
Universitat Politècnica de València

Dep. de Sistemas Informáticos y Computación

Máster Universitario en Ingenieŕıa y Tecnoloǵıa de
Sistemas Software

Master Thesis

Logical Models for Automated
Semantics-Directed Program Analysis

Candidate:

Patricio Reinoso Mendoza

Supervisors:

Salvador Lucas, Raúl Gutiérrez

July 2015

Partially supported by the EU (FEDER), Spanish MINECO project TIN 2013-45732-
C4-1-P and GV project PROMETEO/2015/013.

Author’s address:

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia
Camino de Vera, s/n
46022 Valencia
España

To my beloved wife Lucia, my soulmate and partner. This year studying abroad
becomes one of the greatest experiences in our lives, and I am thankful to have you

by my side supporting me in this endevour.
I love you.

Acknowledgments

I want to thank to Salvador Lucas and Raúl Gutiérrez. Their great experience and
expertise in this area of knowledge, was invaluable during the project execution.

July, 2015

Patricio Reinoso Mendoza

Abstract

In Computer Science and Software Engineering, even at this time, when huge hard-
ware and software resources are available, the problem of checking correctness of an
specific piece of software is a very complicated one. Since the manual inspection of
software is a difficult and error prone task, we propose as the main objective of this
thesis the development of a tool which is able to generate logical models which can be
used as a basis for semantics directed program analysis. To develop this tool, we rely
on Order-Sorted First-Order Logic, which is the logic we use to define our programs
and properties to be analyzed. We use this logic because it is sufficiently expressive
to be used in the semantic description of most programming languages. Also, we
use Convex Domain Interpretations as a flexible and computationally suitable basis
for our derived models. We will also use polynomial interpretations and we will deal
with conditional polynomial constraints, which are amenable for automating tests of
properties written in order-sorted first-order logic. We have developed an automatic
test tool, named AGES, which applies the aforementioned theoretical framework to
implement the automated generation of models using convex domains and conditional
polynomial constraints. The tool accepts Order-Sorted First-Order theories written
in MAUDE, transforms them into a set of polynomial constraints, and then solves
those constraints using an external SMT solver tool. The outcome of the constraint
solver is used to assemble a logical model for the initial theory, which often can be
used later to test other properties (termination, correctness, etc). The tool is written
in Haskell to mutually exploit synergies between the functionalities provided by AGES
and the functionalities provided by the mu-term tool.

Contents

1 Introduction 1

1.1 Automatic program analysis and verification 1

1.2 Logical-based programming and program analysis 2

1.2.1 A running example: browsing a web site 3

1.3 Models for Order-Sorted First-Order Logic 5

1.4 Automatic generation of models . 6

1.5 Plan of the thesis . 9

2 Preliminaries 11

2.1 Order-Sorted First-Order Logic . 11

2.1.1 Sorts and order-sorted signatures 11

2.1.2 Theories, Specifications and programs. 12

2.1.3 Structures, Satisfaction, Models 12

2.1.4 Derived Models . 13

2.2 Convex Domains . 15

2.2.1 Domains . 15

2.2.2 Functions . 15

2.3 Conditional Polynomial Constraints 16

3 Formal treatment of a verification problem 17

3.1 Defining the theory . 17

3.2 Defining the model using convex domains 19

3.2.1 Domains for sorts . 19

3.2.2 Interpretation of function symbols 20

3.2.3 Interpretation of predicate symbols 21

3.2.4 Derived theory . 21

3.2.5 Specific Conditions for the Analysis 21

4 The AGES Tool 23

4.1 Internal structure and work flow . 23

4.2 Input data and data format . 25

4.2.1 MAUDE program syntax . 25

4.2.2 Goal Definition and Format . 29

4.3 A short user manual . 30

4.3.1 Web Based Application . 30

4.3.2 Console Application . 31

ii Contents

5 Practical Implementation 33
5.1 Development Environment . 33

5.1.1 Haskell Compiler . 33
5.1.2 Cabal Installer . 34
5.1.3 mu-term Framework . 34
5.1.4 mu-term Initial Setup . 34

5.2 Implementing AGES using mu-term 35
5.2.1 Maude Parser Module . 35
5.2.2 Command Line Interface Parameters 37

5.3 New Modules . 40
5.3.1 Goal Parser . 40
5.3.2 Generating convex domains . 43
5.3.3 Generating Polynomial Interpretations 46
5.3.4 Specialization of the input specification using the inference rules 47
5.3.5 Final Transformations and Solver Execution 55

5.4 SMT Solver . 58

6 Conclusions and Future Work 61
6.1 Conclusions . 61
6.2 Future Work . 61

Bibliography 63

List of Figures

1.1 Inference rules for Order-Sorted TRSs R 3
1.2 Maude Specification of part of the WWV05 website 4
1.3 WWV05 Website Home Page . 5

4.1 AGES Workflow . 24
4.2 AGES Web App Main Page . 31
4.3 AGES console application help . 32

5.1 Command Line Arguments . 40

iv List of Figures

1
Introduction

“Even when coping with many rules of good design and programming,
programs may still contain errors” (Doron A. Peled)

In Computer Science, even at this time, with modern computer systems involving
complex hardware and software, ensuring the correctness of the running software is
a problem. This problem highly depends on the context of the application. For
instance, in critical systems (e.g., a flight controller module inside an airplane, or a
nuclear power plant control software), we need to guarantee total safety to all users
of the service.

The manual inspection of complex software is usually a very expensive, time con-
suming, and error prone task. Here is where the need of automatic verification tools
arise. Some tools try to find errors in the execution using test sets to detect condi-
tions of the ejecution leading a given piece of code to fail. Formal verification tools
check the program behaviour for every possible input condition. Such kind of tools,
however, are in an early stage of maturity. In this thesis, we try to contribute to the
development of such tools.

1.1 Automatic program analysis and verification

Manual software analysis and verification is a time consuming and error prone task.
Analizing a small piece of software by hand is easy in some cases, but for complex
software with thousand or maybe millions of lines of code, this is unfeasible. Further-
more, considering that some mission critical software requires total reliability, such
a verification cannot be done by humans, and requires automated and reliable tools.
Minimal requirements for such automatic verification tools are the following:

• The verification needs to be correct. This means that the conclusions drawn
by the tool must fit the real behavior of the system, according to its formal
definition.

• The verification process must be highly automated and scalable to handle com-
plex software.

2 1. Introduction

The first requirement, is the most important one: reliability of the analysis requires
that the algorithms and theories used in the software verification must be correct. We
can achieve this requirement by using semantics-based analysis techniques [16] so that
correctness of the analysis is guaranteed by construction. The second requirement is
more difficult to achieve. Even when full automation is possible, the time invested in
the process cannot be excessive. Also, if the verification tool cannot work with real
code, it will be useless in an industrial application.

Nowadays, automated verification tools are in their childhood stage. However,
new theories and algorithms are developed in research laboratories and new tools are
developed and implemented. The quest for tools that can be helpful for developers
to create safe and correct industrial software continues.

1.2 Logical-based programming and program anal-
ysis

We are interested in developing general techniques for automated program analysis.
For this purpose, some issues need to be clarified:

• What kind of programs are we interested in?

• What does running a program mean?

• Which program properties are at stake?

• How to check such properties in finite time?

• Is automation possible?

Logic is a unifying framework that provides answers to all these questions:

• A program is a theory S of a given logic L [15].

• Running a program is proving a specific kind of sentence (a goal) with respect
to the theory S using the inference system of the logic L [15].

• We can use a logic language to encode program properties as sentences ϕ of a
logic, possibly referring the theory S [14].

• Checking a program property ϕ can be seen as a decision problem for the logic
L and theory S.

• Automation is possible by using decidable theories where algorithms are avail-
able to check satisfaction of a formula [17].

As suggested by Goguen and Meseguer [6], order-sorted first-order logic (OS-FOL)
provides a sufficiently powerful working framework for declarative programming lan-
guages. Essential ingredients inthe language of this logic are:

1.2. Logical-based programming and program analysis 3

(Rf) t→∗ t (T)
t→ t′ t′ →∗ u

t→∗ u

(C)
ti → t′i

f(t1, . . . , ti, . . . , tk)→ f(t1, . . . , t
′
i, . . . , tk) (Re) `→ r

where f ∈ Σw,s, w = s1, . . . , sk, and 1 ≤ i ≤ k where `→ r ∈ R

Figure 1.1: Inference rules for Order-Sorted TRSs R

• A set S of sorts which are ordered in a subsort relation 6 which means subset
inclusion.

• Sets Σw,s and Πs,s of function and predicate symbols where s ∈ S and w is a
sequence s1 . . . sk of sorts from S.

We will use OS-FOL to represent declarative programs, semantics of programming
languajes and properties.

Remark 1 An important special case of OS-FOL is the logic of Order-Sorted Term
Rewriting Systems (OS-TRSs) where only two predicate symbols are allowed: → and
→∗. Such predicate symbols are used to describe computations with OS-TRSs as
defined by means of the inference system in Figure 1.1. The programs considered in
the examples given in this thesis are OS-TRSs which consist of sets R of rules `→ r,
where ` and r are terms (more precise definitions are given below).

The algebraic specification and programming language Maude [2] supports OS-FOL
expressivity. Of course, this does not mean that the use of OS-FOL is limited to such
kind of languages. In the following, we focus on the development of techniques for
automated analysis of programs in OS-FOL. First, we illustrate the approach with a
simple example [10].

1.2.1 A running example: browsing a web site

As an example of program which can be seen as an order-sorted first-order theory, we
will use the Maude program in Figure 1.2. This program represents the connectivity
of a subset of web pages in the web site of the First International Workshop on
Automated Specification and Verification of Websites (WWV05).

http://www.dsic.upv.es/workshops/wwv05/

The web pages are modeled as terms p(u) where p is the specific web page and u
represents the type of user who browses the web site, and the transitions between the
pages are defined as rewrite rules. A screenshot of the homepage of the website can
be found in Figure 1.3.

Web pages are classified in two types: regular pages, and restricted access pages.
These are defined by terms of sort WebPage and SecureWebPage, respectively. The

http://www.dsic.upv.es/workshops/wwv05/

4 1. Introduction

mod WWV05-WEBSITE is

sorts EventualUser RegUser User WebPage SecureWebPage .

subsorts RegUser EventualUser < User .

subsorts SecureWebPage < WebPage .

ops login register sbmlink submission wwv05 : User -> WebPage .

op vlogin : User -> SecureWebPage .

op submit : RegUser -> SecureWebPage .

var R : RegUser .

var U : User .

rl wwv05(U) => submission(U) .

rl submission(U) => sbmlink(U) .

rl sbmlink(U) => login(U) .

rl sbmlink(U) => register(U) .

rl login(U) => vlogin(U) .

rl vlogin(U) => submit(R) .

rl login(U) => vlogin(U) .

rl vlogin(R) => submit(R) .

endm

Figure 1.2: Maude Specification of part of the WWV05 website

fact that secure web pages are special web pages is modeled by means of the subsort
relation between them.

For the users, the situation is similar, because there are two subtypes of users: reg-
istered users and eventual users. They correspond to terms of sort User, EventualUser
and RegUser, with their respective subsort relationship.

As an example of program property to be checked in this example, we consider
the following:

if u is able to reach the submission page from the main page, then u must
be a registered user, and cannot be an eventual user.

In other words, we want to guarantee secure access to special web pages for specific
(registered) users only. We can express this property using OS-FOL sentences as well:

∀u : User, wwv05(u)→∗ submit(u) ⇒ ¬(u : EventualUser) (1.1)

∀u : User, wwv05(u)→∗ submit(u) ⇒ u : RegUser (1.2)

How do we check that these sentences hold? The following section discusses this
problem according to [10].

1.3. Models for Order-Sorted First-Order Logic 5

Figure 1.3: WWV05 Website Home Page

1.3 Models for Order-Sorted First-Order Logic

The automatic generation of models of theories (in this case, for Order-Sorted First-
Order Logic) is essential in automated analysis. Models are just algebraic structures
A interpreting the syntactic components of the language of a logic L [9]: sorts s
are interpreted as sets of values As, usually called domains; function symbols f as
mappings fA taking and returning values in the corresponding domains; predicate
symbols P are interpreted as relations among the semantic domains. Given a theory
S of a logic L, we say that a structure A is a model of S if all formulae in S are true
when interpreted according to A (precise definitions are given below).

Models are important because they provide a way to simulate, with some degree
of abstraction, the computational relations (that can be the one step transition →,
many steps transition →∗, etc.) associated to programs, and defined by means of the
inference system of a computational logic. Also, we can use these automatically gen-
erated components of the models (relations, interpretations of function symbols, etc.)
to implement proofs in semantics-based and semantics-directed program analysis.

Remark 2 Semantics-based program analysis are those where the information pro-
vided by the analysis can be proved to be safe (or correct) with respect to a semantics
of the programming language [16, page 3]. We call it semantics-directed, if it is not
only based on the semantics of the programming language but also the structure of
the analysis reflects the structure of the semantics (cf. [16, page 3]).

In program analysis, semantic structures A′ [9] leading to decidable theories Th(A′)
[17] can be used to provide an effective way to find logical models A for the specifi-
cation S and also to check whether the properties at stake (regarding S) hold. This
is often possible by using simple theory transformations κ from the language of S

6 1. Introduction

into the language of Th(A′) to obtain a set of sentences S ′ = κ(S) which is then
decidable. This has been formalized in [10] by extending the notion of derived algebra
[8] to logical structures.

Example 3
The interpretation of sorts User, RegUser and EventualUser as [0, 1], {0}, and {1},
respectively, the sort inclusion expressions in the specification WWV05-WEBSITE as set
memberships, together with the interpretation of symbols as arithmetic operations
(for instance, wwv05 interpreted as the identity function and submit as x + x), and
the interpretation of →∗ (viewed as a binary predicate) as the equality of natural
numberes, lead to the translation of formulae (3.19) and (3.20) into the arithmetic
sentences

∀u ∈ [0, 1], u = u+ u ⇒ u 6= 1

and

∀u ∈ [0, 1], u = u+ u ⇒ u = 0

respectively. It is not difficult to see that, under the intended interpretation of the
arithmetic symbols in there, both are actually equivalent to

∀u ∈ [0, 1], u = u+ u ⇒ u = 0 (1.3)

which is true. This is an example of how a derived model for a theory WWV05-WEBSITE

can be obtained from an intended model of a transformed theory (essentially arith-
metic, in this case). The complete technical details are developed in [10] and further
discussed below with regard to the mechanization of the whole proof.

1.4 Automatic generation of models

The human-guided Example 3 follows a top-down approach that starts with an human-
defined structure A, which is used to check that it is a model of S. The automatic
generation of a model is rather a bottom-up process, where everything remains un-
specified until we can obtain a succesful attemp to solve constraints obtained from
S. The obtained solution is used later to synthetize a structure which represents a
model of S. This is acomplished as follows:

Parameterization

The components of the model are made parametric so that from a single collection
of similar sets, functions, etc., we can obtain different instancies by giving specific
values to the parameters.

1. Sorts s ∈ S are interpreted as specific cases As of a class of domains. In
particular, we use the convex domains introduced in [11] and the corresponding

1.4. Automatic generation of models 7

adaptation to the order-sorted setting discussed in [10]. Convex domains D(C,~b)

are sets of vectors ~x ∈ Rn which are defined by means inequalities C~x ≥ ~b for
some matrix C and vector ~b, i.e., D(C,~b) = {x ∈ Rn | C~x ≥ ~b}. The advantage
of convex domains is that are defined by means of linear inequalitites which
are easy to handle by means of standard techniques from linear algebra [18].
Examples of convex domains are

• the emptyset D(C,~b) = ∅ if C = (0) and ~b = (1);

• the singleton {0}: D(C,~b) = {0} if C = (1,−1)T and ~b = (0, 0)T ;

• the interval [0, 1]: D(C,~b) = [0, 1] if C = (1,−1)T and ~b = (0,−1)T ; and

• the set of non-negative numbers [0,+∞): D(C,~b) = [0,+∞) if C = (1) and
~b = (0).

All these domains are particular cases of two kinds of parametric convex do-
mains: D(C1, ~b1) where C1 = (c1) and ~b1 = (b1) for parameters c1 and b1
ranging on appropriate (usually finite or bounded, for automation purposes)

subsets of real numbers, and D(C2, ~b2) where C2 = (c′1, c
′
2)T and ~b2 = (b′1, b

′
2),

where c′1, c′2, b′1 and b′2 are also parameters.

2. The syntactic objects are given parametric interpretations of a given type, usu-
ally chosen according to their amenability to automation. For instance, function
symbols can be given linear polynomials a1x1 + a2x2 + · · · + akxk + a0, where
a0, a1, . . . , ak are parameters. More general polynomials, or other kind of func-
tions can be considered.

3. Sentences φ ∈ S are used to obtain a new set S ′ of parametric sentences φ]

with existentially quantified parameters a1, . . . , an. Such parameters range over
appropriate domains D1, . . . , Dn.

4. S ′ is treated as a constraint whose solutions σ = {ai 7→ di | 1 ≤ i ≤ n} make
σ(φ]) (an instantiation of the parameters in φ]) true.

Example 4

Although sentence (1.3) in Example 3 (call it φ) clearly holds, it is usually desirable
to introduce some flexibility in the definition of the derived model so that we succeed
more often. Typically, this is achieved by introducing parameters whose value can be
freely given, often by means of some controlled search process (for automation). For
instance, instead of φ, we could write the following parametric sentence φ]

∀u ∈ [0, 1], u = a1u+ a2u ⇒ u = 0 (1.4)

where a1 and a2 range over the naturals (for instance). Clearly, φ is a particular case
of φ], if a1 = a2 = 1. Note, however, that a1 = a2 = 0 does not make it true!

8 1. Introduction

In general, the satisfaction of a derived sentence may depend on the specific inter-
pretation which is used for the symbols. Parameters are useful to bring flexibility
into the definition of a model so that we can ‘recover’ from a failing attempt to find a
model: just try another combination of parameters. Typically, this is implemented by
means of some constraint solving mechanism that seeks for appropriate instantiations
σ of the parameters of a parametric formula φ] in a suitable, possibly finite, set of
values in such a way that the instantiated formula σ(φ]) true.

In the following section, we end this sketch of mechanization techniques by briefly
explaining how to deal with implications (like the ones occurring in the previous
examples) in a systematic way which, together with constraint solving mechanisms,
is essential for a full automation of model generation.

Dealing with implications

An important issue is handling formulae containing implications as in the previous ex-
amples. For sentences involving arithmetical expressions only, a number of techniques
from linear algebra and real algebraic geometry are helpful for that. In particular the
Affine form of Farkas’ Lemma considered in [11, Section 5.1], can be used to deal
with linear conditional constraints like those in Examples 3 and 4 that consist of im-
plications

∧pi
j=1 eij ≥ dij ⇒ ei ≥ di, where for all i ∈ {1, . . . , k}, pi > 0 and for all

j, 1 ≤ j ≤ pi, eij and ei are linear expressions1 and dij , di ∈ R. We say that these
implications are in affine form. In general, given ~c ∈ Rn and β ∈ R, the affine form
of Farkas’ Lemma can be used to check whether a constraint ~cT~x ≥ β holds whenever
~x ranges on the set S of solutions ~x ∈ Rn of a linear system A~x ≥ ~b of k inequalities,
i.e., A is a matrix of k rows and n columns and ~b ∈ Rk. According to Farkas’ Lemma,
we have to find a vector ~λ of k non-negative numbers ~λ ∈ Rk0 such that ~c = AT~λ and
~λT~b ≥ β.

Example 5
We can write (1.4) to fit the affine form above as follows:

u ≥ 0 ∧ −u ≥ −1 ∧ (1− a1 − a2)u ≥ 0 ∧ (a1 + a2 − 1)u ≥ 0 ⇒ u ≥ 0 (1.5)

u ≥ 0 ∧ −u ≥ −1 ∧ (1− a1 − a2)u ≥ 0 ∧ (a1 + a2 − 1)u ≥ 0 ⇒ −u ≥ 0 (1.6)

Note that only u is considered a variable in the linear expressions; a1 and a2 are
viewed as parameters and 1 − a1 − a2 and a1 + a2 − 1 are viewed as coefficients
accompanying variable u in the linear expression. Note also that we obtain a logically
equivalent set of two implications due to the conjunction of two affine inequalities
u ≥ 0 ∧ −u ≥ 0 which are equivalent to u = 0 in the consequent of (1.4). Now, we
apply Farkas’ lemma to each of them. Both (1.5) and (1.6) have the same associated
matrix A, which is actually a four components vector (a row per inequality in the
antecedent of the implications (1.5) and (1.6))

(1,−1, 1− a1 − a2, a1 + a2 − 1)T .

1note that e = e′ if and only if e ≥ e′ and e′ ≥ e

1.5. Plan of the thesis 9

Similarly, we have the same vector ~b = (0,−1, 0, 0)T in both cases. For (1.5), ~c is
actually a one-dimensional vector (1) and β = 0. For (1.6) ~c is (−1) and β = 0.

For (1.5), the application of Farkas’ Lemma seeks a vector ~λ = (λ1, λ2, λ3, λ4)T

with λ1, λ2, λ3, λ4 ≥ 0 that satisfies the following two (in)equations:

1 = λ1 − λ2 + (1− a1 − a2)λ3 + (a1 + a2 − 1)λ4 −λ2 ≥ 0

for some values of the parameters a1 and a2. Note that, since λ2 ≥ 0, the second
inequality imposes λ2 = 0. Hence, we have to solve the equality

1 = λ1 + (1− a1 − a2)λ3 + (a1 + a2 − 1)λ4

For (1.6), we seek some ~λ′ = (λ′1, λ
′
2, λ
′
3, λ
′
4)T with λ′1, λ

′
2, λ
′
3, λ
′
4 ≥ 0 that satisfies

−1 = λ′1 − λ′2 + (1− a1 − a2)λ′3 + (a1 + a2 − 1)λ′4 −λ′2 ≥ 0

or, as before,
−1 = λ′1 + (1− a1 − a2)λ′3 + (a1 + a2 − 1)λ′4

for some values of the parameters a1 and a2. Note, however, that the values associated
to a1 and a2 should be the same in both cases as they represent ingredients defining
the same semantic structure. Thus, we need a single solution for the set of equations

1 = λ1 + (1− a1 − a2)λ3 + (a1 + a2 − 1)λ4

−1 = λ′1 + (1− a1 − a2)λ′3 + (a1 + a2 − 1)λ′4

A solution is

a1 = a2 = 1 λ1 = λ3 = λ′3 = λ4 = 1 λ′1 = λ′4 = 0.

Another solution is

a2 = 2 a1 = 0 λ1 = λ3 = 2 λ′3 = λ4 = 1 λ′1 = λ′4 = 0

These solutions can be obtained by using automatic tools for arithmetic constraint
solving like MultiSolver2, as we used in this example.

1.5 Plan of the thesis

This thesis develops a first implementation of the logical-based verification approach
sketched above for order-sorted first-order logic. We follow the formalization de-
veloped in [10, 11], which supports the methodology described above. This thesis,
though, also provides an account of several practical issues concerning the mecha-
nization of the approach which are useful to clarify and better understand how to use
it.

The main outcome of the thesis is the tool AGES, which stands for

2http://zenon.dsic.upv.es/multisolver/

http://zenon.dsic.upv.es/multisolver/

10 1. Introduction

Automatic GEneration of logical modelS

and generates logical models for order-sorted first-order theories. The tool generates
models using the convex domains technique. The tool is useful to validate handcrafted
solutions of considered problems, and also to extend the analysis in other directions.

This tool is able to:

• Read an Order-Sorted First-Order theory S given as a Maude program.

• Read a Goal to be tested.

• Parse the theory and the goal into a mu-term variable

• Generate a set of logic formulae from the input theory, the inference rules and
the goal.

• Implements the generation of convex domains and the use of convex matrix
interpretations in the generation of models.

• Generate arithmetic constraints and solve them using an SMT solver.

• Return the obtained model.

The techniques developed in the tool (in particular, the use of convex domains
and convex matrix interpretations) have also been incorporated into the termination
tool mu-term [1], which was created to verify termination properties of variations of
Term Rewriting System (TRS). In [10, 11] examples of the use of convex domains to
prove termination have been given.

This thesis is divided in five chapters. Chapter 1 includes an introduction to the
automatic and logical-based software analysis. Chapter 2 contains the preliminaries.
Chapter 3 contains the formal treatment of a verification problem. Chapter 4 and
Chapter 5 explain the practical implementation of the tool, including all the steps to
setting up the developer environment, the Haskell modules taken from mu-term to
use in the new tool, the new modules created, and all the issues and problems that
appear during the developing process. Chapter 6 closes this work with the conclusions,
and future work.

2
Preliminaries

In this chapter, we introduce the basics of order-sorted first-order logic, as we need for
the development of the thesis. We follow [6, 7]. We also introduce the main definitions
and facts regarding convex domains and convex matrix interpretations, according to
[10, 11].

2.1 Order-Sorted First-Order Logic

2.1.1 Sorts and order-sorted signatures

Given a set of sorts S, a many-sorted signature is an S∗ × S-indexed family of sets
Σ = {Σw,s}(w,s)∈S∗×S containing function symbols with a given string of argument
sorts and a result sort. If f ∈ Σs1···sn,s, then we display f as f : s1 · · · sn → s.

Constant symbols c (taking no argument) have rank declaration c : λ → s for
some sort s (where λ denotes the empty sequence).

An order-sorted signature (S,≤,Σ) consists of a partially ordered set (poset) of
sorts (S,≤) together with a many-sorted signature (S,Σ). The connected components
of (S,≤) are the equivalence classes [s] corresponding to the least equivalence relation
≡≤ containing ≤.

We extend the order ≤ on S to strings of equal length in S∗ by s1 · · · sn ≤ s′1 · · · s′n
iff si ≤ s′i for all i, 1 ≤ i ≤ n.

Symbols f can be subsort-overloaded, i.e., they can have several rank declara-
tions related in the ≤ ordering [7]. Constant symbols, however, have only one
rank declaration. Besides, the following monotonicity condition must be satisfied:
f ∈ Σw1,s1 ∩ Σw2,s2 and w1 ≤ w2 imply s1 ≤ s2.

To avoid ambiguous terms, we assume that Σ is sensible, meaning that if f :
s1 · · · sn → s and f : s′1 · · · s′n → s′ are such that [si] = [s′i], 1 ≤ i ≤ n, then [s] = [s′].

An order-sorted signature Σ is regular iff given w0 ≤ w1 in S∗ and f ∈ Σw1,s1 ,
there is a least (w, s) ∈ S∗ × S such that f ∈ Σw,s and w0 ≤ w.

If, in addition, each connected component of the sort poset has a top element,
then the regular signature is called coherent.

12 2. Preliminaries

Example 6
The order-sorted signature (S,≤,Σ) for WWV05-WEBSITE in Figure 1.2 consists of the
following components:

• Set of sorts S = {EventualUser, RegUser, User, SecureWebPage, WebPage}.

• The subsort relation is the least ordering ≤ on S satisfying

EventualUser ≤ User; RegUser ≤ User; and SecureWebPage ≤ WebPage.

• Σ = ΣUser,WebPage ∪ ΣUser,SecureWebPage ∪ ΣRegUser,SecureWebPage, with

ΣUser,WebPage = {login, register, sbmlink, submission, wwv05}
ΣUser,SecureWebPage = {vlogin}

ΣRegUser,SecureWebPage = {submit}

Note that there is no constant symbol.

The set of variables is X = XRegUser ∪ XUser, with XRegUser = {R}, and XUser = {U}.

An order-sorted signature with predicates is a quadruple (S,≤,Σ,Π) such that
(S,≤,Σ) is an coherent order-sorted signature, and Π = {Πw | w ∈ S+} is a family
of predicate symbols P , Q, . . .

We can use Σ,Π instead of (S,≤,Σ,Π) if S and ≤ are clear from the context.

2.1.2 Theories, Specifications and programs.

A theory S of Σ,Π is a set of formulae, S ⊆ FormΣ,Π, and its theorems are the
formulae ϕ ∈ FormΣ,Π for which we can derive a proof using an appropriate inference
system I(L) of a logic L in the usual way (written S ` ϕ).

Given a logic L describing computations in a (declarative) programming language,
programs are viewed as theories S of L.

2.1.3 Structures, Satisfaction, Models

Given an order-sorted signature with predicates (S,≤,Σ,Π), an (S,≤,Σ,Π)-structure1

(or just a Σ,Π-structure) is an order-sorted (S,≤,Σ)-algebra A together with an as-
signment to each P ∈ Πw of a subset PA ⊆ Aw such that [6]: (i) for P the identity
predicate = : ss, the assignment is the identity relation, i.e., (=)A = {(a, a) | a ∈
As}; and (ii) whenever P : w1 and P : w2 and w1 ≤ w2, then PAw1

= Aw1 ∩ PAw2
.

Let (S,≤,Σ,Π) be an order-sorted signature with predicates and A,A′ be (S,≤
,Σ,Π)-structures.

Then, an (S,≤,Σ,Π)-homomorphism h : A → A′ is an (S,≤,Σ)-homomorphism
such that, for each P : w in Π, if (a1, . . . , an) ∈ PA, then h(a1, . . . , an) ∈ PA′ .

1As in [9], we use ‘structure’ and reserve the word ‘model’ to refer those structures satisfying a
given theory.

2.1. Order-Sorted First-Order Logic 13

Given an S-sorted valuation mapping α : X → A, the evaluation mapping []αA :
TΣ(X)→ A is the unique (S,≤,Σ)-homomorphism extending α [7].

Finally, []αA : FormΣ ,Π → Bool is given by:

1. [P (t1, . . . , tk)]αA = true if and only if ([t1]αA, . . . , [tk]αA) ∈ PA;

2. [¬φ]αA = true if and only if [φ]αA = false;

3. [φ ∧ ψ]αA = true if and only if [φ]αA = true and [ψ]αA = true;

4. [(∀x : s) φ]αA = true if and only if for all a ∈ As, [φ]
α[x 7→a]
A = true;

We say that A satisfies ϕ ∈ FormΣ,Π if there is α ∈ X → A such that [ϕ]αA = true.
If [ϕ]αA = true for all valuations α, we write A |= ϕ and say that A is a model of

ϕ [9, page 12].
Initial valuations are not relevant for establishing the satisfiability of sentences;

thus, both notions coincide on them.
We say that A is a model of a set of sentences S ⊆ FormΣ,Π (written A |= S) if

for all ϕ ∈ S, A |= ϕ.
And, given a sentence ϕ, we write S |= ϕ if and only if for all models A of S,

A |= ϕ.
Sound logics guarantee that every provable sentence ϕ is true in every model of

S, i.e., S ` ϕ implies S |= ϕ.

2.1.4 Derived Models

Appropriate Σ-algebras can be obtained as derived algebras if we first consider a new
signature Σ′ of symbols with ‘intended’ (often arithmetic) interpretations.

Definition 7 (Derivor and Derived algebra) [8, Definition 11] Let Σ = (S,≤,Σ)
and Σ′ = (S′,≤′,Σ′) be order-sorted signatures. A derivor from Σ to Σ′ is a monotone
function τ : S → S′ (i.e., such that for all s, s′ ∈ S, s ≤ s′ implies2 τ(s) ≤′ τ(s′))
and a family dw,s : Σw,s → (TΣ)τ(w),τ(s), where τ(s1, . . . , sk) = τ(s1), . . . , τ(sk) and
where (TΣ)τ(w),τ(s) denotes the set of all Σ′-terms using variables {y1, . . . , yk} with yi
of sort τ(si). Each operation symbol f ∈ Σw,s is expressed using a derived operation
dw,s(f) of the appropriate arity. We often use d to denote a derivor 〈τ, d〉. Now,
let A′ be an Σ′-algebra. Then, the d-derived algebra dA′ of A′ is the Σ-algebra with
carriers (dA)s = A′τ(s) for all s ∈ S; and mappings fdA′ for each f ∈ Σ defined to be

(d(f))A′ , the derived operator of the Σ′-term d(f).

Example 8
Let (S,≤,Σ(X)) as in Example 6. Let S′ = {zero, one, zeroOne, nat} with subsort
relation ≤′ given by

zero, one ≤′ zeroOne ≤′ nat
2Monotonicity is not required in [8] where only many-sorted signatures are considered.

14 2. Preliminaries

and
Σ′ = Σ′λ,zero ∪ Σ′λ,one ∪ Σ′nat2nat

where Σ′λ,zero = {0}, Σ′λ,one = {1}, and Σ′nat2nat = {+} are symbols with the standard
intended meaning as arithmetic constants and operations.

We define a derivor by

τ(EventualUser) = one
τ(RegUser) = zero

τ(User) = zeroOne
τ(WebPage) = nat

τ(SecureWebPage) = nat

Also,

d(r) = 0 for all r ∈ XRegUser,
d(x) = 1 for all x ∈ XEventualUser ∪ XUser ∪ XSecureWebPage ∪ XWebPage

d(submit) = x+ x
d(f) = x for all other symbols f ∈ Σ (all of them monadic!).

Let A′ be the (S′,≤′,Σ′) algebra given by

A′zero = {0}, A′one = {1}, A′zeroOne = {0, 1}, and A′nat = N

together with the standard interpretations for 0, 1, and +. The derived (S,≤,Σ)-
algebra A = dA′ is given by

AEventualUser = A′one = {1}, ARegUser = A′zero = {0},
AUser = A′zeroOne = {0, 1}, and ASecureWebPage = AWebPage = A′nat = N,

together with the derived interpretations for each symbol in Σ(X).

Generalizing Definition 7 we get the notion of derived structure [10, Definition 2].

Definition 9 (Derivor for signatures with predicates / Derived structure)
Let Σ = (S,≤,Σ,Π) and Σ′ = (S′,≤′,Σ′,Π′) be order-sorted signatures with predi-
cates and 〈τ, d〉 be a derivor from (S,≤,Σ) to (S′,≤′,Σ′). We extend d to predicate
symbols by adding a component d : Π → FormΣ′Π′ such that for all P ∈ Πw, with
w = s1 · · · sn, d(P) is an atom P ′(t′1, . . . , t

′
m) with P ′ ∈ Π′, and terms t′1, . . . , t

′
m ∈

TΣ′(X) only use variables {y1, . . . , yn} with yi of sort τ(si). In this new context we
also call 〈τ, d〉 a derivor. Let A′ = (A′,ΣA′ ,Π′A′) be an (S′,≤′,Σ′,Π′)-structure and
A′0 = (A′,ΣA′) be the underlying (S′,≤′,Σ′)-algebra. Then, the 〈τ, d〉-derived struc-
ture dA′ of A′ is the (S,≤,Σ,Π)-structure that consists of the Σ-algebra dA′0 with
S-sorted set of carriers A together with interpretations PdA′ (for P ∈ Πw) defined to
be

PdA′ = {([t1]αdA′ , . . . , [tn]αdA′) | (t1, . . . , tn) ∈ TΣ(X)w, α ∈ X → A,
d(P) = P ′(t′1, . . . , t

′
m),Y = Var(t′1, . . . , t′m), σ(yi) = ti, 1 ≤ i ≤ n

∃α′ : Y → A′([σ(t′1)]α
′

A′ , . . . , [σ(t′m)]α
′

A′) ∈ P ′A′}

2.2. Convex Domains 15

Note that 〈τ, d〉 can be seen now as a transformation d : FormΣ,Π → FormΣ′,Π′ :

d(P (t1, . . . , tn)) = d(P)[y1 7→ d(t1), . . . , yn 7→ d(tn)]
d(¬φ) = ¬d(φ)

d(φ ∧ φ′) = d(φ) ∧ d(φ′)
d((∀x : s)φ) = (∀x : τ(s))d(φ)

The following results formalize the use of the previous construction.

Theorem 10 [10] Let Σ = (S,≤,Σ,Π) and Σ′ = (S′,≤′,Σ′,Π′) be order-sorted sig-
natures with predicates and 〈τ, d〉 be a derivor from (S,≤,Σ,Π) to (S′,≤′,Σ′,Π′). Let
A′ be an (S′,≤′,Σ′,Π′)-structure and ϕ ∈ FormΣ,Π. If A′ |= d(ϕ), then dA′ |= ϕ.

Corollary 11 (Derived model) [10] Let Σ = (S,≤,Σ,Π) and Σ′ = (S′,≤′,Σ′,Π′)
be order-sorted signatures with predicates and 〈τ, d〉 be a derivor from (S,≤,Σ,Π) to
(S′,≤′,Σ′,Π′). Let A′ be an (S′,≤′,Σ′,Π′)-structure and S ⊆ FormsΣ,Π be a theory.
If for all ϕ ∈ S, A′ |= d(ϕ), then dA′ |= S.

2.2 Convex Domains

We use the convex domains in [11] as the basis for our derived models. In the following,
we recall the main concepts and definitions at stake.

2.2.1 Domains

Definition 12 Given a matrix C ∈ Rm×n, and ~b ∈ Rm, the set D(C,~b) = {~x ∈ Rn |
C~x ≥ ~b} is called a convex polytopic domain.

We interpret sorts s ∈ S as convex domains As = D(Cs,~bs), where Cs ∈ Rms×ns

is an ms × ns-matrix and ~bs ∈ Rms . Thus, As ⊆ Rns .

Because of the subsort relation s 6 s′ As = D(Cs,~bs) ⊆ D(Cs′ ,~bs′) = As′ must
hold. Also, ns = ns′ so the objects in both domains have the same dimension and the
inclusion makes sense. In order to to ensure that all tuples in As belong to As′ , we
use the following sufficient condition [10, Proposition 1]: If C = C′ and ~b ≥ ~b′, then

D(C,~b) ⊆ D(C′,~b′).

2.2.2 Functions

As a generalization of a convex matrix interpretation, a many-sorted convex matrix
intepretation for f : s1 · · · sk → s is a linear expression F1~x1+· · ·+Fk~xk+F0 such that
(1) for all i, 1 ≤ i ≤ k, Fi ∈ Rns×nsi are ns × nsi-matrices, ~xi ∈ Rnsi , (2) F0 ∈ Rns ,

and (3) it ranges on D(Cs,~bs) whenever variables ~xi take value on the corresponding

domain D(Csi ,
~bsi), i.e., that satisfies the following algebraicity condition:

16 2. Preliminaries

∀~x1 ∈ Rns1 , . . .∀~xk ∈ Rnsk

(
k∧

i=1

Asi~xi ≥ bsi ⇒ As(F1~x1 + · · ·+ Fk~xk + F0) ≥ bs

)

An (S,≤,Σ)-algebra A = (A,ΣA) is obtained if A = {D(As, bs) | s ∈ S}, and each
k-ary symbol f ∈ F is given a convex matrix interpretation fA as above.

2.3 Conditional Polynomial Constraints

The use of convex domains and convex matrix interpretations amounts at dealing with
conditional constraints of the form

∧n
i=1 ei ≥ di ⇒ e ≥ d where e and ei are linear

expressions and d and di are numbers. Methods for solving conditional polynomial
constraints have been described in early works [5], and propose a transformation of the
conditional polynomial into a unconditional one. For polynomial constraints where
the polynomial components are linear, we can apply Farkas’ lemma.

Theorem 13 (Farkas’s Lemma) Let A be a matrix ant let b be a vector. There
exists y ≥ 0 with Ay = b if and only if bTx ≥ 0 for each x with ATx ≥ 0.

The Farkas’ Lemma provides a simple way to transform the conditional constraint
ATx ≥ 0 ⇒ bTx ≥ 0 into a constraint, solving the problem to find a non-negative
vector y ≥ 0 such that Ay = b. But we have to consider that a pure linear conditional
constraints are not general enough for this purposes, so thats why we have to deal
with constraints in the form ATx ≥ b ⇒ cTx ≥ β. We can use the affine form of
Farkas’ Lemma for this purpose:

Theorem 14 (Affine form of Farkas’ Lemma) Let Ax ≥ b be a linear system of
k inequalities and n unknowns over the real numbers with non-empty solution set S
and let c ∈ Rn and β ∈ R. Then, the following statements are equivalent:

1. cTx ≥ β for all x ∈ S,

2. ∃λ ∈ Rk0 such that c = ATλ and λT b ≥ β

The affine conditional constraint A~x ≥ ~b ⇒ cT~x ≥ β defined by A ∈ Rk×n,
b ∈ Rk, c ∈ Rn and β ∈ R is equivalent to find a non-negative vector λ such that c
is a linear non negative combination of the rows of A and and β is smaller than the
corresponding linear combination of components of b.

3
Formal treatment of a

verification problem

In this chapter we explain how to use the formal notions introduced in the previous
chapter to handle a given verification problem expressed in order-sorted first-order
logic. We follow [10, 11] and use the WWV05-WEBSITE specification to illustrate the
process.

3.1 Defining the theory

With our running example, in the logic of Order-Sorted Term Rewriting Systems (OS-
TRSs), with binary (overloaded) predicates →,→∗∈ Πss for each s ∈ S, the theory for
an OS-TRS R = (S,≤,Σ, R) with set of rules R (for instance, our running example)
is obtained from the schematic inference rules in Figure 1.1 after specializing them
according to the signature and rules in the program. Then, each specialized inference
rule B1,...,Bn

A becomes a universally quantified implication B1 ∧ · · · ∧Bn ⇒ A.
Taking our program example in Figure 1.2 and considering the inference rules in

Figure 1.1, we can define the theory that corresponds to our specific program. In
the following, we consider each generic inference rule and explain how to obtain the
sentences in each case.

Reflexive Rule

In the logic of OS-TRSs, the Reflexive Inference Rule

t→∗ t

means that, for each connected component [s] in the hierachy of sorts defined by the
ordering ≤ in S, each term t with sort in [s] can be rewriten in one or more steps to
the same term t. In our case, we have two connected components:

[User] = {EventualUser, RegUser, User}
[WebPage] = {SecuerWebPage, WebPage}

18 3. Formal treatment of a verification problem

Therefore, this inference rule is specialized into two inference rules (one per connected
component). In our running example, sorts User and WepPage can be taken as rep-
resentatives of the corresponding connected components because they are supersorts
of any other sort in the corresponding connected component. Thus, we obtain the
following sentences representing the two inference rules.

∀t : User , (t→∗ t) (3.1)

∀t : WepPage , (t→∗ t) (3.2)

Transitive Rule

As in the case of reflexive inference, the Transitive Inference Rule

t→ t′ t′ →∗ u
t→∗ u

specializes into two different inference rules (one per connected component of sorts).
We will obtain the following sentences:

∀t, t′, u : User , (t→ t′ ∧ t′ →∗ u⇒ t→∗ u) (3.3)

∀t, t′, u : WebPage , (t→ t′ ∧ t′ →∗ u⇒ t→∗ u) (3.4)

Congruence Rule

For the Congruence Inference Rule, we have to generate inference rules from the
generic rule

ti → t′i
f(t1, . . . , ti, . . . , tk)→ f(t1, . . . , t

′
i, . . . , tk)

for each function symbol f in the signature (with rank f : s1 · · · sk → s), and each
argument i of the symbol (i.e., i ∈ {1, . . . , k}). In our running example this becomes
easier, because all functions are unary and we obtain a sentence per function symbol
only:

∀u, u′ : User , (u→ u′ ⇒ wwv05(u)→ wwv05(u′)) (3.5)

∀u, u′ : User , (u→ u′ ⇒ submission(u)→ submission(u′)) (3.6)

∀u, u′ : User , (u→ u′ ⇒ sbmlink(u)→ sbmlink(u′)) (3.7)

∀u, u′ : User , (u→ u′ ⇒ login(u)→ login(u′)) (3.8)

∀u, u′ : User , (u→ u′ ⇒ vlogin(u)→ vlogin(u′)) (3.9)

∀u, u′ : User , (u→ u′ ⇒ register(u)→ register(u′)) (3.10)

∀r, r′ : RegUser , (r → r′ ⇒ vlogin(r)→ vlogin(r′)) (3.11)

∀r, r′ : RegUser , (r → r′ ⇒ submit(r)→ submit(r′)) (3.12)

Note that reduction steps with ‘→’ in the antecedent of the implications (e.g., u →
u′ or r → r′) involve terms of sort User and RegUser, but reduction steps in the
consequent involve terms of sort WebPage or SecureWebPage, i.e., they correspond to
different overloadings of ‘→’.

3.2. Defining the model using convex domains 19

Replacement Rule

The Replacement Inference Rule

`→ r

yields an instance for each rule ` → r in the program R, and we have to take into
account the specific sort declaration given to the variables occurring in the program
rules. In our running example, we obtain the following:

∀u : User , (wwv05(u)→ submission(u)) (3.13)

∀u : User , (submission(u)→ sbmlink(u)) (3.14)

∀u : User , (sbmlink(u)→ login(u)) (3.15)

∀u : User , (sbmlink(u)→ register(u)) (3.16)

∀u : User , (login(u)→ vlogin(u)) (3.17)

∀r : RegUser , (vlogin(r)→ submit(r)) (3.18)

Note that the variable quantification in the last rule makes r to range on terms of sort
RegUser only. This is consistent with the declaration of variable R in the program to
have sort RegUser and its use in the definition of the last rule.

Note also that there is no use of predicate ‘→’ that rewrites a term of sort User.
From a logic point of view, we can say that no relation named ‘→’ is established
between terms of sort User (or that the overloading of → for User is going to be
empty).

Specific conditions of the analysis

Besides the definition of the specification and its semantics as given by the inference
rules of the OS-TRS logic, we may add further sentences representing the property
to be verified. In our current example, we can express this property using OS-FOL
sentences as well:

∀u : User, wwv05(u)→∗ submit(u) ⇒ ¬(u : EventualUser) (3.19)

∀u : User, wwv05(u)→∗ submit(u) ⇒ u : RegUser (3.20)

3.2 Defining the model using convex domains

3.2.1 Domains for sorts

In our running example, a convex domain matrix Cs ∈ Rms×ns and vector ~bs ∈ Rns

is associated to each sort s, so that the domain As given to a sort s is the convex
domain generated by Cs and ~bs, i.e., As = D(Cs,~bs). Furthermore, we let ms = 2
and ns = 1 for all sorts s ∈ S.

20 3. Formal treatment of a verification problem

The dimension of the matrix C that is used to define the convex domain must
be the same for all sorts s in the same connected component (see Section 2.2.1).
Remember that we have two connected components:

[User] = {EventualUser, RegUser, User}
[WebPage] = {SecuerWebPage, WebPage}

In this particular case, we will define two parametric 2 × 1-matrices by CUser =
(Cu1 , C

u
2)T and CWebPage = (Cw1 , C

w
2)T .

The parametric vectors for s ∈ S are given by ~bs = (bs1, b
s
2)T and can be different

for each sort. According to Section 2.2.1, this leads to the following initial constraints
(the name of the sorts have been shortened to make the reading easier):

bEU1 ≥ bU1 ∧ bEU2 ≥ bU2 ∧ bRU1 ≥ bU1 ∧ bRU2 ≥ bU2 ∧ bSWP1 ≥ bWP1 ∧ bSWP2 ≥ bWP2 (3.21)

that guarantee that the subsort hierarchy is translated as subset inclusion between
the convex domains associated to the different sorts.

3.2.2 Interpretation of function symbols

Since in our running example, we define ns = 1 for all s ∈ S, we give parametric
interpretations to each f ∈ Σ as follows:

([wwv05](x) = w1x + w0) (3.22)

([submission](x) = m1x +m0) (3.23)

([sbmlink](x) = s1x + s0) (3.24)

([login](x) = l1x + l0) (3.25)

([register](x) = r1x + r0) (3.26)

([vlogin](x) = v1x + v0) (3.27)

([submit](x) = t1x + t0) (3.28)

where w1, w0, m1, etc., are parameters which will be given appropriate values after a
constraint solving processs (see Chapter 5). The necessary algebraicity conditions for
these functions are given as follows (with x universally quantified in all formulae):

Cu1 x ≥ bU1 ∧ Cu2 x ≥ bU2 ⇒ Cw1 (l1x+ l0) ≥ bWP1 ∧ Cw2 (l1x+ l0) ≥ bWP2 (3.29)

Cu1 x ≥ bU1 ∧ Cu2 x ≥ bU2 ⇒ Cw1 (r1x+ r0) ≥ bWP1 ∧ Cw2 (r1x+ r0) ≥ bWP2 (3.30)

Cu1 x ≥ bU1 ∧ Cu2 x ≥ bU2 ⇒ Cw1 (s1x+ s0) ≥ bWP1 ∧ Cw2 (s1x+ s0) ≥ bWP2 (3.31)

Cu1 x ≥ bU1 ∧ Cu2 x ≥ bU2 ⇒ Cw1 (m1x+m0) ≥ bWP1 ∧ Cw2 (m1x+m0) ≥ bWP2 (3.32)

Cu1 x ≥ bU1 ∧ Cu2 x ≥ bU2 ⇒ Cw1 (w1x+ w0) ≥ bWP1 ∧ Cw2 (w1x+ w0) ≥ bWP2 (3.33)

Cu1 x ≥ bU1 ∧ Cu2 x ≥ bU2 ⇒ Cw1 (v1x+ v0) ≥ bSWP1 ∧ Cw2 (v1x+ v0) ≥ bSWP2 (3.34)

Cu1 x ≥ bRU1 ∧ Cu2 x ≥ bRU2 ⇒ Cw1 (t1x+ t0) ≥ bSWP1 ∧ Cw2 (t1x+ t0) ≥ bSWP2 (3.35)

3.2. Defining the model using convex domains 21

3.2.3 Interpretation of predicate symbols

In our example, for the translation of the universally quantified rules of the OS-TRS
logic into arithmetic formulae, we will have the predicates →,→∗∈ Πss interpreted
as ≥ (the usual ordering on numbers) for all s ∈ S. For instance, a formula s →∗ t
will be translated as s ≥ t.

3.2.4 Derived theory

The derived theory which is obtained from the theory in Section 3.1 by using the
previous interpretation of sorts and symbols will be:

1. Instances of the Reflexivity Rule (Re) with t universally quantified (like prior
text, the name of the sorts have been shortenned to make the reading easier):

Cw1 t ≥ bWP1 ∧ Cw2 t ≥ bWP2 ⇒ t ≥ t (3.36)

Cu1 t ≥ bU1 ∧ Cu2 t ≥ bU2 ⇒ t ≥ t (3.37)

2. Instances of the Transitivity Rule (T) where we write (for instance) t ∈ AWP in-
stead of Cw1 t ≥ bWP1 ∧Cw2 t ≥ bWP2 , which formalizes the real membership condition
for the domain AWP of sort WebPage:

t ∈ AWP ∧ t′ ∈ AWP ∧ u ∈ AWP ∧ t ≥ t′ ∧ t′ ≥ u⇒ t ≥ u (3.38)

t ∈ AU ∧ t′ ∈ AU ∧ u ∈ AU ∧ t ≥ t′ ∧ t′ ≥ u⇒ t ≥ u (3.39)

3. Instances of the Congruence Rule (C) were not added, because all function sym-
bols f have argument sort User or RegUser and the rewrite relation associated
to → ∈ ΠUser User is empty.

4. Instances of the Replacement Rule (Re) where the variables u and r are univer-
sally quantified ranging on AU and ARU, respectively:

Cu1 u ≥ bU1 ∧ Cu2 u ≥ bU2 ⇒ w1u+ w0 ≥ m1u+m0 (3.40)

Cu1 u ≥ bU1 ∧ Cu2 u ≥ bU2 ⇒ m1u+m0 ≥ s1u+ s0 (3.41)

Cu1 u ≥ bU1 ∧ Cu2 u ≥ bU2 ⇒ s1u+ s0 ≥ l1u+ l0 (3.42)

Cu1 u ≥ bU1 ∧ Cu2 u ≥ bU2 ⇒ s1u+ s0 ≥ r1u+ r0 (3.43)

Cu1 u ≥ bU1 ∧ Cu2 u ≥ bU2 ⇒ l1u+ l0 ≥ v1u+ v0 (3.44)

Cu1 r ≥ bRU1 ∧ Cu2 r ≥ bRU2 ⇒ v1r + v0 ≥ t1r + t0 (3.45)

3.2.5 Specific Conditions for the Analysis

As a final step in the Convex Domain analysis, its needed to generate an interpreted
version of the goals defined in 3.19 and 3.20, where we assume that u is universally
quantified:

Cu1 u ≥ bU1 ∧ Cu2 u ≥ bU2 ∧ w1u+ w0 ≥ t1u+ t0 ⇒ ¬(Cu1 u ≥ bEU1 ∧ Cu2 u ≥ bEU2)

22 3. Formal treatment of a verification problem

Cu1 u ≥ bU1 ∧ Cu2 u ≥ bU2 ∧ w1u+ w0 ≥ t1u+ t0 ⇒ Cu1 u ≥ bRU1 ∧ Cu2 u ≥ bRU2

which is equivalent to this, since the intended meaning of ≥ is the total order on
numbers:

Cu1 u ≥ bU1 ∧ Cu2 u ≥ bU2 ∧ w1u+ w0 ≥ t1u+ t0 ⇒ bEU1 > Cu1 u ∨ bEU2 > Cu2 u (3.46)

Cu1 u ≥ bU1 ∧ Cu2 u ≥ bU2 ∧ w1u+ w0 ≥ t1u+ t0 ⇒ Cu1 u ≥ bRU1 ∧ Cu2 u ≥ bRU2 (3.47)

and then to the following sentences, finally in the required form for dealing with them
using Farkas’ Lemma:

Cu1 u ≥ bU1 ∧ Cu2 u ≥ bU2 ∧ w1u+ w0 ≥ t1u+ t0 ∧ Cu1 u ≥ bEU1 ⇒ bEU2 ≥ Cu2 u+ δ (3.48)

Cu1 u ≥ bU1 ∧ Cu2 u ≥ bU2 ∧ w1u+ w0 ≥ t1u+ t0 ⇒ Cu1 u ≥ bRU1 (3.49)

Cu1 u ≥ bU1 ∧ Cu2 u ≥ bU2 ∧ w1u+ w0 ≥ t1u+ t0 ⇒ Cu2 u ≥ bRU2 (3.50)

for some δ > 0.
Also, according to [10], we need to further ensure that the unique homomorphism

hRegUser : TΣ(X)RegUser → ARegUser

is surjective, which means that for every value in ARegUser exists a value in hRegUser :
TΣ(X)RegUser. Since TΣ(X) is not empty (due to the presence of a variable R of sort

RegUser), this is easily achieved if ARegUser is a singleton.
For our convex domains, we have the following sufficient condition.

Proposition 15 A convex domain D(C,~b) with C = (c1, c2)T and ~b = (b1, b2)T is a
singleton if c1 = −c2 6= 0 and b1 = −b2.

We can use this sufficient condition in our specific problem by further requiring

Cu1 6= 0 ∧ Cu1 = −Cu2 ∧ bRU1 = −bRU2 (3.51)

4
The AGES Tool

The Automatic GEneration of logical modelS (AGES) tool tries to generate a model
for an order-sorted first-order theory using the methodology presented in this thesis.
Such theory consists of a program specification in Maude syntax and a set of logic
formulae that express a property of interest. The tool is written in Haskell and is
based on the framework created for mu-term. We also envisage the integration of
the model generation implemented in AGES into mu-term to add new features to
that tool in the future. In this chapter, we detail the process accomplished inside the
tool to convert a program specification and a logic formula into a model. The tool
has two user interfaces: A user-friendly web user interface for quick and easy testing,
and a console application that can be used to automate analysis processes in large
batch of tests. Internally, both applications use the same model-generation engine,
and only the way for the user to receive the outcome of the tool changes.

4.1 Internal structure and work flow

Internally, the application executes the following processes, in the listed order:

1. Parse the command line arguments, or the contents of web form text-boxes,
depending on the case.

2. Read the input data, currently a Maude specification and a goal (a set of logic
formulae), and optional parameters.

3. Parse the program specification into an OS-TRS data type.

4. Parse the goal into a First-Order Logic Formula.

5. For each Sort in the program, generate the Parametric Convex Domain Matrices
and Vectors.

6. For each symbol in the signature, generate a linear polynomial interpretation,
taking into account the convex domains associated to the different sorts.

7. From the input program specification and the Inference Rules in Figure 1.1,
generate a new set of First-Order Logic Formulae.

24 4. The AGES Tool

Figure 4.1: AGES Workflow

8. From the set of First-Order Formulae generated from the input program speci-
fication and the input goal, generate a set of conditional arithmetic constraints.

9. Remove Conditional Implications from the constraints, aplying Farkas’s theo-
rem.

10. Send the generated constraints to a constraint solver.

11. Format and show the resulting model.

As we can see, the model generation is based on several transformations stepwise
applied to the input theory. In fact, after reading the input data (a program in
MAUDE format, see section 4.2 for further information about the syntax, a goal and
the working parameters), the first transformation is converting the MAUDE program,
and the logical formulae in the goal component to be tested into a set of logic formulae,
applying the inference rules in Figure 1.1. By extracting the Sorts information from
the OS-TRS, we can generate the convex domain matrices (see Section 3.2), which

4.2. Input data and data format 25

will be used to apply the convex domain interpretation to all variables contained in
the inference rules created with the last transformation.

Once a set of formulae has been obtained, we transform it into conditional arith-
metic constraints, using polynomial interpretations. The polynomial interpretation
transformation, essentially uses the clasical method described, for example, in [3] and
[12] and generates a set of polynomial conditional constraints.

Remark 16 Currently, available interpretations for predicates→ and→∗ are limited
to >, ≥ with the usual arithmetic interpretations, and = (equality).

The conditional implication removal process uses a direct application of Farkas’s
theorem, see Section 2.3.

Finally, a simplification process is made to all constraints in order to reduce the
size of the final constraint that will be send to the external SMT solver. In our case,
we use Barcelogics SMT Solver, which can be found at:

http://www.cs.upc.edu/~albert/nonlinear.html).

4.2 Input data and data format

The input data for AGES tool, consists of two separated but mandatory inputs:

• A MAUDE specification, that represents the input theory to be analyzed.

• A logical property to be tested, which is given as a worked set of formulae.
Together they form an OS-FOL theory.

Also, there are two optional parameters that can be used. We will describe them
later in this chapter.

4.2.1 MAUDE program syntax

The MAUDE syntax is very simple, but also very powerful and expressive. In this
section we recall the basic knowledge of Reweite Systems, whch is required to write
a program for our AGES tool. Full details about the syntax of MAUDE can be found
here http://maude.cs.uiuc.edu/maude2-manual/html/maude-manualch3.html.

Module Definition

First, we need to specify our theory as a new system module. This can be done using
the reserved word mod, and assigning a name to the module. The module name must
be written in uppercase characters, as in the following example:

Example 17 (System module definition for a MAUDE program)
mod WWV05-WEBSITE is

....

endm

http://www.cs.upc.edu/~albert/nonlinear.html
http://maude.cs.uiuc.edu/maude2-manual/html/maude-manualch3.html

26 4. The AGES Tool

We use system modules because our specification represents state changes by
means of rewrite rules, functional modules are used to define algebraic specifications
by means of equations and are defined with the reserved word fmod.

Sorts Definition

We need to define the poset of sorts of the specification. The definition of sorts is
part of the module signature. In this case we use the reserved word sorts, followed
by the name of all the sorts required, as we can see in the followng example, which
includes the module definition:

Example 18 (Sorts definition for a MAUDE program)

mod WWV05-WEBSITE is

sorts EventualUser RegUser User WebPage SecureWebPage .

....

endm

Subsort Relations

We can use the subsort reserved word, and MAUDE’s reserved operator ‘<’, to define
the subsort relationships between sorts of the module. The following example shows
the subsort relationship between the sorts of our theory, where there are two subsort
relations, one for the User supersort, and another one for the WebPage supersort :

Example 19 (Sorts definition for a MAUDE program)

mod WWV05-WEBSITE is

sorts EventualUser RegUser User WebPage SecureWebPage .

subsorts RegUser EventualUser < User .

subsorts SecureWebPage < WebPage .

....

endm

4.2. Input data and data format 27

Operators

The operators provide names (i.e. function symbols) for the operations that will act
upon the data. That allows us to build terms refered to such data. In this case,
we define the function names f , and their input and output sorts as a rank written
op f : s1 s2 sk -> s where s1, s2,...,sk and s are sorts. Notice in the next example,
that we can use the reserved words op for a single function name, and ops for multiple
function names sharing the same rank.

Example 20 (Operators definition for a MAUDE program)
mod WWV05-WEBSITE is

sorts EventualUser RegUser User WebPage SecureWebPage .

subsorts RegUser EventualUser < User .

subsorts SecureWebPage < WebPage .

ops login register sbmlink submission wwv05 : User -> WebPage .

op vlogin : User -> SecureWebPage .

op submit : RegUser -> SecureWebPage .

....

endm

Variables

Before defining the rules in our MAUDE specification, we can define the variables used
later in the rules. These variables also have a sort whose name must be included in
the definition. In MAUDE we use the reserved word var and the syntax var v : S
for a variable identifier v and sort S. In the following example, we define two variables
that will be used in our rules: R of sort RegUser, and U of sort User.

Example 21 (Operators definition for a MAUDE program)
mod WWV05-WEBSITE is

sorts EventualUser RegUser User WebPage SecureWebPage .

subsorts RegUser EventualUser < User .

subsorts SecureWebPage < WebPage .

ops login register sbmlink submission wwv05 : User -> WebPage .

op vlogin : User -> SecureWebPage .

op submit : RegUser -> SecureWebPage .

28 4. The AGES Tool

var R : RegUser .

var U : User .

....

endm

Rules

Finally, the MAUDE specification can include rewrite rules. This completes our pro-
gram specification. Each rule is included by means of the rl reserved word, followed
by l => r for terms l and r. All functions and variables used in the rules, must be
previously declared in the specification. As for our example program, we have the
following:

Example 22 (Program Rules defined for a MAUDE program)

mod WWV05-WEBSITE is

sorts EventualUser RegUser User WebPage SecureWebPage .

subsorts RegUser EventualUser < User .

subsorts SecureWebPage < WebPage .

ops login register sbmlink submission wwv05 : User -> WebPage .

op vlogin : User -> SecureWebPage .

op submit : RegUser -> SecureWebPage .

var R : RegUser .

var U : User .

rl wwv05(U) => submission(U) .

rl submission(U) => sbmlink(U) .

rl sbmlink(U) => login(U) .

rl sbmlink(U) => register(U) .

rl login(U) => vlogin(U) .

rl vlogin(U) => submit(R) .

rl login(U) => vlogin(U) .

rl vlogin(R) => submit(R) .

endm

4.2. Input data and data format 29

4.2.2 Goal Definition and Format

Besides the MAUDE specification of our program, in order to generate a model using
the AGES tool, we need to define a set of goals to be tested, like the ones defined
in the example formulae 3.19 and 3.20. These formulae also need to be defined in a
proper format, before being able to handle them in the tool.

For defining formulae, the allowed predicates are → and →∗ (which can be freely
interpreted when defining models). We can also use True and False, = (the equality
predicate), and connectives ∧, ∨, ¬ and ⇒ (this symbol represents the implicaton),
all of them with the standard meaning. The syntax for the predicate symbols defined
for the goal definition can be found in Table .

Predicates AGES’ syntax
→ ->

→∗ ->*

= =

: :

Logical symbol AGES’ syntax
⇒ =>

True true

False false

¬ ~

∧ /\

∨ \/

Table 4.1: Goal syntax

Because of a tool restriction, we need to define the Sort of each variable used
inside the formula and all variables are universally quantified by default. We provide
some examples to ilustrate the syntax of the goal formulae. The following example
23 shows the use of the predicate symbols.

Example 23 (Predicate use and syntax)
• The formula True⇒ ¬False can be defined as:

true => ~(false)

• The formula True ∨ False⇒ True can be defined as:

true \/ false => (true)

• The formula (foo(x) ∧ bar(y)) ∨ foo(y)⇒ ¬(True) can be defined as:

(foo(x) /\ bar(y)) \/ foo(y) => ~(true)

30 4. The AGES Tool

• The formula (foo(x) → bar(x)) ∧ (foo(y) →∗ bar(y)) ⇒ False can be defined
as:

(foo(x) -> bar(x)) /\ (foo(y) -> bar(y)) => false

The following example takes a formula from the running example, and shows how
should be written to by handled by the tool.

Example 24 (Goal definition in AGES for the running example)
The formula ∀u : User, wwv05(u) →∗ submit(u) ⇒ ¬(u : EventualUser) can be de-
fined as follows:

wwv05(U:User) ->* submit(U:User) => ~(U:EventualUser)

4.3 A short user manual

The AGES (Automatic GEneration of logical modelS) tool has two main components:

• A web based application, with an user friendly interface.

• A console based tool, suited for large batch process analysis.

Both tools, share the same core code. In the following we describe their function-
ality.

4.3.1 Web Based Application

The web based application provides an easy, friendly interface to the model generator.
In order to use this application, the end user only needs a HTML5 compatible browser.
The main page of the tool is displayed on Figure 4.2.

In the main web page, there are four fields, that need to be filled, before generating
the model:

• Program Input : This field will accept the MAUDE program used to generate
the model. The program can be pasted from a text file, or uploaded using the
Browse button above the field. This field is required.

• Goal : This field allows to add a goal to the model.The goal definition format
can be found in Section 4.2.2

• Interpretation: The user can select the polynomial interpretation for generating
the model. Currently only Linear interpretations are allowed.

4.3. A short user manual 31

Figure 4.2: AGES Web App Main Page

• Matrix Size: This field allows to change the dimension of the coefficients in
the polynomial interpretation of the symbols in the signature. In the current
version of the tool, the value is fixed to 1.

When all the fields are properly entered, we can press the Generate button, and
start the model generation process. In a short time (depending on the complexity of
the program, and if it has solution or not).

4.3.2 Console Application

The console application has the same functionality as the web application, but it is
intended to be used in an automated environment; for example, for processing batches
of programs and goals to perform a long unattended run test.

When the AGES command is invoked from a console terminal, if no parameters
are included, the command line help is displayed, as we can see in Figure 4.3.

In order to use this version of the tool, we need two additional text files for each
program we want to model:

• A file with extension .maude, that contains the MAUDE program.

• A file with extension .prop that contains the goal to be tested.

Using our running example, with the file wwv05.maude containing the MAUDE
program, and the file prop2.prop containing the goal to test, we can use the following
command to generate a model.

32 4. The AGES Tool

Figure 4.3: AGES console application help

./AGES -i wwv05.maude -p prop2.prop -n Linear -d 1

Where the following parameters are used:

• -i : Defines the file that contains the .maude MAUDE program.

• -p: Defines the file that contains the .prop goal to test.

• -n: Sets the polynomial interpretation type. In this version, only the Linear
interpretation is available, and that is the default value.

• -d : Sets the dimension of the coefficients in the polynomial interpretation. The
default value is 1

5
Practical Implementation

This chapter describes the implementation of AGES, from the setup of the develop-
ment environment to the issues of Haskell encoding. We also discuss the new created
modules and their relationship with the current mu-term implementation.

5.1 Development Environment

In order to develop the tool, we need to setup the environment with the required
software tools. For setup ease, we use Linux as operating system, with the Ubuntu
14.10 “Utopic Unicorn” distribution. In our specific case, we use the 32 bits version,
because we are installing it over a VirtualBox Virtual Machine. Virtualization brings
a sandboxed environment to work, and the portability of the virtual machine to a
production environment, easier than making a whole setup from scratch.

5.1.1 Haskell Compiler

The code of AGES uses some of the libraries originally developed for mu-term. For
this reason, we need to use the Glasgow Haskell Compiler (GHC), Version 7.8.3. With
Ubuntu (or any Debian based) distribution, the installation of the GHC compiler is
a trivial task. We need to use the following command from a terminal console:

sudo apt-get install ghc

Once the installation process finishes, we can test the GHC setup with the command:

ghc --version

to obtain an output like

The Glorious Glasgow Haskell Compilation System, version 7.8.3

34 5. Practical Implementation

5.1.2 Cabal Installer

Cabal is a system for building and packing Haskell libraries. Since mu-term uses it
to manage all its modules, its installation is mandatory. To setup cabal, we use the
following command, from a console terminal:

sudo apt-get cabal-install

After its completion, the setup process can be tested with this command:

cabal --version

If the installation succeds, it will return an output like:

cabal-install version 1.20.0.3

using version 1.20.0.2 of the Cabal library

Also, as a good practice, updating the cabal package list is recommended:

cabal update

5.1.3 mu-term Framework

mu-term Framework is a package that provides an abstract divide-and-conquer frame-
work based on a strategy. It was created to be shared with other tools that use a
divide-and-conquer framework, as Narradar1.

Since the mu-term framework is necessary to compile mu-term, we need to
install it by using cabal. For this purpose, we have to clone the repository in our local
computer with the following commands:

git clone https://github.com/pepeiborra/muterm-framework.git

and then, using cabal, we install the package with the following commands:

cd muterm-framework

cabal configure

cabal install

If no error shows up during the installation, the mu-term framework package is
ready for use in any Haskell program.

5.1.4 mu-term Initial Setup

In order to use mu-term as the base code of our project, it’s necessary to install
the latest version of the code, and compile it properly. If the previous steps do not
display any errors, we can download and decompress the mu-term source code, and
execute the following commands in the home directory of the code:

1http://safe-tools.dsic.upv.es/narradar/

5.2. Implementing AGES using mu-term 35

cabal configure

cabal install

ghc Main.hs

If the code compiles without errors, we can start to coding our own project, using
mu-term as the base platform.

5.2 Implementing AGES using mu-term

In the last section, we described the steps to get our development environment ready.
Now, we need to define the proper features of our project, and start defining the code
requirements for each new module to be developed.

• The existing Maude parser must be validated, so we can prove that it can handle
Order-Sorted Term Rewriting Systems.

• The command line interface needs to include an option to set the name of the
Maude file with the program specification, the name of the PROP file, that
contains the property to be tested, and some extra parameters, like the type of
interpretation and the size of the matrix defined for the convex domain analysis.

• The property to be tested needs to be loaded and parsed. Thus, a new module
is needed to handle this task.

• Taking the Maude specification, and the property to be tested, the tool must
generate the logic formulae, according to the inference rules in Figure 1.1.

• Taking the generated formulae, we need to generate the constraints.

• Finally, we transform the constraints using Farkas and send the to a SMT solver
to obtain a model of the input theory and goal.

In the next subsections we describe each step in detail.

5.2.1 Maude Parser Module

The Maude parser module contained in mu-term can be used to process a .maude file
that contains a source specification. In particular we can parse an Order-Sorted spec-
ification. The Haskell module Parser.MAUDE.Parser exports the function parseMAUDE

that has the following type:

parseMAUDE :: String -> Either ParseError (MProblem info)

This function takes a string with the .maude file contents and returns either a
ParseError (if the program could not be parsed, an error with the line number an
the expected code is showed), or an MProblem type variable, that contains all the
Maude program information. In this case, the data MProbleminfo will have the type:

36 5. Practical Implementation

MMaudeProblem :: Problem MaudeProblem InMaude -> MProblem info

where the InMaude type represents a TRS with Order-Sorted Associated theory.

type InMaude = OSTRS

(TRS (IdFOS (IdFAvC IdFTRS))

(IdVOS IdVTRS)

(Term (IdFOS (IdFAvC IdFTRS)) (IdVOS IdVTRS))

)

Also, for the OSTRS, TRS, IdFOS, IdVOS, and IdVTRS types, we have the following
definitions

-- | Order-sorted term rewriting system information

data OSTRS trs = OSTRS

{ ostrsprev :: trs -- \^ Previous info

, ossignature :: OSSignature -- \^ Order-sorted signature

} deriving Show

-- | Parametrized term rewriting system. It is formed by a signature,

-- a set of variables and a set of rules.

data TRS a b c

= TRS { trsSignature :: Signature a

, trsVariables :: Variables b

, trsRules :: Set (Rule c)

, trsLabel :: TRSLabel

} deriving (Eq,Show)

-- | Order-sorted function symbol

data IdFOS id = IdFOS

{ osfprev :: id -- \^ Previous info

, osfsorts :: [FSort] -- \^ List of possible sorts

} deriving Show

-- | Associative-commutative function symbol

data IdFAvC id = IdFAvC

{ avcfprev :: id -- \^ Previous info

, avc :: AvC -- \^ AvC symbol

} deriving Show

-- | Term rewriting system function symbol

data IdFTRS = IdFTRS

{ fid :: Int -- \^ Identifier

, fname :: String -- \^ Name of the function symbol

, arity :: Int -- \^ Arity of the symbol

} deriving Show

-- | Order-sorted variable information

data IdVOS id = IdVOS

5.2. Implementing AGES using mu-term 37

{ osvprev :: id -- \^ Previous info

, vsort :: Sort -- \^ Variable sort

} deriving Show

-- | Variable information

data IdVTRS = IdVTRS

{ vid :: Int -- \^ Identifier

, vname :: Maybe String -- \^ Name of the variable

} deriving Show

5.2.2 Command Line Interface Parameters

As mentioned before, the command line of the tool must accept parameters that are
not allowed in the mu-term command line. The new parameters to be included are:

• The name of the file that contains the property to be tested.

• The type of the interpretation that will be used in the polynomials generation.

• The dimension of the matrix used for the polynomial interpretations.

These new parameters require a modification of the code that handles the com-
mand line. First of all, we need to create four new options for the Opt type:

• optPropInput: for the property file contents.

• optPropName: for the property file name.

• optDim: for the dimension m of the coefficients.

• optInterpretation: for the type of interpretation that will be used.

Thus, the main function needs to include these types, as follows:

main :: IO ()

main = do (opts, _) <- parseOptions

let Opt { optName = name

, optInput = input

, optOutput = output

, optFormat = format

, optTimeout = timeout

, optCanonical = canonical

, optTest = temporal

, optPropName = propName

, optPropInput = propInput

, optDim = dim

, optInterpretation = interp

} = opts

38 5. Practical Implementation

Besides this new definition, the tool has to obtain this information from the com-
mand line arguments. This information is handled by module Interface.CLI, where
first of all, the data type Opt needs to be set as in the main function, so, it’s defined
as follows:

data Opt = Opt {

optName :: String -- ^ Input path

, optInput :: IO String -- ^ Input file

, optOutput :: Output -> SomeInfo PrettyInfo

-> Solution (Proof PrettyInfo [] ())

-> IO () -- ^ Output formatted

, optFormat :: Output -- ^ Output format

, optTimeout :: Maybe Int -- ^ Timeout

, optCanonical :: Bool -- ^ Add canonical replaing map

, optPropName :: String

, optPropInput :: IO String

, optDim :: Int

, optInterpretation :: String

}

Also, we define default values for the arguments (just in case that any argument
is not present in the command line) and parse the command line arguments, using
the following functions:

-- | Default parameters

startOpt :: Opt

startOpt = Opt {

optName = "foo"

, optInput = exitErrorHelp "use -i option to set input"

-- a simple way to handle mandatory flags

, optOutput = \format problem someSol

-> putStr . show . pPrint $ someSol

, optFormat = Plain

, optTimeout = Nothing

, optCanonical = False

, optPropName = "propertyName"

, optPropInput = exitErrorHelp "use -p option to set property input"

, optDim = 1

, optInterpretation = "Linear"

}

-- | Command line options

options :: [OptDescr (Opt -> IO Opt)]

options = [

Option "h" ["help"]

(NoArg (\opt -> exitHelp))

"Show usage info"

, Option "i" ["input"]

(ReqArg (\arg opt -> do return opt { optName = arg

5.2. Implementing AGES using mu-term 39

, optInput = readFile arg})

"FILE"

)

"Input file"

, Option "" ["html"]

(NoArg (\opt -> do return opt { optFormat = HTML})

)

"Output in HTML format"

, Option "" ["xml"]

(NoArg (\opt -> do return opt { optFormat = XML})

)

"Output in XML format"

, Option "c" ["canonical"]

(NoArg (\opt -> do return opt { optCanonical = True })

)

"Return the input system adding the canonical replacement map"

, Option "d" ["dim"]

(ReqArg (\arg opt -> do return opt { optDim = (read (arg) :: Int) })

"DIMENSION"

)

"Dimension"

, Option "n" ["interpretation"]

(ReqArg (\arg opt -> do return opt { optInterpretation = arg })

"INTERPRETATION"

)

"Interpretation type [Linear]"

, Option "p" ["property"]

(ReqArg (\arg opt -> do return opt { optPropName = arg

,optPropInput = readFile arg})

"FILE"

)

"Properties to test"

, Option "v" ["version"]

(NoArg (_ -> do hPutStrLn stderr "muTerm, version 5.0"

exitWith ExitSuccess))

"Print version"

, Option "t" ["timeout"]

(ReqArg (\arg opt -> do to <- readArg "timeout" arg

scheduleAlarm to

installHandler sigALRM

(Catch (putStrLn "MAYBE"

>> exitImmediately (ExitFailure 2))

) Nothing

return opt {optTimeout = Just to})

"SECONDS"

)

"Specify a timeout in seconds"

]

40 5. Practical Implementation

Figure 5.1: Command Line Arguments

With this modification of the original code the tool can handle the required extra
parameters. Invoking the tool without any parameter (or including the help com-
mand) displays a brief description of available parameters and settings as shown in
Figure 5.1.

5.3 New Modules

5.3.1 Goal Parser

The property to be tested must be uploaded from a separate file. In this case, a .prop
file loaded using the −p command line argument.

Example 25
For our running example, the goal is a file containing the following sentences:

wwv05(U:User) ->* submit(U:User) => ~(U:EventualUser)

wwv05(U:User) ->* submit(U:User) => U:RegUser

Two new modules were created to parse such goals:

1. The Parser.PROP.Parser module contains the function parsePROP, which has
the type:

parsePROP

:: Framework.Problem.Types.MProblem t

-> InferenceRules.ToConstraint.Interp

-> String

-> Either

ParseError

(Constraint.Constraints2.CCode

5.3. New Modules 41

(Constraint.Polynomials3.UV String)

(Constraint.Polynomials3.Poly (Constraint.Polynomials3.UV String)))

In fact, this function takes as parameters:

(a) the TRS obtained from parsing the MAUDE program,

(b) the set of properties to be demonstrated as a String, and

(c) the interpretation type, for function symbols.

Note that this is a partial function; for this reason the OSTRS type is not in-
cluded in the function signature. This function calls the propParserTransform

function located in the propParserTransform module.

2. The propParserTransform function, has the following type:

propParserTransform

:: MProblem t

-> InferenceRules.ToConstraint.Interp

-> String

-> Either ParseError (CCode (UV String) (Poly (UV String)))

This function takes the parsed OS-TRS, the interpretation type, and the string
with the contents of the .prop file, and returns either an error from the parser,
or a (CCode (UV String) (Poly (UV String))) polynomial that will be the
constraint representation of the program.

To parse the goal, we use, the Parsec package. Parsec is a monadic parser for Haskell,
it’s very simple to use2. In order to parse our goal formula, the first thing to do is
declaring the reserved names and operator names. For that, we define a lexer function
for the reserved function names true, false and for the logical operators ->, ->*, =>,
:, ~, \/, /\.

lexer = P.makeTokenParser fun

where fun = haskellStyle {

reservedNames = ["true", "false"]

, reservedOpNames = ["=>", "\\/", "/\\",

"~", "->*", "->",

":", ","]

}

Also, we need to define how the reserved operators use their parameters when
building expressions. An extract of the complete code (just to see an example of use)
will be like the following:

2Full documentation for Parsec can be found at https://hackage.haskell.org/package/parsec/

https://hackage.haskell.org/package/parsec/

42 5. Practical Implementation

opSpec :: Parser Spec

opSpec = buildExpressionParser table apSpec

where table = [[prefix "~" FNot],

binary "->" (:->) AssocLeft,

binary "->*" (:->*) AssocLeft,

binary "::" (:::) AssocLeft

],

[binary "=>" (:=>) AssocLeft],

[binary "\\/" (:\/) AssocLeft,

binary "/\\" (:/\) AssocLeft]

]

binary s op assoc = Infix (do {reservedOp s; return op}) assoc

prefix a b = Prefix (do{reservedOp a; return b})

After parsing the goal formula (which has a Formula a b type) a transformation
is still needed to convert this formula into data with a mu-term defined type. In
order to achieve this, we have functions transformFormula and transformTermino,
which take the goal parsed in the previous stage, and transform it to a value of type
Term (IdFOS (IdFAvC IdFTRS)) (IdVOS IdVTRS).

An excerpt of the code is shown to display the structure of those functions.

transformFormula _ (FTrue) = FTrue

transformFormula _ (FFalse) = FFalse

transformFormula trs (FNot a) = FNot $ transformFormula trs a

transformFormula trs (a :/\ b) =

transformFormula trs a :/\ transformFormula trs b

transformFormula trs (a :\/ b) =

transformFormula trs a :\/ transformFormula trs b

transformFormula trs (a :=> b) =

transformFormula trs a :=> transformFormula trs b

transformFormula trs (a :-> b) =

Rel $ transformTermino trs a ::-> transformTermino trs b

transformFormula trs (a :->* b) =

Rel $ transformTermino trs a ::->* transformTermino trs b

transformFormula trs (a ::: b) =

Rel $ transformVariable trs a :-: transformSort trs b

transformFormula trs (Termino a) =

error ("Se espera una formula pero se obtiene el termino: "++show(a))

transformFormula’ (FNot t) = FNot $ transformFormula’ t

transformFormula’ (Termino t) = transformTermino’’ t

transformTermino trs (Termino t) = transformTermino’ trs t

transformTermino’ :: MProblem t

-> Termi

-> Term (IdFOS (IdFAvC IdFTRS)) (IdVOS IdVTRS)

transformTermino’ trs (Fun n terms) = case (symbol) of

5.3. New Modules 43

Nothing -> error ("Simbolo n no encontrado en signatura: " ++ show n)

Just f -> F f (map (transformTermino’ trs) terms)

After this process, all the information (the original TRS, and the parsed goal) are
stored in the trs variable, which is used in the next step, to generate the required
inference rules.

5.3.2 Generating convex domains

The next step is the generation of the (parametric) matrices Cs and vectors ~bs for
each sort s defined in the specification. We proceed as follows:

1. All sorts declared in the program are listed.

2. A parametric convex domain matrix Cs is associated to each sort s, and saved
in a list, for later access. Similarly for the vector component ~bs of the domain.

The functions implementing these tasks are part of InferenceRules.Inference
and InferenceRules.GenMatrix modules.

First, the list of sorts from the original program, is obtained by means of two
actions:

1. Obtain the list of sorts and subsorts using the extractSorts function from the
Inference.Inference module.

2. Generate fresh variables for each sort listed, using the varsFromSort function
from the Inference.GenMatrix module. These variables are used as markers
to be replaced in the constraints defining the values belonging to the convex
domains by variables of the corresponding sort when other formulae are treated
(see Section 5.3.4 below, for instance).

The functions required for this task are defined as follow:

extractSorts trs = superSort where

getMMaudeProblem (MMaudeProblem a) = getR a

ostrs = getMMaudeProblem trs

listaSorts = getOSSorts ostrs

listaPrec = getOSPrec ostrs

getTopSorts a = Prelude.filter (\node -> pre a node == []) (nodes a)

listaSuperSorts = getTopSorts listaPrec

superSort = elems listaSorts

varsFromSort [] _ = return []

varsFromSort (x:xs) v = do

a1 <- getInt

cola <- varsFromSort xs v

let var1 = newvar (setOutSort x v) a1

let salida = (UV ("xs_"++(show a1)) [] (Just x)):cola

return salida

44 5. Practical Implementation

With a list of fresh variables ai and bi for i ∈ N (automatically generated using
MonadState) the tool generates the convex matrix for each new variable (or sort in
this specific case, because the new variable is just a container for the sort). To perform
this task, we use the following functions:

genMatrixVar :: MonadState Int m

=> Int

-> [UV [Char]]

-> m [(PCode (UV [Char]), (CCode ((UV [Char])) (PCode (UV [Char]))))]

genMatrixVar dim var = do

salida <- sequence (map (funcMatrices’ dim) var)

return salida

funcMatrices’ :: MonadState Int m

=> Int

-> UV [Char]

-> m (PCode (UV [Char]), (CCode (UV [Char]) (PCode (UV [Char]))))

funcMatrices’ dim variable = do

let varX = var variable

let listaIDs = [i | i <- [1..dim]]

formula <- sequence(map (generaRestriccion varX variable) listaIDs)

let formulaFlat = foldl1 (and) formula

let salida = (varX, formulaFlat)

return salida

The result of the previous process is a list [(var, convex matrix constraints)]
of tuples where

1. the first component of the tuple (var) contains the name and sort of the variable

~x which is used to define the values in the convex domain as the set D(Cs,~bs)

of solutions of the linear inequality Cs~x ≥ ~bs (see Definition 12) and

2. the second component (convex matrix constraints) contains the constraints
that correspond to the use of the convex domain to represent values of the sort
s in the first element of the tuple. The constraints are obtained according to the
selected dimensions (number of rows, ms, and columns, ns) of Cs. Note that
~x ∈ Rns

Example 26 (Convex domains for the running example.)
As for our running example, we let ms = m = 2 and ns = n = 1 for all sorts s to
obtain matrices C and vectors ~b of the generic shape

C =

[
a1

a2

]
~b =

[
b1
b2

]
where a1, a2, b1 and b2 are parameters that are different for each sort s. Note that,
since n = 1, variables ~x ranging on D(C,~b) are 1-dimensional vectors, i.e., ~x actually

5.3. New Modules 45

ranges on a subset of numbers. Since only one column is used for the matrix, we can
just show them as vectors, thus saving space: (a1, a2)T and (b1, b2)T .

For the sake of readability, we shortened the sort names associated to of each
semantic variable. The correspondence with such shortened sort names is:

User U

RegUser RU

EventualUser EU

WebPage WP

SecureWebPage SWP

Now we show the outcome of our generation procedure for each of the five sorts in
the program:

[

(xs_1:EU,

(((a_6:EU * xs_1:EU) >= b_7:EU)

/\ ((a_8:EU * xs_1:EU) >= b_9:EU))),

(xs_2:RU,

(((a_10:RU * xs_2:RU) >= b_11:RU)

/\ ((a_12:RU * xs_2:RU) >= b_13:RU))),

(xs_3:U,

(((a_14:U * xs_3:U) >= b_15:U)

/\ ((a_16:U * xs_3:U) >= b_17:U))),

(xs_4:WP,

(((a_18:WP * xs_4:WP) >= b_19:WP)

/\ ((a_20:WP * xs_4:WP) >= b_21:WP))),

(xs_5:SWP,

(((a_22:SWP * xs_5:SWP) >= b_23:SWP)

/\ ((a_24:SWP * xs_5:SWP) >= b_25:SWP)))

]

For instance, according to the information in this list of tuples, the matrix of param-
eters that corresponds to matrix CEU for the convex domain of sort EventualUser

is (a_6, a_8)T . Similarly, ~bEU is (b_7, b_9)T . The concrete numbers accompanying
the identifiers a and b (that we use for identifying the coefficients of matrices C and

vectors ~b, respectively) are given automatically by MonadState.

Furthermore, the constraints related to the subsort relationships are generated as
in (3.21).

Remark 27 All functions listed above (and other that will appear later) use the
State Monad, because they use an internal counter to assign a unique id (an integer
id) to each fresh variable or function.

46 5. Practical Implementation

5.3.3 Generating Polynomial Interpretations

Also before generating the inference rules for our theory, we need to define how the
Polynomial Interpretations are generated for each function symbol. This kind of
interpretation will be necessary before we generate all the constraints for the theory
we are modeling. To do this, we proceed as follows:

• Identify the function symbol in our OS-TRS.

• For each function symbol, generate a polynomial interpretation, in order to
replace the function with its own interpretation in the rule.

For this step in the process, we use the Constraint.Interpretations2 module
from mu-term, which includes the function polyIntSigSort. This function han-
dles the interpretation of a function symbol from our OS-TRS, in our case, we use
linear polinomyal interpretations only. Therefore, this function invokes directly to
LinearPolyIntSigSort, which is an adaptation of the LinearPolyIntSig function,
modified to work with OS-TRS. The function creates a polynomial interpretation for
a function symbol, and requires the following parameters:

• Dimension: The dimension of the coefficients (in our case it is settled to 1)

• Coefficients: The type of coefficients used for the interpretation (In our case,
fixed to integer numbers)

• fs: The function symbol to be interpreted.

-- | create a linear polynomial interpretation

linearPolyIntSigSort :: (Ord idF, Pretty idF, HasName idF,

HasFSort idF, Polynomial a (UV String), HasArity idF)

=> Dimension

-> Coefficients

-> Set idF

-> Map idF ([UV String], a)

linearPolyIntSigSort dim coeffs functions =

M.fromList [(f,linearPolyIntSort

dim coeffs f (getFArity f)) |

f <- S.elems functions]

We illustrate the execution of this interpretation function, with the following example:

Example 28
The function symbol:

login(U)

where the function symbol login has the sort Website, and the variable U has the
sort User, is interpreted as:

5.3. New Modules 47

[login](v1:User) = f0_0:WebPage + (f0_1:WebPage * v1:User)

where f0_0 are f0_1 are automatically generated parameters, i.e., unknown coeffi-
cients of the polynomial interpretation which will be settled by the constraint solving
process described in the last sections of this chapter.

For each function symbol, we generate the algebraicity constraints as the ones
presented in (3.29)-(3.35).

5.3.4 Specialization of the input specification using the infer-
ence rules

By using the list of tuples that describe the different domains by means of appropriate
linear constraints, we can proceed to generate the logic formulae, by specializing the
rules in Figure 1.1.

Reflexive Inference Rules

The Reflexive Inference Rule

t→∗ t

means that for each connected component in [s] each term t can be rewriten in one
or more steps to the same term t. In fact, the inference rule can be thought of as a
variable of superior sort [s] that can be bound to any term of sort in [s]. For this, the
module InferenceRules.Inference includes two functions to generate this rules.

infRefl trs matriz interParams symbols = do

let listaVars = (elems . getTRSVariables $ trs)

reglas <- sequence

(map (genRef symbols interParams matriz) listaVars)

return reglas

genRef symbols interParams matriz v = do

a1 <- getInt

let var1 = newvar’ v a1

let reglaInferencia = (Rel ((var1) ::->* (var1)))

let resultado = generaConstraints

reglaInferencia matriz symbols interParams

return resultado

The function infRefl takes the following parameters:

• the TRS parsed from the Maude program.

• the list of tuples describing the convex domains for each sort that was created
in the previous step (which includes the constraints for all sorts of the TRS).

48 5. Practical Implementation

• the interpretation parameters (including the matrix dimension and the inter-
pretation type, parsed from the command line arguments).

• and the list of function symbols extracted from the TRS.

Remark 29 The aforementioned parameters are almost the same for all functions
that generate the distinct inference rules explained in the remainder sections.

Function infRefl applies function genRef to all variables extracted from the
TRS. The function genRef takes a variable and creates a fresh variable using the
State Monad to generate a new variable Id with the function newvar′, wich creates
the fresh variable, taking the new Id, and the sort from the actual one.

newvar’ :: (HasName idV) => idV -> Int -> Term idF idV

newvar’ v a = V ((setName (Nothing) . setId (a+1) $ v))

This new variable is used to create a new rule Rel (v ->* v). This rule is passed
to the generaConstraints function, that takes the generated inference rule, and adds
the corresponding constraints according to the sort of the variables used. The result
of this functions is shown in the following example:

Example 30 (Specialization of the reflexivity rule in the running example)

With regard to our running example, we have to specialize the reflexivity rule for the
two connected components in the sort hierarchy: [User] and [WebPage]. The list of
obtained formulae (implications) is:

[

((((a_14:U * v27:U) >= b_15:U)

/\ ((a_16:U * v27:U) >= b_17:U))

=>

(v27:U >= v27:U)

),

((((a_18:WP * v28:WP) >= b_19:WP)

/\ ((a_20:WP * v28:WP) >= b_21:WP))

=>

(v28:WP >= v28:WP)

)

]

Note that, as explained above, the variables xs_3 (for sort User) and xs_4 (for
sort WebPage) which are obtained in Example 26 to represent the domains User

and WebPage, respectively, are used as markers to be replaced here by variables v27

and v28 in the specialization of the corresponding inference rules to obtain the two
implications.

5.3. New Modules 49

Transitive Inference Rules

The generation of the rules corresponding to the generic Transitive Inference Rule

t→ t′ t′ →∗ u
t→∗ u

is similar what we do for the Reflexive Rule. In this case, though, we need to create
three fresh variables per connected component [s] in the sort hierarchy.

infTran trs matriz interParams symbols = do

let listaVars = (elems . getTRSVariables $ trs)

reglas <- sequence (map (genTra symbols interParams matriz) listaVars)

return reglas

genTra symbols interParams matriz v = do

v1 <- getInt

v2 <- getInt

v3 <- getInt

let reglaInferencia = ((Rel ((newvar’ v v1) ::-> (newvar’ v v2))

:/\ Rel ((newvar’ v v2) ::->* (newvar’ v v3)))

:=> (Rel ((newvar’ v v1) ::->* (newvar’ v v3))))

let resultado = generaConstraints

reglaInferencia matriz symbols interParams

return resultado

With these functions, we create rules of the form

Rel(var1 -> var2) ∧ Rel(var2 ->* var3)⇒ Rel(var1 ->* var3)

Example 31 (Specialization of the transitivity rule in the running example)

After introducing the information about convex domains for the specific sorts of the
variables (User and WebPage), the outcome of this step for our example is:

[

(((((a_14:User * v31:User) >= b_15:User)

/\ ((a_16:User * v31:User) >= b_17:User))

/\ (((a_14:User * v32:User) >= b_15:User)

/\ ((a_16:User * v32:User) >= b_17:User)))

/\ (((a_14:User * v33:User) >= b_15:User)

/\ ((a_16:User * v33:User) >= b_17:User))))

/\ (((v31:User > v32:User)

/\ (v32:User >= v33:User))

=>

(v31:User >= v33:User)

,

(((((a_18:WebPage * v34:WebPage) >= b_19:WebPage)

/\ ((a_20:WebPage * v34:WebPage) >= b_21:WebPage))

50 5. Practical Implementation

/\ (((a_18:WebPage * v35:WebPage) >= b_19:WebPage)

/\ ((a_20:WebPage * v35:WebPage) >= b_21:WebPage)))

/\ (((a_18:WebPage * v36:WebPage) >= b_19:WebPage)

/\ ((a_20:WebPage * v36:WebPage) >= b_21:WebPage))))

/\ (((v34:WebPage > v35:WebPage)

/\ (v35:WebPage >= v36:WebPage))

=>

(v34:WebPage >= v36:WebPage)

)

]

The coefficients a from the constraints, correspond to the restriction of taking
values in the domain of the respective sort, as in the reflexive inference rules generated
in previous steps.

Congruence Inference Rule

For the Congruence Inference Rule, we have to generate inference rules from the
generic rule

ti → t′i
f(t1, . . . , ti, . . . , tk)→ f(t1, . . . , t

′
i, . . . , tk)

for each function symbol f in the signature (with rank f : s1 · · · sk → s), and
each argument i of the symbol (i.e., i ∈ {1, . . . , k}) using the appropriate rela-
tions for the sort si of the i-th argument and for the outocome sort s of symbol
f . Of course, t1, . . . , tk are variables ranging over the corresponding convex domains
D(Cs1 ,

~bs1), . . . , D(Csk ,
~bsk) and t′i ranges on D(Csi ,

~bsi).
The functions that handle this inference rule are:

filterEmpty [] = []

filterEmpty (x:xs)

| length(x)>0 = x : filterEmpty xs

| otherwise = filterEmpty xs

genVarsList :: (HasName (IdVOS IdVTRS), Num t, MonadState Int m, Enum t)

=> (IdVOS IdVTRS)

-> t

-> m [Term (IdFOS (IdFAvC IdFTRS)) (IdVOS IdVTRS)]

genVarsList v arity = sequence ([newvar’’ v | ar <- [0..(arity-1)]])

newvar’’ :: (MonadState Int m, HasName (IdVOS IdVTRS)) => (IdVOS IdVTRS)

-> m (Term (IdFOS (IdFAvC IdFTRS)) (IdVOS IdVTRS))

newvar’’ v = do

idV1 <- getInt

let v1 = newvar’ v idV1

5.3. New Modules 51

return v1

infCong trs matriz interParams symbols = do

let listaFuncs = (elems $ getTRSSymbols trs)

let v = findMax $ getTRSVariables trs

reglas’ <- sequence (map (genCon symbols interParams matriz v) listaFuncs)

let reglas = filterEmpty reglas’

return (concat reglas)

genCon symbols interParams matriz v funcion= do

let inSorts = getInSorts . head . getFSorts $ funcion

let fArity = getFArity funcion

listaVarsF <- varsFromSort’’ inSorts v

reglas <- sequence ([genConFormula funcion listaVarsF v pos matriz

symbols interParams| pos <- [0..(fArity-1)]])

return reglas

genConFormula f listaVars v pos matriz symbols interParams= do

idV1 <- getInt

idV2 <- getInt

let (x,_:ys) = splitAt pos listaVars

let removeVfromVar (V a) = a

let v1 = newvar’ (removeVfromVar(listaVars!!pos)) idV1

let v2 = newvar’ (removeVfromVar(listaVars!!pos)) idV2

let v0a = x ++ [v1] ++ ys

let v0b = x ++ [v2] ++ ys

let f1 = newfun f v0a

let f2 = newfun f v0b

let reglaInferencia = ((Rel (v1 ::-> v2)) :=> (Rel (f1 ::-> f2)))

let resultado = generaConstraints reglaInferencia matriz symbols interParams

return resultado

First, in the function infCong we extract the function symbols from the original
TRS, and for each symbol, make a call to the genCon function, on order to get the
arity of that function, generate a new list of variables based on the function arity
and sorts of the input variables, and using the function genConFormula, replace each
variable inside the new function symbols (named f1 and f2 in our code) in order to
complete the inference rule. After we include the convex matrices and transform to
a polynomial interpretation of the functions, we obtain this result from our running
example:

Example 32 (Specialization of the congruence rule in the running example)

[

((v38:User > v39:User)

/\ ((((a_14:User * v38:User) >= b_15:User)

/\ ((a_16:User * v38:User) >= b_17:User))

/\ (((a_14:User * v39:User) >= b_15:User)

52 5. Practical Implementation

/\ ((a_16:User * v39:User) >= b_17:User))))

=>

((f0_0:WebPage + (f0_1:WebPage * v38:User))

> (f0_0:WebPage + (f0_1:WebPage * v39:User))),

((v41:User > v42:User)

/\ ((((a_14:User * v41:User) >= b_15:User)

/\ ((a_16:User * v41:User) >= b_17:User))

/\ (((a_14:User * v42:User) >= b_15:User)

/\ ((a_16:User * v42:User) >= b_17:User))))

=>

((f1_0:WebPage + (f1_1:WebPage * v41:User))

> (f1_0:WebPage + (f1_1:WebPage * v42:User))),

((v44:User > v45:User)

/\ ((((a_14:User * v44:User) >= b_15:User)

/\ ((a_16:User * v44:User) >= b_17:User))

/\ (((a_14:User * v45:User) >= b_15:User)

/\ ((a_16:User * v45:User) >= b_17:User))))

=>

((f2_0:WebPage + (f2_1:WebPage * v44:User))

> (f2_0:WebPage + (f2_1:WebPage * v45:User))),

((v47:User > v48:User)

/\ ((((a_14:User * v47:User) >= b_15:User)

/\ ((a_16:User * v47:User) >= b_17:User))

/\ (((a_14:User * v48:User) >= b_15:User)

/\ ((a_16:User * v48:User) >= b_17:User))))

=>

((f3_0:SecureWebPage + (f3_1:SecureWebPage * v47:User))

> (f3_0:SecureWebPage + (f3_1:SecureWebPage * v48:User))),

((v50:User > v51:User)

/\ ((((a_14:User * v50:User) >= b_15:User)

/\ ((a_16:User * v50:User) >= b_17:User))

/\ (((a_14:User * v51:User) >= b_15:User)

/\ ((a_16:User * v51:User) >= b_17:User))))

=>

((f4_0:WebPage + (f4_1:WebPage * v50:User))

> (f4_0:WebPage + (f4_1:WebPage * v51:User))),

((v53:User > v54:User)

/\ ((((a_14:User * v53:User) >= b_15:User)

/\ ((a_16:User * v53:User) >= b_17:User))

/\ (((a_14:User * v54:User) >= b_15:User)

/\ ((a_16:User * v54:User) >= b_17:User))))

=>

((f5_0:WebPage + (f5_1:WebPage * v53:User))

> (f5_0:WebPage + (f5_1:WebPage * v54:User))),

5.3. New Modules 53

((v56:RegUser > v57:RegUser)

/\ ((((a_10:RegUser * v56:RegUser) >= b_11:RegUser)

/\ ((a_12:RegUser * v56:RegUser) >= b_13:RegUser))

/\ (((a_10:RegUser * v57:RegUser) >= b_11:RegUser)

/\ ((a_12:RegUser * v57:RegUser) >= b_13:RegUser))))

=>

((f6_0:SecureWebPage + (f6_1:SecureWebPage * v56:RegUser))

> (f6_0:SecureWebPage + (f6_1:SecureWebPage * v57:RegUser)))

]

Replacement Inference Rules

The specialization of the Replacement Inference Rules

`→ r

for each rule ` → r in the program, uses two functions to generate a formula with
format Rel(` -> r):

infRepl trs matriz interParams symbols = do

let listaFuncs = (elems $ getTRSSymbols trs)

let v = findMax $ getTRSVariables trs

let listaReglas = elems $ getTRSRules trs

reglas <- sequence

(map (genRep symbols interParams matriz) listaReglas)

return reglas

genRep symbols interParams matriz regla = do

let lhs = T.lhs(regla)

let rhs = T.rhs(regla)

let reglaInferencia = Rel (lhs ::-> rhs)

let resultado = generaConstraints reglaInferencia matriz symbols interParams

return resultado

With this, and the remark that the rule Rel(lhs :: − > rhs) and its terms are
transformed into their polynomial interpretation, using the toConstraint function,
the result for the replacement inference rules is:

Example 33 (Specialization of the replacement rule in the running example)

[

(((a_14:User * v1:User) >= b_15:User)

/\ ((a_16:User * v1:User) >= b_17:User)))

=>

54 5. Practical Implementation

(((f0_0:WebPage + (f0_1:WebPage * v1:User))

> (f3_0:SecureWebPage + (f3_1:SecureWebPage * v1:User))),

(((a_14:User * v1:User) >= b_15:User)

/\ ((a_16:User * v1:User) >= b_17:User)))

=>

(((f1_0:WebPage + (f1_1:WebPage * v1:User))

> (f0_0:WebPage + (f0_1:WebPage * v1:User))),

(((a_14:User * v1:User) >= b_15:User)

/\ ((a_16:User * v1:User) >= b_17:User)))

=>

(((f1_0:WebPage + (f1_1:WebPage * v1:User))

> (f5_0:WebPage + (f5_1:WebPage * v1:User))),

(((a_14:User * v1:User) >= b_15:User)

/\ ((a_16:User * v1:User) >= b_17:User)))

=>

(((f2_0:WebPage + (f2_1:WebPage * v1:User))

> (f1_0:WebPage + (f1_1:WebPage * v1:User))),

(((a_10:RegUser * v0:RegUser) >= b_11:RegUser)

/\ ((a_12:RegUser * v0:RegUser) >= b_13:RegUser)))

=>

(((f3_0:SecureWebPage + (f3_1:SecureWebPage * v0:RegUser))

> (f6_0:SecureWebPage + (f6_1:SecureWebPage * v0:RegUser))),

((((a_10:RegUser * v0:RegUser) >= b_11:RegUser)

/\ ((a_12:RegUser * v0:RegUser) >= b_13:RegUser))

/\ (((a_14:User * v1:User) >= b_15:User)

/\ ((a_16:User * v1:User) >= b_17:User))))

=>

(((f3_0:SecureWebPage + (f3_1:SecureWebPage * v1:User))

> (f6_0:SecureWebPage + (f6_1:SecureWebPage * v0:RegUser))),

/\ (((a_14:User * v1:User) >= b_15:User)

/\ ((a_16:User * v1:User) >= b_17:User)))

=> (((f4_0:WebPage + (f4_1:WebPage * v1:User))

> (f2_0:WebPage + (f2_1:WebPage * v1:User)))

]

Goal Constraint Generation

For the goal to be verified, we execute the same process, inserting the information
about the domain for variables in the formula by adding the constraints for the sorts
of the variables used in that formula.

5.3. New Modules 55

Example 34
For the last goal in Example 25, i.e.,

wwv05(U:User) ->* submit(U:User) => U:RegUser

the application of the constraint generation functions, yields the following restriction:

[

((

(((a_14:U * v0:U) >= b_15:U)

/\ ((a_16:U * v0:U) >= b_17:U))

/\ (f4_0:WP + (f4_1:WP * v0:U)) >= (f0_0:WP + (f0_1:WP * v0:U)))

=> ((a_10:RU * v0:U >= b_11:RU) /\ (a_12:RU * v0:U >= b_13:RU))

)

]

where f4_0 and f4_1 are the parameters interpreting symbol wwv05 as a linear poly-
nomial f4_1x+ f4_0, where x ranges over values of sort User, according to the rank
of wwv05 in program WWV05-WEBSITE. Similarly, f0_0 and f0_1 are the parameters
interpreting symbol submit as a linear polynomial f0_1x+f0_0, where x ranges over
values of sort User as well.

Finally, collect all constraints by means of Haskell’s predefined and function, so
that all constraints are handled as a single conjunction of (conditional) linear con-
straints. This is stored in a single variable to be used in the next steps of the tool.

let restricciones = and algSig’ (and subsRel’ infRules’)

let infRules’ = and refl’ (and tran’ (and cong’ repl’))

5.3.5 Final Transformations and Solver Execution

The outcome of the previous process is a conjunction
∧n
i=1 Pi ⇒ Qi where (in general),

Pi and Qi are conjunctions of expressions si ./ ti for polynomials si and ti and where
./ is a relation ≥, > or =. All semantic variables in this formula are universally
quantified over the domains of the corresponding sorts. The parameters introduced
during the generation process are intended to be existentially quantified and will
be given appropriate values through a constraint solving process using a constraint
solving tool.

Before being able to use the solver, we need to apply some further transformations.
These transformations are mostly available from modules Constraint.Constraints2,
Constraint.Polynomials3 and Constraint.Interpretations2) of mu-term. We
briefly explain their functionallity as follows.

In the AGES code, there are six steps required after the constraint generation, that
are mandatory before we send the constraints to the solver tool.

• Transform the logic formulae into arithmetic constraints.

56 5. Practical Implementation

• Remove conditional implications and remove universally quantified variables
using Farkas’s theorem.

• Simplify constraints.

• Add a constraint for the delta variable, which is used to obtain a discrete domain
>.

The code that executes those tasks is the following:

let p0vars = S.filter

(Prelude.null . uvinfo) . getFreeVarsInCCode $ restricciones

p1 <- removeConds (restricciones)

let p3 = simplifyPols p2

let p5 = and (gr delta zero) p3

1. First of all, the following command:

let p0vars = S.filter (Prelude.null . uvinfo)

. getFreeVarsInCCode $ restricciones}

takes the constraint generated before, and extracts the free (semantic) variables.
This process is made by analizing the data structure of each variable in the
constraint, and the ones which their uvinfo value is null, are included in a list.

Example 35

For our running example, the free variables obtained from the constraint are:

v0:RU v1:U v27:RU v28:U v29:RU v30:RU

v31:RU v32:U v33:U v34:U v35:U v36:U

v37:U v38:U v39:U v40:U v41:U v42:U

v43:U v44:U v45:U v46:U v47:U v48:U

2. The command

p1 <- removeConds (restricciones)

takes the constraints defined with > and transforms them into a ≥-based con-
straint by interpreting > as the following well-founded ordering >δ over the
integers for a given positive number δ: x >δ y if and only if x ≥ y + δ [12].
This step is necessary because to work with Farkas’s theorem, all the constraints
must have inestrict inequalities.

Example 36

The constraint

5.3. New Modules 57

(a_10:RU * v27:RU) > b_11:RU

is transformed into:

(a_10:RU * v27:RU) >= b_11:RU + delta

At the end of the transformation process, we will add a new constraint delta > 0

to guarantee the correctness of the approach. The important point is that delta
is existentially quantified in the final formula and can be handled by the con-
straint solving tool.

We can use now the techniques discussed in [11] to transform conditional poly-
nomial constraints into constraint solving problems. In particular the Affine
form of Farkas’ Lemma considered in [11, Section 5.1], can be used to deal
with linear conditional constraints like (3.29)-(3.47) that consist of implications∧pi
j=1 eij ≥ dij ⇒ ei ≥ di, where for all i ∈ {1, . . . , k}, pi > 0 and for all j,

1 ≤ j ≤ pi, eij and ei are linear expressions and dij , di ∈ R. We say that these
implications are in affine form. In general, given ~c ∈ Rn and β ∈ R, the affine
form of Farkas’ Lemma can be used to check whether a constraint ~cT~x ≥ β holds
whenever ~x ranges on the set S of solutions ~x ∈ Rn of a linear system A~x ≥ ~b of
k inequalities, i.e., A is a matrix of k rows and n columns and~b ∈ Rk. According
to Farkas’ Lemma, we have to find a vector ~λ of k non-negative numbers ~λ ∈ Rk0
such that ~c = AT~λ and ~λT~b ≥ β.

Example 37

We can write (3.29) to fit the affine form above as follows:

Cu1 x ≥ bU1 ∧ Cu2 x ≥ bU2 ⇒ Cw1 l1x ≥ bWP1 − Cw1 l0 (5.1)

Cu1 x ≥ bU1 ∧ Cu2 x ≥ bU2 ⇒ Cw2 l1x ≥ bWP2 − Cw2 l0 (5.2)

Note that we obtain a logically equivalent set of two implications due to the
conjunction of two affine inequalities in the consequent of (3.29). Now, we apply
Farkas’ lemma to each of them. Both (5.1) and (5.2) have the same associated
matrix A, which is actually a vector (Cu1 , C

u
2)T . Similarly, we have the same

vector ~b = (bU1, b
U
2)T . For (5.1) ~c is actually a one-dimensional vector Cw1 l1 and

β = bWP1 − Cw1 l0 for both of them. For (5.2) ~c is Cw2 l1 and β = bWP2 − Cw2 l0.

For (5.1), the application of Farkas’ Lemma seeks a vector ~λ = (λ1, λ2)T with
λ1, λ2 ≥ 0 that satisfies the following two (in)equations:

Cw1 l1 = Cu1 λ1 + Cu2 λ2 λ1b
U
1 + λ2b

U
2 ≥ bWP1 − Cw1 l0

for some values of the parameters Cu1 , C
u
2 , C

w
1 , b

U
1, b

U
2, l0, l1. For (5.2), we seek

some ~λ′ = (λ′1, λ
′
2)T with λ′1, λ

′
2 ≥ 0 that satisfies:

Cw2 l1 = Cu1 λ
′
1 + Cu2 λ

′
2 λ′1b

U
1 + λ′2b

U
2 ≥ bWP2 − Cw2 l0

58 5. Practical Implementation

for some values of the parameters Cu1 , C
u
2 , C

w
2 , b

U
1, b

U
2, l0, l1. Note, however, that

the values associated to Cu1 , C
u
2 , C

w
1 , C

w
2 , b

U
1, b

U
2, l0, l1 should be the same for

both (5.1) and (5.2) as they represent ingredients defining the same seman-
tic structure. Actually, this observation is valid for all parameters occurring in
(3.21)-(3.51). For this reason, although each implication processed using Farkas’

Lemma can use a different vector ~λ, we have to solve a single set of inequations
corresponding to a single solution which produces a single model that makes all
sentences valid.

3. Now we proceed to further simplify the constraints. The process is just an
algebraic simplification that the following example illustrates.

Example 38 (Simplification process)

In the equation:

v27:RU >= v27:RU

we move the term in the right side to the left side, so the inequation becomes:

v27:RU - v27:RU >= 0

And after an algebraic simplification we obtain:

0 >= 0

Which is true. We can therefore remove this constraint from any conjunction
containing it.

The function simplifyPols found in the Constraint.Constraints2 module,
applies the simplification to all generated constraints. This function takes as
input a (CCode a (PCode a)) polynomial, and executes a monomial cancela-
tion. If exists in the input polynomial a positive and negative occurrence of any
monomial, both occurrences of the monomial are removed from the polynomial.

4. Finally, we add an extra constraint delta > 0 with and (gr delta zero) p3.
We do this to force the solver, to give delta a value greater than zero.

Now the constraint is ready to be sent to the constraint solver.

5.4 SMT Solver

Once a set of simple constraints has been generated and collected, we can proceed
with the last step of the process, and solve the constraints. In our tool, we use the
barcelogicsNIA solver

http://www.cs.upc.edu/~albert/nonlinear.html

http://www.cs.upc.edu/~albert/nonlinear.html

5.4. SMT Solver 59

which is an SMT-solver. In order to call the solver (using the Solver.SolverSMTExt
module from mu-term) we use function solveSMT2, that takes the constraint to be
solved, transforms it into an appropriate (SMT-LIB) format, and sends it to Barcel-
ogics to solve the inequations.

If the returned result is SAT (for Satisfiable) the solver also returns the value for
each variable in the constraint. Otherwise, Barcelogics only returns the word UNSAT.

The returned results give information about the given value for the parametric
coefficients which are used to build the constraints during the transformation process
described in the previus sections. Each variable (or parametric coefficient) is given a
solution in the SMT solver output which is described as follows:

[Vname : Sort, (value, type)]

where value is the numeric value associated by the solver to variable Vname. Since the
solver returns Integer values for all answers, the type parameter is 1 in all cases.

60 5. Practical Implementation

6
Conclusions and Future Work

6.1 Conclusions

Automatic Program Analysis and Verification is a field in expansion. As new theories
are defined, there will always be a need for checking properties about these theories
(or expressed by means of these theories) in an automatic way. We think that tools
like AGES, created for this project, can be helfpful for researchers and practitioners
to improve their ability to deal with software analysis and development.

Our tool is able to read a program, as a Maude specification, to parse and transform
it into an Order-Sorted First-Order theory. Also, the goals defined for the targeted
analysis problem, are parsed from a text with similar, Maude-like format into another
Order-Sorted First-Order theory. The tool then generates a model for them based
on interpretating sorts as convex domains and function symbols as linear polynomial
interpretations. In this way, the original theory is transformed into a set of constraints,
which are solved with an external tool, and the results of that process, are used to
assemble a model for the initial program and goals.

An interesting aspect of this work is the possibility of sharing with the mu-term
tool in both directions. To achieve future compatibility between AGES (and their
implemented processes) and mu-term, both tools use common data types. In this
way, we can furnish mu-term with new features that will increase the power of the
tool.

About the developer skills acquired, some people will discuss about the benefits of
the functional programming. For this project, using Haskell as a programming lan-
guage has been an advantage, because of code reuse. The learning curve of Haskell is
very steep, but once we change our imperative way to analyze programming problems,
it becomes easier to figure out solutions encoded as functions.

6.2 Future Work

AGES has been created using mu-term as base framework, but it is an independent
application. The logical next step will be the integration of modules created for AGES
into mu-term, to enable the verification of the termination property, using the convex

62 6. Conclusions and Future Work

domains that are now available in AGES (see [11, 13] for further motivation).
The current release of AGES has a lot of improvements to be made. The use of more

general convex domains (of bigger dimension) and the convex matrix interpretations
proposed in [11] (that extend linear polynomial interpretations by using matrices
as coefficients of the linear expressions, see Section 2.2.2) could be a first step in
improving its performance. Changes like these, will improve the generation of logical
models and the validation of handcrafted solutions.

Also, as it was mentioned before, this tool has no time constraint like other analysis
and verification tools. When used for research, tools like AGES, can be used in long-
run experiments (that was the main reason to create a web-based and a command
line version of the tool), enhancing the arsenal of available software for automatic
verification and analysis. But improving efficiency and achieving a fast analysis tool
is also an important subject for future work.

Bibliography

[1] B. Alarcón, R. Gutiérrez, S. Lucas, R. Navarro-Marset. Proving Termina-
tion Properties with MU-TERM. In M. Johnson and D. Pavlovic, editors,
Proc. of the 13th International Conference on Algebraic Methodology and
Software Technology, AMAST’10, LNCS 6486:201-208, Springer-Verlag,
2011.

[2] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. All About Maude – A High-Performance Logical Framework.
Lecture Notes in Computer Science 4350, 2007.

[3] E. Contejean, C. Marché, A.-P. Tomás, and X. Urbain. Mechanically
proving termination using polynomial interpretations. Journal of Auto-
mated Reasoning, 34(4):325-363, 2006.

[4] F. Durán, S. Lucas, C. Marché, J. Meseguer, X. Urbain, Proving Oper-
ational Termination of Membership Equational Programs, Higher-Order
and Symbolic Computation 21(1-2):59–88, 2008.

[5] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp,, R. Thiemann and
H.Zankl. Maximal Termination in Proc. of RTA’08, LCNS 5117:110-125,
Springer-Verlag, Berlin, 2008

[6] J. Goguen and J. Meseguer. Models and Equality for Logical Program-
ming. In Proc. of TAPSOFT’87, LNCS 250:1-22, Springer-Verlag, 1987.

[7] J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operations.
Theoretical Computer Science, 105:217–273, 1992.

[8] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial algebra ap-
proach to the specification, correctness and implementation of abstract
data types. In Current trends in Programming Methodology, pages 80-
149, Prentice Hall, 1978.

[9] W. Hodges. A shorter model theory. Cambridge University Press, 1997.

[10] S. Lucas. Automatic generation of logical models for order-sorted first-
order theories InProgramAnalysis. In M. Navarro, editor, Proc. of the XV
Jornadas sobre Programación y Lenguajes, PROLE’15, to appear, 2015.

[11] S. Lucas and J. Meseguer. Models for Logics and Conditional Constraints
in Automated Proofs of Termination. In G.A. Aranda-Corral and F.J.

64 6. Bibliography

Mart́ın-Mateos, editors, Proc. of the 12th International Conference on
Artificial Intelligence and Symbolic Computation, AISC’14, LNAI 8884:7-
18, 2014.

[12] S. Lucas. Polynomials over the Reals in Proofs of Termination: from
Theory to Practice. RAIRO Theoretical Informatics and Applications,
39(3):547–586, 2005.

[13] S. Lucas and J. Meseguer. Proving Operational Termination Of Declar-
ative Programs In General Logics. In O. Danvy, editor, Proc. of the
16th International Symposium on Principles and Practice of Declara-
tive Programming , PPDP’14, pages 111-122, ACM Press, 2014. DOI:
10.1145/2643135.2643152

[14] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems -
Safety. Springer-Verlag, 1995.

[15] J. Meseguer. General Logics. In Logic Colloquium’87, pages 275-329,
North-Holland, 1989.

[16] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, Berlin, 1999.

[17] M.O. Rabin. Decidable Theories. In J. Barwise, editor, Handbook of
Mathematical Logic, North-Holland, 1977.

[18] A. Schrijver. Theory of linear and integer programming. John Wiley &
sons, 1986.

	Introduction
	Automatic program analysis and verification
	Logical-based programming and program analysis
	A running example: browsing a web site

	Models for Order-Sorted First-Order Logic
	Automatic generation of models
	Plan of the thesis

	Preliminaries
	Order-Sorted First-Order Logic
	Sorts and order-sorted signatures
	Theories, Specifications and programs.
	Structures, Satisfaction, Models
	Derived Models

	Convex Domains
	Domains
	Functions

	Conditional Polynomial Constraints

	Formal treatment of a verification problem
	Defining the theory
	Defining the model using convex domains
	Domains for sorts
	Interpretation of function symbols
	Interpretation of predicate symbols
	Derived theory
	Specific Conditions for the Analysis

	The AGES Tool
	Internal structure and work flow
	Input data and data format
	MAUDE program syntax
	Goal Definition and Format

	A short user manual
	Web Based Application
	Console Application

	Practical Implementation
	Development Environment
	Haskell Compiler
	Cabal Installer
	mu-term Framework
	mu-term Initial Setup

	Implementing AGES using mu-term
	Maude Parser Module
	Command Line Interface Parameters

	New Modules
	Goal Parser
	Generating convex domains
	Generating Polynomial Interpretations
	Specialization of the input specification using the inference rules
	Final Transformations and Solver Execution

	SMT Solver

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

