
Evaluating Computation Offloading Trade-offs in Mobile Cloud Computing: A Sample

Application

Jorge Luzuriaga, Juan Carlos Cano, Carlos Calafate, Pietro Manzoni
Universitat Politècnica de València

Dept. of Computer Engineering
Valencia, SPAIN

Emails: jorlu@posgrado.upv.es, jucano@disca.upv.es, calafate@disca.upv.es, pmanzoni@disca.upv.es

Abstract—Mobile cloud computing is generally referred to
as the infrastructure where both the data storage and the data
processing happen outside of the mobile device. The nature of
the connection between the cloud servers and the mobile host are
anyway much less reliable than in classical cloud computing with
static devices. A compromise must be found between local versus
remote computation so to cope with the reduced performance of
the data connection and with the characteristics of the mobile
device, basically its power availability limitations. In this paper,
we evaluate the tradeoffs of computation offloading using as a
case study a facial recognition application for smartphones where
recognition is a service in the cloud. We present a specifically
designed application for mobile devices developed as a component
of the proposed evaluation system. The intensive calculus needed
for the image manipulation is compared in terms of speed and
accuracy both when we delegate it to cloud computing and when
we perform it locally on the mobile device. These two alternatives
and the intermediate options are compared to determine the
optimal settings to take better advantage of integrating these
two technologies.

Keywords—Cloud Computing; Facial Recognition; Mobile de-
vices Applications; Process Outsourcing; Mobile Cloud Computing.

I. INTRODUCTION

The latest advances in mobile communication networks and
the increasing penetration of smartphones and other mobile
devices, like tablets and portable computers, are transforming
the mobile Internet and allowing the users to improve their mo-
bile experience. However, the limited computing and informa-
tion/energy storage capabilities of mobile devices are delaying
their abilities to support increasingly sophisticated applications
demanded by users. The emerging cloud computing technology
offers a natural solution to extend the limited capabilities of
mobile devices. The resulting new paradigm of mobile cloud
computing is being adopted by researchers as a powerful new
way to extend the capabilities of mobile devices and mobile
platforms, which has the potential of a deep impact on the
business environment and people’s daily life.

The decision of where to place the execution (local or
remote mode) should be anyway made based on the quantity
of computation and communication that is required by the
application. A little amount of communication combined with
a large amount of computation should be performed preferably
in remote mode, while a large amount of communication
combined with a little amount of computation should be
performed preferably in local mode.

In this work, we chose face recognition as a sample
application to evaluate the tradeoff of offloading computation
with the intuitive idea of the required intensive calculus puts
in commitment the hardware features of the mobile device.
Whereas that, if the same calculus are executed by other
systems with better hardware features, these processes are
realized with less effort and in much less time.

We analyze the intensive calculus dividing it in sub pro-
cesses that are distributed between the mobile device and the
cloud infrastructure using a cascade of classifiers based on the
Adaboost algorithm [19] to detect the presence of faces in an
image and the Eigenfaces algorithm [11] to make the training
and recognition of these faces.

Finally, we emulate the wireless channel between the
mobile device and the cloud server to view how the end-to-end
response time can affect at application. And also this emulation
allow us to find limitations where we can get advantage with
the use of this technique.

The rest of the paper is organized as follows: Section II
presents the works related to the topic. Section III describes
the proposed system overview, Section IV shows a sample case
study: a facial recognition application. In Section V, we present
a testbed to evaluate this proposal and in Section VI, we show
the results obtained in the tests. The article finalizes with the
conclusions in Section VII.

II. RELATED WORK

The computation off-loading from mobile devices to com-
putational cloud infrastructure is based on deciding which
methods should be remotely executed, so that benefits can be
achieved in terms of both time and use of resources that ends
up in saving energy. In the literature, we found a wide set of
proposals with frameworks that decide dynamically whether
a part of application will be executed locally or remotely
[5][8][12][13][14]. Other proposals utilize nearby computers,
also known as surrogates. These surrogates are resource-rich
computers connected to the Internet and available to use with
nearby mobile devices without incurring in WAN delays and
jitter. Their objective is similar to proxy servers [15]. More
aggressive proposals in which the entire user mobile devices
are cloned on a remote server operating in a cloud where
the execution of processes would be faster [3][4]. It enables
moving an entire operative system and all its applications
to selectively execute some processes on the clones, and
integrating the results back into the mobile device.

138Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Also, we find in [10] a cost/benefit analysis focused on
energy saving for off-load computation to a server, taking
into account: the processor speed, the instruction number, the
bytes of data exchanged among server and mobile system,
the network bandwidth, the energy consumption in different
states, reaching the conclusion that energy-saved with off-load
computation is greater that the energy spent on communicating
with the cloud. So, if the computation is offloaded with
relatively low cost, the processing in remote mode may be
energy-efficient to the mobile device.

Finally, commercial proposals with applications imple-
mented in client-server model, where the data to make the
computation are transferred from a smartphone as a light
weight client to the remote heavy weight server hosted in the
cloud. These services typically have to interact with very large
databases and require maintenance costs. An example of this
type of applications is the popular Google goggles that uses
pictures to search the web [6].

However, these proposals can only be used when the user
is permanently connected to the Internet. Moreover, when we
delegate the processing to external entities in many cases
these entities follow the pay per use philosophy and their
services are offered in monthly plans with a limit number of
queries or charge for each query. These services provide a
better performance and request priority with technical support
in problematic situations. From the point of view of the
user, the condition to “pay per use” of any application adds
to the cost of the data line, making the remote processing
economically speaking more expensive compared with local
processing. Finally, it is necessary to consider the security
issues in the communication process. When the information
is transferred from the mobile device to the server in cloud
environments, the data can be sniffed from a person/machine
that listens the communication channel, then the data transfers
to remote processing is less reliable compared to process the
data locally whereas not necessary any transmission by the
wireless network.

III. FACIAL RECOGNITION

Face recognition refers to the automatically identification
of a person from a digital image. The process involves: (i) face
detection, (ii) feature extraction, (iii) creation of the database
with known faces, and the (iv) matching with the new face.

We use the Eigenfaces algorithm that applies data dimen-
sion reduction with the minimum information lost by PCA
Principal Components Analysis [8] to get the coefficients
values and is able to make the matching based on the minimum
distance.

The Eigenfaces process chooses the factors with high
correlation because with the redundant information that exists
among them it is possible to select the coefficients that contain
the maximum variability and in this form get the dimension
reduction of the data. Once selected, the principal coefficients
are representing in matrix form.

The process of automatic recognition can be clearly sep-
arated into two stages: the training and the recognition stage.
The training stage is required to learn using a classifier [19].
In our case, the learning consists in transforming the features

of human faces into the form of coefficients and to store
them in a matrix. This matrix represents a database of facial
features of known faces. In the recognition stage, the classifier
is used again to classify the data of the test image and to
get values of correlation coefficients that represent the face
found in the image; this stage realizes the features extraction.
Finally, the values obtained are compared with the matrix
values of the training stage. The minimal difference among
these comparisons is the result of recognition process.

Fig. 1: The general process of training and recognition.

In the upper part of Figure 1, we have a training set of
5 images of the same person. To work with a standard input,
these images have previously passed various sub processes:
(i) compression, (ii) grayscale, (iii) crop, (iv) resize, and (v)
equalization. The next step is to apply the process called
Principal Components Analysis (PCA) where the principal
features of each image are extracted and represented as another
set of images with ghostly aspect. These images contain only
relevant information to recognition process. The complete set
of these images is called Eigenspace. Also, the PCA creates a
common image that represents all images in the Eigenspace.
In the Eigenspace, the first image is the most dominant and
contains the representative features of all faces and the last
images are the weakest that contain common features that can
be found in any face. According to the specified threshold
the weakest images cannot be taken into account because they
are considered as noise. The last step is to get the numeric
coefficient of each image in the Eigenspace through Eigen
decomposing and represent in matrix form. So, each column of
the matrix represents one image in the Eigenspace. A complete
explanation of Eigenfaces process can be found in [11].

IV. EVALUATION APPROACH

When we delegate the processing to external entities we
benefits in terms of hardware resources use and inclusive in
terms of energy saving, but the latency in communication with
the external entity is a big overhead especially when large data
are involved. To reduce this problem a preprocessing of the
information is required so that the accuracy results in posterior
processes are not affected.

139Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

The cloud-based platform hosts the application in a cen-
tralized form and provides a software delivery model known
as Software as a Service or SaaS in which the customers or
users can access remotely using a thin client over the internet
[9]. The main advantages of Software as a Service is the
possibility to offer better services in a form totally scalable
with the demand.

The first step is to evaluate the baseline performance of
the application when run locally in the mobile device. Then,
we identify the application dependencies among the executed
processes identifying the parts of the code that can be executed
in the cloud. Finally, we estimate the response time of the
application in a cloud-based platform before of its deployment.

We will therefore implement and deploy applications ac-
cording to different local versus remote mix to compare their
execution performance. The different ways, modes or scenarios
describe the place where the intensive calculus are realized. We
define a first scenario where the mobile device has the capabil-
ity to process images and to make recognition locally, called
local mode. A second scenario where the recognition process
is offloaded to a cloud computing infrastructure, called remote
mode. And a third and last scenario where the recognition is
performed in a distributed environment, mixing features of the
two previous scenarios, called mix mode.

To know how the end-to-end response time can be affected,
we emulate the communication channel in different conditions,
to this end we used the Linux kernel tools of routing, fil-
ter and classification of packets to guarantee performances,
bandwidths and lower latencies respectively by the utilities
collection grouped in iproute2. Between the principal tools
and utilities we used arpd, cstat, ifcfg, ip and tc. The last two
utilities are known as LARTC of Linux Advanced Routing and
Traffic Control [7] to manage the traffic traversing a network
interface.

To add scenarios with delay and packet loss, we made use
of NetEm that is a network emulator. This network emulator
permits to convert the local area network in a slow and heavy
network as can be an extended area network. NetEm is perfect
to evaluate the behavior of protocols, applications and final
systems, which have to be used on distributed environments.
Originally NetEm behaves as a FIFO queue without delays
or packet loss. To modify its discipline and its parameters,
we can do it by the tc command in a Linux shell. To
modify the parameters, we consider that the network delay
is a variably value that depends of the amount of traffic that
fluid by the same network. Generally, the delay is represented
as a normal distribution with a medium value more/less the
standard deviation value. The next parameter that we specify
to modify the network behavior is the packet loss, here NetEm
deletes randomly as packets as needed to fit to parameter.

V. EXPERIMENTS

As a basic tool for our evaluation, we developed a mobile
client application for Android devices. A snapshot of this appli-
cation is shown in Figure 2, where the green box indicates the
face detected. In the bottom part of the screen, the characters
indicate the name of the recognized person. And if appear a
number next to the name, it indicates the age estimation of the
person as an extra detail only available in the remote mode.

Fig. 2: Snapshot of the face recognition mobile application.

This application first captures pictures of people faces in
local mode without using any communication with the external
server, as if the cloud server was unavailable, the application
makes the image processing necessary in the learning stage and
the application is ready to receive any face image of people to
make the recognition stage. In the case in which the network
and the cloud server are available, the application automatically
sent the data to remote processing. And the last function of
the application is the visualization of the results as a front-end
terminal.

The evaluation of the application has been performed
on Samsung Galaxy Ace Smartphone running Android OS
version 2.2 connected to internet by a WiFi and 3G networks.
The testbed consists of execution of the application with the
objective of getting the average execution time of each sub
process with the same workload used in different scenarios,
as shown in Figure 3. To get normalized values each test was
repeated 10 times. The face recognition process is made with
different values of people from 5 up to 20. And to each person
different face images, from 1 up to 5, getting training sets with
number of images multiples of 5.

Fig. 3: Proposed system architecture.

140Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Regarding network emulation, we first estimated the real
values of latencies and packet lost experienced in a commu-
nication with a server in a cloud infrastructure, Then we used
these values as guidelines to modify the network conditions
when we make a POST request from the mobile device to
servers in cloud infrastructure. The network conditions such as
network delay, bandwidth rate, and packet loss were modified
through the NetEm parameters. These tests was realized with
virtual machines: we had a virtual machine executing a web
server as a server on a cloud infrastructure. And the request
were realized from another virtual machine, representing a
mobile phone. Here, we varied the delay parameter using the
values 2, 10, 50, 100 and 500 milliseconds and with each one
of these values we used a different value for the packet loss
parameter from 0% (emulating a perfect channel) passing for
1, 5, 10 until 20% (as a noisy channel). Each test was repeated
for 10 occasions, too.

VI. RESULTS

In all scenarios it was necessary to process the captured
image with an average cost in time of 480 ms. Then, the
average times of each of the other pre-processes are shown
in the table 1 and are graphically represented in the Figure
4. The processes that consume more time are: convert color
images to grayscale (595 ms) and the detection of faces in an
image (667 ms).

TABLE I: Time consumed for each sub-process to pre-
processing images

Pre-process Average Time in milliseconds
compression 180
gray scale 595

face detection 667
crop face 12

re-dimension 30
equalize 10

Now, please remember that processing is made of two
stages: training and recognizing. In the training stage the
overall system time is related directly to the number of images
in the training set (while more images for each person more
accurate are the recognition results). This creates a first trade-
off between the required time to make the training and the

Fig. 4: Proportion of time consumed in pre-processing an
image.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

T
im

e
 c

o
n
s
u
m

p
ti
o
n
 (

s
)

Number of images in the training set

eigen descomposition process

Fig. 5: Time required in the learning stage of local mode
according to the number of images in the training set.

number of samples to train. As we can see in the Figure 5, a
training set of 5 images needs 1,5 seconds to train while the
case of a training set of 100 images needs 250 seconds. These
values have an quadratic growth.

Considering the time required for the application to do the
training stage can affect the user’s patience. A reasonable size
of training set can be of 50 images that requires 63 seconds of
waiting. The recognition stage need less time when compared
with the training stage, to any person whose images have been
previously trained, the facial recognition is realized in a range
of 1,5 to 2,5 seconds according the number of images per
person, as we see in Figure 6a. Here, we confirm that the
fact of using Eingenfaces converts the recognition process in
a quick process and permits to operate with wide sets of faces
in very short times [11].

The recognition accuracy rate when we use only one image
per person is unreliable because it doesn’t arrive to 50%.
With 3 images per person is over 60%, but continues being
unreliable. We reach close to 80% accuracy, when we use 5
images per person. As we can see in Figure 6b.

In remote processing, the images were sent in first place
via a WiFi network and then via a 3G network. When we
send images product of a strong pre-processing, the results are
obtained in 939 ms with WiFi and in 3908 ms with 3G. When
we send images with a lighter pre-processing we obtain the
results in 2045 ms with WiFi and in 9790 ms with 3G. As we
can see in Figure 7a.

In remote mode, the accuracy rate (Figure 7b) with images
whose size is in the range of 8 kB to 102 kB is over the
80%. With images of 160 kB the accuracy is 91%. Namely
better results with images without compression or in general
without apply the pre-processing steps. But, if we avoid the
pre-processing steps, the communication is affected by perfor-
mance loss. This scale the problem size with higher latency and
occupancy of bandwidth. To overcome these limitations, the
scenarios with mix mode, we consider that the pre-processes
of gray scale and face detection with 595 ms and 667 ms
respectively are very expensive in terms of time consumption,
then we decide not to use them. Simply the images captured

141Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 0

 500

 1000

 1500

 2000

 2500

 5 10 15 20

T
im

e
 c

o
n
s
u
m

p
ti
o
n
 (

m
s
)

Number of persons

1 training image per person
3 training images per person
5 training images per person

(a) time consumption using different sizes of training vectors

 0

 20

 40

 60

 80

 100

 5 10 15 20

A
c
c
u
ra

c
y
 r

a
te

 (
%

)

Number of persons

1 training image per person
3 training images per person
5 training images per person

(b) face-recognition accuracy

Fig. 6: Results obtained in local mode

 0

 2000

 4000

 6000

 8000

 10000

8 16 31 45 68 159

T
im

e
 c

o
n
s
u
m

p
ti
o
n
 (

m
s
)

File size (kB)

WiFi
3G

(a) time consumption using different wireless networks

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160

A
c
c
u
ra

c
y
 r

a
te

 (
%

)

File size (kB)

color images
grayscale images

(b) face-recognition accuracy

Fig. 7: Results obtained in remote mode

are compressed with JPG standard at 85%, to get a reduced
version of these images with a size of near 16 kB. Then these
images are sent to remote processing in the cloud infrastructure
preferably using the WiFi network, to obtain results in 1712
ms with an 86% accuracy. It is the best combination and it
can be considered as the optimum mode that we recommend
to use.

If these preprocessed data are sent via WiFi network the
recognition results are timeless that when are realized in local
mode inclusive including the latency and round-trip delay
time communicating with remote mode. The latter method
requires network connectivity from the mobile device to Cloud
environments. In cloud side due hardware potential and the
complex of the algorithms, this scenario can provide more
accurate results.

In the emulation of network conditions, with a 3G channel,
the time required to make the request and get the response with
an ideal channel (0% of packet loss) is 6 seconds with the
minimum delay (2 ms), and with the maximum delay (500
ms) the response is obtained in 22 seconds. In Figure 8a,
is displayed linear growth of the time necessary to receive
a reply, under the differing amounts of packet loss for some
link latencies.

Finally, we modify the latency values in WiFi channel from
2 ms up to 500 ms, the emulation deliver values from 800 ms
to 1800 ms respectively, as we can seen in the Figure 8b.

VII. CONCLUSIONS

The growth of complex applications to mobile devices
with support of cloud computing infrastructure demands better
understanding of the effects of latency and packet loss. The
communication client-server in wireless environments might
suffer more latency and are more prone to packet loss. This
communication is also affected by the Internet latency.

For this reason in this paper, we presented an application
designed to allow the isolation of each process involved in a
recognition of a face, integrated in a testbed that allowed the
control of network conditions, such as latency and packet loss.

From the obtained results, we consider that offloading com-
putation from mobile devices to cloud computing infrastructure
can be done safely only if we have a guaranteed availability
of a stable channel. In fact, with a broadband access of a WiFi
network, we have low aggregate latencies close to 1 second.
And if we use the 3G network, we have aggregate latencies
near to 4 seconds. Both options with a packet loss level under

142Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

T
im

e
 c

o
n
s
u
m

p
ti
o
n
 (

s
)

Packet Loss (%)

delay 2ms
delay 10ms
delay 50ms

delay 100ms
delay 500ms

(a) with changes in percentage packet loss and link delays

 0

 500

 1000

 1500

 2000

2 10 50 100 500

L
a
te

n
c
y
 t
im

e
 (

m
s
)

milliseconds of latency injected into the WiFi network

latency-injected
latency-measured

(b) modifying the latency values in WiFi channel

Fig. 8: The times obtained in the channel emulation using NetEm

3%. These are suitable for a good performance. When the
packet loss level is over 3%, latencies are highly affected and
this can be annoying to the user’s experience. For these cases
is preferable to use the local calculus with order to keep low
latencies.

With the continuous evolution of mobiles devices and the
communication networks, it is possible to design, develop and
use applications that combine the two operational modes in
better efforts. For example, using these operational modes in
applications where we will get the results in less of one second
in autonomous mode or we will automatically use the remote
mode sending queries to remote servers and get results in 2
seconds in normal cases or in 5 seconds in the worst case.
With recognition training vectors previously charged to both
options. If these results are not correct or are unreliable is
possible to aggregate new registers manually, to future queries
in a crowd sourcing style. As the people’s identity is a delicate
theme. We can use this architectural proposal and the image
processing in other aims, following with the visual content
that can be found in an image, that requires recognition and
identification.

ACKNOWLEDGMENTS

This work was partially supported by the Ministerio de
Ciencia e Innovación, Spain, under Grant TIN2011-27543-
C03-01.

REFERENCES

[1] D.-Y. Chen and J.-T. Tsai, “Resource-limited intelligent photo man-
agement on mobile platforms,” in Machine Learning and Cybernetics
(ICMLC), 2011 International Conference on, Jul 2011, pp. 627–630.

[2] P. Angin, B. Bhargava, and S. Helal, “A mobile-cloud collaborative
traffic lights detector for blind navigation,” in Proceedings of the 2010
Eleventh International Conference on Mobile Data Management, ser.
MDM ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 396–401.

[3] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of
the sixth conference on Computer systems, ser. EuroSys ’11. New
York, NY, USA: ACM, 2011, pp. 301–314.

[4] B.-G. Chun and P. Maniatis, “Augmented smartphone applications
through clone cloud execution,” in Proceedings of the 12th conference
on Hot topics in operating systems, ser. HotOS’09. Berkeley, CA,
USA: USENIX Association, 2009, pp. 8–8.

[5] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services, ser. MobiSys ’10. New
York, NY, USA: ACM, 2010, pp. 49–62.

[6] Google, “Google goggles,” URL: http://www.google.com/mobile/goggles,
[retrieved: 03, 2013].

[7] T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout, P. B. Schroeder,
J. Spaans, and P. Larroy. Linux Advanced Routing & Traffic Control
HowTo. URL: http://www.lartc.org/. [retrieved: 03, 2013].

[8] Y. Guo, L. Zhang, J. Kong, J. Sun, T. Feng, and X. Chen, “Jupiter:
transparent augmentation of smartphone capabilities through cloud
computing,” in Workshop on Networking, Systems, and Applications
on Mobile Handhelds, ser. MobiHeld ’11. New York, NY, USA: ACM,
2011, pp. 2:1–2:6.

[9] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud
computing: architecture, applications, and approaches,” in Wireless
Communications and Mobile Computing. Wiley Online Library, 2011.

[10] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” in Computer, vol. 43. IEEE
Computer Society, 2010, pp. 51–56.

[11] L. Lorente Giménez, “Representación de caras mediante eigenfaces,”
in Buran, vol. núm. 11, 1998, pp. 13–20.

[12] E. Marinelli, “Hyrax: Cloud computing on mobile devices using mapre-
duce,” Master’s thesis, Carnegie Mellon University, 2009.

[13] J. S. Rellermeyer, O. Riva, and G. Alonso, “Alfredo: an architecture
for flexible interaction with electronic devices,” in Proceedings of the
9th ACM/IFIP/USENIX International Conference on Middleware, ser.
Middleware ’08. New York, NY, USA: Springer-Verlag New York,
Inc., 2008, pp. 22–41.

[14] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “The smartphone and
the cloud: Power to the user,” in MobiCloud, vol. 28, October 2010.

[15] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case
for vm-based cloudlets in mobile computing,” in Pervasive Computing
IEEE, vol. 8, No. 4, 2009.

[16] Y. Taigman and L. Wolf, “Leveraging billions of faces to overcome
performance barriers in unconstrained face recognition,” CoRR, vol.
abs/1108.1122, 2011.

[17] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an
elastic application model for augmenting the computing capabilities
of mobile devices with cloud computing,” in Mobile Networks and
Applications, vol. 16, Jun. 2011, pp. 270–284.

[18] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recogni-
tion: A literature survey,” in ACM Computing Surveys (CSUR), vol. 35,
Dec. 2003, pp. 399–458.

[19] OpenCV, “Opencv v2.4.3 documentation,” URL:
http://docs.opencv.org/modules/ml/doc/boosting.html, [retrieved:
03, 2013].

143Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

