. Validating the Strategies Implementation 164

Finally, our approach compares the model modifications and the Base-models

among strategies in order to check their equality. We recommend this comparison

among strategies when we have at least one reliable strategy and we are implement-

ing new strategies. The Base-model comparison can detect differences between new

implementations and a reliable implementation.

Furthermore, some states of the Possibility Space can be reached through dif-

ferent paths (see bottom of Figure 7.9). Independently of the followed path, all

the strategies must generate the same Base-model. Our approach also compares

the Base-models among paths in order to check their equality. In fact, this last

comparison can be performed by means of only one strategy.

We recommend this comparison among paths when we do not have a reliable

strategy yet. This comparison helps to refine the implementation of a strategy until

the inconsistencies among paths have been eliminated.

The combination of these comparisons (among strategies and among paths)

throughout a Possibility Space turns out to be a powerful tool to verify the imple-

mentation of strategies. We have applied this approach to verify the three strategies

presented in the previous section. Furthermore, the approach enables us to validate

the implementation of new strategies.

7.5.1 Tool Support for Testing Strategies

Calculating the skeleton of the Possibility Space and then executing and comparing

the different strategies are tedious tasks. We have developed a tool to automate

this process. Figure 7.10 shows the Testing tool for CVL Strategies, which is inte-

grated with the CVL editor. This tool is structured in three tabs: Possibility Space,

Strategies Management and Strategies Comparison.

In the Possibility Space tab (see left of Figure 7.10), the testing tool calculates the

skeleton of the Possibility Space. To calculate this skeleton, the tool takes as input

a CVL specification (see top of Figure 7.10). Then, the tool calculates all feasible

Resolutions according to the VAR-model. These Resolutions are valid assignments

of Replacement Fragments to Placements. For each Resolution the tool creates

an empty state in the Possibility Space. Empty state means that the associated

7.5. Validating the Strategies Implementation 165

1. Skeleton of the Possibility Space

CVL Editor

ResA ResB

ResC ResD

ResA

ResB

ResD

ResC

ResB

ResD

Initial

R
e
sA

R
e
sC

R
e
sB

R
e
sD

REG
Strategy

2

1

INC-C
Strategy

2

1

INC-M
Strategy

2

1

3. Completed Possibility Space

2. Strategies Management

ResA ResB

ResC ResD

1 1 1 1 1 1

1 1 11 1 1

ResA 2 2 2

ResB 2 2 2

ResD 2 2 2

ResC 2 2 2

ResB 2 2 2

ResD 2 2 2

Initial

R
e
sA

2
2

2

R
e
sC

2
2

2

R
e
sB

2
2

2

R
e
sD

2
2

2

Figure 7.10: Testing Tool for Strategies.

Base-model Configuration will be calculated later by the strategies.

Finally, the transitions are set among states. For each possible pair of states such

as ResA and ResB, the tool creates two transitions: one transition from A to B that

is triggered by Resolution A and other transition from B to A that is triggered by

Resolution B. Once all the transitions have been set, the skeleton of the Possibility

Space is ready.

The Strategies Management tab (see center of Figure 7.10) shows all the strate-

gies that are available in the testing tool. The strategies introduced above (REG,

INC-C and INC-M) are preloaded in the tool. Furthermore, the tool also provides

functionality to load new strategies as Eclipse Plug-ins. These strategies are in

charge of completing the skeleton of the Possibility Space.

The Strategies Comparison tab (see right of Figure 7.10) runs the testing process.

First, the skeleton of the Possibility Space is completed by means of the selected

strategies. The Synthesis and Modifications operations calculate the Base-model

for each state and the Effect for each transition. Once the Possibility Space is

completed, the tool runs the test for equality.

The criteria for the equality test can be selected by the user among the following

options: Model Increments/Decrements, Base-model Comparison and Paths Com-

parison. The first two options implements the comparison among strategies while

the last option implements the comparison among paths. The tool applies these

7.6. Extra-Functional Properties of Strategies 166

criteria thought the Possibility Space to perform the equality test. Finally, the tool

generates a report that summarizes the results of the test for equality.

7.6 Extra-Functional Properties of Strategies

Although all these strategies implement the same operations introduced at the be-

ginning of this document, there are differences among them from the viewpoint of

the extra-functional properties. Table 7.1 summarizes these differences by means

of the following criteria: History, Performance and Persistency of the Base-model

changes.

Strategy
History

Support
Performance

Persistency

of changes

REG Yes
All Variation Points

+ Base Model Differences
No

INC-C No Only Modified Variation Points No

INC-M No
Only Modified Varition Points

+ Library Update
Yes

Table 7.1: Extra-Functional Properties of the Strategies

The History Support criterion evaluates if the strategies keep information

about the Base-models that have been previously synthesized. This information is

useful for techniques that debug invalid configurations and derive the minimal set

of changes to fix flawed configurations [164]. Specially, when these techniques deals

with SPLs which use staged configuration [165]. Staged configuration means that

variability decisions are taken in multiple stages to form a complete configuration

iteratively. For instance, the Configuration Understanding and REmedy (CURE)

tool implements some of these techniques to debug invalid configurations [166].

By analyzing the introduced strategies from the viewpoint of the History cri-

terion, we found the following results. On the one hand, the REG strategy stores

previous configurations of the system, because this strategy works with copies of the

7.6. Extra-Functional Properties of Strategies 167

Base-model. On the other hand, INC-C and INC-M just store the current state of

the system, since these strategies apply all the modifications to the same Base-model.

Therefore, we recommend the use of the REG strategy for configuration debug-

ging, since the REG strategy will provide more information for the analysis.

The Performance criterion evaluates how many elements are processed to syn-

thesize a Base-model configuration. The performance of the synthesize operations is

specially important for DSPLs. DSPLs products are adaptive systems, i.e. a prod-

uct might pro actively adapt itself when changes are performed in its environment.

For instance, [109] uses a DSPL to synthesize new system variants for mobile devices

according to changes in the context.

From the performance viewpoint, executing the INC-C strategy only involves

those elements that change from the previous configuration to the new one. The

INC-M strategy additionally updates the Library in order to save Base-model changes.

Finally, the REG strategy involves all the variations points, since this strategy re-

generates the whole Base-model always.

Therefore, we recommend the use of the INC-C strategy for DSPLs, since in

DSPL the performance of the synthesize operation impacts on the overall perfor-

mance of the synthesized product.

The Persistency of the base Model Changes criterion evaluates the capabil-

ity of strategies to save changes of the Base-model by run-time systems. Increasingly,

some approaches are leveraging variability models at run-time [146]. A key benefit

of using models at run-time is that models can provide a richer semantic base for

run-time decision-making related to system adaptation and other run-time concerns.

For instance, [112] leverages variability models at run-time to achieve dynamically

adaptive systems.

Analyzing the introduced strategies from the viewpoint of the Persistency crite-

rion, we found that only the INC-M strategy saves changes to the Base-model. In

a reconfiguration, this strategy moves the decrements of the Base-model to the Li-

brary instead of just deleting these model elements. Eventually, these elements will

be back from the Library to the Base-model. The REG and INC-C strategies discard

the base model changes, since they just delete the decrements of the Base-model.

7.7. Applying the Strategies to Smart Homes 168

Therefore, we recommend the use of the INC-M strategy for approaches that

leverage models at run-time. These models can be modified by the run-time system

without loosing the modifications in the next reconfiguration.

In this section, we have shown three strategies which support different extra-

functional properties. Our intent is to develop new strategies that mix the above

properties. For instance, INC-C with History support or REG with persistency of

base model changes. Furthermore, we also plan to develop more strategies that

support new extra-functional properties.

7.7 Applying the Strategies to Smart Homes

We have applied the previous strategies to the running Smart Home case study. This

case study allows Smart Homes to use the variability modelling from the SPL design

at run-time in order to determine the steps that are necessary to reconfigure the

Smart Home. For instance, the Smart Home reconfigurable architecture is retargeted

to a Nobody at Home configuration when the users leave the home.

This DSPL for Smart Homes use staged configuration since fragments are selected

in multiple stages to form a complete configuration iteratively. At a late stage in the

configuration process, developers may realize that a specific context condition cannot

select some fragments due to reconfigurations in some previous stages. It is hard to

debug the last configuration to figure out how to change reconfigurations in previous

stages to make these fragments selectable [164]. To debug these staged configuration

errors, we apply the REG strategy to synthesize the Smart Home configurations.

The REG strategy synthesize configurations from an invariant CVL specification,

keeping the history of configurations. Therefore, we are able to conduct a thorough

analysis of the previous configurations for the purpose of debugging.

A fundamental problem in SPL engineering is that a real product line can easily

incorporate several thousands of variation points [167]. The use of variability models

to assist the system adaptation (as our DSPL for Smart Homes does) impacts the

product performance. The incorporated latency comes from the synthesize operation

that is performed at run-time when a context condition is fulfilled. For this reason,

7.8. Conclusions 169

we use the INC-C strategy for deployment and we keep the REG strategy just for

debugging. The INC-C strategy achieves better performance results since it only

involves the subset of variation points affected by a context condition. On the other

hand, the REG strategy always involves all the variation points independently of

the context condition.

In an ongoing work [168], we also use this DSPL for service reconfiguration in

the Ambient Assisted Living domain. In this domain we update the Base-model at

run-time in order to save user preferences. The INC-M strategy is suitable for this

purpose, since it enables the run-time system to modify the Base-model without

losing the modifications in the next reconfiguration.

The realization of the variability transformation by means of interchangeable

strategies enables SPL engineers to use the most suitable strategy for each concern.

In this section, we have illustrated how to take advantage of different strategies in

a DSPL for adaptive Smart Homes. However, we can develop new strategies that

provide other extra-functional properties in order to support more SPLs. Further-

more, the tool presented in this chapter will help us to validate the implementation

of these new strategies.

7.8 Conclusions

Increasingly, more approaches apply the variability transformation of SPLs to build

run-time adaptive systems [160, 112]. We argue that the variability transformation

can be realized by means of interchangeable strategies that have different extra-

functional properties. These strategies enable SPL engineers to use the most suitable

strategy for each concern, because these strategies cover specific extra-functional

requirements such as performance or support to reconfiguration debugging at run-

time.

In this chapter, we introduced three different strategies (REG, INC-C and INC-

M) for realizing the variability transformation. We implemented these strategies

by means of the Model Query project of the Eclipse Modelling Framework, and

we validated these implementations using a testing approach which provides tool

7.8. Conclusions 170

support. Then, we compared these strategies from the viewpoint of the extra-

functional properties, and we also gave recommendations to use the most suitable

strategy for different concerns of run-time reconfiguration.

Finally, we have evaluated the above strategies in a SPL for run-time adaptive

Smart Homes. In this SPL we illustrated how we have take advantage of the different

strategies in practice.

Our intend is to build a catalog of new strategies that cover extra-functional

requirements. We believe that this catalog is useful for the SPL community since

variability transformations are more and more applied to domains which require

extra-functional properties. Furthermore, although the strategies presented in this

work are based on CVL, the approach as such, can be applied by means of other

languages for variability specification.

Chapter 8. EVALUATION OF THE

PROPOSAL

“One of the great mistakes is to judge policies and programs by their intentions rather

than their results.”
– Milton Friedman (1912-2006).

8.1 Overview of the Chapter

Variability
Models

Variability
Transformation

Reconfiguration
Analyser

Reconfiguration
Engine

Reconfigurable
System

Reconfiguration
Tracker

Figure 8.1: Scope of Chapter 8

The software systems achieved in this work

are capable of modifying themselves with

respect to changes in their operating envi-

ronment by using run-time reconfigurations.

Variability models specify the possible system

configurations, while a reconfigurable archi-

tecture can be rapidly retargeted to a specific

configuration. Since the models that form the

basis for run-time reconfiguration are avail-

able at design time, it is possible to validate

reconfigurations at an early stage of the de-

velopment process without first implementing

them as Chapter 5 shows. However, not all

potential run-time failures can be anticipated during system design [123].

In this chapter, we are concerned with reliability-based risk of run-time reconfig-

urations, which depends on both the probability that the software product will fail

in the operational environment and the adversity of that failure. We have consid-

172

8.1. Overview of the Chapter 173

ered this aspect since it is especially relevant when dealing with Dynamic Software

Product Lines (DSPL). For traditional Software Product Lines, once a product is

obtained for a given configuration, it can be tested intensively before it reaches the

end-users. However, the case of DSPLs is different since different configurations are

obtained at run-time. A failure in DSPL reconfigurations directly impacts the user

experience since the reconfiguration is performed when the system is already under

the user control. Thus, we consider that the risk of run-time reconfigurations must

be controlled for reconfigurations that are produced in the operational environment

(as is the case of DSPLs). To this end, we have adopted the definition in [169],

which defines reliability risk as a combination of two factors: the probability of

malfunctioning (Availability) and the consequences of malfunctioning (Severity).

First, this chapter provides some background on current approaches for DSPL

evaluation. Then, we have developed a Smart Hotel case study to evaluate the avail-

ability and severity of the run-time reconfigurations, following the guidelines for case

study research by Runeson and Höst [125]. The Smart Hotel reconfigures its services

according to changes in the surrounding context. A hotel room changes its features

depending on users’ activities to make their stay as pleasant as possible. Overall,

the case study comprises eight scenarios and eighteen reconfigurations among these

scenarios. The run-time reconfiguration among the different scenarios is the main

unit of analysis that we address in this case study. This case study was deployed

in a scale environment with real devices to represent the Smart Hotel with human

subjects participating in the evaluation (university students performing their senior

thesis).

Second, we identify and address two major challenges with the involvement of

human subjects in the evaluation. On the one hand, reconfigurations are triggered

by context events, many of which are difficult to be reproduced in practice (e.g.,

a fire). To address this challenge, we have developed a technique that is based on

RFID-enabled cards to easily specify the current context. On the other hand, when

reconfigurations are performed, some of the effects are easily perceived (e.g., an

alarm is triggered) while others are not (e.g., some sensors are deactivated). Thus,

we consider that the direct observation of the physical devices is not enough for

8.2. Background on DSPL evaluation 174

evaluating the run-time reconfigurations. To address this challenge, we provided

participants with a configuration viewer tool which helps them to understand and

evaluate the effects of the reconfigurations.

Furthermore, we also keep track of the experimentation by means of traces of the

reconfigurations. These traces gave us insights into the reconfigurations performed

by the participants, which contributed to a better understanding of the participant

actions, and enabled us to achieve more elaborated conclusions from the experimen-

tation.

The evaluation of the case study reveals positive results regarding both Availabil-

ity and Severity. However, participant feedback highlights issues with the recovery

from a failed reconfiguration or a reconfiguration that is triggered by mistake. To

address these issues, we discuss some guidelines learned in the case study. Finally,

we conclude that the DSPL achieve satisfactory results with regard to reliability-

based risk; nevertheless, DSPL engineers must provide users with more control over

the reconfigurations or they will not be comfortable with DSPLs.

8.2 Background on DSPL evaluation

Since DSPL architectures are retargeted to different configurations at run-time, they

could benefit from current approaches for adaptive architecture evaluation. Specifi-

cally, Yacoub and Ammar [169] proposed a method for reliability risk assessment at

the architecture level. This method is based on component-based systems in which

implementation entities explicitly invoke each other. Liu et al. [123] also proposed

a method for evaluating reliability by means of fault tolerance and fault prevention.

They identified architectural design patterns to build an adaptive architecture that

is capable of preventing or recovering from failures. Altough, these methods do not

address run-time reconfigurations that are driven by variability specifications such

as Feature Models, they provide techniques (such as estimation of availability and

severity) that can be applied in the context of DSPL evaluation.

For SPL evaluation, several approaches have produced results in connection to

quality properties such as reliability. For example: the extended goal-based model

8.3. The Smart Hotel Case Study 175

[170], the F-SIG Feature-softgoal interdependency graph [171], the Benavides et

al. [21] approach, Zhang et al. [172] Bayesian Belief Network (BBN). There are

also other methods that are not based on Feature Models: COVAMOF (ConIPF

Variability Modelling Framework) [173] and Quality Requirements of a Software

Family (QRF) method [174]. Most of these approaches usually remain at the Domain

Engineering phase of SPLs only, they do not address run-time reconfigurations as

our work does. Therefore, these approaches are not suitable for DSPL evaluation.

Other approaches address reliability evaluation of SPL products at run-time.

The RAP approach [175] defines how the reliability requirements should be mapped

to the architecture and how the architecture should be analyzed in order to validate

whether or not the requirements are met. Etxeberria et al. [176] also take into

account reliability at run-time and present a generic approach that can be combined

with existing architecture evaluation methods such as PASA [177] or SALUTA [178].

However, since these approaches are oriented to static products only, they have to be

extended to address the evaluation of reconfigurable products, which are the target

of DSPLs.

Next sections show the case study that we propose for DSPL reconfigurations,

and the challenges that we have identified and addressed to evaluate reconfigurable

products.

8.3 The Smart Hotel Case Study

This section introduces the case study of a smart hotel, which reconfigures its services

and devices according to changes in the surrounding context. The smart hotel

was chosen as the reconfiguration-based case study for two main reasons: first, its

nature as a shared environment in which different users use the same room over

time. The clients each have their own preferences for the room, which should be

adjusted to improve the quality of their stay; secondly, the preferences of the clients

change depending on the activity performed (e.g., the clients usually have different

preferences when they are watching a movie than when they are working).

Overall, the smart hotel case study describes the stay of one client in different

8.3. The Smart Hotel Case Study 176

scenarios. This includes the check-in process and the way the room interacts with

the client and changes its features depending on the clients activities in order to

make the stay as pleasant as possible. To give an idea of the dimensions of the case

study, we present the following metrics:

According to the Feature Modelling technique, the Smart Hotel presents thirty

nine Features. Some examples of these features are the Temperature Control

feature, which offers a heating and cooling system; the Device Synchronization

feature which synchronizes the devices that the user can have (e.g., laptop, mp3

player, or PDA) or the Security feature, which secures the room when the user

is absent.

The main concepts of the Smart Hotel DSPL architecture are Services, Devices, and

the Communication Channels among them. The Smart Hotel has thirteen

Services, twenty Devices and thirty-five Channels. For instance, the

Multimedia Service can establish communication channels to devices such as

PDAs or MP3 players.

In the Smart Hotel, users can perform different activities. Specifically, our case

study addresses eight Scenarios. These scenarios are: Check-in, Entering

the Room, Working, Watching a Movie, Sleeping, Leaving the Room, House-

keeping and Check-out.

Appendix A describes in detail the Smart Hotel case study. This description

comprises all the scenarios that conform the case study by means of the feature

modelling technique, the PervML language and reconfiguration tables between the

scenarios.

8.3.1 Reconfiguration Scenarios of the Smart Hotel

This section provides a brief description of all the scenarios that make up the Smart

Hotel case study. These scenarios cover possible situations that can occur in the

smart room of a hotel. The descriptions also indicate the goal of each scenario from

the point of view of reconfiguration.

8.3. The Smart Hotel Case Study 177

Check-In. When the user registers (online from the internet or at the hotel’s re-

ception desk), he is provided with a wizard that makes a few questions to set

up the room according to his preferences.

Goal: To reconfigure the room according to the preferences of each user.

Entering the room. When the user enters the room, the smart room detects all

the devices that the user is traveling with.

Goal: To integrate the functionality of the user’s devices with the room ser-

vices.

Activity. The room reconfigures itself according to the activities that the user

performs in it. The activities can be working, watching a movie or sleeping.

Goal: To reconfigure the room services according to the specific activity that

the user is performing at any given moment.

Leaving the room. When the user leaves, the room is reconfigured to disable

the services that are no longer needed. Because no one is in the room, it

is reconfigured to save energy. The room takes into account when the user has

planned to come back (agenda) so that the room is the conditions preferred

by the user (illumination and temperature).

Goal: To save energy while there are no users in the room without disturbing

them when they come back.

Housekeeping. The room is reconfigured to guarantee the user’s privacy when

the cleaning service is working in the room. All displays where personal in-

formation of the client can be obtained (e.g., TV) are disabled to guarantee

privacy.

Goal: To guarantee the user’s privacy when the user is not in the room but

the hotel staff is.

Check-Out. Finally, when the user finishes the stay in the room, the smart room

stops being personalized for that user and its services are reconfigured in order

to save energy.

8.3. The Smart Hotel Case Study 178

Configuration

Reconfiguration

Check-in
Entering the

room

Leaving the
room

Sleeping Housekeeping

Watching a
movie

Example of User stay at the Smart Hotel

Entering the
room

Leaving the
room

Check-out

Figure 8.2: Reconfigurations among Scenarios.

Goal: To reconfigure the room to energy-saver mode for the periods when

there is no user using it.

By combining the above introduced scenarios introduced above in different ways,

we can describe a user’s stay at the Smart Hotel. For example, the user checks in

the hotel (Check-in scenario) at the reception desk. When he receives his room card,

he can immediately enter his room. When he enters the room (Entering the room

scenario), he has some free time and he decides to watch a movie selecting one from

the hotel’s pay-per-view service (Watching a movie scenario). Since it is late, after

watching the movie, the user decides to go to sleep (Sleeping scenario). The next

morning, the system wakes him up at the time that he has scheduled. The user

leaves the room (Leaving the room scenario). During the user’s absence, the hotel’s

cleaning service performs the room’s maintenance (Housekeeping scenario). When

the user comes back (Entering the room scenario), he has to pack everything to

return home. When everything is prepared, he leaves the room (Leaving the room

scenario) and then checks out at the hotel’s reception desk (Check-out scenario).

8.4. Evaluation Logistics of the Case Study 179

Figure 8.2 uses the notation of the state machines to show the above example of

user’s stay at the Smart Hotel. States represent the scenarios and the transitions in-

dicate valid reconfigurations between scenarios. Appendix A provides details about

how all the scenarios are connected with each other. For example, once the user

has left the room (Leaving the room scenario), the room can be reconfigured to the

following scenarios: Housekeeping, Entering the room, or Check-out scenario.

8.4 Evaluation Logistics of the Case Study

In this case study, we are concerned with reliability-based risk of the run-time recon-

figurations. This reliability-based risk depends on the probability that the software

product will fail in the operational environment and the adversity of that failure.

For the purpose of this work, we have adopted the definition in [169], which defines

risk as a combination of two factors: probability of malfunctioning (Availability) and

the consequences of malfunctioning (Severity). The probability of failure depends on

the probability of the existence of a fault combined with the possibility of exercising

that fault. Whereas a fault is a feature of a system that precludes it from operating

according to its specification, a failure occurs if the actual output of the system for

some input differs from the expected output [169].

It is difficult to find exact estimates for the probability of failure of individual

components in the system. In this paper, we adopt the severity classification used

in [169, 123] (see Table 8.1). We use a coarse-grained scale, defined as high (H),

middle (M), and low (L). We did not adopt an ordinal scale (e.g., 1 to 5) because

the values do not truly represent the differences between scales in ratio or distance.

In fact, the differences in their values only give indications of their relative rankings.

If needed, the scaling definition can be refined later to be more fine-grained or an

ordinal scale can be used.

8.4.1 Participants and Training

The participants were 5th-year computer engineering students at the Technical Uni-

versity of Valencia, Spain. Specifically, these students were performing their master

8.4. Evaluation Logistics of the Case Study 180

Attribute High Middle Low

Availability No single point

failure

Only one single

point of failure

The number of sin-

gle points of fail-

ures > 1

Failure

Severity

(aka critical) A

failure may cause

major system dam-

age or loss of pro-

duction.

(aka margin) A

failure may cause

minor system dam-

age, delay, or mi-

nor loss of produc-

tion.

(aka minor) A

failure may not

cause system dam-

age but will result

in unscheduled

maintenance or

repair.

Table 8.1: Scale Definition of Reliability Metrics.

degree thesis under the supervision of the author of this work. In order to motivate

the participants, the experimental tasks were part of their master degree thesis tasks.

However, the participants were explicitly not advised that the assessment tasks were

part of a formal experiment in order to avoid any spurious effect as a result of the

participants being aware of being studied (i.e., avoiding the “Good Subject” effect

[179]).

For training purposes, there were two lectures (2 h each) covering the main

concepts of a DSPL and introducing the case study. The participants were provided

with support materials at the beginning of the experiment, which included specific

information for each reconfiguration scenario. They also received training on the use

of MoRE [180], the Model-based Reconfiguration Engine of the DSPL that supports

the case study. MoRE was a fundamental part of the senior thesis of these students.

8.4.2 Challenges to involve Human participants in DSPL Eval-

uation

Two major challenges were identified and addressed with the involvement of hu-

man subjects in the DSPL evaluation. DSPL reconfigurations are triggered by

context events, many of which are difficult to reproduce in practice (e.g., a fire).

8.4. Evaluation Logistics of the Case Study 181

To successfully evaluate DSPLs, we must enable participants to trigger those

reconfigurations that are relevant for the experimentation, not only those

reconfigurations that can be easily triggered.

When reconfigurations are performed, some of the effects can be easily perceived

(e.g., an alarm is triggered) while others are not (e.g., some sensors are deactivated).

To successfully evaluate DSPLs, we must enable participants to understand

and evaluate the effects of reconfigurations. If participants misunderstand

reconfiguration effects, they will not be able to apply the classifications scales of

Availability and Severity.

Enabling Participants to Trigger Reconfigurations

Reconfigurations in the case study are triggered by different environmental condi-

tions. When participants are experimenting with the reconfiguration scenarios, they

should be able to reproduce these situations in order to validate the system reaction.

Since many context events are difficult to reproduce in practice (e.g., simultaneous

events that occur in different rooms), simulating them is a must.

The control of context events is essential for the evaluation of DSPLs, since con-

text changes are the events that drive the reconfiguration of the DSPL. Mechanisms

should be provided to users to allow them to easily change the current context of the

system. In this way, users can move from one configuration to another configuration

by applying context changes.

In order to provide an intuitive representation of context events that users could

manipulate easily, we provided them with cards that depicted these events. The use

of the card metaphor was chosen since it is a familiar concept for most people [181].

Each context card represents a context event (such as “fire in the room”). Dur-

ing evaluation sessions, the users were given a deck of context cards. The deck

included the events that could affect the particular DSPL being evaluated. The

users could then make use of the context cards as the building blocks for triggering

the reconfiguration of the DSPL.

The design of the context cards was driven by the elements defined in the Smart

Hotel ontology. Each card involved a specific instantiation of a class from the ontol-

8.4. Evaluation Logistics of the Case Study 182

Figure 8.3: Context Cards for triggering DSPL reconfigurations.

ogy. The information provided in the card included the type element and, optionally,

some relevant attributes regarding its particular instantiation (such as the location

where the event takes place). When the cards were designed, we tried to avoid in-

cluding too much information. Thus, the users could easily recognize the different

cards at a glance (see Fig. 8.3, right).

In order to automate the evaluation process, the Context Cards were enhanced

with RFID tags (see Fig. 8.3, left). When a card is placed on the table it is au-

tomatically detected by an RFID antenna, and the context ontology is updated

accordingly. In this way, the cards can be easily manipulated as if it was part of a

card game. Furthermore, they are also closely integrated with the DSPL reconfig-

uration engine (MoRE). That is, setting a context card close to the RFID antenna

triggered the different reconfigurations by means of MoRE.

During the evaluation, the users could add and remove multiple cards from the

table in order to define a specific context. The reconfiguration engine reconfigured

the DSPL to fit the new context as it changed. Thus, the users could observe how

the DSPL was reconfigured as they changed the context events.

The use of context cards enables users to evaluate the reaction of the system in

different combinations of context events. Furthermore, putting users in control of the

context definition provides valuable feedback. During our evaluation sessions, the

users suggested new context cards and specific reconfigurations for certain context

combinations that had not been previously considered by designers. Some new

context cards were designed to group different events on a single card. Thus, a

single card could represent the instantiation of several elements of the Smart Hotel

8.4. Evaluation Logistics of the Case Study 183

User at Hotel room User left the Hotel room

Reconfiguration

Figure 8.4: Visualizing reconfiguration effects by means of the Configuration Viewer.

ontology. This simplifies the activation of multiple conditions for users.

Enabling Participants to Evaluate the Reconfigurations

According to Dey in [182], one of the biggest challenges to the usability of context-

aware applications (as is the case of a DSPL such as [106, 108, 109, 111, 183, 114])

is the difficulty that users have understanding why the applications do what they

do. Dey defines the intelligibility concept as the support for users in understanding,

or developing correct mental models of what a system is doing. This is done by pro-

viding explanations of why the system is taking a particular action and supporting

users in predicting how the system might respond to a particular input.

Since the DSPLs that we are developing are context-dependant, intelligibility

becomes a challenge for their evaluation. When the Smart Hotel is reconfigured,

some of the consequences are easily perceivable by users (e.g., an alarm is triggered)

while others are not (e.g., some sensors are deactivated). Thus, we considered that

the direct observation of the physical devices by the user is not enough for evaluating

the DSPL reconfigurations. Mechanisms are required by users to allow them to

fully understand the reconfiguration consequences (e.g. changes that are produced

in rooms where the user is not present, etc.).

For the evaluation process a Configuration Viewer has been developed to pro-

vide users with visual information about the reconfiguration effects in the system.

This tool provides a graphical representation of the relevant entities in the Smart

Hotel room. These entities include the devices, services, and communication chan-

8.4. Evaluation Logistics of the Case Study 184

nels among them. When a context condition is activated, it is also depicted in

the Configuration Viewer. Thus, the user can easily perceive that motion sensors

are enabled and provide information to the alarm system when the room becomes

empty. Without the Configuration Viewer, users cannot be sure whether or not

the presence detection has been turned on when they leave the room. As Fig. 8.4

shows, direct observation of the physical devices is not enough to evaluate run-time

reconfigurations.

Since we are interested in the evaluation of DSPL reconfigurations, it is not

enough to represent the Smart Hotel room in a single state. Therefore, comple-

mentary information is provided to the users through our tool to depict what has

changed from the previous configurations. By clicking on services or devices, the

users get detailed information indicating changes in the configuration (e.g., the mo-

tion sensors provide the user with the following message: “motion sensor is no longer

in use to control lighting, it is currently in use to control security.”).

This use of the visualization tool enabled users to provide more accurate feedback

during the DSPL evaluation since they could determine what has actually changed.

8.4.3 Experiment Operation

In the experimental set-up, a scale environment with real devices was used to rep-

resent the Smart Hotel. Therefore, the participants could interact with the same

devices that can be found in a real deployment (see Fig. 8.5, top-left). The Configu-

ration Viewer was used during the experiments to keep track of the system evolution.

This tool graphically depicts the devices, the services, and the connections among

them that are present in the system at any given moment (see Fig. 8.5, bottom-

left). Since the reconfigurations are performed as a response to context events,

mechanisms are provided for triggering them. We adopted RFID cards to set the

Smart Hotel context (see Fig. 8.5, right). Each of the cards symbolized context in-

formation such as the presence of users or the occurrence of different events. These

cards were combined to insert events in the ontology and to trigger reconfigurations

in the Smart Hotel.

During the experiment, the same user interaction with the environment (activat-

8.4. Evaluation Logistics of the Case Study 185

Current context

New Context Event

KNX Devices

Configuration
Viewer

Smart Hotel Smart Hotel Context

Figure 8.5: Experimentation set-up.

ing a presence detector) produced different results according to the current config-

uration of the system (which depended on the context expressed by the cards). For

example, an initial scenario could consist of a room where one inhabitant is present.

The cards that defined this scenario are the ones illustrated in Fig. 8.5. In this

scenario, the system architecture was organized in such a way that the piped music

was available and the presence sensors were used by the lighting service. The user

of the prototype could listen to the music and the lights were turned on/off as the

user interacted with the sensors. If the card that represented the hotel inhabitant

was removed, the sensors were automatically no longer used for the purpose of light

control but for security instead. As a consequence, when the user of the proto-

type interacted with the sensors again, the alarm went off (see this reconfiguration

example online1).

The above description is a small example of the evaluation performance of the

reconfigurations introduced by DSPLs. Detailed specifications of the configurations

and reconfigurations that make up the case study can be found in http://www.carloscetina.com/papers/smart-

hotel.pdf. There are several videos available about the reconfiguration of our proto-

type Smart Hotel at http://www.autonomic-homes.com.

1http://www.youtube.com/watch?v=OVtERFeEKofmt = 22

8.4. Evaluation Logistics of the Case Study 186

8.4.4 Data Collection

After each reconfiguration, the participants answered a questionnaire. The ques-

tionnaire asked the participant to set the Availability and Failure Severity for each

reconfiguration according to the Scale Definition (see Table 8.1). The participants

also indicated the number of context cards that they used to trigger the recon-

figurations and whether or not they used the configuration viewer. Finally, the

participants answered two questions related to the resulting configurations: “Do you

think that the provided reconfiguration is adequate for the context conditions?” and

“Do you think that further customization is required to fit your particular needs?”.

These two questions required the participants to provide a short explanation.

8.4.5 Keeping Track of the Reconfigurations

In addition to the questionnaires, we also keep track of the experimentation by

means of reconfiguration traces. Historically, software engineers have used code-

level tracing to capture a running system’s behavior. An alternative is to generate

and analyze model-based traces, which contain rich semantic information about the

system’s runs at the abstraction level that its design models define.

A model-based trace represents information about the system from a certain

viewpoint and omits (or abstracts away) other information. Given a program P and

a model M, the model-based execution trace records a run r of P at the abstraction

level that M induces.

To support model-based tracing, MoRE stores trace entries each time that a

model operation is performed in the context of a reconfiguration (see Figure 8.6).

The trace entries range from the conditions which trigger the reconfigurations to the

executed reconfiguration plans. Since the reconfiguration are driven by models at

run-time, MoRE is able to keep the trace entries at the same abstraction level than

the run-time model. That is, both run-time model and trace entries are based on

concepts such as features, services or devices.

Given the semantics of the run-time models, an engineer can check if a model-

based trace is consistent with regard to a concrete run, and, more generally, if it is

8.4. Evaluation Logistics of the Case Study 187

Nobody at home User at home

Initial
Configuration

MoRE Traces tool

Figure 8.6: Information of the Reconfigurations is Stored as Model-based Traces.

feasible. That is, if a reconfiguration exists from which the trace could have been

generated.

The trace entries that MoRE stores can belong to several entry types. We

present these entry types and provide examples of their instance creation as follows

(see Figure 8.7).

1. Context Condition. This entry type provides information about the context

conditions that have been fulfilled. Consequently, these conditions are the

ones who triggered the reconfigurations. In addition to the context condition

information, this entry type also maintains the time stamp of the condition

fulfilment.

For example, an instance of this entry type is created when all the users leave

the home and the EmptyHome condition is fulfilled.

2. Context Configuration. This entry type is closely related to context con-

ditions. For each fulfilled condition, a Context Configuration specifies the

system changes in terms of features.

For example, an instance of this entry type is created

3. when MoRE processes the Resolution of the EmptyHome condition.

8.4. Evaluation Logistics of the Case Study 188

1 2 3 5

4

Figure 8.7: Snapshot of MoRE Traces tool.

4. Old System Configuration. This entry type provides information about

the system configuration before the reconfiguration.

For example, an instance of this entry type is created before the reconfiguration

is performed to accommodate the new EmptyHome context state.

5. Reconfiguration plan. This entry type provides information about the cal-

culated reconfiguration actions to combine both a given Context Configuration

and the current System Configuration.

For example, an instance of this entry type is created when MoRE calculates

the reconfiguration actions to move the architecture from a UsersAtHome con-

figuration to a EmptyHome configuration.

6. New System Configuration. This entry type provides information about

the resulting configuration after the execution of a Reconfiguration Plan.

For example, an instance of this entry type is created after the reconfiguration

plan is performed and the EmptyHome configuration is reached.

These trace entries provide a way to formally and quantitatively characterize

and investigate the concrete reconfiguration the trace was generated from (vertical

trace), and also the overall running of the system (horizontal trace).

8.5. Evaluation 189

On the one hand, vertical traces are related to a snapshot of a reconfiguration.

They quantitatively reflect the state of a reconfiguration at certain time points in

the execution. On the other hand, horizontal metrics are related to an interval of an

execution. They are evaluated over a time interval, typically a complete execution

or a sequence of connected reconfigurations.

The key characteristic of both vertical and horizontal traces is that they are

not mere projections of concrete run-time information onto some limited domain.

Rather, they are stateful abstractions, in which trace entries depend on the history

and context of the run and the model. The model-based trace not only filters ir-

relevant information but also adds model-specific information, such as data about

entering and exiting reconfigurations that does not appear explicitly in the program

code. These model-based traces provides a unique visibility the run-time reconfigu-

rations, and enable us to understand the participants reconfigurations at the same

abstraction level that we specified the case study models.

8.5 Evaluation

According to the results of the case study, most reconfigurations (87%) were reported

as high Availability (see Fig. 8.8). This is mainly due to the fact that the DSPL of the

Smart Hotel validates the resulting configuration of each reconfiguration before it is

actually performed. If the reconfiguration led to an invalid configuration according

to the feature model, then the reconfiguration would not be performed. However,

experimentation revealed that even though the configurations were validated, a few

of them went wrong in terms of the devices, services, or channels that make up the

resulting configuration.

Single points of failure (9% + 4%) were identified mainly on devices and services

that were not properly set up in the resulting configuration. In other words, some of

these components remained in the old configuration when they were not supposed

to, and others changed to a new configuration when they were not supposed to.

Several subjects specifically reported that the configuration viewer eased the task of

identifying these points of failure. In fact, 92% of the participants made use of the

8.5. Evaluation 190

9%

4%

87%

Availability

Middle Low High

35%

8%

57%

Failure Severity

Margin Critical Minor

92% 89% 77%

8% 11% 23%

Configuration
Viewer

Configuration
Acceptance

User
Personalization

Yes No

Figure 8.8: Overall results from the Case Study.

configuration viewer. However, they also reported that, in most of the cases, they

double-checked the viewer by means of direct interaction with the smart devices

and services. It was not until almost all of the scenarios were completed that most

subjects began to fully trust the configuration viewer.

Overall, the DSPL reached a high level of Availability in most of the case study

reconfigurations. However, experimentation revealed that even though DSPLs make

use of run-time validation, they are not completely free of reconfiguration failures.

To address this issue, we suggest complementing DSPLs with configuration viewers

to help users easily detect points of failure.

With regard to the failure severity, few failures (8%) were indicated as critical

(high severity). These critical failures were mostly related to services that provide

inputs to other services. For instance, the Presence Service provided inputs to the

following services: Temperature, Multimedia, and Illumination. In practice, the

lines between producer and consumer services were blurred, and the subjects could

not clearly distinguish between them. Hence, when something went wrong it was

hard to correctly attribute it to just one specific service. Therefore, the subjects

perceived that several services were malfunctioning at the same time. This suggests

that services of this kind require more development resources (e.g. testing, quality

control, etc.), since they affect the overall perception of the system.

With regard to context cards for triggering reconfigurations, Table A.8 indicates

the number of cards that were normally used to trigger the case study reconfigura-

tions (minimum and maximum are shown as an indicator). The subjects did not

reported any problems related to the understanding of these context cards. In fact,

the subjects not only reported new combinations of the current context cards that

8.6. Discussion 191

should have their own reconfigurations, they also suggested new context cards and

reconfigurations for these cards. The context card technique has provided us with

interesting insights into the understanding and expectations that users have about

reconfigurations. Context cards have not only proven to be a successful technique

for setting the context for reconfigurations, but also for capturing reconfiguration

requirements. Therefore, we suggest using this technique for both evaluation and

requirements elicitation in DSPLs.

With regard to the confiuration acceptance, we asked the users whether or not

they considered the system reaction to be adequate taking into account the defined

context events. Acceptance for the reconfiguration scenarios was high (89%). Most

of the users considered behaviour provided to be a good response to the context

defined with the cards, but they also considered that there was still room for im-

provement (as illustrated by the user personalization factor).

With regard to the user personalization factor, the users were asked whether

or not they would modify the system reaction to better fit their needs. Since the

specific needs of each user were very diverse (sometimes responding to opposite crite-

ria), we identified the scenarios that could require more fine-grained reconfiguration

capabilities. The subjects suggested configuration changes that were important and

personally beneficial to them. They transformed configurations from conventional

to personal. However, we do not believe that it is economically realistic to build

specific features that individually suit participants. Our intent is to focus on com-

monalities and abstractions that are valid across a set of users, looking for a trade-off

between Personalization and Reusability. In fact, the collected data supports that,

although participants would modify the case study configurations (77%), most of

them thought that the provided reconfiguration is adequate for the context condi-

tions (89%).

8.6 Discussion

Based on our experiences from this case study, we present the lessons that we learned

to assist researchers in the context of DSPLs.

8.6. Discussion 192

8.6.1 Introducing User Confirmations to Reconfigurations

During the evaluation of our DSPL, some subjects reported that they had triggered

unintended reconfigurations by mistake. In other words, they mistakenly set up the

context for one reconfiguration scenario (i.e. EnteringTheRoom - LeavingTheRoom),

when they really wanted a different reconfiguration scenario (i.e., EnteringTheRoom

- Working). Unintended reconfigurations of this kind were not counted as DSPL

failures since they were human mistakes. However, this behaviour raised an inter-

esting point regarding whether or not a reconfiguration should be confirmed before

its execution.

After analyzing the unintended reconfigurations performed in our case study, we

realized that they can be classified into three different categories. These categories

take into account the implications of returning to the source configuration. The

three categories are the following:

Round-trip. If there is a reconfiguration that leads directly to the source configu-

ration from the unintended configuration, then we classify the reconfiguration

as a round-trip one (see Figure 8.9, left). In our case study, some subjects

performed unintended round-trip reconfigurations between EnteringTheRoom

and LeavingTheRoom configurations. For these unintended round-trip recon-

figurations, the subjects did not require any special support since they could

easily find the way to return to the source configuration. In fact, most of the

reconfigurations were not reported as unintended ones in our case study, and

those that were reported as unintended did not require support to find the

way back. Based on this experience, we do not think that DSPLs should ask

for user confirmation before performing a round-trip reconfiguration.

One-way. If there is no reconfiguration that leads directly (or indirectly) to the

source configuration from the unintended configuration, then we classify the

reconfiguration as a one-way one (see Fig. 8.9, center). In our case study, some

of the subjects performed unintended one-way reconfigurations between the

LeavingTheRoom and Check-Out configurations. For these unintended one-

way reconfigurations, the subjects always required support since they could

8.6. Discussion 193

Source
Configuration

Unintended
Configuration

Source
Configuration

Unintended
Configuration

Source
Configuration

Unintended
Configuration

Stop
Configuration

Round-trip One-way N-stops

1 2 1 1

2

3

Figure 8.9: Categories for confirmation of reconfigurations.

not find a way back to the source configuration. Based on this experience,

we suggest that DSPLs should ask for user confirmation before performing

a one-way reconfiguration. This suggestion comes from the fact that once a

one-way reconfiguration has been performed, it is not possible to find a way

back to the source configuration.

N-stops. If there is a set of reconfigurations that leads to the source configura-

tion from the unintended configuration, then we classify the reconfiguration

as a N-stops one (see Fig. 8.9, right). In our case study, some of the subjects

performed unintended N-stop reconfigurations between the EnteringTheRoom

and Activity configurations. For these unintended N-stops reconfigurations,

almost all the subjects could easily find the way to return to the source con-

figuration. However, a few subjects took a long time to find the way back.

Based on this experience, we suggest that DSPLs should ask for user con-

firmation before performing an N-stops reconfiguration when the number of

stops exceeds a certain limit. The purpose of our suggestion is to only require

confirmation for critical reconfigurations. We also suggest identifying the ac-

ceptable limit of stops by applying Considerate Computing [184] techniques.

These techniques take into account the domain particularities of the DSPL in

order to determine when the number of reconfiguration stops is not trivial.

Since unintended reconfigurations can occur in DSPLs driven by context events

[106, 108, 109, 111, 183, 114] or by user actions [185], we believe that confirmation

patterns defined in this study can help DSPLs engineers to mitigate the unintended

8.6. Discussion 194

reconfigurations. Furthermore, we think that these confirmation patterns are spe-

cially relevant for DSPLs driven by context events, since users of these DSPLs usually

do not control all the feasible context events and can miss a specific configuration

because of it. The confirmation guidelines that came from our case study experience

can contribute to avoid this kind of undesired behaviour.

8.6.2 Improving Reconfiguration Feedback

When the subjects of the study perceived the effects of a specific reconfiguration,

they sometimes noticed that the result was not the expected one. In those cases,

they indicated the presence of a reconfiguration failure, and they also evaluated the

severity of the failure. One of the main issues with the evaluation process was related

to the termination of the reconfigurations.

Since, each reconfiguration involves changes in different devices, services or com-

munication channels, a delay between the event and the system reaction is intro-

duced. This delay varies from reconfiguration to reconfiguration. Some subjects

reported that it was difficult for them to determine whether the reconfiguration pro-

cess was completed or there were still actions pending. This could lead to misiden-

tifying failure or to misevaluating severity, since a subject could start evaluating a

reconfiguration before it was actually finished.

To address this issue, our configuration viewer was enhanced with notification

messages that indicated the completion of each reconfiguration. The subjects were

provided with feedback regarding the overall process as well as at the service/device

level. When a service or device was in the process of reconfiguration, it was depicted

as busy (a waiting icon) in the configuration viewer.

Most of the subjects reported that they found this reconfiguration feedback to be

very useful not only for failed reconfigurations but also for regular reconfigurations.

Therefore, we suggest that DSPLs should provide feedback about the termination

of reconfigurations, especially, when reconfigurations involve human users.

8.6. Discussion 195

8.6.3 Introducing Rollback Capabilities to Reconfigurations

Our case study raised another important concern in connection with DSPL recovery

after a failure. Once a reconfiguration failure was identified and evaluated, a few

subjects required support to resume the experimentation. They reported problems

in performing the next reconfiguration after the failure. In other words, they did

not find a simple way to reach another configuration of the case study. Below, we

present the main kinds of issues reported and how we think they should be addressed

in DSPLs.

Unexpected configurations. After a failure reconfiguration, a few subjects re-

ported that the resulting configuration was not the expected one. In place of

the expected configuration (i.e., WatchingAMovie), they got another configu-

ration (i.e., Working). In most of these cases, the subjects could perform a new

reconfiguration in order to reach the expected configuration. However, a few of

the cases required several reconfigurations to reach the expected configuration.

To address this issue, in DSPLs, we suggest introducing some sort of “undo”

operation that returns the system directly to the previous configuration.

This has several implications for the design of DSPLs since some actions have

collateral effects that cannot be easily undone (e.g., sending an e-mail). The

handling of compensation actions to reverse a reconfiguration should be stud-

ied, also the consequences of a rollback need to be explained so that users can

be provided information to help them choose among different compensation

actions and understand how they relate to their desired goals.

Unknown configurations. After a failure reconfiguration, some subjects reported

that they failed to identify the resulting configuration in the Smart Hotel doc-

umentation. In other words, the resulting configuration was different from

all the documented configurations that made up the case study (see Figure

8.2). The Feature Model of the Smart Hotel defines more configurations than

the ones considered in our case study. These unknown configurations imply

that the subjects could not identify the set of reconfigurations that led to

the expected configuration. Therefore, they needed support to continue the

8.7. Conclusions 196

experimentation. To address this issue, we strongly suggest an “undo” opera-

tion that returns the system directly to the previous configuration. Note that

for Unknown configurations, we think that the “undo” operation should be

mandatory. However, for Unexpected configurations, we think that the “undo”

operation should be optional since users have an alternative to achieve the

expected configuration.

The DSPL that supports this case study makes use of Feature Models at run-time

to determining how to perform the reconfigurations. According to a recent discus-

sion on DSPL architectures [186], other DSPL approaches make use of different

techniques to perform reconfigurations (i.e., QoS properties or UML profiles). Al-

though the details are different, these DSPLs are based on variability specifications,

and their reconfiguration can also lead to Unexpected configurations or Unknown

configurations. Even though these DSPLs could achieve an expected configuration

from any given Unexpected or Unknown configuration, our experience suggests that

introducing an “undo reconfiguration” operation is simpler and more practical from

the viewpoint of the DSPL user.

8.7 Conclusions

With more and more devices being added to our surroundings, simplicity

becomes greatly appreciated by users. Dynamic Software Product Lines

(DSPL) encompasses systems that are capable of modifying their own behavior

with respect to changes in their operating environment by using run-time reconfig-

urations. However, failures in these reconfigurations directly impact the user expe-

rience since the reconfigurations are performed when the system is already under

user control. This is in contrast to SPLs where all the configurations are performed

before delivering the system to the users.

Given the importance of run-time reconfigurations in DSPLS, we have evaluated

the reliability-based risk of these reconfigurations, specifically, the probability of

malfunctioning (Availability) and the consequences of malfunctioning (Severity).

The evaluation has been performed by means of the Smart Hotel case study which

8.7. Conclusions 197

was deployed with real devices with the participation of human subjects.

Furthermore, we successfully identified and addressed two challenges associated

with the involvement of human subjects in DSPL evaluation. On the one hand,

DSPL reconfigurations are triggered by context events many of which are difficult

to reproduce in practice. To evaluate DSPLs, we successfully applied a technique

based on Context Cards to enable participants to trigger reconfigurations. On the

other hand, when reconfigurations are performed, some of the effects are easily

perceived (e.g., an alarm is triggered) while others are not (e.g., some sensors are

deactivated). For this problem, we successfully applied a technique to enable par-

ticipants to understand and evaluate the effects of reconfigurations. If participants

misunderstand the reconfiguration effects, they will not be able to apply the classifi-

cation scales of Availability and Severity. We believe that these techniques can also

contribute to the evaluation of more quality properties in the context of DSPLs.

The evaluation of the case study reveals positive results regarding both Avail-

ability and Severity. We hope that these positive results encourage researchers and

practitioners to apply DSPL to other promising areas of research such as mobile

devices or automotive systems. However, the participant feedback in this study

highlights issues with recovery from a failed reconfiguration or a reconfiguration

triggered by mistake. To address these issues, we have provided some guidelines

learned in the case study.

Finally, we conclude that the DSPL has achieved satisfactory results regarding

reliability-based risk; nevertheless, DSPL engineers must provide users with more

control over the reconfigurations or the users will not be comfortable with DSPLs

even though they achieve a high level of reliability.

Chapter 9. CONCLUSIONS AND FUTURE

WORK

“Though no one can go back and make a brand new start, anyone can start from

now and make a brand new ending.”
– Carl Sandburg (1878-1967).

9.1 Overview of the Chapter

s

Variability
Models

Variability
Transformation

Reconfiguration
Analyser

Reconfiguration
Engine

Reconfigurable
System

Reconfiguration
Tracer

Figure 9.1: Scope of Chapter 9

This thesis has investigated the use of vari-

ability models at run-time to achieve auto-

nomic computing. Our research shows the

feasibility of achieving autonomic behavior by

leveraging variability models at run-time. In

this way, the modelling effort made at design

time is not only useful for producing the sys-

tem but also provides a richer semantic base

for autonomic behavior during execution. We

applied our approach to the smart home do-

main. This domain is suited for variability

modelling techniques because of the high de-

gree of similarities among different systems;

also, autonomic computing capabilities can address some of the domain’s limita-

tions such as minimal support for evolution as new technologies emerge or as an

application type matures.

198

9.2. Contributions 199

Whether in smart homes, mobile devices or automotive systems, end-users re-

quire more and more autonomic functionality. We consider that the techniques

applied for the Smart Home domain can also be applied to other environments with

similar results.

This chapter reviews our central results and primary contributions, and proposes

new areas for future research in connection with the limitations of this work.

9.2 Contributions

The major contribution of this thesis is a software engineering approach for au-

tonomic computing which combines the main ideas of Model Driven Development

(models as first-order citizens) and Software Product Lines (variability manage-

ment). This approach provides not only an execution platform but also techniques

and tools to support autonomic system engineers from system design to execution.

In particular, we have demonstrated that systems can make use of the knowledge

captured by variability models as if they were the policies that drive the autonomic

behaviour of the system at run-time. This main contribution is complemented with

two other contributions.

1. We show how to design and validate the autonomic behaviour by

means of variability modelling techniques (either Feature Modelling or CVL

specifications) and the FaMa framework for variability analysis.

2. We provide a model-based implementation of the reference model for

autonomic control [2] in order to support the overall approach.

Although, the above contributions push towards a sound and seamless engineer-

ing support for autonomic computing. We believe that this thesis also provides

remarkable results for both Models@run-time [187] and Dynamic Software Product

Line [188] communities as follows.

• Relevant results for the Models@run-time community:

9.2. Contributions 200

– The demonstration of the feasibility of keeping the same model

representation at run-time that is used at design time: the XML

Metadata Interchange (XMI) standard. In our experiments, we used an

XMI model at run-time in order to determine how to query and update it

using the widespread tools of the Eclipse Modelling Project. This avoids

the definition of technological bridges, because the same technologies used

at design-time for manipulating XMI models can be applied at run-time.

We have also shown the feasibility of this approach from the point of view

of efficiency.

– A Model-based Reconfiguration Engine (MoRE) which uses both

variability models and variability transformations at run-time to deter-

mine how a system should be reconfigured for a target operational con-

text. This engine also provides the mechanisms for modifying the sys-

tem architecture accordingly. Furthermore, this engine support two main

techniques for variability modelling: Feature Modelling and CVL speci-

fications.

– The realization of the run-time Variability transformation by

means of interchangeable strategies. These strategies enable engi-

neers to use the most suitable strategy for each concern, because these

strategies cover specific extra-functional requirements such as perfor-

mance or support to reconfiguration debugging at run-time. We com-

pared these strategies from the viewpoint of the extra-functional proper-

ties, and we also gave recommendations to use the most suitable strategy

for different concerns of run-time reconfiguration.

– A testing approach to validate the implementation of run-time

strategies for variability transformation. This approach system-

atizes the detection of differences between a new strategy implementation

and a reliable one. Furthermore, the approach also provides information

about the validation of a strategy when we do not have a reliable strategy

yet. We also provide a tool to automate the whole testing process.

9.2. Contributions 201

• Relevant results for the Dynamic Software Product Line community:

– The identification and solution of two challenges associated with

the involvement of human subjects in DSPL evaluation: to (1) trigger

run-time reconfigurations and to (2) understand the effects of the recon-

figurations. These techniques can be applied not only to reliability-based

risk but also to other quality properties that require the execution of

reconfigurations by human users, for instance, usability or security.

– A case study that is representative of real problems (Smart Hotel),

which has been specifically developed to exercise reconfigurations of DSPLs,

and which has proven to be well-understood by users in experimentation.

Since the design of case studies is recognized as a difficult step during the

development of experimentation [189], we believe that the Smart Hotel

case study can be applied to more empirical research in the context of

DSPL. Detailed documentation about this case study is publicly available

online at http://www.carloscetina.com/papers/smart-hotel.pdf.

– The experimentation results, which reveal the maturity of run-time

reconfigurations with regard to both Availability and Severity. These

results can encourage researchers and practitioners to apply DSPL to

other promising domains.

– The identification of key issues for user acceptance of DSPLs:

to (1) recover from a failed reconfiguration, and to (2) recover from a

reconfiguration triggered by mistake.

– Specific guidelines for addressing the identified issues of recovery

from a failed reconfiguration or a reconfiguration triggered by mistake.

We hope that these contributions encourage researchers and practitioners to

apply reconfigurations through variability models at run-time to other promising

areas of research such as mobile devices, automotive systems or resilance system.

9.3. Research Visits 202

9.3 Research Visits

The aim of this work was to be open, influenced and enriched by distinct research

streams, works, visions and schools. Thus, along this work three research visits were

accomplished.

1. Destination. Object orientation, Modelling and Language Group (OMS),

University of Oslo and Sintef, Norway.

Host. Prof. Dr. Øystein Haugen.

Duration. From October to December 2008.

Relevance for the thesis. The work was in connection to the Model-driven

development of highly configurable embedded Software-intensive Systems (Mo-

SiS) ITEA project. The relevance of the MoSis project for this thesis comes

from the fact that the MoSis project also addresses the applicability of vari-

ability modelling and reconfigurable architectures for run-time adaptability.

Results. Throughout the stay, we discussed different strategies to realize the

variability transformation at run-time. These strategies enhanced MoRE to

address concerns such as performance or debugging.

2. Destination. Applied Software Engineering Research Group (ISA), Univer-

sity of Seville, Spain.

Host. Prof. Dr. Antonio Ruiz-Cortés.

Duration. April 2009.

Relevance for the thesis. The work was in connection to the Framework for

the Automated Analysis of Feature Models (FaMa Tool Suite). This frame-

work enables to determine if a system configuration is valid (according to

variability constraints), and it can also provide explanations about invalid

configurations.

Results. Throughout the stay, we discussed different approaches to applied

FaMa at run-time by means of the OSGi framework. We also addressed how

to integrate both FaMa and MoRE to improve run-time reconfigurations.

3. Destination. Object orientation, Modelling and Language Group (OMS),

9.4. Assessment and Future Work 203

University of Oslo and Sintef, Norway.

Host. Prof. Dr. Øystein Haugen.

Duration. From September to December 2009.

Relevance for the thesis. The work was in connection to the Model-driven

development of highly configurable embedded Software-intensive Systems (Mo-

SiS) ITEA project.

Results. Throughout the stay, we discussed how to address the design of

reconfigurations driven by variability models. Specifically, we were interested

on how to avoid MoRE leading a system to invalid configurations at run-time.

These visits fostered discussion and eventually imposed new perspectives on this

work that otherwise would not be reached.

9.4 Assessment and Future Work

A desirable aspect of any research is that in addition to providing solutions to initial

issues or questions, it should identify new areas of research that would allow re-

searchers to eventually produce more useful knowledge and progress. In this section

we identify many research activities are currently underway, and further research is

ongoing in different and complementary directions.

9.4.1 Enabling End-user participation in the Design of Re-

configurable Systems

As stated by Christopher Lueg [190], technology developers make assumptions about

which aspects of human activities and their physical and social environment are

important in future usage situations. In a similar way, run-time reconfigurations may

involve assumptions about the desirable functionality of end-users. Conversely, end-

users are the ones who best know their activities and their functionality expectations.

Hence, we plan to involve end-users in the design of reconfigurations in order to

minimize the mismatch between user expectations and system behavior.

Specifically, we are working on a design method for reconfigurable systems where

9.4. Assessment and Future Work 204

end-users and technical designers participate cooperatively. End-users contribute

with their context and domain knowledge, while designers introduce their technical

background to preserve the quality of the system. We plan to complement this

method with a specification technique so that both end-users and designers can

configure the systems in terms of features. In this method, designers are in charge

of defining the functionality blocks in which the system is based, and then end-

users determine how these functionality blocks can be combined according to their

preferences and needs.

9.4.2 Enhancing Run-time Reconfigurations to Take into Ac-

count End-user Preferences

Once the system has been deployed, it must improve everyday life activities without

losing user acceptance of the system [191]. Therefore, End-user needs should be

taken into account both before and after the system is deployed to keep users from

feeling a lose of control [8, 9]. We believe that users need to feel under control

although an autonomic sytem makes its own decisions. Therefore, user preferences

must be taken into account.

To address this issue, we plan to extend the reconfiguration behaviour to change

system configuration while user preferences are taken into account. To perform

this extended reconfiguration, we will focus on covering the average demand of the

system users rather than the preferences of specific individuals.

Whenever new users appear, leave or their preferences change, the autonomic

system must analyse its state and determine if there exist another configuration that

satisfies most of the user preferences. Our new target objective for the autonomic

system is reconfiguring its architecture to maximise the fulfilment of user preferences.

Sometimes, every user preference may be fulfilled at the same time; other times

some user preferences could not be partially or completely satisfied as they collide

with other user preferences. Finding an optimal configuration is a hard problem

and may take time to be solved in some situations. However, in other situations,

it may be important to give the fastest response as possible. But fast is frequently

incompatible with best solution. Therefore, we plan to limit search in time so not

9.4. Assessment and Future Work 205

the best but a good configuration is obtained. It is still possible to keep searching

for a better or the best solution in background so later reconfigurations may arise

whenever they are found.

9.4.3 Providing Metrics to Quantify System Reconfiguration

Capabilities

As for any other software engineering approach, it is furthermore a key concern to

answer the question what the measurable benefits of using dynamic adaptation are.

In our context this means that it is indispensable to come to a possibility to measure

the impact reconfigurations for a particular variability specification. Otherwise it

is not possible to evaluate and to compare different variability specifications with

reconfiguration purposes. Neither it is possible to evaluate the chosen variability

specification and thus to control and to steer the development process.

To address this issue, we plan to define a set of metrics to evaluate the recon-

figuration range of variability specifications. Specifically, we target metrics which

can be calculated once the designers have defined the variability specification. In

particular, we are interested on enabling designerts to identify weak points in the

variability specification (from the viewpoint of reconfigurations) and on providing

an overall estimation of the system adaptation range.

9.4.4 Guarantying Quality Properties on Run-time Reconfig-

urations

In addition, the role of models at design time can be extensively exploited for the

purpose of validation and verification. Since the Variability Models, which deter-

mine the autonomic behaviour, are available at design time, it is possible to conduct

a thorough analysis of the specifications for the purpose of guarantee quality prop-

erties.

Specifically, we plan to extend the step of reconfiguration analysis of our approach

in order to guarantee specifications free of (1) Unsafe Reconfigurations and (2) Un-

safely reachable configuration. Unsafe Reconfigurations lead to an invalid possibility

9.4. Assessment and Future Work 206

from a valid one resulting in an inconsistent system state. Unsafely reachable con-

figurations are valid configurations that can be reached through invalid ones only.

We believe that dealing with these properties is is essential for reliable systems as

a next step in obtaining autonomic systems that fulfill many of the user’s needs

out-of-the box.

9.4.5 Addressing other Application Domains

Whether for smart homes, mobile devices, or decision support systems, users require

more autonomic functionality. We believe the techniques we have applied to the

smart home domain can achieve similar results in other domains such as Service

Oriented Architecture or Method Engineering as follows.

• The vision of Service Oriented Architecture (SOA) promotes an ecosys-

tem of services where there are alternative providers for the services offering

different quality levels and prices.

However, this is a dynamic ecosystem where service offers appear and disap-

pear. For clients this means that they have to dynamically select and bind

to suitable providers. For providers it means that they have to provide an

attractive offer and to serve a varying set of clients with varying needs.

We believe that this work can play a significant role towards the implemen-

tation of self-management properties in order to manage Service Level Agree-

ments and to reconciliate the client-provider negotiation of SOA ecosystems.

• Method Engineering is the engineering discipline to design, construct and

adapt methods, techniques and tools for the development of information sys-

tems.

However, the focus has been on the the efficient derivation of a customized

method to meet the requirements of a particular project, that, once created,

remains static throughout their lifetime.

We believe that the ideas presented in this work can enable method engineers

to also face dynamic concerns such as human resources fluctuation, or tasks

9.5. Publications 207

reschedule in order to achieve Dynamic Method Engineering.

9.5 Publications

Parts of the results presented in this thesis have been presented and discussed before

on distinct peer-review forums. The distinct publications in which the author of this

thesis was involved are listed below.

A) International Journal papers indexed in the First Quartile of JCR by Thomson

Reuters

1. Carlos Cetina, Pau Giner, Joan Fons, & Vicente Pelechano. Autonomic

computing through reuse of variability models at run-time. IEEE Computer.

2009.

Impact Factor 2008: 2,093. Category 2008: Computer Science, Software

Engineering 16/86.

2. Pau Giner, Carlos Cetina, Joan Fons, & Vicente Pelechano. Developing

support for mobile business processes in the internet of things. IEEE Perva-

sive Computing. 2010.

Impact Factor 2008: 2.615. Category 2008: Computer Science, Information

System 12/99.

B) International Journal papers not indexed in the JCR

3. Pau Giner, Carlos Cetina, Joan Fons and Vicente Pelechano. Orchestrating

your Surroundings. ERCIM News. 2009.

4. Javier Muñoz, Estefanía Serral, Carlos Cetina and Vicente Pelechano. Ap-

plying a Model-Driven Method to the Development of a Pervasive Meeting

Room. ERCIM News. 2006.

C) Book Chapters in International Books, excluding Conference Proceedings

5. Carlos Cetina, Joan Fons & Vicente Pelechano. The Adoption of Software

Product Lines to Develop Autonomic Pervasive Systems. Book chapter of

9.5. Publications 208

Applied Software Product Line Engineering. Taylor and Francis (Edited by

Vijay Sugumaran, Kyo Kang and Sooyong Park). 2009.

D) (Highly-ranked) International Conference Papers Indexed in ISI by Thomson

Reuters and Acceptance Rates <30%

6. Carlos Cetina, Øystein Haugen, Xiaorui Zhang, Franck Fleurey & Vicente

Pelechano. Strategies for Variability Transformation at Run-time. 13th In-

ternational Software Product Lines Conference (SPLC). San Francisco, Cal-

ifornia. 2009.

Most prestigious Conference in SPL Field1. Conference Acceptance Ratio:

29%.

7. Carlos Cetina, Joan Fons & Vicente Pelechano. Applying software prod-

uct lines to build autonomic pervasive systems. 12th International Software

Product Lines Conference (SPLC). Limerick, Ireland. 2008.

Most prestigious Conference in SPL Field1. Conference Acceptance Ratio:

28%.

E) International Conference Papers Indexed in the First Tier of CORE Ranking

8. Pau Giner, Carlos Cetina, Joan Fons, Vicente Pelechano. Presto: A plug-

gable platform for supporting user participation in Smart Workflows. The

Sixth Annual International Conference on Mobile and Ubiquitous Systems:

Computing, Networking and Services (MobiQuitous). Toronto, Canada. 2009.

CORE 2009: A. Conference Acceptance Ratio: 20%.

F) International Conference Papers published by IEEE Computer or Springer

9. Carlos Cetina, Pau Giner, Joan Fons & Vicente Pelechano. Using Feature

Models for Developing Self-Configuring Smart Homes. The Fifth Interna-

tional Conference on Autonomic and Autonomous Systems (ICAS). Valencia,

1According to Carnegie Mellon’s list of conferences, “SPLC is the most prestigious and leading

forum for researchers, practitioners, and educators in the field of Software Product Line Engineer-

ing”

9.5. Publications 209

Spain. 2009.

Conference Acceptance Ratio: 23%.

10. Pau Giner, Carlos Cetina, Joan Fons & Vicente Pelechano. Building Self-

adaptive services for Ambient Assisted Living. Distributed Computing, Ar-

tificial Intelligence, Bioinformatics, Soft Computing and Ambient Assisted

Living. Salamanca, Spain. 2009.

Conference Acceptance Ratio: 15%.

11. Pau Giner, Carlos Cetina, Joan Fons & Vicente Pelechano. Adaptivity

in Ubicomp Systems: dealing with different services and interaction mecha-

nisms. 3rd Symposium of Ubiquitous Computing and Ambient Intelligence

(UCAMI). Salamanca, Spain. 2008.

G) International Workshop Papers published in High-Relevance Forums to this The-

sis

12. Carlos Cetina, Pablo Trinidad, Vicente Pelechano, Antonio Ruiz-Cortés.

Customisation along Lifecycle of Autonomic Homes. 3rd International Work-

shop on Dynamic Software Product Lines (DSPL). Limerick, Ireland. 2009.

13. Carlos Cetina, Pau Giner, Joan Fons & Vicente Pelechano. A Model-

Driven Approach for Developing Self-Adaptive Pervasive Systems. Models

at run.time 08 Workshop in conjunction with MODELS (Models@run-time).

Touluse, France. 2008.

14. Carlos Cetina, Pablo Trinidad, Vicente Pelechano, Antonio Ruiz-Cortés.

An Architectural Discussion on DSPL. 2nd International Workshop on Dy-

namic Software Product Lines (DSPL). Limerick, Ireland. 2008.

15. Francisca Pérez, Carlos Cetina, Pedro Valderas, Joan Fons. Towards End-

User Development of Smart Homes by means of Variability Engineering.

Third International Workshop on Variability Modelling of Software-intensive

Systems (VAMOS). Sevilla, Spain. 2009.

16. Carlos Cetina, Javier Muñoz, Vicente Pelechano. Software Product Lines

Tool Support meets Open Source Software. Proceedings on the Second Inter-

national Workshop on Open Source Software and Product Lines (OSSPL).

9.5. Publications 210

Workshop at Third International Conference on Open Source Systems. Lim-

erick, Irlanda. 2007.

H) National Conferences (JISBD is the main Spainsh conference on Software Engi-

neering)

17. Carlos Cetina, Pablo Trinidad, David Benavides, Vicente Pelechano & An-

tonio Ruiz-Cortés . Moskitt FM and FAMA FW: Taking feature models to

the next level. XIV Jornadas de Ingeniería del Software y Bases de Datos

(JISBD). San Sebastián, Spain. 2009.

18. Carlos Cetina, Pau Giner, Joan Fons & Vicente Pelechano. Using Variabil-

ity Models for Developing Self-configuring Pervasive Systems. Workshop on

Autonomic and SELF-adaptive Systems (WASELF). Gijon, Spain. 2008.

I) International and National Publications related to the PhD Courses

19. Carlos Cetina, Vicente Pelechano, Sonia Montagud. Inteligencia Ambien-

tal: Protegiendo a los Usuarios Finales de Ellos Mismos. Workshop on Re-

quirements Engineering and Software Environments (IDEAS). Pernambuco,

Brasil. 2008.

20. Jose Manuel Marquez Vazquez, Carlos Cetina, Francisco Velasco, Luis

Gonzalez-Abril, Juan Antonio Ortega. Modelado de caractersticas para itinerar-

ios formativos adaptativos. X Jornadas de ARCA. Sistemas Cualitativos

y Diagnosis, Robtica, Sistemas Domticos y Computacin Ubicua (JARCA).

Tenerife, Spain. 2008.

21. Javier Muñoz, Vicente Pelechano, Carlos Cetina. Software Engineering

for Pervasive Systems. Applying Models, Frameworks and Transformations.

IEEE International Conference on Pervasive Services (ICPS). Istanbul, Turkey.

2007.

22. Carlos Cetina, Estefania Serral, Javier Muñoz, Vicente Pelechano. Tool

Support for Model Driven Development of Pervasive Systems. 4th Interna-

tional Workshop on Model-based Methodologies for Pervasive and Embedded

Software (MOMPES). Braga, Portugal. 2007.

9.6. Senior Theses Codirected 211

23. Estefania Serral, Carlos Cetina, Javier Muñoz, Vicente Pelechano. PervGT:

Herramienta CASE para la Generacin Automtica de Sistemas Pervasivos.

XII Jornadas de Ingeniera del Software y Bases de Datos (JISBD). Zaragoza

Spain. 2007.

24. Muñoz, Carlos Cetina, Estefanía Serral, Vicente Pelechado. Framework

basado en OSGi para el Desarrollo de Sistemas Pervasivos. Workshop Iberoamer-

icano de Ingenieria de Requisitos y Ambientes Software (IDEAS). La Plata,

Argentina. 2006.

25. Vicente Pelechano, Manoli Albert, Javier Muñoz, Carlos Cetina. Building

Tools For Model Driven Developmenmt. Comparing Microsoft DSL Tools and

Eclipse Modelling Plug-Ins. III Taller sobre Desarrollo de Software Dirigido

por Modelos. MDA y Aplicaciones(DSDM). 2006.

26. Javier Muñoz, Vicente Pelechano, Carlos Cetina. Implementing a Pervasive

Meetings Room: A Model Driven Approach. International Workshop on

Ubiquitous Computing (IWUC). Paphos, Cyprus. 2006.

27. Javier Muñoz, Idoia Ruiz, Vicente Pelechano, Carlos Cetina. Un frame-

work para la simulación de sistemas pervasivos. Simposio sobre Computación

Ubicua e Inteligencia Ambiental (UCAmI). 2005.

9.6 Senior Theses Codirected

The results presented in this thesis, specially the developed tools, have been put to

the test on distinct Senior Theses directed by the author of this thesis. The Senior

Theses in which the author of this thesis was involved as codirector are listed below.

1. Servicios Reconfigurables para Hogares Inteligentes. Esteban Saiz Martínez.

School of Engineering in Computer Science, Technical University of Valencia.

2010.

2. Configuración de Casas Domoticas con la Tecnología RFID. Alfons Vicente Gomez

Ferragud. School of Engineering in Computer Science, Technical University of

Valencia. 2010.

9.7. Seminars 212

3. Computación Autónoma aplicada a Hogares Digitales. David Unió Miralles.

School of Engineering in Computer Science, Technical University of Valencia.

2009.

4. Desarrollo de una Arquitectura Software Reconfigurable para Hogares Digitales.

Ignacio Climent Romero. Faculty of Computer Science, Technical University of

Valencia. 2009.

5. Líneas de Producto Software Dinámicas aplicadas a Hogares Digitales. Salvador

Ibiza Molines. Faculty of Computer Science, Technical University of Valencia.

2009.

6. Diseño e Implementación de una Arquitectura para Orquestar Servicios en Sis-

temas Pervasivos. María Francisca Perez Perez. Faculty of Computer Science,

Technical University of Valencia. 2008.

7. Aplicación de Líneas de Producto a Entornos de Inteligencia Ambiental en la

Plataforma Eclipse. Sonia Montagud Gregori. Faculty of Computer Science,

Technical University of Valencia. 2007.

8. Diseño, Desarrollo e Implementación del Portal Web del Proyecto de Investigación

SEAPS. Daniel Sainz García-Cernuda. School of Engineering in Computer Sci-

ence, Technical University of Valencia. 2007.

9.7 Seminars

Thanks to the impact of this work in the community, the author was invited to par-

ticipate in the Dagstuhl Seminar: Software Engineering for Self-Adaptive Systems,

Germany, October 2010 (see http://www.dagstuhl.de/10431/).

According to the organizers, the goal of the above seminar is to bring together

the leading software engineering experts and other distinguished experts from re-

lated fields on self-adaptive systems to discuss the fundamental principles, models,

methods, techniques, mechanisms, state-of-the-art, and challenges for engineering

self-adaptive software systems.

9.8. Final Conclusion 213

9.8 Final Conclusion

Henry Ford, founder of the car company that bears his name, is widely regarded

as the father of assembly-line automation, which he introduced and expanded

in his factories producing Model Ts between 1908 and 1913. In his book My Life

and Work (1922), he stated the following:

“Any customer can have a car painted any colour that he wants so long

as it is black”

This means that on mass-production environments such as those involved in cars

or houses, production costs must be taken as a major constraint. Reducing produc-

tion costs comes at the expense of limiting the level of detail in personalization.

For example, when buying a car, you can choose the color but only from a limited

catalogue.

In our experimentation, we found some scenarios which required a greater level

of detail to define the autonomic behaviour since these scenarios deal more directly

with user preferences and tastes. However, even though this lack of coverage could

be complemented by the development of specific components for the unsupported

cases, it does not seem economically realistic to build individual features to suit each

user. Our intent is to focus on commonalities and abstractions that are valid across

a set of users, looking for a trade-off between personalization and reusability. This

trade-off is acceptable in these domains since, in general, the focus is on covering

the average demand, not the needs of each individual.

Appendix A. THE SMART HOTEL

CASE STUDY

This appendix presents the case study of a Smart Hotel, which reconfigures its ser-

vices according to changes in the surrounding context. The choice of the smart

hotel as a case study comes from two main reasons. First by its nature of shared

environment in which different customers use the same room over time. Each client

has their own preferences for the room and it should be adjusted to improve the

customer’s stay. Secondly, the preferences of a user changes depending on the ac-

tivity performed. For example, different preferences when you are watching a movie

or when you are working.

Overall, the smart hotel case study introduces the stay of Professor John. This

includes the process to check-in in the hotel and after that how the room interacts

with him and changes its features depending on professor’s activities to make his

stay as pleasant as possible.

Here are some metrics of the case study to give an idea of its dimensions.

• According to the Feature Modelling technique, the Smart hotel presents 39

Features. Some examples of these features are the Device Dock feature that

can work as a device to charge or synchronize all the devices that the Professor

can have (For example, Laptop, mp3 player or PDA), the Temperature Control

feature that offers a heating and cooling system or the Security feature that

secures the room when the professor is out of it.

• The main concepts of the PervML DSL are Services, Devices and the Commu-

nication Channels among them. The Smart Hotel is composed by 13 Services,

20 Devices and 35 Channels. For instance, the Multimedia Service can es-

214

A.1. Overview of the Case Study 215

tablish communication channels to devices such as laptops, PDAs or MP3

players.

• In the Smart Hotel, users can perform different activities. Specifically our

case study addresses 8 Scenarios. These scenarios are: Check-in, Entering

the Room, Working, Watching a Movie, Sleeping, Leaving the Room, House

Keeping and Check-out.

This appendix is organized as follows. First, we present an overview of how the

room reconfigures itself when a user is interacting with it. Second, we provide a

brief introduction to all the scenarios that conform the hotels room, and how are

these scenarios connected among them. For example, after the check-in scenario

it is only possible to go to the entering the room scenario and not to others like

watching a movie or sleeping. Next, we present the different room configurations

by means of a Feature Model. The Smart Hotel architecture is presented using the

PervML language to describe the services, devices and communications channels in

the room. Finally, we provide a full description of each scenario about how the room

reconfigures its services according to a particular context. Each scenario is specified

by a Feature Model showing its current configuration and a PervML model with the

services and devices for the particular context. A reconfiguration table is also shown

to indicate how the room reconfigures itself when there is a change of scenario.

A.1 Overview of the Case Study

In this section we describe with a detailed example how all the scenarios explained

throughout this chapter come into operation. Professor John helps us describing

how the room reconfigures itself according to his preferences and actions.

Professor John is going to a conference on a different country for a few days.

Professor John has a tight schedule during his trip and he needs to be very strict

with his appointments. The moment he arrives at the hotel, he receives a card that

is the key to enter to his room. He uses the card on the door’s card reader to identify

himself. If everything is correct the room’s door will open automatically allowing

A.1. Overview of the Case Study 216

him to get into the room. When he gets inside, the first thing he sees is a big screen

welcoming him and asking to answer a few questions. Those questions are to know

a bit about professor’s preferences. He has his entire schedule in his laptop, so he

has the possibility to synchronize that information with the room’s system. This

will help the room to know all the appointments the professor has to attend and try

to make him remember for not being late to any of them. He also can connect his

cell phone to the room’s main system via Bluetooth and attend the calls without

having to hold it.

Professor just arrived from a long trip and is a bit tired. He can connect his

own devices to the room control system to listen to his own music or watch a movie

while having massages from the sofa in the room. The lights in the room get softer

so he can feel much better.

After the relaxing moment, professor decides to prepare some necessary work

for the next day. The coffee machine is ready for whenever the professor decides

to drink and keep working. The room will take in account the time when professor

uses it for possible next times.

When professor wants to sleep, the lights in the room will turn off gradually.

During the night, professor needs to go to the toilet. The room system will detect

that and the lights will turn on with enough illumination so the professor can clearly

see the way without hurting his view.

It’s time to wake up and the room simulates a sunrise so the transition to get

awake is as smooth as possible. The coffee machine will also be ready so the professor

loses as less time as possible. The entire schedule for that day will be displayed on

the room’s main screen so professor doesn’t miss anything.

When professor is out, the room will try to save energy until the moment he

comes back. It will also hide the entire professor’s personal information to keep his

privacy when the rooms’ hotel service goes to clean.

It’s time for the professor to go back to his country so the moment when he

checks out, the main screen will inform that all the shared information will be

deleted, hoping he had a pleasant stay and inviting him to come back again in the

future.

A.2. Scenarios of the Smart Hotel 217

Figure A.1: Hotel’s Smart Room

We can observe a possible recreation of the room’s hotel in figure B.4 with all

the devices that it could include. For example, on the rooms main desk we can see

the central dock that the user can interact with to charge any of his own devices

or synchronize them with the room control panel in order to check his schedule or

personal information. The multi-touch control panel allows the professor to change

any of the room’s features (illumination, temperature, etc. . .) and also check any

kind of information that could be useful for him (transport, city guide, restaurants

and so on). These and the rest of the devices will be described in the following

sections.

A.2 Scenarios of the Smart Hotel

This section offers a brief introduction of all the scenarios that will be described in

this chapter. All the scenarios try to cover all the possible situations that can occur

in the hotel’s smart room. The descriptions show a motivation. This refers to all

the things that need to be changed in the room to adapt to each scenario.

• Check-In. When the user registers (online from the internet or at the hotel’s

reception desk), he is provided with a wizard that makes a few questions to

A.2. Scenarios of the Smart Hotel 218

set up the room according to the professor’s preferences.

Motivation: Reconfigure the room according to the preferences of each user.

• Entering the room. When someone enters in the room, it detects all the

devices that the user is travelling with. The room services reconfigure to

integrate all these devices.

Motivation: Reconfigure the room to integrate the devices in the environment.

• Activity. The room reconfigures itself according to the activities that the user

performs in it. The activities can be working, watching a movie or sleeping.

Motivation: Reconfigure the room services according to the activity that the

user is performing.

• Leaving the room. When the professor leaves, the room is reconfigured

disabling the services that are no longer needed. Because no one is in the room,

it reconfigures itself in order to save energy. The room takes into account when

the user has planned to come back (agenda) so he can find the room in his

preferred conditions (illumination, temperature...).

Motivation: Save energy while there are no users in the room leaving the room

prepared so the user can find everything as he expects when he comes back.

• House Keeping. The room reconfigures itself to make the work easier for the

cleaning service, at the same time maintains the user’s privacy in the room.

Motivation: Make the work for the cleaning service easier and at the same

time maintain the room’s user’s privacy.

• Check-Out. Finally, when the user finishes his stay in the room, it stops

being personalized for that user and its services are reconfigured in order to

save energy.

Motivation. Reconfigure the room to an energy saver mode for the periods

when there is no user using it.

By combining the scenarios introduced above it is possible to describe Professor

John’s stay at the hotel. These scenarios can be combined in different ways. An

A.2. Scenarios of the Smart Hotel 219

Configuration

Reconfiguration

1

N

2

3

4

5 6

8

7

11

9

10

13

12

14

15

16

17 18

Check-in

Entering the
room

Housekeeping
Leaving the

room
Check-out

Submachine
Activity

Sleeping

Woorking

Watching a
movie

EnteringRoom

LeavingRoom

Activity

Hotel Life

Figure A.2: Reconfiguration through the Smart Hotel Scenarios

example of combination that describes the stay of Professor John could be like the

following one:

The user checks-in in this hotel (Check-in) through the website, by telephone or

even at the reception desk. When he receives his room’s card, he can immediately

enter his room. When he enters the room(Entering the room), he has some free

A.3. Functionality of the Smart Hotel 220

time and he decides to watch a movie selecting one from the hotel’s pay per view

service(Activity - Watching a movie). It has become late so, after watching the

movie the user decides to go to sleep (Activity - Sleeping). The next morning, the

system will wake him up at the time he has scheduled. After preparing everything,

the user leaves the room (Leaving the room).

During the user’s absence, the hotel’s cleaning service proceeds to the room’s

maintenance(House Keeping). When the user comes back from his conference(Entering

the room), he has to pack everything to go back to his country. When everything

is prepared, he leaves the room (Leaving the room) and after that he checks-out at

the hotel’s reception desk (Check-out).

Figure A.2 uses the notation of the state machine to show how the scenarios are

related. The scenarios are represented by states and the transitions indicate that it

is possible to move from one scenario to another. For example, once the user has left

the room (leaving the room), the room can move to the House Keeping, Entering

the room or Check-out scenario.

According to the state machine in Figure 2, the stay of the professor described

in this section would be as follows.

Check-in → Entering the Room → Watching a Movie → Sleeping → Leaving the

room → House Keeping → Leaving the Room → Entering the Room → Leaving the

Room → Check-out

In the following sections, we will describe the scenarios denoted in the state ma-

chine and how are supported all the different reconfigurations between the scenarios.

A.3 Functionality of the Smart Hotel

Figure A.3 represents the smart hotel’s functionality and its possible variations using

the notation of the feature models. It shows different squares coloured in gray and

white that represents the active and the inactive features in the smart hotel’s room,

respectively.

The Feature Model intent is to represent all the different features that the Smart

Room has implemented to make the user in that room feel as comfortable as possible.

A.4. Software Architecture of the Smart Hotel 221

Smart Room

Presence
Simulation

Temperature
Control

HeatingRemote
Control

Cooling

Just-in-time
Hot water

Freeze
Protection

Multimedia

Perimeter
Detection

Outside
Detector

Blinking
Light

Automated
Ilumination

Gradual
Lighting

Variation Point

Current Config.

Optional

Mandatory

Single Choice

Multiple Choice

Requires

Excludes

Device
Charger

Synchronization

Device
Dock

Music Pictures Schedule

iTunes VLC

Contents
Energy
Savers

Blinding
Control

Lighting
By

Presence

Visual
Alarm

Pay per
view

Piped
Music

AlarmIn Room
Security

SensingIn Room
Detection

Volumetric 360
degree Detector

Infrared 160
degree Detector

Silent
Alarm

Siren

Security

Player

Figure A.3: Feature Model of the Smart Hotel

The feature model changes its features, activating and deactivating them, depending

on the scenario that is currently running. That is, the grey features represent the

features of the smart home, while the white features represent potential variants

since they may be activated in the future.

The Feature Model of Figure A.3 describes a Smart Hotel with Temperature

Control, Automated Illumination, Multimedia and Security. These features are

hierarchically linked in a tree-like structure through variability relationships such as

optional, mandatory, single-choice and multiple-choice as illustrated in Figure A.3.

A.4 Software Architecture of the Smart Hotel

In order to provide a flexible reconfiguration, the smart hotel architecture is based

on different components with communication channels. We classify these compo-

nents into two categories: Services and Devices. This architecture allows an easy

reconfiguration since communication channels can be established dynamically be-

tween the components, and these components can dynamically appear or disappear

A.4. Software Architecture of the Smart Hotel 222

iTunes

VLC

Contents

Temperature
Sensor

Piped
Music Service

Pay per
view
Service

e

f

a

b
Player

c

d

g

Control Panel

h

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

z

aa

Volumetric 360
Degree Detector

ab

ac

Infrared 160
Degree Detector

Security Service

Outside Detector

Perimetric Detection

Ilumination
Service

Energy Service

u

w

v

ae

Lighting by Presence

Bling

ad

af

ag

ah

ai

aj

ak

Silent Alarm

Siren

Visual Alarm

Blinking Lights

Alarm

Lights

Gradual Lightings
Temperature Service

m

Central Dock

iPod

Laptop

PDA

i

j

k

Remote Control

n

o p q

r t

Heating Service

Cooling Service
Freeze Protection

Service

Just-in-time
Hot Water Service

Charge and Synchronize

In Room Security

Device

Channel

Service

20

2

3

23

22

6

7

8

9

10

13

19

4

5

11

1

21

12 14 15

17 18

16

30

31

32

33

2927

24

26

25

28

Figure A.4: PervML Model of the Smart Hotel

from configurations. Figure 4 shows this reconfigurable architecture according to

the concrete syntax of the PervML Domain-Specific Language. Services are rep-

resented by circles, and Devices are represented by squares. Finally, the channels

among services and devices are depicted by lines.

In the following examples we can appreciate how some of the features of the

feature model are related to the PervML scheme which is known as superimposition

according to SPL terminology.

Figure A.5 shows the correspondence between the Feature Model and the Per-

vML scheme. It shows specifically the equivalence from the part of the video and

audio players available in the room (VLC and iTunes) connecting them directly with

the multimedia service. The Multimedia feature is related with the Multimedia ser-

vice, the Player feature is related to the Player channels and the iTunes and VLC

are related to the iTunes and VLC devices.

Figure A.6 shows another correspondence between the Feature Model and the

PervML scheme. The cooling feature is related with the Cooling Service and the

Freeze Protection feature is related with the Freeze protection service and the room’s

A.5. Reconfigurations in the Smart Hotel 223

Multimedia

Device
Charger

Synchronization

Device
Dock

Music Pictures Schedule

iTunes VLC

Contents

Pay per
view

Piped
Music

Player

iTunes

VLC

Contents

Piped
Music Service

Pay per
view
Service

Player

Control Panel

Presence Service

Multimedia Service

Lights

Gradual Lightings

Central Dock

Figure A.5: Mapping between features and PervML

Temperature Sensor.

A.5 Reconfigurations in the Smart Hotel

This section describes a possible stay of Professor John in the Smart Hotel. The

stay will begin with the check-in scenario where the professor needs to book for the

room and, if he wants, set up all the preferences he wants to have when he enters

the room.

Once he arrives at the room, everything will be prepared as he has chosen in the

check-in scenario. The room will reconfigure for whatever he wants to do. It will

adapt itself automatically when he has to work, watch a movie, sleep or if he has to

leave for some conference or any other issue. When he is out, the hotel’s cleaning

service proceeds to the house keeping maintaining at that moment Professors privacy.

When Professor finishes his stay, he leaves the room and proceeds to check-out at

the hotel’s reception desk

To describe each scenario the following points are included: Description, Feature

Model for that configuration and how the services, devices and channels are at that

moment.

Apart from that, in order to describe the reconfiguration between the scenarios,

some tables describe the following information: Categories, Description, Reconfig-

uration Trigger, Functionality, Architecture Increments, Architecture Decrements

and, with the help of the PervML schemes, the change that will be produced when

A.5. Reconfigurations in the Smart Hotel 224

Temperature
Control

HeatingRemote
Control

Cooling

Just-in-time
Hot water

Freeze
Protection

Temperature
Sensor

Remote Control

Heating Service

Cooling Service
Freeze Protection

Service

Figure A.6: Another mapping between features and PervML

changing to the current scenario.

A.5.1 Check-in

The following subsection offers detailed information of the Check-in scenario, ex-

plaining when that scenario activates, all the user’s actions or devices that produces

the change and finally a list of all the devices that take part in this scenario.

Description

A few months earlier when the attendance to the congress is confirmed, Professor is

going to book the hotel and then set up the room to his own preferences. The hotel

allows configuring and customizing a wide amount of options. Not only the room’s

preferences, activities and services that the hotel offers, but also the activities that

can be done in the city.

To obtain this level of satisfaction that will make the Professor to be completely

satisfied with his stay, before that, some kind of parameters must be selected: the

main point would be configuring the room’s environment. Professor can select the

kind of room he prefers within the options that the hotel offers him. Professor can

select the temperature and the light intensity he prefers. Anyway, he can choose

and change all this parameters anytime when he is in his room.

Later, Professor can set-up his working environment, introducing by direct typing

or also synchronizing his own devices (PDA, laptop, etc...) with the hotel’s booking

system. This way, the hotel will organize Professor’s working hours. For sure,

A.5. Reconfigurations in the Smart Hotel 225

Smart Room

Presence
Simulation

Temperature
Control

HeatingRemote
Control

Cooling

Just-in-time
Hot water

Freeze
Protection

Multimedia

Perimeter
Detection

Outside
Detector

Blinking
Light

Automated
Ilumination

Gradual
Lighting

Variation Point

Current Config.

Optional

Mandatory

Single Choice

Multiple Choice

Requires

Excludes

Device
Charger

Synchronization

Device
Dock

Music Pictures Schedule

iTunes VLC

Contents
Energy
Savers

Blinding
Control

Lighting
By

Presence

Visual
Alarm

Pay per
view

Piped
Music

AlarmIn Room
Security

SensingIn Room
Detection

Volumetric 360
degree Detector

Infrared 160
degree Detector

Silent
Alarm

Siren

Security

Player

Figure A.7: Feature model of the Check-in Scenario

schedules, tasks, conventions and so on can change until the day of the convention.

The same would be for Professor with the things he wants to do during his stay.

Because of these issues, the system can be updated through the website. Even when

the user preferences change the day before the arrival, Professor can synchronize the

moment he enters the room and the room’s system will redistribute all the tasks.

Another system option allows sending documents or digital files that the user

can require in his job. These files can be modified and the system will keep the

different versions until the last day the professor stays in the hotel.

Finally, Professor can set his recreational or free time options: he has a movie

library, TV shows library or musical albums library completely customizable through

file transferring or, if not, requesting them through a form. The same way, all the

free time options (normally sports or cultural) that the hotel organizes are displayed.

He will also be suggested with different gastronomic and touristic routes around the

city, so he can enjoy his stay as much as possible. Those routes are available to be

downloaded and can be integrated with different geolocation systems, street guides,

gastronomic guides, etc...

A.5. Reconfigurations in the Smart Hotel 226

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Outside Detector

Perimetric Detection

Ilumination
Service

Energy Service
Blind

Silent Alarm

Siren

Visual Alarm

Blinking Lights

Alarm

In Room Security

Device

Channel

Service

Figure A.8: PervML model of the Check-in Scenario

All the Professor’s preferences can change at any time before the arrival at the

hotel, or even there manually or automatically, depending on the preferences that

professor has introduced in his own electronic working devices.

At the end, the configuration will be saved and also all the changes that have

been done for professor’s future visits.

Devices involved in the check-in scenario.

• Internet connected terminal to do all the booking and set-up process.

• Agenda system (PDA, cell phone, computer software) connected to the termi-

nal(wired, Bluetooth or Wi-Fi)

• Multimedia system with file library (iTunes, iPod, amarok, windows media

player, etc...).

• Control panel to perform basic tasks related with the room such as raising or

lowering the blinds or setting the light intensity.

• Blinds which feature a drill motor to automatically roll themselfs.

A.5. Reconfigurations in the Smart Hotel 227

• Presence sensors detect the minute flexing caused by someone walking on the

room surface.

• Volumetric detectors are used to detect presence of people in an area. It is

designed to be recessed into a ceiling space and can be installed individually

in a small room or in groups to cover a larger area.

• Outside sensors features a photocell and they are used to determine light level

in an area.

• An audible or visual alarm to alert people of critic notifications such as fire or

water leaks in the room.

• Lighting devices ranging from ambient lights (suited for regular activities such

as working) to colour-based led lights (suited for entertaiment activities such

as watching a movie).

Figure A.7 shows the feature model with the active and the inactive features in

the check-in scenario, and Figure A.8 shows the PervML model corresponding to

the Check-in scenario.

The next table shows the reconfiguration process when the room changes from

another scenario to the check-in scenario but since the check-in is the start point of

this case study, there is no previous scenario to come from. We consider that all the

devices are activated when the check-in scenario is set.

A.5. Reconfigurations in the Smart Hotel 228

Code: SH-01 Title: Check-in

Categories: Self-configuring, Self-adapting

Description: The user sets up the entire configuration for the room as he

wants (temperature, illumination, etc. . .) In the check-in scenario, there is no

previous scenario to come from.

Reconfiguration Trigger: The user checks-in through webpage or talking

to the hotel’s reception desk.

Reconfiguration Effect: The alarm system, blinds and control panel are

enabled.

Functionality={(Control Panel, True), (Multimedia Service, True), (Pres-

ence Service, True), (Illumination Service, True), (Gradual Lighting, True),

(Lights, True), (Energy Service, True), (Blind, True), (Perimeter Detection,

True), (In Room Detection, True), (Doors Presence Sensors, True), (Outside

Detector, True), (Sensing Service, True), (Volumetric 360 Degree Detector,

True), (Infrared 160 Degree Detector, True), (In Room Security), (Security

Service, True), (Alarm, True), (Silent Alarm, True), (Siren, True), (Visual

Alarm, True), (Blinking Lights, True)}

Architecture Increments: 1, g, 6, l, 11, u, 19, w, 21, s, 22, z, 23, aa, 24, ab,

25, ac, 26, ad, 27, ae, 28, af, ag, 29, ah, 30, ai, 31, aj, 32, ak, 33

Architecture Decrements: -

Source Configuration: - Target Configuration: Check-in

No source configuration.

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Outside Detector

Perimetric Detection

Ilumination
Service

Energy Service
Blind

Silent Alarm

Siren

Visual Alarm

Blinking Lights

Alarm

In Room Security

Device

Channel

Service

Table A.1: Reconfiguration Table: Check-in Scenario.

A.5. Reconfigurations in the Smart Hotel 229

A.5.2 Entering the room

The following subsection offers detailed information of the Entering the Room sce-

nario, explaining when that scenario activates, all the user’s actions or devices that

produces the change and finally a list of all the devices that take part in this scenario.

Description

When Professor arrives into the room, he must find it like he specified in the con-

figuration he made months before when he booked (or like he changed until the

previous day of his arrival). Because of these specifications, all the room parame-

ters like temperature, light intensity, humidity and so on, are as Professor specified.

Also, because Professor comes from a South-European country, his room will be

located in a place oriented to the south. This way, it will avoid the (first sunlight

of the area) (it is earlier than in Professor’s home country) but can enjoy the light

and the natural warmth during most part of the day.

Once he gets into the room, the system will welcome him. It can be through the

systems main screen that can be seen from anywhere in the room or combining those

images with a voice (the system’s voice will only be available in a few languages).

When professor needs, he has a Wi-Fi system available to connect to the internet

anytime he wants. He also has the option to connect all his devices through a central

dock and at the same time he is able to recharge them with the same dock.

The system informs the user that his agenda and files he has available in his

devices can be synchronized in order to plan the tasks he has to do during his stay.

During the process, the system will inform Professor of the stored data to check if

everything is up to date or if something needs to be changed because there has been

a schedule modification recently.

Depending on Professor’s planning, the system will indicate professor about his

near appointments or will start the chime and thanks to the thermal and movement

detectors, will describe each place of the room that professor goes for the first time.

Of course this option can be disabled at anytime.

If professor wishes, he can synchronize his devices through a central dock that

A.5. Reconfigurations in the Smart Hotel 230

Smart Room

Presence
Simulation

Temperature
Control

HeatingRemote
Control

Cooling

Just-in-time
Hot water

Freeze
Protection

Multimedia

Perimeter
Detection

Outside
Detector

Blinking
Light

Automated
Ilumination

Gradual
Lighting

Variation Point

Current Config.

Optional

Mandatory

Single Choice

Multiple Choice

Requires

Excludes

Device
Charger

Synchronization

Device
Dock

Music Pictures Schedule

iTunes VLC

Contents
Energy
Savers

Blinding
Control

Lighting
By

Presence

Visual
Alarm

Pay per
view

Piped
Music

AlarmIn Room
Security

SensingIn Room
Detection

Volumetric 360
degree Detector

Infrared 160
degree Detector

Silent
Alarm

Siren

Security

Player

Figure A.9: Feature model of the Entering the room Scenario

will also allow him to recharge its batteries.

The environment is reconfigured with the illumination and the air conditioning

system as the time goes like Professor specified so it changes to his liking.

Devices involved in the entering the room scenario.

• Agenda system (PDA, cell phone, computer software) connected to the termi-

nal(wired, Bluetooth or Wi-Fi)

• iPod or multimedia device with streaming capabilities to play music and wired

or wify connexion.

• Laptop which stores the personal files of the user and his schedule and ap-

pointments.

• Room’s control panel (multi-touch TFT screen) which integrates the control

of the main services of the room.

• Central dock to synchronize devices and charge batteries by means of wired

or wireless (synchronize only) technologies.

A.5. Reconfigurations in the Smart Hotel 231

Temperature
Sensor

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Outside Detector

Perimetric Detection

Ilumination
Service

Energy Service

Lighting by Presence

Bling

Lights

Gradual Lightings
Temperature Service

Central Dock

iPod

Laptop

PDA

Remote Control

Heating Service

Cooling Service
Freeze Protection

Service

Just-in-time
Hot Water Service

Charge and Synchronize

In Room Security

Device

Channel

Service

Figure A.10: PervML model of the Entering the Room Scenario

• Temperature sensors are based on infrared technology to keep track of tem-

perature levels in the room.

• Remote controls or thermostats regulate the temperature of a system so that

the temperature of the room is maintained near a desired setpoint temperature

set by the user.

Figure A.9 shows the feature model with the active and the inactive features

for the Entering the Room scenario, and Figure A.10 shows the PervML model

corresponding to the Entering the Room scenario.

The next table shows the reconfiguration process when the room changes from

the Check-in scenario to the Entering the Room scenario.

A.5. Reconfigurations in the Smart Hotel 232

Code: SH-02 Title: Entering the Room

Categories: Self-configuring, Self-adapting

Description: This scenario occurs after the user checks-in or leaves the room.

Reconfiguration Trigger: The door’s identification device validates the

user’s hotel card and activates all the services while opening the door.

Reconfiguration Effect: The system enables the air conditioning service,

the central dock (for charging and synchronizing), remote control and light

functionality. The alarm system is disabled.

Functionality={(Central Dock, True), (iPod, True), (Laptop, True), (PDA,

True), (Temperature Service, True), (Remote Control, True), (Cooling Service,

True), (Freeze Protection Service, True), (Heating Service, True), Just-in-Time

Hot Water Service, True), (Lights, True), (Alarm, False), (Silent Alarm, False),

(Siren, False), (Visual Alarm, False), (Blinking Lights, False)}

Architecture Increments: h, 7, i, 8, j, 9, k, 10, m, 12, n, 13, o, 14, p, 15, q,

16, r, 17, t, 18, v, 20, x

Architecture Decrements: af, ad, 27, ag, 29, ah, 30, ai, 31, aj, 32, ak, 33

Source: Check-in Target: Entering the room
Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Outside Detector

Perimetric Detection

Ilumination
Service

Energy Service
Blind

Silent Alarm

Siren

Visual Alarm

Blinking Lights

Alarm

In Room Security

Device

Channel

Service

Temperature
Sensor

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Outside Detector

Perimetric Detection

Ilumination
Service

Energy Service

Lighting by Presence

Bling

Lights

Gradual Lightings
Temperature Service

Central Dock

iPod

Laptop

PDA

Remote Control

Heating Service

Cooling Service
Freeze Protection

Service

Just-in-time
Hot Water Service

Charge and Synchronize

In Room Security

Device

Channel

Service

Table A.2: Reconfiguration Table: Entering the Room.

A.5.3 Working

The following subsection offers detailed information of the Working scenario, ex-

plaining when that scenario activates, all the user’s actions or devices that produces

the change and finally a list of all the devices that take part in this scenario.

A.5. Reconfigurations in the Smart Hotel 233

Smart Room

Presence
Simulation

Temperature
Control

HeatingRemote
Control

Cooling

Just-in-time
Hot water

Freeze
Protection

Multimedia

Perimeter
Detection

Outside
Detector

Blinking
Light

Automated
Ilumination

Gradual
Lighting

Variation Point

Current Config.

Optional

Mandatory

Single Choice

Multiple Choice

Requires

Excludes

Device
Charger

Synchronization

Device
Dock

Music Pictures Schedule

iTunes VLC

Contents
Energy
Savers

Blinding
Control

Lighting
By

Presence

Visual
Alarm

Pay per
view

Piped
Music

AlarmIn Room
Security

SensingIn Room
Detection

Volumetric 360
degree Detector

Infrared 160
degree Detector

Silent
Alarm

Siren

Security

Player

Figure A.11: Feature model of the Working Scenario

Description

It’s time for Professor to work on the presentation he has to do for the next day so,

when he activates the working mode, the system will ask him for his preferences for

having the best working environment. He can modify the room’s temperature and

illumination and also some suggestions will be offered in case he doesn’t know what

could be better. If he wants, he also has the option to listen to the music contained

in his own devices or listen to the music the hotel has. He will be able to choose the

genre of music or the artist or group he prefers to listen while working.

Professor can choose if he wants to be notified when he receives a call or if he

has an appointment in his schedule.

Unfortunately Professor couldn’t finish all the work on time and he needs more

than expected before he goes to the meeting. In this case, the system will suggest

him to send a mail automatically to the people that will attend to that meeting to

inform that he will be a bit later than expected.

Devices involved in the working scenario.

A.5. Reconfigurations in the Smart Hotel 234

Temperature
Sensor

Player

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Ilumination
Service

Energy Service

Lighting by Presence

Bling

Lights

Gradual Lightings
Temperature Service

Central Dock

iPod

Laptop

PDA

Remote Control

Cooling Service
Freeze Protection

Service

Charge and Synchronize

In Room Security

Device

Channel

Service

Piped
Music Service

iTunes

Contents

Heating Service

Just-in-time
Hot Water Service

Figure A.12: PervML model of the Working Scenario

• Audio device like iPod to listen music through the room’s sound system.

• Cell phone with Bluetooth technology in case the user receives a call and wants

to be notified.

• Notebook or cell phone synchronized with the room’s main system to notify

the user any appointment on his schedule.

• Central dock to synchronize devices and charge batteries.

Figure A.11 shows the feature model with the active and the inactive features

in the Working scenario, and Figure A.12 shows the PervML scheme corresponding

to the Working scenario. We can see all the enabled services and devices when this

scenario is active.

The next table shows the reconfiguration process when the room changes from the

Entering the Room scenario to the Working scenario. As shown in state machine, the

current scenario can also come from the Sleeping and Watching a Movie scenarios.

A.5. Reconfigurations in the Smart Hotel 235

Code: SH-03 Title: Working

Categories: Self-configuring, Self-adapting

Description: The user can work after entering the room or even after sleeping

or watching a movie.

Reconfiguration Trigger: The desk’s and the room presence sensors detect

the location of the user sitting on the table. The user sets up in the control

panel to enter the working scenario.

Reconfiguration Effect: The audio service is plays a relaxing music accord-

ing as the user indicated in the preferences for working.

Functionality={(iTunes, True), (Piped Music Service, True)}

Architecture Increments: a, 2, e, 5, d

Architecture Decrements: -

Source: Entering the room Target: Working

Temperature
Sensor

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Outside Detector

Perimetric Detection

Ilumination
Service

Energy Service

Lighting by Presence

Bling

Lights

Gradual Lightings
Temperature Service

Central Dock

iPod

Laptop

PDA

Remote Control

Heating Service

Cooling Service
Freeze Protection

Service

Just-in-time
Hot Water Service

Charge and Synchronize

In Room Security

Device

Channel

Service

Temperature
Sensor

Player

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Ilumination
Service

Energy Service

Lighting by Presence

Bling

Lights

Gradual Lightings
Temperature Service

Central Dock

iPod

Laptop

PDA

Remote Control

Cooling Service
Freeze Protection

Service

Charge and Synchronize

In Room Security

Device

Channel

Service

Piped
Music Service

iTunes

Contents

Heating Service

Just-in-time
Hot Water Service

Table A.3: Reconfiguration Table: Working.

A.5.4 Watching a Movie

The following description offers detailed information of the Watching a Movie sce-

nario, explaining when that scenario activates, all the user’s actions or devices that

produces the change and finally a list of all the devices that take part in this scenario.

Description

Professor was prepared to go to a meeting he had in his schedule but, unfortunately,

the weather was so bad that it was postponed for the next day. Now he has some

free time because of that unexpected change. Because he made that change in his

A.5. Reconfigurations in the Smart Hotel 236

Smart Room

Presence
Simulation

Temperature
Control

HeatingRemote
Control

Cooling

Just-in-time
Hot water

Freeze
Protection

Multimedia

Perimeter
Detection

Outside
Detector

Blinking
Light

Automated
Ilumination

Gradual
Lighting

Variation Point

Current Config.

Optional

Mandatory

Single Choice

Multiple Choice

Requires

Excludes

Device
Charger

Synchronization

Device
Dock

Music Pictures Schedule

iTunes VLC

Contents
Energy
Savers

Blinding
Control

Lighting
By

Presence

Visual
Alarm

Pay per
view

Piped
Music

AlarmIn Room
Security

SensingIn Room
Detection

Volumetric 360
degree Detector

Infrared 160
degree Detector

Silent
Alarm

Siren

Security

Player

Figure A.13: Feature model of the Working Scenario

schedule, the room system will offer him the option to watch a movie. Professor

decides to follow the room’s suggestion and is going to watch a movie. The main

screen will ask him which kind of movie does he like and, depending on his answer,

the system will display all the available movies he can choose. Depending on the

kind of movie, he will be able to choose the room preferences (illumination and

temperature) for a better experience. The system will give him many options so he

can choose the one that suits him more.

Professor will be able to inform the system if he wants to be notified at any time

during the movie in case he needs to do something important. He will be able to

resume the movie where he stopped at any moment during his stay.

Professor is really enjoying the movie but, unfortunately, someone is calling to

his cell phone with Bluetooth technology synchronized with the room’s main system.

This call will be notified through the main screen. Maybe the call can wait and then

Professor has the option to answer it or keep watching the movie where he left it. If

he decides to keep watching the movie, he will be asked if he prefers being notified

or not in case he receives another call until the movie finishes. Maybe the call is so

A.5. Reconfigurations in the Smart Hotel 237

VLC

Temperature
Sensor

Pay per
view
Service

Player

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Ilumination
Service

Energy Service

Lighting by Presence

Bling

Lights

Gradual Lightings
Temperature Service

Central Dock

iPod

Laptop

PDA

Remote Control

Cooling Service
Freeze Protection

Service

Charge and Synchronize

In Room Security

Device

Channel

Service

Figure A.14: PervML model of the Working Scenario

important that he has to leave for a while. He is forced to stop watching the movie

but he will have the option to continue where he left at any other time during his

stay. When Professor is in his room and the system checks in the schedule that

he has enough free time, it will remind him that he can try to finish the movie he

started. Anyway, Professor will have the option to activate or not to be notified

when he receives a call before the movie starts.

Devices in the watching a movie scenario:

• Cell phone with Bluetooth technology in case the user receives a call and wants

to be notified. Notify the user any appointment on his schedule.

• Central dock to synchronize devices and charge batteries.

Figure A.13 shows the feature model with the active and the inactive features

in the Watching a Movie scenario, and Figure A.14 shows the PervML scheme

corresponding to the Watching a Movie scenario. We can see all the enabled services

and devices when this scenario is active.

The next table shows the reconfiguration process when the room changes from the

A.5. Reconfigurations in the Smart Hotel 238

Working scenario to the Watching a Movie scenario. As shown in state machine, the

current scenario can also come from the Sleeping and Entering the Room scenario.

Code: SH-04 Title: Watching a Movie

Categories: Self-configuring, Self-adapting

Description: The user can watch a movie just after entering the room or

even after working or sleeping.

Reconfiguration Trigger: The room’s presence sensors detect the location

of the user on the room’s sofa or on the bed. The user selects a movie through

the room’s control panel or with the remote control.

Reconfiguration Effect: The video service is enabled. The audio service

and the outside detector are disabled.

Functionality={(iTunes, False), (Piped Music Service, False), (VLC, True),

(Pay per View Service, True), (Outside Detector, False), (Heating Service,

False), (Just-in-Time Hot water Service, False)}

Architecture Increments: d, 3, f, 4, c

Architecture Decrements: a, 2, e, 5, d, r, 17, t, 18, ae, 28

Source: Working Target: Watching a movie

Temperature
Sensor

Player

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Ilumination
Service

Energy Service

Lighting by Presence

Bling

Lights

Gradual Lightings
Temperature Service

Central Dock

iPod

Laptop

PDA

Remote Control

Cooling Service
Freeze Protection

Service

Charge and Synchronize

In Room Security

Device

Channel

Service

Piped
Music Service

iTunes

Contents

Heating Service

Just-in-time
Hot Water Service

VLC

Temperature
Sensor

Pay per
view
Service

Player

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Ilumination
Service

Energy Service

Lighting by Presence

Bling

Lights

Gradual Lightings
Temperature Service

Central Dock

iPod

Laptop

PDA

Remote Control

Cooling Service
Freeze Protection

Service

Charge and Synchronize

In Room Security

Device

Channel

Service

Table A.4: Reconfiguration Table: Watching a Movie.

A.5.5 Sleeping

The following subsection offers detailed information of the Sleeping scenario, ex-

plaining when that scenario activates, all the user’s actions or devices that produces

the change and finally a list of all the devices that take part in this scenario.

A.5. Reconfigurations in the Smart Hotel 239

Smart Room

Presence
Simulation

Temperature
Control

HeatingRemote
Control

Cooling

Just-in-time
Hot water

Freeze
Protection

Multimedia

Perimeter
Detection

Outside
Detector

Blinking
Light

Automated
Ilumination

Gradual
Lighting

Variation Point

Current Config.

Optional

Mandatory

Single Choice

Multiple Choice

Requires

Excludes

Device
Charger

Synchronization

Device
Dock

Music Pictures Schedule

iTunes VLC

Contents
Energy
Savers

Blinding
Control

Lighting
By

Presence

Visual
Alarm

Pay per
view

Piped
Music

AlarmIn Room
Security

SensingIn Room
Detection

Volumetric 360
degree Detector

Infrared 160
degree Detector

Silent
Alarm

Siren

Security

Player

Figure A.15: Feature model of the Working Scenario

Description

The system checks professor’s schedule and calculates the time when he should go

to sleep so he can be fine the next day. It will suggest him the appropriate time to

go to sleep in order to sleep the necessary amount of hours. He decides to follow

the advice and then when he sets the system in sleeping mode, the system will

decrease the light intensity and the temperature to make the rest more pleasant.

If Professor decides to wake up during the night and the room’s configuration is in

sleeping mode, the lights in the room will turn on lightly so professor can see the

room without waking him up completely.

The chime can be played with a timer option with relaxing music and a low

volume to increase the sleeping sensation. Relaxing music improves mood compared

to traditional loud alarm clocks that tend to jolt the body to wake.

In the same way, all the lights in the in the room will decrease its intensity (unless

the sleeping mode is disabled through the graphic interface) to avoid dazzling and

waking up Professor.

A.5. Reconfigurations in the Smart Hotel 240

Temperature
Sensor

Player

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Ilumination
Service

Energy Service

Lighting by Presence

Bling

Lights

Gradual Lightings
Temperature Service

Central Dock

iPod

Laptop

PDA

Remote Control

Cooling Service
Freeze Protection

Service

Charge and Synchronize

In Room Security

Device

Channel

Service

Piped
Music Service

iTunes

Contents

Figure A.16: PervML model of the Working Scenario

Devices involved in the sleeping scenario.

• Room’s control panel (multi-touch TFT screen)

• Central dock to synchronize devices and charge batteries.

• Multimedia Manager organizes and plays digital music and video on a com-

puter. In addition, tt syncs all the media with external devices.

Figure A.15 shows the feature model with the active and the inactive features

in the Sleeping scenario, and Figure A.16 shows the PervML scheme corresponding

to the Sleeping scenario. We can see all the enabled services and devices when this

scenario is active.

The next table shows the reconfiguration process when the room changes from the

Watching a Movie scenario to the Sleeping scenario. As shown in state machine, the

current scenario can also come from the Entering the Room and Working scenario.

A.5. Reconfigurations in the Smart Hotel 241

Code: SH-05 Title: Sleeping

Categories: Self-configuring, Self-adapting

Description: The user can sleep just after entering the room or even after

working or watching a movie.

Reconfiguration Trigger: The bed sensors detect the user’s presence on it

and activates sleep mode. The user selects the sleep mode through the control

panel or the remote control.

Reconfiguration Effect: The audio service is enabled. The video service

and the synchronizing feature are disabled.

Functionality={(iTunes, True), (Piped Music Service, True), (VLC, False),

(Pay per View Service, False)}

Architecture Increments: a, 2, e, 5, d

Architecture Decrements: b, 3, f, 4, c

Source: Watching a movie Target: Sleeping

VLC

Temperature
Sensor

Pay per
view
Service

Player

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Ilumination
Service

Energy Service

Lighting by Presence

Bling

Lights

Gradual Lightings
Temperature Service

Central Dock

iPod

Laptop

PDA

Remote Control

Cooling Service
Freeze Protection

Service

Charge and Synchronize

In Room Security

Device

Channel

Service

Temperature
Sensor

Player

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Ilumination
Service

Energy Service

Lighting by Presence

Bling

Lights

Gradual Lightings
Temperature Service

Central Dock

iPod

Laptop

PDA

Remote Control

Cooling Service
Freeze Protection

Service

Charge and Synchronize

In Room Security

Device

Channel

Service

Piped
Music Service

iTunes

Contents

Table A.5: Reconfiguration Table: Sleeping.

A.5.6 Leaving the room

The following subsection offers detailed information of the Leaving the Room sce-

nario, explaining when that scenario activates, all the user’s actions or devices that

produces the change and finally a list of all the devices that take part in this scenario.

Description

Professor needs to leave the room as scheduled. When he leaves the room, it will

be reconfigured deactivating all those services that are not necessary in order to

A.5. Reconfigurations in the Smart Hotel 242

Smart Room

Presence
Simulation

Temperature
Control

HeatingRemote
Control

Cooling

Just-in-time
Hot water

Freeze
Protection

Multimedia

Perimeter
Detection

Outside
Detector

Blinking
Light

Automated
Ilumination

Gradual
Lighting

Variation Point

Current Config.

Optional

Mandatory

Single Choice

Multiple Choice

Requires

Excludes

Device
Charger

Synchronization

Device
Dock

Music Pictures Schedule

iTunes VLC

Contents
Energy
Savers

Blinding
Control

Lighting
By

Presence

Visual
Alarm

Pay per
view

Piped
Music

AlarmIn Room
Security

SensingIn Room
Detection

Volumetric 360
degree Detector

Infrared 160
degree Detector

Silent
Alarm

Siren

Security

Player

Figure A.17: Feature model of the Leaving the Room

save energy. The room’s system keeps in mind when will the user plan to come

back checking the schedule he provided when he checked-in. This way, when he

comes back, the room will be in the same conditions like when he left (temperature,

illumination, etc...). He can also provide information to the control panel to tell if

he needs the cleaning service to do something specific while he is out. He can also

request other things like presents, movies, and that information can be processed

while he is out.

Devices involved in the leaving the room scenario.

• Room’s control panel (multi-touch TFT screen)

• Volumetris detectors are used to detect presence of people in an area. It is

designed to be recessed into a ceiling space and can be installed individually

in a small room or in groups to cover a larger area.

• Outside sensors features a photocell and they are used to determine light level

in an area.

A.5. Reconfigurations in the Smart Hotel 243

Temperature
Sensor

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Outside Detector

Perimetric Detection

Ilumination
Service

Energy Service
Bling

Silent Alarm

Siren

Visual Alarm

Blinking Lights

Alarm

Temperature Service

Central Dock

iPod

Laptop

PDA

Remote Control

Cooling Service
Freeze Protection

Service

Charge and Synchronize

In Room Security

Device

Channel

Service

Figure A.18: PervML model of the Leaving the room

• An audible or visual alarm to alert people of critic notifications such as fire or

water leaks in the room.

Figure A.17 shows the feature model with the active and the inactive features

in the Leaving the Room scenario, and Figure A.18 shows the PervML model cor-

responding to the Leaving the Room scenario. We can see all the enabled services

and devices when this scenario is active.

The next table shows the reconfiguration process when the room changes from the

Sleeping scenario to the Leaving the Room scenario. As shown in state machine, the

current scenario can also come from the Entering the Room, Working and Watching

a Movie scenario.

A.5. Reconfigurations in the Smart Hotel 244

Code: SH-06 Title: Leaving the Room

Categories: Self-configuring, Self-adapting

Description: In this scenario, the user can leave the room after sleeping,

working, watching a movie or even after entering the room. The cleaning

service also leaves the room after the maintenance.

Reconfiguration Trigger: The user opens the door and the room presence

sensors stop sensing movement in the room.

Reconfiguration Effect: The alarm system is enabled. The Audio service,

control panel, remote control and lights are disabled.

Functionality={(iTunes, False), (Piped Music Service, False), (Control

Panel, False), (Remote Control, False), (Lights, False), (Outside Detector,

True), (Security Service, True), (Alarm, True), (Silent Alarm, True), (Siren,

True), (Visual Alarm, True), (Blinking Lights, True)}

Architecture Increments: ad, 27, af, ag, 29, ah, 30, ai, 31, aj, 32, ak, 33

Architecture Decrements: a, 2, e, 5, d, g, 6, h, 13, v, 20, x

Source: Sleeping Target: Leaving the room

Temperature
Sensor

Player

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Ilumination
Service

Energy Service

Lighting by Presence

Bling

Lights

Gradual Lightings
Temperature Service

Central Dock

iPod

Laptop

PDA

Remote Control

Cooling Service
Freeze Protection

Service

Charge and Synchronize

In Room Security

Device

Channel

Service

Piped
Music Service

iTunes

Contents

Temperature
Sensor

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Outside Detector

Perimetric Detection

Ilumination
Service

Energy Service
Bling

Silent Alarm

Siren

Visual Alarm

Blinking Lights

Alarm

Temperature Service

Central Dock

iPod

Laptop

PDA

Remote Control

Cooling Service
Freeze Protection

Service

Charge and Synchronize

In Room Security

Device

Channel

Service

Table A.6: Reconfiguration Table: Leaving the Room.

A.5.7 House Keeping

The following subsection offers detailed information of the House Keeping scenario,

explaining when that scenario activates, all the user’s actions or devices that pro-

duces the change and finally a list of all the devices that take part in this scenario.

A.5. Reconfigurations in the Smart Hotel 245

Smart Room

Presence
Simulation

Temperature
Control

HeatingRemote
Control

Cooling

Just-in-time
Hot water

Freeze
Protection

Multimedia

Perimeter
Detection

Outside
Detector

Blinking
Light

Automated
Ilumination

Gradual
Lighting

Variation Point

Current Config.

Optional

Mandatory

Single Choice

Multiple Choice

Requires

Excludes

Device
Charger

Synchronization

Device
Dock

Music Pictures Schedule

iTunes VLC

Contents
Energy
Savers

Blinding
Control

Lighting
By

Presence

Visual
Alarm

Pay per
view

Piped
Music

AlarmIn Room
Security

SensingIn Room
Detection

Volumetric 360
degree Detector

Infrared 160
degree Detector

Silent
Alarm

Siren

Security

Player

Figure A.19: Feature model of the Housekeeping Scenario

Description

When the user is not in the room, the system will change its set-up to save energy

while no one is in there. When the room’s cleaning service gets in the room, all the

screens will be shut down in order to keep the user’s privacy. It won’t be possible to

access Professors information in anyway while the cleaning service is in the room.

The moment the service gets into the room, the blinds will automatically go up

completely because it will be easier for the service to clean everything.

The room cleaning service will have his own PDA to check the time when the

Professor will be out and when will he come back. This way they will know how

much time they have to clean the room. The room service’s PDA will synchronize

with the room’s system in order to show in the main screen the things they have to

do in that room. The system will also notify if the professor has to arrive shortly.

The service also has the possibility to synchronize his own audio device with the

room system to listen to his own music. It will help the motivation of the employees

while working

A.5. Reconfigurations in the Smart Hotel 246

iTunes

Contents

Temperature
Sensor

Piped
Music Service

Player

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Ilumination
Service

Energy Service

Lighting by Presence

Bling

Lights

Gradual Lightings
Temperature Service

Remote Control

Cooling Service
Freeze Protection

Service

In Room Security

Device

Channel

Service

Figure A.20: PervML model of the Housekeeping Scenario

Devices involved in the house keeping scenario.

• Room’s control panel (multi-touch TFT screen)

• PDA system connected to the terminal (wired, Bluetooth or Wi-Fi)

• Audio device(iPod, Zune, etc)

• Central dock to synchronize devices and charge batteries.

Figure A.19 shows the feature model with the active and the inactive features

in the House Keeping scenario, and Figure A.20 shows the PervML scheme corre-

sponding to the House Keeping scenario. We can see all the enabled services and

devices when this scenario is active.

The next table shows the reconfiguration process when the room changes from

the Leaving the Room scenario to the House Keeping scenario.

A.5. Reconfigurations in the Smart Hotel 247

Code: SH-07 Title: House Keeping

Categories: Self-configuring, Self-adapting

Description: After the user leaves the room, the hotel’s room service can

proceed to the maintenance of the room.

Reconfiguration Trigger: The hotel’s cleaning service enters into the room.

Reconfiguration Effect: The audio service, control panel, remote control

and lights are enabled. The alarm system is disabled.

Functionality={(iTunes, True), (Piped Music Service, True), (Control Panel,

True), (Central Dock, False), (iPod, False), (Laptop, False), (PDA, False),

(Remote Control, True), (Lights, True), (Outside Detector, False), (Security

Service, False), (Alarm, False), (Silent Alarm, False), (Siren, False), (Visual

Alarm, False), (Blinking Lights, False)}

Architecture Increments: a, 2, e, 5, d, g, 6, n, 13, v, 20, x

Architecture Decrements: h, 7, i, 8, j, 9, k, 10, ad, 27, ae, 28, af, ag, 29,

ah, 30, ai, 31, aj, 32, ak, 33

Source: Leaving the room Target: House Keeping

Temperature
Sensor

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Outside Detector

Perimetric Detection

Ilumination
Service

Energy Service
Bling

Silent Alarm

Siren

Visual Alarm

Blinking Lights

Alarm

Temperature Service

Central Dock

iPod

Laptop

PDA

Remote Control

Cooling Service
Freeze Protection

Service

Charge and Synchronize

In Room Security

Device

Channel

Service

iTunes

Contents

Temperature
Sensor

Piped
Music Service

Player

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Ilumination
Service

Energy Service

Lighting by Presence

Bling

Lights

Gradual Lightings
Temperature Service

Remote Control

Cooling Service
Freeze Protection

Service

In Room Security

Device

Channel

Service

Table A.7: Reconfiguration Table: Housekeeping.

A.5.8 Check-out

The following subsection offers detailed information of the Check-out scenario, ex-

plaining when that scenario activates, all the user’s actions or devices that produces

the change and finally a list of all the devices that take part in this scenario.

A.5. Reconfigurations in the Smart Hotel 248

Smart Room

Presence
Simulation

Temperature
Control

HeatingRemote
Control

Cooling

Just-in-time
Hot water

Freeze
Protection

Multimedia

Perimeter
Detection

Outside
Detector

Blinking
Light

Automated
Ilumination

Gradual
Lighting

Variation Point

Current Config.

Optional

Mandatory

Single Choice

Multiple Choice

Requires

Excludes

Device
Charger

Synchronization

Device
Dock

Music Pictures Schedule

iTunes VLC

Contents
Energy
Savers

Blinding
Control

Lighting
By

Presence

Visual
Alarm

Pay per
view

Piped
Music

AlarmIn Room
Security

SensingIn Room
Detection

Volumetric 360
degree Detector

Infrared 160
degree Detector

Silent
Alarm

Siren

Security

Player

Figure A.21: Feature model of the Check-out Scenario

Description

Finally, it’s almost time for the Professor to check-out so the system will notify him

during the end of the previous day, at what time does he have to check out on the

next day and also what time would be good to leave to be able to arrive to the

airport on time. A list of different options of transport to get to the airport or the

train station and its own timetables will be displayed so he can choose the option

that suits him more.

The day of the check-out, before the Professor leaves the room, the system will

ask him if everything was as he liked. He will also have the option to keep his pref-

erences in the hotel servers in case he decides to come back. Anyway, he will be able

to change those preferences anytime. The system will also notify the user that all

the synchronized information from his devices to the room main system (schedules,

musical library, places he went, etc...) will be deleted to keep his confidentiality.

Once the Professor is out, all the electronic systems in the room (screens, lights,

air conditioning) will be disabled in order to save energy. During the daylight the

A.5. Reconfigurations in the Smart Hotel 249

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Outside Detector

Perimetric Detection

Ilumination
Service

Energy Service
Blind

Silent Alarm

Siren

Visual Alarm

Blinking Lights

Alarm

In Room Security

Device

Channel

Service

Figure A.22: PervML model of the Check-out Scenario

blinds will rise automatically and will help to keep the room warmer with less energy.

At the reception desk, the user will have to give the room key card back and the

hotel’s staff wishing him to have a nice trip and hoping he comes back another time

in the future.

Devices involved in the check-out scenario.

• The moment Professor checks-out, none of his devices need to interact with

the room’s system.

Figure A.21 shows the feature model with the active and the inactive features in

the Check-out scenario, and Figure A.22 shows the PervML scheme corresponding

to the Check-out scenario. We can see all the enabled services and devices when

this scenario is active.

The next table shows the reconfiguration process when the room changes from

the Leaving the Room scenario to the Check-out.

A.6. Summary 250

Code: SH-08 Title: Check-out

Categories: Self-configuring, Self-adapting

Description: The user finishes his stay in the hotel. He leaves the room and

goes to the hotel’s reception desk to proceed with the check-out.

Reconfiguration Trigger: The user performs the check-out at the hotel’s

reception desk.

Reconfiguration Effect: The control panel is enabled. The central dock and

the air conditioning system are disabled.

Functionality={(Control Panel, True), (Central Dock, False), (iTunes,

False), (Laptop, False), (PDA, False), (Temperature Service, False), (Cool-

ing Service, False), (Freeze Protection Service), (Temperature Sensor, False)}

Architecture Increments: g, 6

Architecture Decrements: h, 7, I, 8, j, 9, k, 10, m, 12, o, 14, p, 15, q, 16

Source: Leaving the room Target: Check-out

Temperature
Sensor

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Outside Detector

Perimetric Detection

Ilumination
Service

Energy Service
Bling

Silent Alarm

Siren

Visual Alarm

Blinking Lights

Alarm

Temperature Service

Central Dock

iPod

Laptop

PDA

Remote Control

Cooling Service
Freeze Protection

Service

Charge and Synchronize

In Room Security

Device

Channel

Service

Control Panel

Presence Service

In Room Detection

Multimedia Service

Door Presence
Sensors

In Room Detection

Sensing Service

Volumetric 360
Degree Detector

Infrared 160
Degree Detector

Security Service

Outside Detector

Perimetric Detection

Ilumination
Service

Energy Service
Blind

Silent Alarm

Siren

Visual Alarm

Blinking Lights

Alarm

In Room Security

Device

Channel

Service

Table A.8: Reconfiguration Table: Check-out.

A.6 Summary

In this appendix, a case Studio of a Smart Hotel has been presented where the

possible scenarios that can occur in the rooms of the mentioned Hotel are speci-

fied.

In order to know the functionality and the System’s architecture, a Feature

Model has been defined. This Feature Model allows to specify the system and

all its possible variations. In addition to the Feature Model, the architecture has

A.6. Summary 251

been designed using a Domain Specific Language (DSL) called PervML. This model

represents all the services, devices and channels that are included in the room to

show how they are connected between them.

Each scenario presented in this appendix, has its own Feature Model and PervML

model that derive from the general one. This way, all the features, channels, devices

and services that are active for each scenario can be specified.

The following offers a brief description of each scenario and also the metrics

corresponding to the Feature Model and the PervML model.

• Check-in. The user completes the registration of the room, either through

the website or at the hotel’s reception desk. At this moment, the user can

specify the configuration preferences of the room. This scenario is formed

with 19 active features in the Feature Model and 17 channels, 11 devices and

6 services in the PervML model.

• Entering the Room. Once the user has registered, he enters in the room finding

everything like he specified in the check-in scenario. This scenario is formed

with 28 active features in the Feature Model and 23 channels, 13 devices and

10 services in the PervML model.

• Working. The room reconfigures so the working environment is appropriate

for the user. This scenario is formed with 32 active features in the Feature

Model and 26 channels, 14 devices and 11 services in the PervML model.

• Watching a Movie. When the user decides to watch a movie, the room changes

its configuration to improve the viewing experience, adapting the suitable

illumination for that purpose. This scenario is formed with 28 active features

in the Feature Model and 23 channels, 13 devices and 9 services in the PervML

model.

• Sleeping. The different sensors in the room detect that the user is going to

sleep so the room reconfigures itself to make the user can get to sleep more

easily. This scenario is formed with 29 active features in the Feature Model

and 23 channels, 13 devices and 9 services in the PervML model.

A.6. Summary 252

• Leaving the Room. Once the user leaves the room the system reconfigures in

order to save energy. The room will keep the user’s desired preferences when

he comes back. This scenario is formed with 27 active features in the Feature

Model and 24 channels, 15 devices and 9 services in the PervML model.

• House Keeping. The hotel’s room cleaning service proceeds to the room’s

maintenance. The room keeps the user’s privacy while he is not in the room.

The room’s cleaning service can use the room’s audio system to listen music

while working improving the working environment. This scenario is formed

with 22 active features in the Feature Model and 18 channels, 9 devices and 9

services in the PervML model.

• Check-out. Once the user finishes his stay in the hotel, he proceeds to the

check-out at the hotel’s reception desk. He can keep the room’s configuration

preferences for the next time he decides to come back. This scenario is formed

with 19 active features in the Feature Model and 17 channels, 11 devices and

6 services in the PervML model.

The above scenarios conform the Smart Hotel case study, which is representative

of real problems. In addition, this case study has been specifically developed to

exercise the reconfigurations of the approach proposed in this thesis, and it has

proven itself to be well-understood by users in experimentation.

Since the design of case studies is recognized as a difficult step during the devel-

opment of experimentation [189], we believe that the Smart Hotel case study can be

applied to more empirical research in the context of run-time reconfiguration.

Appendix B. TOOL SUPPORT

The use of variability models for enabling autonomic behaviour is the central idea

of this work. At design time, the models that specify the system variability and

the system context are built. At run-time, these models are queried in response to

context events to produce the system reconfiguration that should be executed. This

appendix presents the tool support for both design time (variability and context

model specification) and run-time (reconfiguration execution).

B.1 Support for Designing Autonomic Behaviour

Figure B.1 shows the main concepts used at design time to specify the autonomic

behaviour and how these concepts are related among them. To enable autonomic

system engineers the specification of the autonomic behaviour in terms of these

concepts, we provide the following tools.

• Protege1. This tool enables the specification of the system operational en-

vironment by means of the Class, Property and Instance concepts. These

concepts are described in an OWL ontology as a collection of RDF triples, in

which each statement is in the form of (subject, predicate, object). Protege

provides a tree editor (see top left of Figure B.2) to specify the former concepts

in the OWL ontology.

Protege also provides an expressions editor for describing specific situations

in the operational environment of the system (see top right of Figure B.2).

This editor supports SPAQRL for the definition of Context Conditions. These

1http://protege.stanford.edu/

254

B.1. Support for Designing Autonomic Behaviour 255

Context
Condition

Ontology
Expression

Ontology
Instance

Resolution

Partial
Configuration

Resolved
Feature

Weaving

Service

Device

Channel

C
o
m
p
o
n
en
t

1..1

1..N

1..1

1..N

1..1

1..N

Protégé MOSKitt AMW PervGT

Tool Support

Figure B.1: Tool Support for Design Time.

Context Conditions use an ASK expression to test whether or not a query

pattern has a positive solution in the instances of the OWL ontology.

• MOSKitt2. This tool is a free Modelling platform, built on Eclipse which

is being developed by the Valencian Regional Ministry of Infrastructure and

Transport. Moskit Feature Modeler (MFM) is the open source feature model

editor of Moskitt. MFM enables the specification of the system variability in

terms of features, cardinality-based relationships such as optional or manda-

tory, and cross-tree constraints such as requires or excludes (see center top of

Figure B.2).

• PervGT3. This tool supports the creation of PervML models. PervML is

Domain specific Language for Smart Homes mainly based on the concepts of

Service and Device. PervGT enables the specification of both Service Models

and Device Models. In addition, PervGT support the definition of the Struc-

tural Models to establish the relationships between services and devices (see

center bottom of Figure B.2).

2http://www.moskitt.org/eng/moskitt0/
3http://www.pros.upv.es/labs/projects/pervml

B.1. Support for Designing Autonomic Behaviour 256

PervGT – Structural Model

Atlas Model Weaving – Mapping: Features to Components

MOSKitt – Feature Model

Protégé – OWL Instances & Expression

Figure B.2: Screenshots of the Tool Support for Design Time

B.1. Support for Designing Autonomic Behaviour 257

• Atlas Model Weaving4 (AMW). This tool enables the definition of relations

between features and architecture components of PervML. AMW provides a

three panels interface. The left panel shows the features of the feature model.

The right panel shows the architecture components of the PervML model.

Finally, the central panel enables the definition of the relationships by means

of the link concept (ElementEqual). Each link denotes a feature (left element)

and an architecture component (right element). One to many relationships

are defined by composing several links with the same left element (see bottom

of Figure B.2) .

The above tools enable an autonomic system engineer to design (1) the system

operational environment, (2) context conditions and (3) system features to address

the former conditions. Since a given condition can trigger the activation/deactiva-

tion of several features, autonomic system engineers define Resolutions to represent

the set of changes triggered by a condition.

MOSKitt provides a Resolution Editor which bridges Feature Models and Con-

text conditions (see Figure B.3). First, this editor enables the definition of descrip-

tive information about the resolution such as ID. name, associated self-* property

and description. Then, this editor queries the feature model in order to show a list of

available features. The autonomic system engineer can assign a feature state (active

or inactive) to these features in order to define a partial configuration. A partial

configuration is a subset of the system features where each feature has a feature

state assigned. This partial configuration describes the effect of the resolution when

the context condition is fulfilled. Finally, the context condition of the resolution is

set from the SPARQL expressions defined by means of Protege.

By means of the above resolution editor, the autonomic system engineer specifies

how the system bind its own variation points, initially when the system is launched

to adapt to the current context, as well as during operation to adapt to changes in

the context.

4http://www.eclipse.org/gmt/amw/

B.1. Support for Designing Autonomic Behaviour 258

MOSKitt – Resolution Editor

Resolution List Partial Configuration

Context Condition

Figure B.3: Screenshot of the Resolution Editor

B.1.1 Support for Reconfiguration Analysis

When an autonomic system engineer defines a Resolution for the activation/de-

activation of system features, he/she is expressing the transitions between different

system configurations in a declarative manner. We also provide a tool to support the

reconfiguration analysis. This tool is based on the analysis operations of the FaMa

framework to determine if a particular configuration is valid or invalid according to

variability constraints.

First, the reconfiguration analysis tool takes as input the Resolutions and the

variability model in order to calculate the resulting possibility space. The possibility

space is conformed by all feasible configurations from the fulfilment of context con-

ditions. To calculate the possibility space, the tool takes into account the fulfillment

of not only just one context condition but also several context conditions at the

same time.

Then, the resulting configurations are validated by means of the FaMa frame-

work. This enables us not only to obtain a valid-invalid tag for each configuration,

but also to know the reasons why a particular configuration is invalid. Furthermore,

B.2. Support for Model-based Run-time Reconfigurations 259

MOSKitt – Reconfiguration Analysis

Feasible configurations at run-time

Figure B.4: Screenshot of the Reconfiguration Analysis Tool

the tool also provides an example of resolution path to reach each configuration.

This path list a set of resolutions that can be applied from the initial configuration

of the system to the particular configuration.

Given the above information, autonomic system engineers can update either the

variability constrains or the resolutions to achieve a specification free of invalid-

configurations that can be used at run-time.

B.2 Support for Model-based Run-time Reconfigu-

rations

To enable autonomic behaviour, the system must evolve from one configuration

to another by itself. Since the reconfiguration in our approach is performed in

terms of features, a Model-based Reconfiguration Engine (MoRE) is provided to

translate context changes into changes in the activation/deactivation of features.

Then, these changes are translated into the reconfiguration actions that modify the

system components accordingly.

Currently, MoRE is implemented on top of the OSGi framework. Specifically, we

are using the open source OSGi implementation of Proysts (called Equinox). As any

OSGi-compliant implementation, Equinox provides a shared execution environment

B.2. Support for Model-based Run-time Reconfigurations 260

Java Code

Model-Based
Reconfiguration Engine

Quiescent

Reconfiguration Plan

Action

Action Action
Action
Action

Variability and DSL Models

Smart Home GatewayKNX Device Bus

OSGI

CC, A A R, , ,

2

Model Operations

3

4

1

5

Ontology

Context Monitor
Condition1 Resolution1

ConditionN ResolutionN
Condition2 Resolution2

Figure B.5: MoRE implemented as OSGi Bundles.

to install, update, and uninstall components without needing to restart the entire

system. In addition, Equinox is also compatible with a set of technology components

(KNX, UPnP or EHS) which enables the development of systems in the smart home

domain.

System components are known as bundles according to OSGi terminology, and

they can register services within the framework service registry. Then, other Bundles

can discover registered services and use their functionality.

Figure B.5 shows the management console of Equinox (right), the proposed run-

time approach (left) and how our approach is implemented by different OSGi bundles

(colour mapping) as follows.

• The Context Monitor (yellow) is implemented by means of two bundles.

The first bundle implements the main functionality of the context monitor

(environment sensing and condition evaluation), and the other bundle stores

the OWL context ontology.

• MoRE (blue) is implemented by several bundles. The first bundle holds the

Reconfiguration engine itself. Other bundles implement the different reconfig-

B.2. Support for Model-based Run-time Reconfigurations 261

Figure B.6: Package Diagram of MoRE Implementation

uration strategies. Finally, other two bundles hold the Reconfiguration Tracker

implementation and its web interface to consul the reconfiguration traces.

• The Varibility Model (Red) is stored in another bundle. This bundle com-

prises not only the variability model but also the DSL model and the weaving

model.

• The OSGi (gray) framework also provides its own bundles such as the one to

manage the service registry.

• The Reconfigurable Architecture (white) is conformed by the service and

device bundles.

To support our approach, some of the above bundles are always started as is

the case of the Reconfiguration Engine, the Variability Model, the Reconfiguration

Strategy and the Context Monitor. Note that it is possible to install different vari-

ability models or reconfiguration strategies as Figure B.5 shows. In addition, other

bundles can be optionally started to provide extra functionality as is the case of the

Reconfiguration Tracker and its web interface.

Figure B.6 shows the implementation of the above bundles by means of the UML2

Package diagram. The Engine package requires both the RunTimeModel and System

packages. The Engine requires these packages to implement the reconfiguration

strategy that queries the run-time model (model operations) and modifies the system

B.2. Support for Model-based Run-time Reconfigurations 262

architecture (architecture actions). The Traces package requires the Engine package

because it records a run of the reconfiguration in term of trace entries. Finally, the

Benchmarking package requires the RunTimeModel package because this package

dynamically injects instances in the model population to run load tests.

Figure B.7 shows the UML2 class of each one of the above packages. Some

of these classes implements the main functionality of MoRE bundles besides the

other classes provides interfaces to decouple MoRE of specific platforms or modelling

languages as follows.

• Reconfiguration Engine Package.

– ReconfigurationAction. This is a common interface that has to be

implemented by each reconfiguration action in order to be executed within

a Reconfiguration Plan.

– ServiceAction. This class implements the Decentralized Control System

Reconfiguration Pattern.

– ChannelAction. This class take advantage of the Whiteboard pattern

implemented by the OSGi wires to also support the Decentralized Control

System Reconfiguration Pattern.

– ModelAction. This class takes advantage of the introspection capabili-

ties of EMF Model Query to manipulate the models at run-time.

• Run-Time Model Package.

– XmiModel. This class implement common functionality to manipulate

XMI-based models such as model save or model element search.

– UpdateFeatureAction. This class implements a reconfiguration action

to compose a partial configuration with the current configuration of the

variability model.

Finally, although the current implementation runs on top of the desktop version

of Equinox, there is also an experimental version running on top of the Android

version of Equinox with the aim of bringing MoRE to the domain of mobile devices.

B.2. Support for Model-based Run-time Reconfigurations 263

F
ig
ur
e
B
.7
:
C
la
ss

D
ia
gr
am

of
M
oR

E
Im

pl
em

en
ta
ti
on

BIBLIOGRAPHY

[1] M. C. Huebscher and J. A. McCann. A survey of autonomic computing—

degrees, models, and applications. ACM Computing Surveys, 40(3):1–28, Au-

gust 2008.

[2] IBM. An architectural blueprint for autonomic computing. Technical report,

IBM., 2003.

[3] P.K. McKinley, S.M. Sadjadi, E.P. Kasten, and B.H.C. Cheng. Composing

adaptive software. Computer, 37(7):56–64, July 2004.

[4] J. Hong, E. Suh, and S. Kim. Context-aware systems: A literature review and

classification. Expert Syst. Appl., 36(4):8509–8522, 2009.

[5] B. Schilit, N. Adams, and R. Want. Context-aware computing applications.

Mobile Computing Systems and Applications, 1994. Proceedings., Workshop

on, pages 85–90, 8-9 Dec 1994.

[6] G. Banavar and A. Bernstein. Software infrastructure and design challenges

for ubiquitous computing applications. Commun. ACM, 45(12):92–96, 2002.

[7] J. P. Sousa and D. Garlan. Aura: An architectural framework for user mobility

in ubiquitous computing environments. In In Proceedings of the 3rd Working

IEEE/IFIP Conference on Software Architecture, pages 29–43. Kluwer Aca-

demic Publishers, 2002.

[8] V. Bellotti and K. Edwards. Intelligibility and accountability: Human consid-

erations in context-aware systems. Human-Computer Interaction, 16:193–212,

2001.

264

BIBLIOGRAPHY 265

[9] W. Sitou M. Fahrmair and B. Spanfelner. Unwanted behavior and its impact

on adaptive systems in ubiquitous computing. ABIS 2006: 14th Workshop on

Adaptivity and User Modeling in Interactive Systems, October 2006.

[10] P. Horn. Autonomic computing: Ibm’s perspective on the state of information

technology, 2001.

[11] S. Bhola, M. Astley, R. Saccone, and M. Ward. Utility-aware resource al-

location in an event processing system. In ICAC ’06: Proceedings of the

2006 IEEE International Conference on Autonomic Computing, pages 55–64,

Washington, DC, USA, 2006. IEEE Computer Society.

[12] T. Zenmyo, H. Yoshida, and T. Kimura. A self-healing technique based on

encapsulated operation knowledge. In Autonomic Computing, 2006. ICAC

’06. IEEE International Conference on, pages 25–32, June 2006.

[13] M.L. Littman, N. Ravi, E. Fenson, and R. Howard. Reinforcement learning

for autonomic network repair. In Autonomic Computing, 2004. Proceedings.

International Conference on, pages 284–285, May 2004.

[14] H. A. Müller, H. M. Kienle, and U. Stege. Autonomic computing now you see

it, now you don’t. pages 32–54, 2009.

[15] S. Kent. Model driven engineering. In Proceedings of the Third International

Conference Integrated Formal Methods (IFM’2002), 2002.

[16] P. C. Clements and L. Northrop. Software Product Lines: Practices and Pat-

terns. SEI Series in Software Engineering. Addison-Wesley, August 2001.

[17] G. Blair, N. Bencomo, and R. B. France. Models@ run.time. Computer,

42(10):22–27, 2009.

[18] S. Hallsteinsen, M. Hinchey, Sooyong Park, and K. Schmid. Dynamic software

product lines. Computer, 41(4):93–95, April 2008.

BIBLIOGRAPHY 266

[19] J. O’Brien, T. Rodden, M. Rouncefield, and J. Hughes. At home with the tech-

nology: an ethnographic study of a set-top-box trial. ACM Trans. Comput.-

Hum. Interact., 6(3):282–308, 1999.

[20] J. Coplien, D. Hoffman, and D. Weiss. Commonality and variability in software

engineering. Software, IEEE, 15(6):37–45, Nov/Dec 1998.

[21] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning on

feature models. LNCS, Advanced Information Systems Engineering: 17th In-

ternational Conference, CAiSE 2005, 3520:491–503, 2005.

[22] S. T. March and G. F. Smith. Design and natural science research on infor-

mation technology. Decis. Support Syst., 15(4):251–266, 1995.

[23] V. Vaishnavi and W. Kuechler. Design research in information systems.

http://www.isworld.org/Researchdesign/drisISworld.htm, January 2004.

[24] J. Muñoz and V. Pelechano. Building a software factory for pervasive systems

development. In CAiSE, pages 342–356, 2005.

[25] C. Cetina, E. Serral, J. Munoz, and V. Pelechano. Tool support for model

driven development of pervasive systems. mompes, 0:33–44, 2007.

[26] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Com-

puter, 36(1):41–50, 2003.

[27] D. F. Bantz, C. Bisdikian, D. Challener, J. P. Karidis, S. Mastrianni, A. Mo-

hindra, D. G. Shea, and M. Vanover. Autonomic personal computing. IBM

Syst. J., 42(1):165–176, 2003.

[28] L. D. Paulson. Computer system, heal thyself. Computer, 35(8):20–22, 2002.

[29] J. A. Mccann and J.S. Crane. Kendra: Internet distribution delivery system.

In Society for Computer Simulation International, editor, In Proceedings of

SCS Euromedia, pages 134–140. IEEE, 1998.

BIBLIOGRAPHY 267

[30] A Lippman. Video coding for multiple target audiences. In R. L. Stevenson

K. Aizawa and Y.-Q. Zhang, editors, Proceedings of the IS&T/SPIE Confer-

ence on Visual Communications and Image Processing, pages 780–784, 1999.

[31] A. Ganek and R. J. Friedrich. The road aheadŮachieving wide-scale deploy-

ment of autonomic technologies. In Chairing the Town hall meeting at the 3rd

IEEE International Conference on Autonomic Computing, 2006.

[32] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pear-

son Education, 2003.

[33] C. Roblee and G. Cybenko. Implementing large-scale autonomic server mon-

itoring using process query systems. In ICAC ’05: Proceedings of the Second

International Conference on Automatic Computing, pages 123–133, Washing-

ton, DC, USA, 2005. IEEE Computer Society.

[34] J. W. Strickland, V. W. Freeh, Xiaosong Ma, and S. S. Vazhkudai. Governor:

Autonomic throttling for aggressive idle resource scavenging. In Autonomic

Computing, 2005. ICAC 2005. Proceedings. Second International Conference

on, pages 64–75, 2005.

[35] Ji. Xu and J. A. B. Fortes. Towards autonomic virtual applications in the in-

vigo system. In ICAC ’05: Proceedings of the Second International Conference

on Automatic Computing, pages 15–26, Washington, DC, USA, 2005. IEEE

Computer Society.

[36] R. Sterritt, B. Smyth, and M. Bradley. Pact: personal autonomic computing

tools. pages 519–527, 2005.

[37] Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and D. Phung. Self-

managing systems: A control theory foundation. In ECBS ’05: Proceedings

of the 12th IEEE International Conference and Workshops on Engineering of

Computer-Based Systems, pages 441–448, Washington, DC, USA, 2005. IEEE

Computer Society.

BIBLIOGRAPHY 268

[38] B. Schmerl and D. Garlan. Exploiting architectural design knowledge to sup-

port self-repairing systems. In SEKE ’02: Proceedings of the 14th international

conference on Software engineering and knowledge engineering, pages 241–248,

New York, NY, USA, 2002. ACM.

[39] J. R. Pilgrim III W. N. M. J. P. Bigus, D. A. Schlosnagle and Y. Diao. Able:

A toolkit for building multiagent autonomic systems. IBM Systems Journal,

41:250–371, 2002.

[40] J. O. Kephart and W. E. Walsh. An artificial intelligence perspective on

autonomic computing policies. In POLICY ’04: Proceedings of the Fifth IEEE

International Workshop on Policies for Distributed Systems and Networks,

page 3, Washington, DC, USA, 2004. IEEE Computer Society.

[41] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. Ponder: A language for

specifying security and management policies for distributed systems. Technical

report, 2000.

[42] E. C. Lupu and M. Sloman. Conflicts in policy-based distributed systems

management. IEEE Trans. Softw. Eng., 25(6):852–869, 1999.

[43] S. Matsuda K. Broda H. Kamoda, M. Yamaoka and M. Sloman. Policy conflict

analysis using free variable tableaux for access control in web services envi-

ronments. In Proceedings of the Policy Management for the Web Workshop at

the 14th International World Wide Web Conference (WWW), 2005.

[44] A. Gupta. Management of conflicting obligations in self-protecting policy-

based systems. In ICAC ’05: Proceedings of the Second International Confer-

ence on Automatic Computing, pages 274–285, Washington, DC, USA, 2005.

IEEE Computer Society.

[45] G. Tesauro and J. O. Kephart. Utility functions in autonomic systems. In

ICAC ’04: Proceedings of the First International Conference on Autonomic

Computing, pages 70–77, Washington, DC, USA, 2004.

BIBLIOGRAPHY 269

[46] S. N. Bhatti and G. Knight. Enabling qos adaptation decisions for internet

applications. Comput. Netw., 31(7):669–692, 1999.

[47] J Zhang and B. Cheng. Model-based development of dynamically adaptive

software. In ICSE ’06: Proceedings of the 28th international conference on

Software engineering, pages 371–380, New York, NY, USA, 2006. ACM.

[48] S. Agarwala, Yuan Chen, D. Milojicic, and K. Schwan. Qmon: Qos- and

utility-aware monitoring in enterprise systems. In ICAC ’06: Proceedings

of the 2006 IEEE International Conference on Autonomic Computing, pages

124–133, Washington, DC, USA, 2006. IEEE Computer Society.

[49] L. Lymberopoulos, E. Lupu, and M. Sloman. An adaptive policy-based frame-

work for network services management. J. Netw. Syst. Manage., 11(3):277–

303, 2003.

[50] J. Lobo, R. Bhatia, and S. Naqvi. A policy description language. pages 291–

298, 1999.

[51] D. Agrawal, S. Calo, J. Giles, Kang-Won Lee, and D. Verma. Policy man-

agement for networked systems and applications. In Integrated Network Man-

agement, 2005. IM 2005. 2005 9th IFIP/IEEE International Symposium on,

pages 455–468, May 2005.

[52] V. Batra, J. Bhattacharya, H. Chauhan, A. Gupta, M. Mohania, and

U. Sharma. Policy driven data administration. Policies for Distributed Sys-

tems and Networks, IEEE International Workshop on, 0:0220, 2002.

[53] H. Lutfiyya, G. Molenkamp, M. Katchabaw, and M. A. Bauer. Issues in

managing soft qos requirements in distributed systems using a policy-based

framework. In POLICY ’01: Proceedings of the International Workshop on

Policies for Distributed Systems and Networks, pages 185–201, London, UK,

2001. Springer-Verlag.

[54] A. Ponnappan, L. Yang, R. Pillai, and P. Braun. A policy based qos manage-

ment system for the intserv/diffserv based internet. In POLICY ’02: Proceed-

BIBLIOGRAPHY 270

ings of the 3rd International Workshop on Policies for Distributed Systems

and Networks (POLICY’02), page 159, Washington, DC, USA, 2002. IEEE

Computer Society.

[55] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Med-

vidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf. An architecture-based

approach to self-adaptive software. IEEE Intelligent Systems, 14(3):54–62,

1999.

[56] D. Garlan, B. Schmerl, and J Chang. Using gauges for architecture-based mon-

itoring and adaptation. In In Working Conference on Complex and Dynamic

Systems Architecture , Brisbane, Australia., 2001.

[57] A. A. Bougaev. Pattern recognition based tools enabling autonomic comput-

ing. pages 313–314, 2005.

[58] A. Salahshour E. Manoel, M. J. Nielsen and S. Sampath. Problem Determi-

nation Using Self-Managing Autonomic Technology. IBM Redbooks, 2005.

[59] P. Shivam, S. Babu, and J. S. Chase. Learning application models for utility

resource planning. In ICAC ’06: Proceedings of the 2006 IEEE International

Conference on Autonomic Computing, pages 255–264, Washington, DC, USA,

2006. IEEE Computer Society.

[60] T. Osogami, M. Harchol-Balter, and A. Scheller-Wolf. Analysis of cycle steal-

ing with switching times and thresholds. Perform. Eval., 61(4):347–369, 2005.

[61] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu. Power-aware

qos management in web servers. In RTSS ’03: Proceedings of the 24th IEEE

International Real-Time Systems Symposium, page 63, Washington, DC, USA,

2003. IEEE Computer Society.

[62] R. S. Sutton and A. G Barto. Reinforcement learning: An Introduction. MIT

Press, 1998.

[63] E. Fenson and R. Howard. Reinforcement learning for autonomic network

repair. In ICAC ’04: Proceedings of the First International Conference on

BIBLIOGRAPHY 271

Autonomic Computing, pages 284–285, Washington, DC, USA, 2004. IEEE

Computer Society.

[64] J. Dowling, R. Cunningham, E. Curran, and V. Cahill. Building autonomic

systems using collaborative reinforcement learning. volume 21, pages 231–238,

New York, NY, USA, 2006. Cambridge University Press.

[65] G. Tesauro, N.K. Jong, R. Das, and M.N. Bennani. A hybrid reinforcement

learning approach to autonomic resource allocation. Autonomic Computing,

2006. ICAC ’06. IEEE International Conference on, pages 65–73, June 2006.

[66] S. Whiteson and P. Stone. Evolutionary function approximation for reinforce-

ment learning. J. Mach. Learn. Res., 7:877–917, 2006.

[67] H. Guo. A bayesian approach for autonomic algorithm selection. In Proceedings

of the IJCAI workshop on AI and autonomic computing: developing a research

agenda for selfmanaging computer systems, 2003.

[68] T. Nguyen M. Littman and H. Hirsh. A model of cost-sensitive fault media-

tion. In Proceedings of the IJCAI workshop on AI and autonomic computing:

developing a research agenda for self-managing computer systems, 2003.

[69] J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Technical report, Object

Management Group (OMG), 2003.

[70] A. Agrawal, T. Levendovszky, J. Sprinkle, F. Shi, and G. Karsai. Generative

programming via graph transformations in the model-driven architecture. In

In OOPSLA 2002 Workshop in Generative Techniques in the context of Model

Driven Architecture, 2002.

[71] S. J. Mellor and A. N. Clark and T. Futagami. Guest Editors’ Introduction:

Model-Driven Development. IEEE Software, 20(5):14–18, 2003.

[72] A. Sernadas, C. Sernadas, and H.-D. Ehrich. Object-oriented specification

of databases: An algebraic approach. In VLDB ’87: Proceedings of the 13th

International Conference on Very Large Data Bases, pages 107–116, San Fran-

cisco, CA, USA, 1987. Morgan Kaufmann Publishers Inc.

BIBLIOGRAPHY 272

[73] R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. TROLL: a language

for object-oriented specification of information systems. ACM Trans. Inf.

Syst., 14(2):175–211, 1996.

[74] M. Rohs and J. Bohn. Entry points into a smart campus environment "

overview of the ethoc system. In ICDCSW ’03: Proceedings of the 23rd Inter-

national Conference on Distributed Computing Systems, page 260, Washing-

ton, DC, USA, 2003. IEEE Computer Society.

[75] Object Management Group. Unified Modeling Language: Superstructure ver-

sion 2.1.1. OMG Specification, February 2007.

[76] P. Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[77] I. Kurtev. Adaptability of Model Transformations. phdthesis, IPA, 2005. ISBN

90-365-2184-X.

[78] J. Bézivin, N. Farcet, J. Jézéquel, B. Langlois, and D. Pollet. Reflective model

driven engineering. pages 175–189. Springer, 2003.

[79] J. Bézivin. In search of a basic principle for model driven engineering. UP-

GRADE, 1:15–24, 2004.

[80] D. C. Schmidt. Guest editor’s introduction: Model-driven engineering. Com-

puter, 39(2):25–31, 2006.

[81] J. Miller and J. Mukerji. Mda guide version 1.0.1, 2003. Letzte Änderung am

12. Jun. 2003, besucht am 15. Mai 2008.

[82] R. Balzer. A 15 year perspective on automatic programming. IEEE Trans.

Softw. Eng., 11(11):1257–1268, 1985.

[83] K. Czarnecki. Generative Programming. Principles and Techniques of Software

Engineering Based on Automated Conguration and Fragment-Based Compo-

nent Models. PhD thesis, Technical University of Ilmenau, October 1998.

BIBLIOGRAPHY 273

[84] U. W. Eisenecker. Generative programming (gp) with c++. In JMLC ’97:

Proceedings of the Joint Modular Languages Conference on Modular Program-

ming Languages, pages 351–365, London, UK, 1997. Springer-Verlag.

[85] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: an an-

notated bibliography. volume 35, pages 26–36, New York, NY, USA, 2000.

ACM.

[86] S. Kelly J.P. Tolvanen and M.C. Consulting. Modelling languages for prod-

uct families a method engineering approach. In 1st OOPSLA Workshop on

Domain-specic Visual Languages, 2001.

[87] Io Ns and M. Simos. Organization Domain Modeling and OO Analysis and

Design: Distinctions, Integration, New Directions. 1997.

[88] R. Esser and J.W. Janneck. A framework for defining domain-specific visual

languages. In OOPSLA 2001 Workshop on Domain Specific Visual Languages,

2001.

[89] M. Douglas McIlroy. Mass-produced software components. In J. M. Buxton,

Peter Naur, and Brian Randell, editors, Software Engineering Concepts and

Techniques (1968 NATO Conference of Software Engineering), pages 88–98.

NATO Science Committee, October 1968.

[90] D.L. Parnas. On the design and development of program families. Software

Engineering, IEEE Transactions on, SE-2(1):1–9, March 1976.

[91] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.

Feature-oriented domain analysis (foda) feasibility study. Technical report,

Carnegie-Mellon University Software Engineering Institute, November 1990.

[92] F. van der Linden. Lecture Notes in Computer Science, volume 2290. Springer,

Bilbao, Spain, October 3-5, 2001 2002.

[93] P. Donohoe. Number ISBN 0-7923-7940-3. Denver, Colorado, USA, August

28-31.

BIBLIOGRAPHY 274

[94] D. Batory, J. Neal Sarvela, and A. Rauschmayer. Scaling step-wise refinement.

IEEE Transactions on Software Engineering, 30:2004, 2003.

[95] L. Northrop. SEI’s Software Product Line Tenets. IEEE Software, 19(4):32–

40, July/August 2002.

[96] G. Chastek and J.D. McGregor. Guidelines for developing a product line

production plan. Technical report, CMU/SEI, June 2002.

[97] K. Czarnecki and U. W. Eisenecker. Generative programming: methods, tools,

and applications. ACM Press, New York, NY, USA, 2000.

[98] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line Engi-

neering: Foundations, Principles and Techniques. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 2005.

[99] J. D. McGregor, L. M. Northrop, S. Jarrad, and K. Pohl. Guest editors’

introduction: Initiating software product lines. IEEE Software, 19(4):24–27,

2002.

[100] Software product-family engineering. In Frank van der Linden, editor, PFE,

volume 3014 of Lecture Notes in Computer Science. Springer, 2004.

[101] J. Kramer and J. Magee. The evolving philosophers problem: dynamic change

management. IEEE Transactions on Software Engineering, 1990.

[102] D. Garlan and B. Schmerl. Model-based adaptation for self-healing systems.

In WOSS ’02: Proceedings of the first workshop on Self-healing systems, pages

27–32, New York, NY, USA, 2002. ACM.

[103] A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing era.

IBM Syst. J., 42(1):5–18, 2003.

[104] R. Adler, D. Schneider, and M. Trapp. Development of safe and reliable

embedded systems using dynamic adaptation. Workshop on Model-Driven

Software Adaptation, M-ADAPT 2007 at ECOOP, pages 9–14, 2007.

BIBLIOGRAPHY 275

[105] H. Gomaa and G.A. Farrukh. Methods and tools for the automated config-

uration of distributed applications from reusable software architectures and

components. Software, IEE Proceedings -, 146(6):277–290, Dec 1999.

[106] J. Lee and K.C. Kang. A feature-oriented approach to developing dynamically

reconfigurable products in product line engineering. In Software Product Line

Conference, 2006 10th International, 2006.

[107] K. Kim. Dynamic reconfiguration of architecture based on component inter-

actions. Master’s thesis, Dept. of CSE, POSTECH, 2006.

[108] S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch. Using product line tech-

niques to build adaptive systems. Software Product Line Conference, 2006

10th International, pages 21–24, Aug. 2006.

[109] J. White, D. C. Schmidt, E. Wuchner, and A. Nechypurenko. Automating

product-line variant selection for mobile devices. Software Product Line Con-

ference, 11th International, pages 129–140, 10-14 Sept. 2007.

[110] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal

of. Logic Programming, 1994.

[111] P. Trinidad, A. Ruiz-Cortés, and J. Peńa. Mapping feature models onto com-

ponent models to build dynamic software product lines. International Work-

shop on Dynamic Software Product Line, 2007.

[112] B. Morin, F. Fleurey, N. Bencomo, J.-M. Jézéquel, A. Solberg, V. Dehlen,

and G. Blair. An aspect-oriented and model-driven approach for managing

dynamic variability. In MoDELS ’08: Proceedings of the 11th international

conference on Model Driven Engineering Languages and Systems, pages 782–

796, Berlin, Heidelberg, 2008. Springer-Verlag.

[113] S. Hallsteinsen, S. Jiang, and R. Sanders. Dynamic software product lines

in service oriented computing. In 3rd International Workshop on Dynamic

Software Product, 2009.

BIBLIOGRAPHY 276

[114] C. Parra, X. Blanc, and L. Duchien. Context Awareness for Dynamic Service-

Oriented Product Lines. Software Product Line Conference, 2009. SPLC 2009.

13th International, 24-28 Agust. 2009.

[115] OW2 consortium. Frascati project. http://frascati.ow2.org.

[116] R. Rouvoy, D. Conan, and L.? Seinturier. Software architecture patterns for a

context-processing middleware framework. IEEE Distributed Systems Online,

9(6):1, 2008.

[117] P. Istoan, G. Nain, G. Perrouin, and J.M. Jézéquel. Dynamic software prod-

uct lines for service-based systems. Computer and Information Technology,

International Conference on, 2:193–198, 2009.

[118] P. Muller, F. Fleurey, and J.M. Jézéquel. Weaving executability into object-

oriented meta-languages. In Proc. of MODELS/UMLŠ2005. Springer, 2005.

[119] D. Berry, B. Cheng, and J. Zhang. The four levels of requirements engineering

for and in dynamic adaptive systems. In In 11th International Workshop on

Requirements Engineering Foundation for Software Quality (REFSQ), 2005.

[120] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration using feature

models. In Proceedings of the Third Software Product Line Conference 2004,

pages 266–282. Springer, LNCS 3154, 2004.

[121] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, Gø. K. Olsen, and A. Svendsen.

Adding standardized variability to domain specific languages. In Software

Product Lines, 12th International Conference, SPLC 2008, Limerick, Ireland,

September 8-12, 2008, pages 139–148, Limerick, Ireland, 2008.

[122] M. Dean and G. Schreiber. OWL web ontology language reference. W3C

recommendation, W3C, February 2004.

[123] Y. Liu, Muhammad A. Babar, and I. Gorton. Middleware architecture eval-

uation for dependable self-managing systems. In QoSA ’08: Proceedings of

the 4th International Conference on Quality of Software-Architectures, pages

189–204, Berlin, Heidelberg, 2008. Springer-Verlag.

BIBLIOGRAPHY 277

[124] D. Marples and P. Kriens. The open services gateway initiative: an introduc-

tory overview. Communications Magazine, IEEE, (12):110–114, Dec 2001.

[125] P. Runeson and M. Höst. Guidelines for conducting and reporting case study

research in software engineering. Empirical Softw. Engg., 14(2):131–164, 2009.

[126] C. Cetina, Ø. Haugen, X. Zhang, F. Fleurey, and V. Pelechano. Strategies for

variability transformation at run-time. In Software Product Line Conference,

2009. SPLC ’09. 13th International, August 2009.

[127] R. C. Linger, B. I. Witt, and H. D. Mills. Structured Programming; The-

ory and Practice the Systems Programming Series. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1979.

[128] H. A. Schmid. Creating applications from components: A manufacturing

framework design. IEEE Softw., 13(6):67–75, 1996.

[129] K. Czarnecki. Overview of generative software development. In Unconven-

tional Programming Paradigms, International Workshop UPP, pages 326–341,

2004.

[130] J. Greenfield, K. Short, S. Cook, and S. Kent. Software Factories: Assembling

Applications with Patterns, Models, Frameworks, and Tools. Wiley, August

2004.

[131] D. Schmidt, A. Nechypurenko, and E. Wuchner. Workshop mdd for software

product-lines: Fact or fiction. International Conference on Model Driven En-

gineering Languages and Systems, 2005.

[132] G. Botterweck, I. Groher, A. Polzer, C. Schwanninger, S. Thiel, and M. Voel-

ter. International workshop on model-driven approaches in software product

line. 13th International Software Product Line Conference, 2009.

[133] P. Schobbens, J.C. Trigaux P. Heymans, and Y. Bontemps. Generic semantics

of feature diagrams. Comput. Netw., 51(2):456–479, 2007.

BIBLIOGRAPHY 278

[134] J. Muñoz, V. Pelechano, and C. Cetina. Implementing a pervasive meeting

room: A model driven approach. In IWUC, pages 13–20, 2006.

[135] J. Muñoz Ferrara. Model Driven Development of Pervasive Systems. Building

a Software Factory. Tesis doctoral en informática, Departamento de Sistemas

Informáticos y Computación, Universidad Politécnica de Valencia, 2008.

[136] D. Del Fabro. Metadata management using model weaving and model trans-

formation. PhD thesis, University of Nantes, September 2007.

[137] M. Didonet Del Fabro, J. Bézivin, and P. Valduriez. Weaving models with the

eclipse amw plugin. In Eclipse Modeling Symposium, Eclipse Summit Europe

2006, Esslingen, Germany, 2006.

[138] E. Serral, P. Valderas, and V. Pelechano. A model driven development method

for developing context-aware pervasive systems. In UIC ’08: Proceedings of

the 5th international conference on Ubiquitous Intelligence and Computing,

Berlin, 2008.

[139] C. Cetina, P. Giner, J. Fons, and V. Pelechano. Using feature models for

developing self-configuring smart homes. Fifth International Conference on

Autonomic and Autonomous Systems (ICAS 2009), April 2009.

[140] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature

models 20 years later: a literature review. Information Systems, 2010.

[141] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and M. Toro. Automated

error analysis for the agilization of feature modeling. Journal of Systems and

Software, 81(6):883–896, 2008.

[142] P. Trinidad and A. Ruiz-Cortés. Abductive reasoning and automated analysis

of feature models: How are they connected? (submitted). In Proceeding of the

Third International Workshop on Variability Modelling of Software-intensive

Systems (VAMOS), 2009.

[143] J. Bayer, S. Gerard, Ø. Haugen, J. Mansell, B. Møller-Pedersen, J. Oldevik,

J. Thibault P. Tessier and, and T. Widen. Consolidated product line variability

BIBLIOGRAPHY 279

modeling. in software product lines. In Springer, editor, Research Issues in

Engineering and Management, 2006.

[144] ITEA project ip02009. Families: Families, in eureka s! 2023 programme, 2004.

[145] G. Blair, N. Bencomo, and France R. Models@ run.time. Computer, pages

22–27, October 2009.

[146] N. Bencomo, G. Blair, and R. France. 3rd workshop on models@run.time

at models 2008 (proceedings). Technical Report COMP-005-2008 Lancaster

University.

[147] H. Gomaa and M. Hussein. Software reconfiguration patterns for dynamic

evolution of software architectures. In 4th Working IEEE / IFIP Conference

on Software Architecture, pages 79–88, 2004.

[148] H. Gomaa and M. Hussein. Dynamic software reconfiguration in software

product families. In Software Product-Family Engineering, 5th International

Workshop, pages 435–444, 2003.

[149] H. Gomaa. Designing concurrent, distributed, and real-time applications with

uml. In 28th International Conference on Software Engineering ICSE, pages

1059–1060, 2006.

[150] T. Gu, H. Keng Pung, and Da Qing Zhang. Toward an osgi-based infrastruc-

ture for context-aware applications. IEEE Pervasive Computing, 3(4):66–74,

2004.

[151] D. Zhang, X. Hang Wang, and K. Hackbarth. Osgi based service infrastructure

for context aware automotive telematics. pages 81–88, 2004.

[152] K. Czarnecki. Mapping features to models: A template approach based on

superimposed variants. In GPCEŠ05, volume 3676 of LNCS, pages 422–437,

2005.

BIBLIOGRAPHY 280

[153] D. Beuche. Modeling and building software product lines with pure::variants.

In Software Product Line Conference, 2009. SPLC ’09. 13th International,

August 2009.

[154] C.W. Krueger, D. Churchett, and R. Buhrdorf. Homeaway’s transition to

software product line practice: Engineering and business results in 60 days. In

Software Product Line Conference, 2008. SPLC ’08. 12th International, pages

297–306, Sept. 2008.

[155] C.W. Krueger. The biglever software gears unified software product line en-

gineering framework. In Software Product Line Conference, 2008. SPLC ’08.

12th International, pages 353–353, Sept. 2008.

[156] J. Martínez, C. López, A. Aldazabal, J. Mansell, and M. del Hierro. Plum

(product line unified modeller). In Software Product Line Conference, 2009.

SPLC ’09. 13th International, August 2009.

[157] A. J. Ramirez, D. B. Knoester, B. H.C. Cheng, and P. K. McKinley. Applying

genetic algorithms to decision making in autonomic computing systems. pages

97–106, 2009.

[158] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration through

specialization and multilevel configuration of feature models. Software Process:

Improvement and Practice, 10(2):143–169, 2005.

[159] Mof: Mof 2.0 (meta object facility). http://www.omg.org/spec/MOF/2.0/,

2006.

[160] C. Cetina, J. Fons, and V. Pelechano. Applying Software Product Lines to

Build Autonomic Pervasive Systems. Software Product Line Conference, 2008.

SPLC 2008. 12th International, 8-12 Sept. 2008.

[161] Eclipse Modeling Framework (EMF) - Model Query website.

http://www.eclipse.org/modeling/emf/?project=query.

BIBLIOGRAPHY 281

[162] F. Jouault and I. Kurtev. Transforming models with atl. In Satellite Events

at the MoDELS 2005 Conference, LNCS 3844, pages 128–138. Springer, 2006.

ISBN=0302-9743.

[163] Eclipse MOFscript web-site. MODELWARE (IST Project 511731).

http://www.eclipse.org/gmt/mofscript/.

[164] D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated analysis of feature

models: Challenges ahead. Communications of the ACM, December, 2006.

[165] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration through

specialization and multilevel configuration of feature models. Software Process:

Improvement and Practice, 10(2):143–169, 2005.

[166] J. White, D. Benavides, D. C. Schmidt, P. Trinidad, and A. Ruiz Cortés.

Automated diagnosis of product-line configuration errors in feature models. In

Software Product Lines, 12th International Conference, SPLC 2008, Limerick,

Ireland, September 8-12, 2008, Proceedings, 2008.

[167] F. Loesch and E. Ploedereder. Optimization of variability in software product

lines. Software Product Line Conference, 2007. SPLC 2007. 11th Interna-

tional, pages 151–162, 10-14 Sept. 2007.

[168] P. Giner, C. Cetina, J. Fons, and V. Pelechano. Building Self-adaptive services

for Ambient Assisted Living. In International Workshop of Ambient Assisted

Living IWAAL09, LNCS, 2009.

[169] S. M. Yacoub and H. H. Ammar. A methodology for architecture-level relia-

bility risk analysis. IEEE Trans. Softw. Eng., 28(6):529–547, 2002.

[170] B. González-Baixauli, M. Laguna, and Y. Crespo. Product line requirements

based on goals, features and use cases. International Workshop on Require-

ments Reuse in System Family Engineering, pages 4–6, 2004.

[171] S. Jarzabek, B. Yang, and S. Yoeun. Addressing quality attributes in domain

analysis for product lines. Software, IEE, 153(2):61–73, April 2006.

BIBLIOGRAPHY 282

[172] H. Zhang, S. Jarzabek, and B. Yang. Quality prediction and assessment for

product lines. page 1031. 2003.

[173] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. Covamof: A framework for

modeling variability in software product families. In SPLC, pages 197–213,

2004.

[174] E. Niemelä and A. Immonen. Capturing quality requirements of product fam-

ily architecture. Inf. Softw. Technol., 49(11-12):1107–1120, 2007.

[175] A. Immonen. A method for predicting reliability and availability at the archi-

tecture level. In Software Product Lines, pages 373–422. 2006.

[176] L. Etxeberria and G. Sagardui. Variability driven quality evaluation in soft-

ware product lines. In SPLC ’08: Proceedings of the 2008 12th International

Software Product Line Conference, pages 243–252, Washington, DC, USA,

2008. IEEE Computer Society.

[177] L. Williams and C. Smith. Pasa a method for the performance assessment of

software architectures. In Proceedings of the Third International Workshop on

Software and Performance (WOSP2002, pages 179–189. ACM Press, 2002.

[178] E. Folmer, J. van Gurp, and J. Bosch. Scenario-based assessment of software

architecture usability. In Proceedings of Workshop on Bridging the Gaps Be-

tween Software Engineering and Human-Computer Interaction, pages 61–68,

2003.

[179] R.L. Rosnow and R. Rosenthal. People studying people: Artifacts and ethics

in behavioral research. W.H. Freeman and Company, 1997.

[180] C. Cetina, P. Giner, J. Fons, and V. Pelechano. Autonomic computing through

reuse of varibility models at run-time: The case of smart homes. Computer,

pages 46–52, October 2009.

[181] M. J. Weal, D. Cruickshank, D. T. Michaelides, K. Howland, and G. Fitz-

patrick. Supporting domain experts in creating pervasive experiences. In

Pervasive Computing and Communications (PerCom), pages 108–113, 2007.

BIBLIOGRAPHY 283

[182] A. K. Dey. Modeling and intelligibility in ambient environments. Journal of

Ambient Intelligence and Smart Environments (JAISE), 1(1):57–62, January

2009.

[183] T. Lemlouma and N. Layaida. Context-aware adaptation for mobile devices.

Mobile Data Management, 2004. Proceedings. 2004 IEEE International Con-

ference on, pages 106–111, 2004.

[184] W. Wayt Gibbs. Considerate computing. Scientific American, 292(1):54–61,

2004.

[185] H. Gomaa. Designing Software Product Lines with UML: From Use Cases to

Pattern-Based Software Architectures. Addison Wesley Longman Publishing

Co., Inc., Redwood City, CA, USA, 2004.

[186] C. Cetina, P. Trinidad, V . Pelechano, and A. Ruiz-Cortés. An architectural

discussion on dspl. 2nd International Workshop on Dynamic Software Product

Line (DSPL08), 2008.

[187] Models@run.time workshop in conjunction with with models conference.

http://www.comp.lancs.ac.uk/ bencomo/MRT/.

[188] Dynamic software product lines workshop in conjunction with with splc con-

ference. http://www.lero.ie/dspl2009.

[189] W.F. Tichy. Should computer scientists experiment more? Computer,

31(5):32–40, May 1998.

[190] C. Lueg. On the gap between vision and feasibility. In Pervasive ’02: Pro-

ceedings of the First International Conference on Pervasive Computing, pages

45–57, London, UK, 2002. Springer-Verlag.

[191] A. Schmidt and L. Terrenghi. Methods and guidelines for the design and

development of domestic ubiquitous computing applications. percom, 00:97–

107, 2007.

ABOUT

Carlos Cetina is a research fellow at the Centre

of Software Production Methods, and he is currently

teaching Databases (Technical University of Valencia)

and Model Driven Software Development (Ministry

of Infrastructure and Transport of Valencia). His re-

search interests are related to Model Driven Develop-

ment (MDD), Software Product Lines (SPL), Perva-

sive Systems and Autonomic Computing. He is also

interested in cutting edge Smart Home technologies.

From 2006 to 2007, he has been applying MDD to Pervasive Systems. Specifi-

cally, he has been working on (1) a Domain Specific language for the specification

of Smart Homes (PervML), and (2) a tool (PervGT) for automatic code generation

from PervML models to the final system implementation. See more information of

this work at http://www.pros.upv.es/labs/projects/pervml.

From 2007 to nowadays, he has been combining both MDD and SPL to achieve

autonomic computing. His research shows that variability models at run-time can

assist a system to determine the steps that are necessary to reconfigure itself. In

particular, he argues that a system can activate/deactivate its own features dy-

namically at run-time according to the fulfilment of context conditions. See more

information of this work at http://www.autonomic-homes.com/.

Until Carlos Cetina completely ran out of free time, he used to play rowing

with the team of the Technical University of Valencia. Now, he is becoming en-

grossed with the complex and serious tasks of showing both scalextric and classic

videogames to his young nephews. See more information about Carlos Cetina at

http://www.carloscetina.com/.

284

