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Abstract 

Atmospheric plasma spraying (APS) has been proved useful in obtaining TiO2 coatings 

with effective photocatalytic activity. However, the influence of feedstock 

characteristics on photocatalytic activity has hardly been addressed. 

 

This study was undertaken to prepare TiO2 photocatalytic coatings by APS from 

different feedstocks. The feedstocks were obtained by spray drying suspensions of a 

nano- and a submicron-sized TiO2 powder, with different solids contents and/or ratios 

of the nano- to submicron-sized particles. All the resulting powders were fully 
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characterised to assess their suitability for use in APS processes. Feedstock powders 

were then deposited on steel coupons by APS using hydrogen or helium as secondary 

plasma gas. Coating microstructure and phase composition were characterised. Coating 

photocatalytic activity was determined by measuring the degradation of methylene blue 

dye in an aqueous solution. 

 

Powder characterisation showed that all feedstocks met plasma spray operation 

requirements with regard to agglomerate size distribution and density, as well as to 

powder flowability. Optimum agglomerate density was obtained when a well-balanced 

mixture of nano- and submicron-sized particles was used. 

 

All coatings displayed a bimodal microstructure with partially melted agglomerates that 

retained the initial nano- or submicron-sized structure and composition (anatase phase) 

of the feedstock, surrounded by a fully melted matrix mainly formed by rutile. As 

expected, coating porosity as well as the amount of partially melted areas depended 

strongly on plasma spray conditions and on feedstock characteristics. 

 

With regard to photocatalytic activity, a reasonably good fit of a first-order kinetic 

model to the experimental data was found for all coatings. The kinetic constants 

obtained displayed higher values than those of a commercial sol-gel coating. The values 

of these constants were related to feedstock characteristics as well as to plasma spraying 

conditions on the basis of anatase content. The contribution of other factors to the 

resulting coating surface is also discussed. 

 
Keywords: D. TiO2, Photocatalytic activity, Atmospheric plasma spraying, Nanoparticles  
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1. INTRODUCTION 

Titanium dioxide (TiO2) is known to be one of the best photocatalysts due to its 

chemical stability, low cost, and lack of toxicity [1]. For photocatalytic applications, 

titanium dioxide can be used in powder form (slurry) or immobilised in thin layers or 

coatings obtained by different deposition techniques. TiO2 powders display outstanding 

photocatalytic efficiency compared with their coating counterparts due to their higher 

specific surface area. However, the separation of powder from the liquid used in water 

treatments and subsequent recycling process is not easy, owing to the nanometre-sized 

nature of the powder. The engineering of photocatalytic devices and reactors based on 

supported photocatalytic coatings has consequently drawn much scientific attention in 

recent years, evidenced by a number of interesting reviews on the subject [2, 3]. 

 

Titanium oxide coatings with many applications have been prepared for years by 

thermal spraying routes due to the hardness, wear and corrosion resistance, and 

biocompatibility of such coatings [4, 5]. In the last few years, intensive research has 

shown that thermal spray techniques, especially atmospheric plasma spraying (APS) can 

also be used to obtain nanostructured TiO2 coatings with effective photocatalytic 

activity [6-8]. Obtaining nanostructured coatings by APS requires the reconstitution 

(granulation) of starting nanopowders into a sprayable size, since nanoparticles can not 

be deposited directly because of their low mass and poor flowability. Spray drying is the 

main method used to achieve this goal [9].  
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Many of these studies have shown the need to preserve as high an amount of anatase 

phase in the coating as possible, due to its superior photocatalytic performance in 

comparison with that of rutile [6, 10, 11]. However the factors that control anatase 

phase distribution in the final layers still remain unclear. Regardless of the nature and 

composition of the feedstock, a mixture of anatase and rutile is always encountered due 

to the well-known anatase to rutile transition, which in turn depends, among other 

factors, on the particle size of the starting phase [12-15]. Many authors have thus 

observed that the anatase content in the coatings strongly depends on the thermal spray 

process conditions [6, 12, 13]. More specifically, most of the anatase content in the final 

coating is assigned to the partially melted or unmelted areas that preserve the 

nanostructure of the starting feedstock. For this reason, the spraying parameters 

affecting the energy input of the plasma need to be very carefully adjusted [14]. 

 

Although the role of the feedstock on the microstructure and final characteristics of the 

APS TiO2 coating is clearly recognised, this has drawn little attention in the literature 

[12, 16]. Nor has photocatalytic activity been addressed in these studies. In a recent 

study, the authors reconstituted different nanoparticle suspensions of TiO2, obtaining 

sprayable feedstocks that were subsequently deposited by APS, yielding coatings with 

good photocatalytic activity (similar to that of a commercial sol-gel coating) [17]. In 

addition, a feedstock comprising nanometre- and submicrometre-sized TiO2 particles 

was shown to produce coatings exhibiting slightly higher photocatalytic activity than 

that of the coatings obtained from feedstocks exclusively made up of nanoparticles. This 

was a quite interesting finding because it meant that the use of a bimodal distribution of 

submicron- and nano-sized particles in the precursor suspension for the spray-dried 
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feedstock could give rise to significant benefits, in particular higher suspension solids 

content and lower viscosity. This would in turn yield better properties in the resulting 

feedstock agglomerates, namely denser agglomerates and improved powder flowability. 

No less importantly, the cost of the feedstock could be significantly reduced by 

replacing nanoparticles with submicrometre-sized particles. 

 

The present study was undertaken to obtain TiO2 photocatalytic coatings by APS from 

different feedstocks. Suspensions were therefore prepared of a nano- and a submicron-

sized TiO2 powder, with different solids contents and/or ratios of the nano- to 

submicron-sized particles. All suspensions were then reconstituted by spray-drying to 

obtain suitable plasma torch feedstocks. The feedstocks were applied under different 

plasma spraying conditions and the photocatalytic activity of the resulting coatings was 

assessed. The relationship of feedstock characteristics to coating photocatalytic activity 

is discussed. 

 

2. EXPERIMENTAL PROCEDURE 

2.1. Preparation and characterisation of spray-dried feedstocks 

Two powders were used as starting materials: a submicron-sized, high purity anatase 

(Merck, Germany) with a mean particle size of 0.35 µm and specific surface area of 9.5 

m2/g, and a commercial titania nanopowder (AEROXIDE® P25, Degussa-Evonik, 

Germany). The P25 nanopowder has been widely used in many previous studies on 

photocatalysis [18]. It contains anatase and rutile phases in a ca. 3:1 ratio with a mean 

particle size of 20–40 nm [19]. 
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Concentrated suspensions with a total solids contents ranging from 20 vol.% to 40 

vol.% were prepared from the above powder samples, which were mixed in proportions 

of 0 to 100%. The suspension references and characteristics are detailed in Table 1. 

Table 1. Characteristics and references of the suspensions prepared as set out in the text 

Powder composition (wt%) Suspension solids content (vol.%) (3)Viscosity (cP) Density (g/cm3) pH 
0 Ts(1)- 100 Tn(2) 30 >5000 1.7 7.4 

25 Ts - 75 Tn 30 2000 1.8 7.3 
50 Ts - 50 Tn 30 1440 1.8 5.8 
75 Ts - 25 Tn 30 1640 1.8 6.8 
100 Ts - 0 Tn 30 1110 1.9 6.3 
50 Ts - 50 Tn 20 330 1.5 7.3 
50 Ts - 50 Tn 40 >5000 2.1 7.1 
(1) Ts: submicron-sized TiO2 powder 
(2) Tn: nanosized TiO2 powder 
(3) Determined by torsion wire viscometer (Gallenkamp VHA-205, FISONS, UK) 
 

The preparation route for the mixed suspensions is based on procedures developed 

previously for the preparation of 100%, concentrated nano- or submicron-sized TiO2 

particle suspensions, set out elsewhere [19, 20]. Every suspension was thus prepared by 

first adding the PAA (polyacrylic dispersant, DURAMAXTM D-3005, Rohm&Haas, 

USA) required to disperse the nanosized titania (4 wt% with regard to the nanoparticles) 

and then the PAA required to disperse the submicronic powder (0.3 wt% with regard to 

the submicron-sized particles). In a second step, nano- and submicron-sized powders 

were added and the mixture was dispersed first under mechanical agitation (15 min) and 

then with variable sonication time, which depended on the nanoparticle content in the 

suspension. Table 1 shows the characteristics of the prepared suspensions. 

 

Spray-dried granules were obtained from all suspensions in a spray dryer (Mobile 

Minor, Gea Niro, Denmark) with a drying capacity of 7 kg water/h. Spray-drying 

efficiency was about 40–60%. For the sake of simplicity, the same references were used 
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for the powder samples as those assigned to the corresponding starting suspensions 

detailed in Table 1. Granule size distribution was measured by dry sieving. Spray-dried 

granule bulk density was calculated from powder tapped density as previously reported 

[21]. Powder flowability was evaluated in terms of the Hausner ratio, determined by 

dividing tapped density by bulk density. Free-flowing powders present a Hausner ratio 

< 1.25 [21]. 

 

A field-emission environmental scanning electron microscope, FEG-ESEM (QUANTA 

200FEG, FEI Company, USA) equipped with an energy-dispersive X-ray spectrometer 

(EDAX Genesis, USA) was used to analyse feedstock microstructure. 

 

2.2. Preparation and characterisation of the APS coatings 

TiO2 coatings were deposited by APS on metallic substrates (AISI 304) prepared as set 

out elsewhere [22]. The plasma spray system consisted of a gun (F4-MB, Sulzer Metco, 

Germany) operated by a robot (IRB 1400, ABB, Switzerland). The main spraying 

conditions are shown in Table 2, together with an estimate of plasma enthalpy [23]. 

Deposition was performed using argon as primary gas and hydrogen or helium as 

secondary gas. Helium gas was used to reduce the heat intensity of the plasma jet. In 

addition, the following spraying conditions were kept constant throughout all 

experiments: anode nozzle internal diameter = 6 mm, powder injector diameter = 2 mm, 

feedstock feed rate = 30 g/min, and scanning step = 4 mm. 
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Table 2. Main plasma spraying parameters used in the experiments 

Secondary 
plasma 

gas 

Ar 
(slpm) 

H2 
(slpm) 

He 
(slpm) 

(1)I 
(A) 

(2)d 
(m) 

(3)v 
(m/s) 

(4)
ΔH 

(MJ/kg) 

H2 38 14 --- 600 0.12 1 26 ± 2 
He 40 --- 20 600 0.12 1 12 ± 1 

slpm = standard litre per minute 
(1)I = arc intensity 
(2)d = spraying distance 
(3)v = spraying velocity 
(4)
ΔH = enthalpy 

 

A quantitative crystalline phase composition analysis from X-ray diffraction data was 

conducted based on the Rietveld refinement. The XRD patterns were obtained using a 

Theta-Theta model diffractometer (D8 Advance, Bruker, Germany) with CuKα 

radiation (λ = 1.54183 Å). The generator settings were 45 kV and 30 mA. The XRD 

data were collected in a 2θ of 5–90º with a step width of 0.015º and counting time of 

1.2 s/step, by means of a VÅNTEC-1 detector. Details of the Rietveld procedure have 

been reported elsewhere [17, 24]. Content (wt%) and crystallite size of the crystalline 

phases (anatase and rutile) were calculated by this method. 

 

Micrographs of cross-sections of the coatings were obtained with a SEM instrument 

(JSM6300, JEOL, Japan), and coating roughness was measured with a contact 

profilometer (HOMMELWERKE T8000 (HOMMELWERKE, Germany). The 

roughness test consisted of obtaining 81 profiles of 4.8-millimetre length until a 

topographic map of 4.8x4.8mm was created. The cut-off used to obtain the roughness 

parameter (Ra) after the measurements was 0.8 mm. 
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Finally, coating porosity and semi-melted particle fractions were evaluated by image 

analysis (Image pro-Plus, Media Cybernetics, Inc., USA) from ten backscattered electron 

mode micrographs at 400 magnifications obtained by SEM. [25]. 

 

2.3. Assessment of coating photocatalytic activity  

Coating photocatalytic activity was assessed by studying the decomposition of a 5 ppm 

methylene blue (MB) aqueous solution under UV radiation. Irradiation was performed 

in a chamber using a UV-lamp (λ=370 nm) with an intensity of 2.5 mW/cm2. The 

coated samples (disks) were immersed in a glass beaker containing 25 ml of a 5 ppm 

MB solution. MB solution absorbance was measured at 664 nm wavelength, which is 

the maximum absorption peak of MB, using a UV-visible spectrometer (Spectro SC, 

Labomed Inc., USA). In order to allow the MB to be adsorbed on the TiO2 surface, test 

pieces were kept in contact with the solution for 24 h in the dark. During this time, MB 

concentration decreased less than 10 % of the initial concentration. In addition, the dark 

test showed that the MB concentration hardly varied after 30 min contact of the MB 

solution with the coating. For this reason, the test pieces were kept in contact with the 

MB solution for 30 minutes in the dark, prior to irradiation, after which the MB 

concentration was determined. The samples were then continuously irradiated, a 6 ml 

volume being withdrawn after 1, 2, 3, 5, 7, 11, and 15 h irradiation to determine the 

concentration. The solution was stirred before each sampling and the withdrawn test 

liquid was returned to the solution after UV measurement. A blank sample with no 

coating was tested to evaluate the influence of UV radiation on the decrease in MB 

concentration by photolysis. 
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3. RESULTS AND DISCUSSION 

3.1. Characterisation of the feedstocks obtained by spray drying 

Figure 1 shows FEGSEM micrographs of the as-spray-dried powders obtained from all 

suspensions at different magnifications. The typical doughnut-shape morphology of 

spray-dried agglomerates was observed in certain granules of all powders [25]. In 

addition, the agglomerates displayed a quite homogeneous, spherical morphology. Most 

granule sizes ranged from approximately 10 μm to 200 μm. The presence of some 

satellite-like granules stuck to bigger ones was also observed. It was furthermore noted 

that sample 50Ts-50Tn (40 vol.%) was made up of more deformed (less spherical) 

granules with large inner holes inside the coarser granules. This was due to the high 

viscosity of the sample starting suspension as indicated in Table 1. That is, the higher 

the viscosity of the spray-drying suspension, the coarser and the more elongated were 

the resulting granules, as set out elsewhere [26]. Nevertheless, no clear tendencies could 

be established from the micrographs with regard to starting suspension characteristics 

and agglomerate size distribution. On the other hand, higher magnification of the solid 

areas of the agglomerates of all powders revealed that the granules were porous and 

formed by agglomeration of the individual nano- and submicron-sized particles. Again, 

differences could be observed between the samples. An increase in submicron-sized 

particle content in the starting suspensions thus seemed to give rise to a denser particle 

arrangement in the granules as a result of a better balance between coarse and fine 

particles. 
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Figure 1. Micrographs of the as-spray-dried powders obtained from all suspensions at 
different magnifications. 
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The granule size distributions of the two series of samples, measured by dry sieving, are 

shown in Figure 2. It should be noted that the minimum mesh aperture available for dry 

sieving was 45 μm. As may be observed, all powders exhibited similar, quite narrow 

granule size distributions except sample 0Ts-100Tn (100% nanoparticle content), in 

which the distribution shifted to coarser granule sizes with practically no granules 

below 60 μm. This shift was caused by the high viscosity of the sample starting 

suspension (see Table 1) [26]. It is generally recognised that thermal spray powders 

should adopt agglomerate size distributions ranging from 10 to 100 μm so that the 

feedstock can flow and melt during the plasma spray operation [9]. In this case, all the 

feedstocks contained coarser agglomerates, mainly within the 125-200 μm range due to 

the relatively high viscosity of the suspensions used to spray-dry. Nevertheless, 

according to previous research by the authors this coarser agglomerate fraction does not 

affect the feedstock sprayability in the plasma or the microstructure and final properties 

of the coatings [17, 25].  
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Figure 2. Granule size distributions measured by dry sieving: a) samples in which the 
ratio of the nano- to submicron-sized particles was changed; and b) samples in which 
the solids content of the starting suspensions was varied. 
 

Two other properties of interest in spray-dried powder feedstock for plasma spraying 

are plotted in Figure 3: the Hausner ratio, which is related to powder flowability, and 
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agglomerate bulk density, which is directly related to powder weight. According to the 

literature [9], relatively dense (higher than 1000 kg/m3 apparent density) and free-

flowing agglomerates are required for plasma torch feed. In general, all samples 

exhibited adequate characteristics for use as APS powders. However, certain differences 

could again be observed among the samples. With regard to agglomerate bulk density, 

raising submicron-sized particle content in the starting suspension led to significant 

enhancement of agglomerate density as a result of the better packing efficiency of the 

resulting bimodal (nano- and submicron-sized) particle size distribution (Figure 3a). 

Studies based on particle packing models have shown that the maximum packing 

density for bimodal distributions of spherical particles is found in mixtures comprising 

60–70 vol.% of coarse particles and 30–40 vol.% of finer particles, the latter filling the 

interstices created by the coarser ones [27]. On the other hand, as expected, raising 

starting suspension solids content gave rise to denser agglomerates (Figure 3b). Both 

findings confirmed the micrograph observations set out above. With regard to powder 

flowability, all samples could be considered free-flowing powders [28]. The small 

differences observed in sample Hausner ratios did not allow correlations between 

agglomerate characteristics and these ratios to be established (Figure 3c,d). In short, all 

analysed feedstocks met plasma spraying requirements with regard to agglomerate size 

distribution and density, as well as to powder flowability.  
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Figure 3. Variation of agglomerate bulk density and Hausner ratio respectively for: a) 
and c) powders in which the ratio of the nano- to submicron-sized particles was 
changed; and b) and d) powders in which the solids content of the starting suspension 
was varied. 

 

3.2 Coating microstructure and phase distribution  

As noted above, all powders were previously dry sieved at 200 μm mesh aperture to 

remove very coarse agglomerates. The resulting powders were then deposited by plasma 

spray under two different spraying conditions, i.e. using either hydrogen or helium as 

plasma secondary gas (Table 2). A total of 14 different types of coatings were thus 

plasma sprayed. The coating samples were assigned the same references as those used 

for their powder counterparts (Table 1). For the sake of simplicity, Figure 4 shows SEM 

micrographs of only 4 coatings obtained with H2 as secondary plasma gas. No 

significant differences were observed for the other coatings obtained with H2 and He. 

Micrographs of this type of coatings obtained from He can be observed in previous 
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research [17]. The coatings displayed the typical microstructure of TiO2 layers 

deposited from nanostructured or submicron-sized particle feedstock reported in the 

literature, according to which these coating microstructures basically comprise two 

clearly differentiated zones, yielding a bimodal structure [10, 16, 17, 29]. One coating 

region, which was completely melted, consisted mainly of an amorphous titania matrix 

with recrystallised nanometre-sized grains of rutile. Rietveld analysis revealed that the 

rutile crystallite size in the coatings ranged from 33 nm (coating 75Ts-25Tn obtained in 

H2) to 131 nm (coating 100Ts-0Tn obtained in He). The other coating region, which 

was only partially melted, largely retained the microstructure of a slightly sintered or 

non-sintered starting powder. This microstructure was therefore principally made up of 

nanometre- to submicron-sized grains of anatase. On the other hand the amount of 

unmelted zones appeared to increase as submicron-sized particle content in the 

feedstock rose. Figure 5 shows higher magnification micrographs of coatings 0Ts-

100Tn (100% nanoparticles in the powder feed) and 100Ts-0Tn (100% submicron-sized 

particles in the powder feed). As expected, the unmelted areas consisted basically of 

nanoparticles or submicron-sized particles that had undergone some degree of sintering. 

Thus, under given plasma spray conditions (plasma energy), the amount and size of the 

particles inside these unmelted zones obviously depended not only on the size of the 

particles making up the feedstock agglomerates (nanoparticles or submicron-sized 

particles), but also on other feedstock characteristics such as agglomerate size and 

density. The difficulty in analysing the structure of these unmelted zones made it hard to 

try to establish correlations between feedstock characteristics and unmelted zone 

microstructure.  
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a) b)

c) d)

a)a) b)

c) d)c) d)  

Figure 4. SEM micrographs of the coatings obtained using H2 as plasma gas from: a) 
0Ts-100Tn (100% nanoparticle feedstock, 30 vol.%); b) 50Ts-50Tn (50% submicron-
sized particle and 50% nanoparticle feedstock, 30 vol.%); c) 100Ts-0Tn (100% 
submicron-sized particle feedstock, 30 vol.%); and d) 50Ts-50Tn (50% submicron-sized 
particle and 50% nanoparticle feedstock, 40 vol.%) powders. 

 

Finally, with regard to porosity, all coatings were porous, exhibiting the typical lamellar 

structure of plasma sprayed coatings. Smaller pores were thus located within individual 

lamellae and larger pores were found along the interlamellar boundaries [30]. 
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a) b)a) b)  

Figure 5. Higher magnification SEM micrographs of the coatings obtained from: a) 0Ts-
100Tn (100% nanoparticle feedstock); and b) 100Ts-0Tn (100% submicron-sized 
particle feedstock) powders with He as plasma gas. 
 

In view of the above, the total porosity of the coatings, as well as the extent of the semi-

melted areas, was estimated by image analysis at 400 magnifications using a procedure 

set out elsewhere [25]. The porosity and semi-melted area data for all coatings are 

represented as histogram plots in Figure 6. This figure (left) shows that the porosity of 

all coatings displayed the values typically found in APS coatings. In general, porosity 

increases when helium gas is used owing to the lower plasma heat input [6, 16, 29]. 

However, unlike a previous study on nanostructured feedstocks [17], the effect of 

feedstock characteristics on coating porosity was also observed. It was thus noted that 

introducing submicron-sized particles in a nanostructured powder led to less reactive 

plasma torch feed, resulting in coatings with higher porosity. However, there was no 

direct relationship between submicron-sized particle content and porosity. This was 

because the increase in submicron-sized particles gave rise to denser agglomerates, 

contributing to lower coating porosity. With regard to the effect of starting suspension 

solids content on the porosity of the coatings obtained with the resulting feedstocks, the 

data suggest that coating porosity decreased as solids content increased, owing to the 
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higher density of the agglomerates obtained from the suspension with the higher solids 

content, as set out above. This confirms the results of a previous study on 

nanostructured Al2O3–TiO2 coatings [25]. However, sample 50Ts-50Tn (40 vol.%) 

departed from this trend, probably because of the high viscosity of the 40 vol.% 

suspension, which made it difficult to properly perform the spray-drying operation. In 

regard to the unmelted or partially melted areas, as expected, the use of helium as 

plasma gas led to a significant increase in these areas, owing to the lower plasma heat 

input provided by helium compared to that of hydrogen. In addition, when He gas was 

used, the extent of the semi-melted areas also rose significantly as the submicron-sized 

particle content in the feedstock increased. This confirmed the conclusions drawn from 

the micrographs shown in Fig. 4. In contrast, the extent of the unmelted areas in the 

coating displayed no clear trend with the feedstocks obtained from suspensions with 

different solids contents. This was probably because, as previously reported, porous 

nanozones are produced by two simultaneous, albeit antagonistic effects: the melting of 

agglomerates and the infiltration of the molten shell into the inner porosity of the 

agglomerates [5]. However, the effect of agglomerate porosity on the evolution of both 

phenomena is far from being proved. It may be noted that, on varying plasma spray 

conditions as well as feedstock characteristics, the extent of the unmelted areas went 

from 5% to almost 50%, as shown in Fig. 6. 
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Figure 6. Porosity and semi-melted areas respectively for: a) and c) coatings obtained 
from samples in which the ratio of the nano- to submicron-sized particles was changed; 
and b) and d) coatings obtained from samples in which the solids content was varied. 
 

With regard to the phases present in the final coatings, in all cases the coatings were 

mainly made up of variable amounts of rutile and anatase phases, with minor contents 

of Magneli phases as previously reported [31]. By way of illustration, Figure 7 shows 

the XRD patterns of two extreme samples: the coating obtained from 0Ts-100Tn 

feedstock (100% nanosized particles) and the coating obtained from 100Ts-0Tn 

feedstock (100% submicron-sized particles) deposited with hydrogen and helium. In 

both spectra, the coatings obtained with H2 exhibited a less crystalline pattern than those 

deposited with He. 
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Figure 7. XRD patterns of the coatings obtained in hydrogen and helium from: a) 0Ts-
100Tn feedstock (100% nanosized particles); and b) 100Ts-0Tn feedstock (100% 
submicron-sized particles). 
 

Using the Rietveld method, it was found that the main crystalline phase present in the 

coatings was rutile, ranging from 18 to 58 wt%. However, anatase is the most important 

phase for photocatalytic application. The calculated anatase content in all coatings is 

plotted in Figure 8. The coatings obtained with helium exhibited a much higher anatase 

phase content, regardless of the feedstock used [6, 29]. Regarding the influence of the 

starting powder, the two plots in Fig. 8 are very similar to the equivalent plots in Fig. 6, 

in particular for the coatings obtained with He, in which the extent of the unmelted areas 

and the anatase content were much higher. This similarity indicates that most of the 

anatase content in the coating was related to the unmelted areas, in which the starting 

anatase content was preserved without undergoing the anatase–rutile transition [15, 32]. 

These findings are in good agreement with the results reported in the literature [6, 10]. 

In this respect, most of the research on TiO2 APS coatings has demonstrated that the 

metastable anatase phase in these coatings is almost exclusively related to the presence 

of unmelted starting agglomerates. In fact, some authors [12] have shown there was a 

good linear fit between the areas of the partially melted or unmelted zones in the coating 

with the anatase content. 
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Figure 8. Anatase content in the coatings calculated by the Rietveld method for: a) 
feedstocks in which the ratio of the nano- to submicron-sized particles was changed; 
and b) feedstocks in which the solids content was varied. 
 

Nevertheless, although other authors [16, 33] have showed that some anatase is 

encountered even when the feeding powder is purely rutile, the resulting anatase content 

in the coating was always much lower than that obtained when anatase powder 

feedstocks were used. Thus, when the anatase content in the coatings was plotted versus 

the extent of the unmelted areas (Figure 9), although data scattering is observed, the plot 

suggests that the anatase particles preserved in the unmelted areas provided the most 

relevant contribution to the anatase content in the coating. 
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Figure 9. Relationship between anatase content and extent of the unmelted areas for all 
coatings: a) feedstocks in which the ratio of the nano- to submicron-sized particles was 
changed; and b) feedstocks in which the solids content of the starting suspensions was 
varied. 
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The anatase crystallite size (in nm), calculated by the Rietveld method, is also detailed 

on the top of each histogram in Fig. 8. In general, when less energetic conditions were 

used (He gas) during plasma deposition, there was a good relationship between the 

crystallite size of the anatase phase and the ratio of the nano- to submicron-sized 

particles in the feedstocks. That is, the higher the amount of submicron-sized particles, 

the coarser was the crystallite size. This again confirmed that most of the anatase phase 

present in the coating was related to the preserved, partially melted areas. On the other 

hand, anatase crystallite size was observed to increase in most coatings when H2 was 

used as secondary gas instead of He. Hydrogen enhanced heat transfer from the plasma 

to the feed, raising particle temperature and heightening the sintering effect. This was 

particularly noticeable in the coating obtained from the 0Ts-100Tn feedstock (100% 

nanoparticles), in which the enhancement of crystallite size on switching from He to H2 

was very pronounced. This was because the plasma energy was sufficiently large to 

significantly reduce the extent of unmelted zones and to promote nanoparticle growth 

by sintering. 

 

Finally, roughness (Ra parameter) was measured of all coatings. Small differences were 

observed between the coatings. The Ra values ranged from 3.5 ± 0.3 μm (coating 0Ts-

100Tn) to 5.7 ± 0.4 μm (coating 100Ts-0Tn). 

 

3.3 Assessment of coating photocatalytic activity 

Coating photocatalytic activity was determined by measuring the degradation of 

methylene blue (MB) dye in an aqueous solution. For the sake of simplicity, Fig. 10 

shows the variation in MB concentration with irradiation time for the solutions in 
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contact with only three representative coating samples: 0Ts-100Tn, 100Ts-0Tn, and 

50Ts-50Tn (30 vol.%) together with a blank substrate. 
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Figure 10. Variation of MB concentration with irradiation time for the solutions in contact with 

three representative coating samples: 0Ts-100Tn (100% nanoparticle feedstock); 100Ts-0Tn 

(100% submicron-sized particle feedstock); and 50Ts-50Tn (30 vol.%) together with a blank 

substrate. 

 

As can be seen, there were clear differences in the MB concentrations at each irradiation 

time. The coated samples exhibited a pronounced decrease in MB concentration, 

whereas the blank substrate displayed no significant degradation after UV irradiation. 

This confirmed the photocatalytic activity of the tested coatings. Similar results were 

obtained for all coatings, regardless of the feedstock used. 
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The variation in MB concentration with time may be plotted using a first-order kinetic 

equation, as previously reported [11]. The constant of photocatalytic activity k (h-1) can 

then be calculated from the kinetic equation fit. A higher value of k means a faster 

degradation rate of the organic molecule of MB, i.e. higher photocatalytic activity.  

 

The rate constants determined from the kinetic model for all coatings are shown as 

histogram plots in Figure 11. The correlation coefficients of the kinetic equation fit are 

included on the top of each bar. The correlation coefficients for all samples but one 

were higher than 0.985, indicating reasonably good fit of the experimental data to the 

kinetic model. A similar fit was found by the authors in previous research [11, 17]. To 

better understand the magnitude of the photocatalytic effect of these coatings, it may be 

noted that a sol-gel, TiO2 commercial photocatalytic coating exhibited a rate constant of 

5.98 ± 0.95∙10-2 h-1 [17]. 
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Figure 11. Rate constants determined from the kinetic model for coatings obtained 
from: a) feedstocks in which the ratio of the nano- to submicron-sized particles was 
changed; and b) feedstocks in which the solids content of the starting suspensions was 
varied. 

 

As may be observed in Fig. 11, in general, the photocatalytic effect represented by the k 

values of the coatings obtained in this study was higher than that of the commercial 
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product. In fact, certain k values doubled that of the commercial layer. However, any 

direct comparison between sol-gel and APS coatings should be performed with great 

caution because the microstructure and, more importantly, the thickness of these types 

of layers are quite different. On the other hand, as Fig. 8 led to expect, the coatings 

obtained with He displayed higher photocatalytic activity than those projected with H2, 

owing to the higher preserved anatase phase content. The coatings deposited from 

feedstocks made up of mixtures of nanometric and submicronic particles therefore 

exhibited greater photocatalytic activity than that of the coating obtained from the 0Ts-

100Tn feedstock. In fact, except sample 100Ts-0Tn (which did not follow the expected 

trend), when the amount of submicron-sized particles in the feedstock increased, the 

photocatalytic activity of the resulting coatings rose. This confirmed previous research 

in which the photocatalytic activity of different nanostructured feedstocks and one 

nano- and submicron-sized TiO2 feedstock was first compared [17]. Finally, the 

photocatalytic activity of the coatings obtained from the feedstocks in which the 

suspension solids content was varied (coatings T2, T20, and T40), plotted in Fig. 11b, 

was very similar in the three cases, without presenting any clear trend, though the 

preserved anatase phase content in the coatings exhibited some differences. 

 

The value of k versus anatase content of all the obtained coatings is plotted in Figure 12. 

To better understand the plot, the composition of the sample in terms of 

nano/submicron-sized particles or the vol.% concentration indicated in Table 1 was left 

as a reference of the different samples. As can be seen, although the data exhibit 

significant scattering, the photocatalytic activity of the coatings for the MB conversion 

displayed some correlation with the anatase phase content. This is consistent with a 
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substantial part of relevant publications [10, 13, 29]. Consequently, higher anatase 

phase content led to faster degradation of MB. On the other hand, the fact that higher 

photocatalytic activity was obtained for feedstocks comprising mixtures of nano- and 

submicron-sized titania powders confirmed that anatase content played a greater role 

than anatase crystallite size, provided the sufficiently fine anatase phase crystals 

(nanometre- or submicrometre-sized) [13, 34]. In addition, Figure 12 evidences that 

coatings containing nearly 0% anatase also exhibited non-negligible photocatalytic 

activity. In fact, other authors have reported photocatalytic activity of plasma sprayed 

titania coatings mainly made up of rutile [7, 35], although no justification for this 

behaviour has been put forward.  
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Figure 12. k values versus anatase content for all obtained coatings. Note that the 
composition (nano/submicron-sized particles) or the vol.% concentration of the starting 
suspensions for feedstock samples indicated in Table 1 was left as a reference of the 
different coatings. 
 

The lack of a unique correlation between photocatalytic activity and anatase content is 

far from being unexpected. In a recent review of some misconceptions of photocatalysis 

research, Ohtani states that photocatalytic activity cannot be explained by just one 

variable or parameter of the layer while it is still unclear which properties of the 

photocatalyst are significant and how many parameters are required for a description of 

photocatalytic activity [36].  



 27 

The recent research on photocatalytic TiO2 coatings obtained by different plasma 

spraying methods appears to be consistent with this last statement. This suggests that 

photocatalytic activity arises from a combination of structural and chemical parameters. 

Ctibor et al. found that the best plasma sprayed TiO2 coating in terms of photocatalytic 

activity exhibited higher porosity, medium roughness, some –OH groups on the surface 

and more surprisingly interstitial nitrogen atoms coming from the ambient air that 

surrounded the plasma [7]. In this same sense, a research on the effect of H2 plasma gas 

on the presence of these –OH groups could be addressed. Nevertheless, in other studies, 

porosity or surface roughness has been also proved not to significantly influence 

photocatalytic activity at least with regard to the porosity and roughness variations 

found in plasma spray coatings [11, 17]. In fact, the present research has shown the 

secondary role of these structural parameters in comparison with anatase content. Toma 

et al. [37] also highlight the role played by the hydroxylation state of the coating surface 

in enhancing photocatalytic performance. Finally, other authors state that, since the 

plasma used for thermal spraying is a strong UV-light source, photogenerated holes can 

yield the formation of surface-bound hydroxyl groups, which are oxidising agents and 

play important roles in photocatalytic reactions [38]. However, it should be noted that 

all the research mentioned has been carried out on the basis of a wide variety of model 

compounds (liquids and gases) and methods, which makes it very difficult to draw clear 

conclusions. Consequently, as the TiO2 photocatalytic reaction is a surface reaction, the 

characterisation of surface states in regard to the chemisorbed species, as well as to the 

presence of vacancies and impurities, should be addressed. Further research is therefore 

required to clarify the role of the coating surface in the photocatalytic activity of plasma 

spray TiO2 coatings. Research to characterise the surface by XPS, Raman and IR 
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spectroscopy, as well as the determination of the band gap by UV-visible spectroscopy, 

is now in progress for certain selected coatings.  

 

4. CONCLUSIONS 

A nanostructured and a submicron-sized TiO2 powder were used to prepare feedstocks 

for deposition by atmospheric plasma spraying. The feedstocks were obtained from 

concentrated suspensions in which the solids contents and/or the ratios of the nano- to 

submicron-sized particles were conveniently varied. The suspensions were then spray-

dried to obtain APS feedstocks. These powders were characterised in terms of plasma 

spraying requirements. 

 

All powders met the recommendations set out in the literature with regard to 

agglomerate size and density as well as to powder flowability. The feedstock obtained 

from the 100% nanoparticle suspension exhibited a larger amount of finer (<45 μm) 

agglomerate size fraction. Higher solids content in the starting suspension gave rise to 

denser agglomerates. Maximum agglomerate density was obtained from binary 

mixtures of nano- and submicron-sized particles when the mixture approached the 

optimum volume ratio of 60 coarse (submicron-sized)/40 fine (nanosized) particles of 

the ideal (spherical) particle packing models.  

 

Regardless of the feedstock used, all coatings displayed a bimodal microstructure with 

partially melted agglomerates that retained the initial nano- or submicron-sized structure 

of the feedstock surrounded by a fully melted matrix. As expected, coating porosity and 

the amount of partially melted areas increased when helium was used as plasma 
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secondary gas instead of hydrogen, owing to the lower plasma heat input. The increased 

proportion of submicron-sized particles in the feedstock also contributed significantly to 

the rise in unmelted areas, which reached up to almost 50% of the total coating cross-

section. In all cases, the coatings were mainly made up of rutile (18–58 wt%) and 

anatase (1.2–19 wt%), the preserved anatase particles in the unmelted areas being the 

most relevant contribution to the anatase content in the final coatings. In addition, 

anatase crystallite size increased when H2 was used as plasma gas instead of He, owing 

to the higher sintering effect provided by the hydrogen plasma.  

 

The degradation of methylene blue (MB) dye in an aqueous solution was used as a 

method to assess the photocatalytic activity of the coatings. A reasonably good fit of a 

first-order kinetic model to experimental data was found for all coatings. The kinetic 

constants obtained displayed higher values than those of a commercial sol-gel coating. 

When submicron-sized particle content increased, photocatalytic activity was enhanced, 

owing to the greater amount of anatase phase preserved in the unmelted areas of the 

coatings. Although a direct correlation was found between anatase content and 

photocatalytic activity, the significant data scattering observed indicates the contribution 

of other factors apart from coating anatase content, in particular those related to the 

coating surface. 
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