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Abstract
In this paper, we present an architecture to create a multi-
domain spoken dialog system with minimum effort by com-
posing heterogeneous pre-existent spoken dialog systems into
a new system able to perform richer interactions. A Task Man-
ager acts as a proxy for the different sub-domains and activates
one of the systems each turn. The different sub-systems are not
aware that they are used in a multi-domain scenario and believe
that they are speaking directly to the user. This allows us to add
new domains leaving most of the underlying models unmodified
and reducing the amount of time and money needed to deploy
the application.

The proposed architecture has been applied to create a
multi-domain system combining three heterogeneous spoken
dialog systems (sport facilities booking, weather service and
personal calendar) in Spanish. The evaluation with naive real
users shows that this is an appropriate approach to develop
multi-domain spoken dialog systems.
Index Terms: multi-domain dialog systems, spoken dialog sys-
tems, dialog management, stochastic finite-state transducers

1. Introduction
A spoken dialog system (SDS) can be seen as a human-machine
interface that recognizes and understands the speech input and
generates a spoken answer in successive turns in order to
achieve a goal, such as obtaining information or carrying out
an action. Voice-driven applications such as in-car navigation
systems or telephone information services are common exam-
ples of spoken dialog systems. Most of the dialog systems are
oriented to restricted domain tasks, mixed initiative, and tele-
phone access although several new applications have appeared
on portable devices like mobile phones or tablets. The new ap-
plications like Apple’s Siri or Google Now tend to be multi-
domain, user-driven spoken systems where the system answers
are based on the content of the last utterance.

Different modules take part in order to carry out the final
goal of a SDS: the Speech Recognition/Understanding Module,
the Dialog Manager, the Answer Generator, and the Text-to-
Speech Synthesizer. Each one has its own characteristics and
the selection of the most convenient model varies depending on
certain factors: the goal of each module, the possibility of man-
ually defining the behavior of the module, or the capability of
automatically obtaining models from training samples. Interest
in the use of statistical techniques for the development of the
different modules that compose the SDS has been growing over
the last few years. These methodologies have been traditionally
applied within the fields of Automatic Speech Recognition and
Natural Language Understanding [1, 2, 3, 4, 5].

The Dialog Manager (DM) selects the best action at each
turn based on the user utterance and the dialog history. There-
fore, a dialog can be seen as a multi-stage decision problem.
The application of statistical methodologies to model the behav-
ior of the DM has provided compelling results in more recent
years [6, 7, 8, 9, 10]. Recently, an approach based on Stochas-
tic Finite-State Transducers (SFST) [11, 12] has been proposed.
In this approach, given a system state and a user turn, a system
action is selected and a transition to a new state is done. There-
fore, dialog management is based on the modelization of the
sequences of system actions and user dialog turn pairs. Then, a
dialog describes a path in the transducer model from its initial
state to a final one.

In a DM based on state models [8, 12], the number of states
grows exponentially as attributes or concepts are added to the
task. For example, if there are four attributes and the DM just
stores whether or not it knows their values there are 24 different
states. The number of states grows exponentially on the number
of attributes and, in some approaches, the growth factor can be
larger than 2. The more states a system has, the more expen-
sive it is to estimate a model for it, and therefore, more training
samples are needed for this estimation. Other approaches like
POMDPs also suffer from the curse of dimensionality, and sev-
eral approaches have been presented to make these models more
tractable [13, 14].

Recently, there has been an increasing interest in multi-
domain SDS. The goal is to be able to help the user in different
domains using the same interface. Some techniques for multi-
domain semantic understanding have recently been presented
[15, 16]. In the case of dialog management, the exponential in-
crease of dialog states makes it really difficult to create a DM
that can serve several domains using the approaches that are
used for single-domain systems. However, such systems can
usually be easily divided, and it is possible to estimate separate
models for each sub-domain individually. Furthermore, some
attributes and concepts are common to several subtasks like
dates and times, while others can be specific. One approach
for building multi-domain SDS is to use a module that parses
the user turn and redirects it to the appropriate single-domain
DM [17, 18, 19]. The different modules or models share certain
information about the dialog.

In this paper, we propose a multi-domain dialog system ar-
chitecture that allows a designer to combine fully-functional
SDS to create a richer system, without modifying the systems
that are already created. Unlike other multi-domain architec-
tures, this is done by taking the domain-specific SDS as black-
boxes and communicating with them using a fake user. This
architecture also allows us, among other things, to add a new
domain to a multi-domain system by simply combining a dia-
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log system for the new domain with the complete system. This
is particularly useful because usually the training of models for
SDS needs the interaction with hundreds of (paid) real users
[20, 21], and it is desirable to reuse previous work.

The next section presents the modules used in the archi-
tecture and explains the job of each one. In Section 3, a de-
scription of the sport facilities booking, weather service, and
personal calendar tasks is presented. In Section 4, an evaluation
with real users is presented. In the last section, we present our
conclusions and outline future work on this topic.

2. The Multi-domain Architecture
The multi-domain spoken dialog system architecture presented
in this paper can be divided into several modules, as Figure 1
shows. It uses other SDS as sub-modules to create a system that
is capable of richer interactions with the user. The multi-domain
system acts as a proxy for the different single-task sub-systems
and, at each turn, selects which one interacts with the user.

The modules that make up this multi-domain system are:

• Speech Recognizer (ASR): Generic automatic speech
recognition module that transcribes the user utterance.

• Task Manager: Selects, at each turn, which sub-system
is used.

• Context Register: Stores information about the dialog
adapted to each sub-system.

• Single-task Sub-systems: Fully functional SDS for each
domain.

• Multi-modal Answer Generator: Converts the system ac-
tion to text and/or visual information.

• Synthesizer (TTS): Converts the system utterance into
voice.

The vocabulary of the ASR has to cover all the vocabularies
of the different sub-tasks that are included. Each of the sub-
systems is a fully functional SDS with the modules described
in the introduction. For simplicity, we used sub-systems that
operate with text as input and output. In other words, ASR,
TTS and Multi-modal Answer Generator are only used by the
general multi-domain system. All the sub-systems are frozen
during the dialog and at most one is awakened at each turn to
interact with the user. No sub-system is aware that it is being
used in a bigger system.

The Task Manager uses the word-level features and/or the
content of the Context Register to classify the turn among all
the possible sub-tasks. Each turn, it selects which task (if any)
the user is interested in and awakens the sub-system associated
to this task. The possible actions that the Task Manager can per-
form are simple: either awaken one sub-system or ask for task
disambiguation if it is unsure which task the user is interested
in.

If the awakened sub-system is the same as in the previous
system turn, it receives the user utterance in text form like any
standard SDS. However, if the sub-system has been frozen for
at least one turn, it may have lost some important information
supplied during the dialog while it was not active. The Context
Register monitorizes both the user input and the system output
to catch data that can be used by more than one task such as
times, dates or places. This information is stored in a personal-
ized buffer for each sub-system and injected into the user turn
when the sub-system is finally awakened.

This architecture provides a way to combine existing SDS
into a multi-domain system without having to modify the under-
lying models of each task. The effort needed is very small com-
pared with the amount of work needed to build a multi-domain
system from scratch and learn its models. When a new SDS
sub-task is added, the designer should update the Context Reg-
ister so that it can extract information related to the new task; for
example, writing regular expressions to extract dates or adding
a table of sport names. Not doing so prevents the sub-system
from catching information from the dialog when it is frozen,
but it does not invalidate the model. It just forces the user to
repeat information more often. Information about the new task
needs to be provided to update the Task Manager model.

2.1. Task Manager

When the user starts a dialog, the system starts one dialog with
each sub-system and requests a turn from each of them (this
is the welcome or opening turn of each task). These turns are
ignored and a generic opening utterance is used instead. Then
the system waits for the user to speak.

The Task Manager uses a Logistic Regression (LR) model
[22] to classify the current user turn into a sub-task. The fea-
tures used for the vectorization of the sentence are: bag of
words, bag of bigrams, and co-ocurrence of two words in the
same sentence. A one-vs-all classifier was created for each sub-
task that assigned a score to the input sentence. The total num-
ber of different features was about 105, but, unfortunately, only
very few samples were available for training. A first pass of
the LR training algorithm was performed and then the features
that had an absolute value weight below a certain threshold (ex-
perimentally defined) were discarded, leaving a final set of 2043
features, which was used to train the final LR model. We trained
the model using a total of 2000 sample sentences extracted from
the dialogs and the training samples of the semantic parsers of
each task. The accuracy of the task classifier was 90.2% on a
test set of 200 sentences. The errors encountered most often cor-
responded to turns where there was no proper task information
or to turns that were valid for more than one task (for example,
yes or on Monday).

The task with highest confidence is usually selected; how-
ever, if the confidence of the second-ranked task is close, the
Task Manager outputs a disambiguation turn asking for the
user’s goal. The Task Manager usually makes the user add some
task-related expressions like “book” or “weather” that can be
used by the task classifier to make more accurate predictions.
We try to mitigate this problem by providing more context to
the utterance, and by extracting features from the current user
turn and the previous user turn. In practice, we have found that
this is the best strategy. Using more previous turns makes it
more difficult to switch among tasks.

When one sub-system has finished a dialog by generating a
closing turn, a fake “good bye” turn is sent to every sub-task to
force the end of all the sub-dialogs.

2.2. Context Register

In the Context Register, we have a set of attribute-value pairs
associated to each task. Both user and system turns are parsed
to collect information from them. We use the semantic parser
of each sub-system to perform the collection although a generic
collector may also be used. The collector of each task extracts
information from the turns that might be relevant to the task, for
example dates, times or place names.

Later, when a sub-system is awakened, if there is some in-
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Figure 1: Architecture diagram

formation for it waiting for delivery, it is added as part of the
user turn creating a fake turn. For example, if the user utter-
ance is “I want to book a basketball court” and the content of
the Context Register is date=monday, when the booking sub-
system is awakened, it will receive the fake user turn “I want
to book a basketball court. The date is Monday”. Providing
the context information, that is injected in the user turn, to the
sub-systems allows us to treat these sub-systems as black boxes.
Note that the semantic parsers of the sub-tasks are not trained
specifically with these injected sentences, so the format of the
fake turns needs to be carefully chosen to prevent misunder-
standings or the introduction of errors. Testing different formats
for injections will be needed to improve the performance of the
system.

3. Sub-tasks
The sub-tasks included in the multi-domain SDS are presented
in this section. The language for all the tasks is Spanish.

3.1. The SPORT task

The sport booking system can be used to make or cancel reser-
vations for the sport facilities of our university. The SDS used
for this task is the EDECAN-SPORT system presented in [11]
and [12]. It is a mixed-initiative system which uses a Stochastic
Finite-State Transducer approach for the dialog management.
The Dialog Manager model was learned from dialogs that were
created automatically by our dialog generator.

The semantic representation of the user turns is a frame
structure that includes the different functionalities required
for the task: a set of 4 task-dependent concepts representing
user intentions (Booking, Cancellation, Availability, Booked),
and 4 task-independent concepts (Acceptance, Rejection, Not-
Understood, Bye). Up to 6 attributes can be attached to each
concept (Sport, Hour, Date, Court-Type, Court-Number, Order-
Number).

Dialog Manager answers are represented using a set of 21
actions. There are actions for opening and closing the dialog,
confirming user supplied attributes, asking for more informa-
tion, or showing information to the user. It also attaches a piece
of HTML to some of the answers which is displayed on the
screen.

In the following example, you can see a user turn, the sys-
tem answer, and their corresponding semantic representations:

User: I want to book a basketball court for tomorrow.
Booking

Sport:basketball Date:tomorrow
System: You can see the available courts on the screen.

Show-availability

3.2. The WEATHER task

This system is a rule-based user-initiative SDS that answers
questions about the weather forecast. Users can ask for the fore-
cast for any day or ask for certain information (like temperature
or wind strength). The semantics of this task is similar to the
CUED dialog acts [23]. Users can ask for information (request)
or confirm if something is going to happen (confirm). There are
10 attributes that can be used which include: date, time, weather
state, wind speed, temperature, etc.

The following example shows two user turns, the system
answers, and their corresponding semantic representations:

User: Tell me the temperature for tomorrow morning.
request(temperature, date=tomorrow,

time=morning)
System: The temperature for tomorrow morning is ex-
pected to be high. Around 28 degrees.

inform(temperature=28,
date=tomorrow, time=morning)
User: Is it going to be sunny tomorrow?

confirm(state=sunny, date=tomorrow)
System: Yes, tomorrow is expected to be sunny.

affirm(state=sunny, date=tomorrow)

The user has to provide all the information of the query
in the same turn. The semantic decoder parses the sentence
into a dialog act and then the Dialog Manager asks a database
for the information and returns the answer either by providing
information or by confirming whether or not the user-provided
information is correct according to the forecast.

3.3. The CALENDAR task

This service allows the user to create or delete events and also
search by name. This SDS is implemented as a rule-based sys-
tem using a frame-based semantics. The Dialog Manager tries
to fill all the values of the event in a fixed order: title, date,
time-begin, time-end, etc.

The understanding module for this task uses pattern match-
ing with regular expressions to find slot values in the sentence.
The only exception is the title, which is an open-vocabulary slot
and needs to be marked by the expression “the title is”. Here
you can see an example with a user turn, the system answer,
and their corresponding semantic representations:

User: Show me my calendar for tomorrow.
show-events date=tomorrow

System: Here are your appointments for tomorrow.
show-events date=tomorrow
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Note that the same semantics can encode different things
depending on whether it represents a user turn or a system turn.

Figure 2 shows an example of dialog where the user exploits
the three sub-systems. Figures 2b, 2c, and 2d show the same
dialog but as seen by each sub-system. The turns where the
Context Register has injected information into the user turn are
labeled as Fake user. Sometime turns are requested from the
sub-systems but are ignored and the result is never shown to the
user. In the example, the user turn U2 causes a fake user turn
for the WEATHER system (U0), and the user turn U4 causes a
fake user turn for the CALENDAR system (U0).

4. Evaluation
In order to assess the quality of the multi-domain SDS, we de-
fined 16 scenarios and asked users to interact with the system.
Seven of them were single-task scenarios that cover some of the
most common use cases of the pre-existent systems. Seven sce-
narios involved the use of two tasks in the same dialog, and the
remaining two scenarios used all three tasks.

For the evaluation with real users, two user interfaces were
developed. The first one is a web-based interface where users
can write the utterance or use the WebKit speech recognizer
integrated in Chrome. The other implementation is an Android
application which uses the standard speech recognizer and the
text-to-speech API. Both versions share the same underlying
code for dialog management. At the end of the dialog, the user
can label the dialog as correct if the goal was accomplished or
wrong if some error occurred.

A total of 28 naive users were recruited. They performed
7.4 different scenarios on average, resulting in a set of 207 di-
alogs. Table 1 summarizes the results according to user eval-
uation. The success ratio decreases for the scenarios involving
more than one task. Fifty dialog logs were manually reviewed,
and we found that the accuracy of the task identification was
91.7%, which is similar to the accuracy achieved during train-
ing. Most of the errors corresponded to user turns that were
valid for more than one tasks.

Distinct users 28
Total dialogs 207
Correct dialogs with 1 task 94.3%
Correct dialogs with 2 tasks 85.1%
Correct dialogs with 3 tasks 76.0%
Overall correct dialogs 84.5%

Table 1: Evaluation results.

5. Conclusions and Future Work
The architecture presented in this paper allowed the composi-
tion of three heterogeneous SDS with different semantic parsers
and dialog management models into a multi-domain system.
The sub-systems are not aware that they are collaborating in
a multi-domain scenario allowing us to reuse any existing SDS.
The effort needed is very small compared with the amount of
work needed to build a multi-domain system from scratch and
learn its models. A more accurate evaluation of the system
should be done to include not only the user evaluation but also
some objective measures.

As future work, we are interested in the use of this archi-
tecture to differentiate between different types of users. The
system may have two different sub-systems for the same task:
one system-oriented for naive users and another, with mixed-
initiative, for expert.

S0: Hi! How may I help you?
U0: I want to book a tennis court.
S1: On the screen you can see the available courts. (A)
U1: Next Sunday from ten to eleven in the morning.
S2: Do you want to book the selected tennis court? (B)
U2: Is it going to rain?
S3: No, next Sunday is expected to be sunny. (C)
U3: Ok, book this court.
S4: Tennis court booked. Do you need anything else? (D)
U4: Yes, create an appointment on my calendar.
S5: What is the title for the event? (E)
U5: The title is tennis match.
S6: Create an event with the title ”Tennis match”? (F)
U6: Yes.
S7: Event created. Do you need anything else? (G)
U7: No, thank you. Good bye.
S8: Thank you for using this system.

(a) Original dialog

S0: How may i help you? (ignored)
U0: I want to book a tennis court.
S1: On the screen you can see the available courts. (A)
U1: Next Sunday from ten to eleven in the morning.
S2: Do you want to book the selected tennis court? (B)
U2: Ok, book this court.
S3: Tennis court booked. Do you need anything else? (D)
U3: Good bye
S4: Good bye. Thank you for using this system. (ignored)

(b) Dialog as seen by the SPORT sub-system.

S0: How may I help you? (ignored)
U0: Yes, create an appointment on my calendar. Date is next
Sunday. Time is from ten to eleven.
S1: What is the title for the event? (E)
U1: The title is tennis match.
S2: Create an event with the title ”Tennis match”? (F)
U2: Yes.
S3: Event created. Do you need anything else? (G)
U3: No, thank you. Good bye.
S4: Thank you for using this system. (ignored)

(c) Dialog as seen by the CALENDAR sub-system.

S0: How may I help you? (ignored)
U0: Is it going to rain? Date is next Sunday. Time is morning.
S1: No, next Sunday is expected to be sunny. (C)

(d) Dialog as seen by the WEATHER sub-system.

Figure 2: Example dialog that activates the three tasks. All
utterances have been translated from Spanish. SubFigure 2a
shows the original dialog with a real user. Subfigures 2b, 2c,
and 2d show the same dialog from the perspective of each sub-
system. Turns where sub-systems are being used are labelled
with the letters A-F. The text in italics has been injected by the
Context Register.
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