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Controller Tuning by means of Multi-objective1

Optimization Algorithms: a Global Tuning2

Framework3

Gilberto Reynoso-Meza, Sergio Garcı́a-Nieto, Javier Sanchis, and Xavier Blasco4

Abstract5

A holistic multi-objective optimization design techniquefor controller tuning is presented. This6

approach gives control engineers greater flexibility to select a controller that matches their specifications.7

Furthermore, for a given controller it is simple to analyse the trade-off achieved between conflicting8

objectives. By using the multi-objective design techniqueit is also possible to perform a global compar-9

ison between different control strategies in a simple and robust way. This approach thereby enables an10

analysis to be made of whether a preference for a certain control technique is justified. This proposal11

is evaluated and validated in a non-linear MIMO system usingtwo control strategies: a classical PID12

control scheme and a feedback state controller.13
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IAE Integral of the absolute value of the error22

ISA Instrumentation, systems and automation society23

LD Level diagram24

MIMO Multiple-input multiple-output25

MOEA Multi-objective evolutionary algorithm26

mood4ct Multi-objective optimisation design for controller tuning27

MOO Multi-objective optimisation28

PI Proportional-integral29

PID Proportional-integral-derivative30

SISO Single-input single-output31

SS State space32

TITO Two-input two-output33

TRMS Twin rotor MIMO system34

35

I. INTRODUCTION36

Satisfying a set of specifications and constraints requiredby real-control engineering prob-37

lems is often difficult with traditional optimization approaches. From the control point of view38

it is common to face a variety of requirements and specifications. These range from time-39

domain specifications (such as maximum overshoot, settlingtime, steady state error, raise time)40

to frequency-domain requirements (noise rejection or multiplicative uncertainty, for example).41

Furthermore, constraints such as saturations, or the maximum changes enabled for a control42

signal may be considered. Such problems, when multiple objectives must be fulfilled, are known43

as multi-objective problems.44

A traditional approach for solving a multi-objective problem is to translate it into a single-45

objective problem using weighting factors to indicate the relative importance among objectives46

(see for example [1]). The solution obtained strongly depends on which factors are used, and47

it is not usually a trivial task to select the right weightingvector to assure a quality solution48

with a reasonable trade-off among objectives [2]. This situation may be more complicated when49

constraints are considered. More complex methods to tacklethese issues have been developed50

[3], such as lexicographic methods, goal programming methods or physical programming [4].51
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Multi-objective optimization (MOO) can handle these issues in a simple manner because of its52

simultaneous optimization approach. In MOO, all the objectives and constraints are significant53

from the designer point of view, and as a consequence, each isoptimized to obtain a set of54

optimal non-dominated solutions. The MOO approach offers to the designer a set of solutions,55

a Pareto set approximation, where all the solutions are Pareto-optimal [3]. This set of solutions56

offers the decision maker (DM) greater flexibility. The roleof the designer is to select the most57

preferable solution according to her/his needs and preferences for a particular situation.58

There are several widely used algorithms for calculating this Pareto set approximation (normal59

boundary intersection method [5], normal constraint method [6], and successive Pareto front60

optimization [7]). Recently, multi-objective evolutionary algorithms (MOEAs) have started to be61

used because of their flexibility in dealing with non-convexand highly constrained functions62

[8], [9]. Some examples include NSGA-II [10], MOGA [11], ev-MOGA [12], paǫ-MyDE [13],63

and sp-MODE [14]. General methodologies for MOO have been developed [15]; nevertheless64

new approaches and methodologies using MOO are still required focusing on controller tuning.65

In this work, a holistic MOO design technique using MOEA’s ispresented for controller tuning66

purposes. In Section II a review on MOO is given and in SectionIII the MOO approach for67

controller tuning (mood4ct) is presented. In Section IV an engineering application example is68

developed and experimentally evaluated and discussed. Finally, some concluding remarks and69

future work are given.70

II. M ULTI -OBJECTIVE OPTIMIZATION REVIEW71

A MOO problem, without loss of generality,1 can be stated as follows:72

min
θ∈ℜn

J(θ) = [J1(θ), . . . , Jm(θ)] ∈ ℜm (1)

whereθ ∈ ℜn is defined as the decision vector, andJ as the objective vector. In general,73

there is no single solution because there is no solution thatis better than the others for all the74

objectives. Therefore, a set of solutions, the Pareto setΘP , is defined and its projection into the75

1A maximization problem can be converted to a minimization problem. For each of the objectives that have to be maximized,

the transformationargmax
θ

Ji(θ) = argmin
θ

(−Ji(θ)) can be applied.
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objective space is known as the Pareto frontJP (see Figure 1). Each point in the Pareto front76

is said to be a non-dominated solution (see Figure 2). A givensolutionθ1 dominates a second77

solutionθ2 only if θ1 has a better or equal cost value for all objectives (with, at least, one cost78

value being better).79

Definition (Dominance relation): given a solutionθ1 with cost function valueJ(θ1), it domi-80

nates a second solutionθ2 with cost valueJ(θ2) if and only if:81

{∀i ∈ [1, 2, . . .m], Ji(θ
1) ≤ Ji(θ

2)}82

∧83

{∃q ∈ [1, 2, . . .m] : Jq(θ
1) < Jq(θ

2)}84
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Fig. 1: Pareto front concept (example of a two objective optimization problem).

MOO techniques search for a discrete approximationΘ∗

P of the Pareto setΘP with a good85

descriptionJ∗

P of the Pareto front. In this way, the DM has a set of solutions for a given problem86

and more flexibility for choosing a particular or desired solution.87

III. M ULTI -OBJECTIVE OPTIMIZATION DESIGN APPROACH FOR CONTROLLER TUNING88

As a global framework, three main objectives need to be considered in a controller’s tuning pro-89

cedure: performance, robustness and implementation issues. Usually, classical controller tuning90

techniques have been developed for only one of those objectives. Other tuning techniques are able91
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Fig. 2: Dominance concept. Solution A has a better cost valuefor all objectives.

to deal with these objectives. For example,H2/H∞ designs (or mixed-sensitivity techniques) have92

been shown to be powerful tools to address the trade-off between performance and robustness.93

However it is not easy to include constraints in the control and/or process variables and the94

performance objective interpretability could be lost. Strategies as Model Predictive Control [16]95

deal with this problem solving an optimization statement ineach sampling time. A quadratic96

measure is usually used, whereas an absolute error measurement could be helpful to the designer97

for interpreting the performance of a proposed controller.However, useful or interpretable98

objectives considered by the DM could lead to complex non-convex and highly constrained99

cost functions.100

Evolutionary algorithms (EAs) are a flexible tool for handling non-convex cost functions that101

are highly constrained in decision and objective spaces. They have been successfully applied in102

several control engineering areas [17] such as controller tuning [18], PI-PID tuning [19]–[21],103

multivariable control [22]–[26], and fuzzy control [27]–[30]. These algorithms have also been104

merged together with predictive control [31], H∞ techniques [32], [33], linear matrix inequalities105

[34], and loop shaping [35]. The use of such a class of algorithms leads to a higher degree of106

flexibility, since more interpretable objectives can also be used to tune any kind of controller.107

Therefore, a multi-objective optimization design for controller tuning (mood4ct) by means of108

evolutionary algorithms will be proposed. Any multi-objective optimisation design approach109

must follows three main steps: problem definition, multi-objective optimisation process and110

decision making stage (see figure 3). The main contribution of this work consists in define111

a global optimisation problem statement for multivariableprocesses and its integration into the112
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optimisation procedure and the decision making stage (which is not a trivial task when the113

number of objectives is three or more). Any kind of MOEA can beused (NSGA-II [10] 2,114

MOGA [15], [36]3, ev-MOGA [12]4, paǫ-MyDE [13], and sp-MODE [14], among others). Such115

algorithm must be capable of converging towards the Pareto front; it must have a good constraint116

handling mechanism and it must compute a useful well-spreadapproximation along the Pareto117

front.118

Fig. 3: Multi-objective optimisation design methodology.

The mood4ctapproach, roughly speaking, is based on:119

• A highly reliable process model to obtain a measurement of the performance for a given120

controller.121

• Meaningful process objectives to facilitate the decision making stage.122

• A MOEA with a constraint handling mechanism which can assureconvergence, spread and123

diversity into the Pareto front.124

• An intuitive and easy-to-use tool to analyzem-dimensional Pareto fronts.125

2Source code available at: http://www.iitk.ac.in/kangal/codes.shtml; also, a variant of this algorithm is availablein the global

optimization toolbox of Matlab.

3Genetic Algorithm toolbox for Matlab available at http://www.sheffield.ac.uk/acse/research/ecrg/gat

4Available for Matlab at: http://www.mathworks.com/matlabcentral/fileexchange/31080
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A. Process objectives126

The use of a process model will lead to a higher degree of reliability for the controller’s127

performance under practical considerations such as saturation, complex tracking references,128

and/or any kind of constraint. In this work, the integral of the absolute magnitude of the error129

(IAE) and the integral of the absolute value of the derivative control signal (IADU) are used130

due to their interpretability. Given a model, which will be controlled with a sampling time of131

Ts with t ∈ [t0, tf ] and with controller tuning parametersθ, the IAE and IADU are defined as:132

IAE(θ) = Ts

N
∑

k=1

|rk − yk| (2)

IADU(θ) =
N
∑

k=1

|uk − uk−1| (3)

Where rk, yk and uk are respectively the setpoint signal, the controlled and manipulated133

variables at samplek; while N is the number of samples in[t0, tf ]. The above mentioned134

objectives are defined for a SISO system. If a MIMO system withρ inputs andν outputs is135

under consideration, it is possible to have as many objectivesIAE, IADU as inputs and outputs.136

Nevertheless, this could lead to an exponential increase inthe number of solutions in the Pareto137

front J∗
P , and the analysis on the results could be more difficult. Moreover, a large subset of138

solutions will probably be undesirable for the DM (for example, controllers with an outstanding139

performance in one controlled variable at the expense of another). So, it is worthwhile trying140

to reduce the objective space to facilitate the analysis forthe DM without losing any of the141

advantages of the MOO approach [37]. Let it be:142

JE(θ) =

[

IAE1,1(θ)

∆R1
,
IAE2,2(θ)

∆R2
, . . . ,

IAEν,ν(θ)

∆Rν

]

(4)

JU(θ) =

[

ν
∑

j=1

IADU 1,j(θ)

∆U1
max

,
ν
∑

j=1

IADU2,j(θ)

∆U2
max

, . . . ,
ν
∑

j=1

IADUρ,j(θ)

∆Uρ
max

]

(5)

Where IAEi,j(θ) is the IAE(θ) for controlled variablei when there is a setpoint change143

∆Rj for controlled variablej; IADU i,j(θ) is theIADU(θ) for control signali when there is144

a change in setpoint signalj, and∆U i
max is the maximum change allowed for control signali.145

Vectors 4 and 5 contain the IAE and IADU values for each variable normalized over a work146
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range. Because of this, it is possible to perform a comparison between controlled variables and147

between control signals.148

Define a sorting functionZ : ℜ1×n → ℜ1×n,Z(f ) = g so that:g = [a1, a2, a3, . . . , an], where149

a1 ≥ a2 ≥ a3 ≥ . . . an, where eachai is an element off . The global index for IAE and IADU150

performance measurements are defined asJE(θ) andJU(θ) respectively:151

JE(θ) = Z(JE(θ))×w (6)

JU(θ) = Z(JU(θ))×w (7)

Vector w indicates it is most important to optimize the maximum value, thereby assuring a152

minimum worst performance for all objectives. As inputs andoutputs are usually normalized in153

the range[0, 1] an intuitive value5 for w is w = [100, 10−2, . . . , 10−n]T .154

Please note that this objective reduction is important to facilitate the decision making step. In155

one hand, the multi-objective approach gives to the DM a better insight concerning the objective156

trade-offs; in the other hand, too much information (too many objectives) can hinder the DM157

task to select a desired solution. This topic, known as many-objectives optimization (usually158

more than 4 objectives) is not trivial, and some algorithms could face several problems due to159

their diversity improvement mechanisms [38], [39]. The objective reduction is an alternative to160

face the many-objectives optimization issue [40], and withthis proposal the relevant information161

about the conflict between control actions and performance is retained.162

Additionally, a measurement for coupling effects is required:163

JC(θ) =

[

max
i 6=1

IAE1,i(θ)

∆Ri
max

,max
i 6=2

IAE2,i(θ)

∆Ri
max

, . . . ,max
i 6=ν

IAEν,i(θ)

∆Ri
max

]

, i ∈ [1, 2, . . . , ν] (8)

JC(θ) = Z(JC(θ))×w (9)

Where∆Ri
max is the maximum allowable setpoint step change for controlled variablei.164

5Notice that settingw = [1, 0, . . . , 0] is equivalent to setJE(θ) = ‖JE(θ)‖∞ . Nevertheless, any MOEA would not be able

to differentiate, for example, between one solutionJE(θ
1) = [0.9, 0.9, 0.9, 0.9, 0.9] with Z(JE(θ

1))×w = 0.9 from another

oneJE(θ
2) = [0.9, 0.5, 0.01, 0.5, 0.7] with Z(JE(θ

2))×w = 0.9. The latter should be preferred over the former.
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Finally, it is not possible to rely only on the process model,due to un-modeled dynamics165

or parametric uncertainty. Therefore, a robustness objective is required to guarantee a robust166

stability. One possible choice is to use complementary sensitivity function T (s) with a linearized167

process model as follows:168

JT = sup
ω

σ̄ (T (ω)W (ω)) , ω ∈ (ω, ω) (10)

Usually T (s) together with weighting functionW (s) is stated as a hard constraint (JT < 1).169

SinceW (s) selection is not a trivial task [41], themood4ctapproach can manage this task as an170

optimization objective (i.e., it will be minimized instead of being used as a hard constraint). The171

mood4ctcan deal with constraints in the same way it deals with each objective and represents a172

feasible alternative to constraint-handling [42], [43]. This approach, combined with an adequate173

tool to analyzem-dimensional Pareto fronts, is useful to analyze the impactof relaxing, if174

possible, one or more constraints.175

With the above mentioned objectives, it is possible to builda MOO statement to adjust any176

kind of parametric controller (see eq. 11). That is, given a control structure with numerical177

parameters to adjust, the latter MOO problem can be stated, using as performance measurement178

information from the simulation process. The objectives cover the most important requirements179

for a controller: performance, control effort, coupling effects and robustness. Although these180

performance measurements have been proposed as first approximation, some other measures can181

be used (or added) by the DM.182

min
θ∈ℜn

J(θ) =
[

JE(θ), JU(θ), JC(θ), JI(θ), JT (θ)
]

∈ ℜ5 (11)

Since the implementation objectivesJI are related with a particular controller, they will be183

considered according to each specific case. Constraint handling depends on the selected algorithm184

and its own mechanisms. In general, the guidelines stated in[44] can be used to incorporate185

them into the cost function evaluation or into the MOO statement as and additional objective186

[42], [43].187
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B. Multiobjective evolutionary algorithm188

As it was noticed earlier, any kind of MOO algorithm can be used in the multi-objective189

optimisation design methodology. A MOEA is selected due to its flexibility to handle complex190

functions. The MOEA will adjust the parameters of a given controller to be used in the closed191

loop process simulation. Then it will use the performance calculated from the simulation process192

to evolve the population to the Pareto front. In particular,the sp-MODE algorithm is selected193

[14], due to its performance in academic benchmarks for MOO algorithms and its flexibility194

for control purposes. This algorithm is based on Differential Evolution technique, which is a195

real-coded evolutionary algorithm.196

C. Pareto front visualization197

It is widely accepted that visualization tools are valuableand provide decision makers with198

a meaningful method to analyze the Pareto front and take decisions [45]. For two-dimensional199

problems (and sometimes for three-dimensional) it is usually straightforward to make an accurate200

graphical analysis of the Pareto front, but the difficulty increases with the dimension of the201

problem. Tools as VIDEO [46] can plot a fourth dimension by using a color-coding inthe a 3-202

dimensional plot. Nevertheless, it is usual to state more than four objectives in an MOO process.203

Common alternatives to tackle an analysis in higher dimension are: Scatter diagrams, Parallel204

coordinates [47] and Level Diagrams [48]. Scatter diagramsuse a 2-dimensional graph for each205

pair of objectives whilst Parallel coordinates plot am-dimensional objective vector in a two206

dimensional graphs. The former becomes difficult to analyzewhen visualizing several objectives207

(since at leastm(m−1)
2

plots are required); the latter, is a very compact way, but itloses clarity208

with large sets of data.209

Level diagram (LD) visualization [48] helps us to perform ananalysis of the obtained Pareto210

front J∗
P , which is not a trivial task when the number of objectives is larger than three. It has been211

used with success in control systems up to 15 objectives [49], safety systems analysis [50] and212

engineering design [51]. As pointed in [52], LD visualization is one of the most useful methods213

to visualizem-dimensional Pareto fronts. LD visualization is based on the classification of the214

approximationJ∗
P obtained. Each objectiveJq(θ) is normalized with respect to its minimum215

and maximum values. That is:216
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Ĵq(θ) =
[

Ĵ1(θ), Ĵ2(θ), . . . , Ĵq(θ)
]

, q ∈ [1, . . . , m]. (12)

where217

Ĵq(θ) =
Jq(θ)− Jmin

q

Jmax
q − Jmin

q

, q ∈ [1, . . . , m]. (13)

and218

Jmin =

[

min
J(θ)∈J∗

P

J1(θ), . . . , min
J(θ)∈J∗

P

Jm(θ)

]

(14)

Jmax =

[

max
J(θ)∈J∗

P

J1(θ), . . . , max
J(θ)∈J∗

P

Jm(θ)

]

(15)

To each normalized objective vector̂J(θ) a p-norm‖x‖p :=

(

m
∑

q=1

|xq|
p

)1/p

is applied to219

evaluate the distance to an ideal solutionJ ideal = Jmin. Common norms are:220

‖Ĵ(θ)‖1 =

m
∑

q=1

Ĵq(θ) (16)

‖Ĵ(θ)‖2 =

m
∑

q=1

Ĵq(θ)
2 (17)

‖Ĵ(θ)‖∞ = max Ĵ(θ) (18)

The LD visualization uses a two dimensional graph for every objective and every decision221

variable. The ordered pairs
(

Jq(θ), ‖Ĵ(θ)‖p

)

in each objective sub-graph and
(

θl, ‖Ĵ(θ)‖p

)

222

in each decision variable sub-graph are plotted. Therefore, a given solution will have the same223

y-value in all graphs (see Figure 4). This correspondence will help to evaluate general tendencies224

along the Pareto front and compare solutions according to the selected norm. For example, an225

euclidian norm is helpful to evaluate the distance of a givensolution with respect to the ideal226

solution, meanwhile a maximum norm will give information about the trade-off achieved by this227

solution. Using a norm to visualize tendencies in the Paretofront does not deform the MOP228

essence, since this visualization process take place afterthe optimization stage.229

In all cases, the lower the norm, the closer to the ideal solution Jmin. For example, in figure230

4, point A is the closest solution toJmin with the ‖ · ‖1 norm. This does not mean that point A231
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Fig. 4: LD visualization. Points at the same level in LD correspond on each graphic.

must be selected by the DM. Selection will be performed according with the visual information232

from the LD visualization and the DM preferences. In the samefigure, it is possible to visualize233

how the tradeoff rate changes in solution A. That is, it is possible to appreciate two different234

tendencies around solution A: in one hand, the betterJ2(θ) value, the worstJ1(θ) value (circles).235

In the other hand, the worstJ2(θ) value, the betterJ1(θ) value (diamonds). It is difficult to236

appreciate such tendencies with classical visualizationswith more than three objectives. For the237
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remainder of this paper, the‖ · ‖2 norm will be used.238

The LD visualization also enables the comparison of Pareto fronts obtained for different239

design concepts [53] (in this case, controller schemes). Insuch visualization, it will be possible240

to analyze the different trade-offs achieved by different control solutions, and determine under241

which circumstances it is justified to use one over another. For example, in figure 5, it is possible242

to see how a PID can achieve a better trade-off than a PI controller between load rejection and243

step setpoint change (Zone Y). In the same way, it is possibleto determine under which conditions244

performance will be the same (Zone W).245

To plot the LD, the LD visualization tool (LD-tool)6 will be used. This isa posteriori246

visualization tool (i.e. is used after the optimization process) and enables the DM toidentify247

preferences zones along the Pareto front, as well as selecting and comparing solutions. With this248

tool, it is possible to remove objectives or to add new performance measurements, not used in the249

optimization stage. Furthermore, it is possible to integrate the DM preferences in a lexicographic250

environment (as the one proposed by physical programming) to identify preferred solutions.251

The aforementioned steps (problem definition, MOO process and the decision making stage)252

are important to guarantee the overall design methodology.With a poor problem definition, not253

matter how good our MOEA and decision making methodologies are, we will not have solutions254

which guarantee a good performance on the real system. If theMOEA have a low performance,255

the DM will not have a useful Pareto set to analyze and select asolution according with his/her256

preferences. Finally, a lack of decision making tools and methodologies imply a lower degree257

of embedment of the DM into the solution selection and tradeoff impacts. Furthermore it could258

lead the DM to a lack of interest in the MOO approach.259

IV. EXPERIMENTAL VALIDATION OF THE MOOD4CT PROCEDURE260

To show the applicability of the method, two different approaches of controller tuning for a261

non-linear twin rotor MIMO system (TRMS) are presented.262

The TRMS is an academic workbench and a useful platform to evaluate control strategies263

[54]–[56] due to its complexity, non-linearities, and inaccessibility of states. It is a TITO (two264

inputs, two outputs) system, where two DC motors have control over the vertical angle (main265

6Available at http://www.mathworks.com/matlabcentral/fileexchange/24042
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Fig. 5: Typical LD comparison for a SISO using a PI (♦) and a PID controller (©).

angle) and horizontal angle (tail angle) respectively. Both inputs are limited in the normalized266

range±1, the main angle being in the range[−0.5, 0.5] rad. And the tail angle in[−3.0, 3.0]267

rad.268

The mood4ctprocedure is validated in two steps:269

1) An optimization stage using an identified process model toobtainΘ∗
P ,J

∗
P .270

2) An experimental validation of the MOO resultsΘ∗
P ,J

∗
P on the real TRMS.271

A. Optimization stage272

A non-linear state-space model was identified as a part of thecontroller tuning-design pro-273

cedure. Details on the system modeling and the observer design can be consulted in [57] and274

Appendix A.275

To evaluate the performance of a given controller a Simulinkc© model with the identified276

non-linear model was used. Two simulations were carried outwith different patterns:277

• Simulation pattern 1: Setpoint step change for main from0 rad to0.4 rad while tail setpoint278

is maintained at0.279
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• Simulation pattern 2: Setpoint step change for tail from0 rad to2.4 rad while main setpoint280

is maintained at0.281

The objectives defined in equations (6), (7), (9) and (10) areused according to a TITO system:282

JTITO
E (θ) = Ts







max
(

IAE1,1(θ)
∆R1 , IAE2,2(θ)

∆R2

)

min
(

IAE1,1(θ)
∆R1 , IAE2,2(θ)

∆R2

)







T

×w (19)

JTITO
U (θ) =













max

(

2
∑

j=1

IADU1,j(θ)
∆U1

max
,

2
∑

j=1

IADU2,j(θ)
∆U2

max

)

min

(

2
∑

j=1

IADU1,j(θ)
∆U1

max
,

2
∑

j=1

IADU2,j(θ)
∆U2

max

)













T

×w (20)

JTITO
C (θ) = Ts







max
(

IAE1,2(θ)
∆R1

max
, IAE2,1(θ)

∆R2
max

)

min
(

IAE1,2(θ)
∆R1

max
, IAE2,1(θ)

∆R2
max

)







T

×w (21)

Wherew is set tow = [100, 10−1]. To evaluateJT (θ) a linearized model is used. As a283

weighting function for the robustness objective, the transfer function W (s) = 0.7s+2
s+1.1

will be284

used.285

With the mood4ctapproach, any kind of controller can be tuned. In this work, two schemes286

are used: an ISA-PID controller [58] and a state-space controller (see figures 6 and 7). For287

both cases, the controller is required to work with a sampling time of 20/1000 seconds with a288

saturated control signal in the normalized range±1.289

1) PID controller tuning:PID controllers currently represent a reliable digital control solution290

due to their simplicity. They are often used in industrial applications and so there is ongoing291

research into new techniques for robust PID controller tuning [59]–[63]. For this reason, the PID292

scheme will be the first to be evaluated.293

A two degrees of freedom ISA-PID controller with a derivative filter and an anti-windup294

scheme will be used:295

U(s) = Kc

(

b+
1

Tis
+ c

Td

Td/Ns+ 1

)

R(s)

− Kc

(

1 +
1

Tis
+

Td

Td/Ns+ 1

)

Y (s) (22)
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Fig. 6: PID controller scheme.

Fig. 7: State space controller proposal.

where296

Kc is the proportional gain.297

Ti represents the integral time (secs).298

Td is the derivative time (secs).299

N represents the derivative filter. Common values for this filter lie in the rangeN = [3, 20].300

b is the setpoint weighting for the proportional action.301

c is the setpoint weighting for the derivative action.302

The antiwind-up is performed by conditional integration when the output signal is saturated303

[64]. The strategy to be implemented is a PI controller for the main angle and a PID controller304

for the tail angle. A setpoint weighting for the derivative action of c = 0 and a derivative filter of305

January 11, 2012 DRAFT



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. 1X, JANUARY 20XX 17

TABLE I: MOO statement for the PID controller approach.

min
θ∈ℜ7

J(θ) ∈ ℜ5

JE(θ) = Ts

[

max

(

IAEMain
step

0.4
,
IAETail

step

2.4

)

+ 10−2 min

(

IAEMain
step

0.4
,
IAETail

step

2.4

)]

Kc1,c2 ∈ [0, 1]

JU (θ) = max
(
∑

∆uMain
step +

∑

∆uMain
pert ,

∑

∆uTail
step +

∑

∆uTail
pert

)

+ Ti1,i2 ∈ (0, 100]

10−2 min
(
∑

∆uMain
step +

∑

∆uMain
pert ,

∑

∆uTail
step +

∑

∆uTail
pert

)

JC(θ) = Ts

[

max

(

IAEMain
pert

(2·0.5)
,
IAETail

pert

(2·3)

)

+ 10−2 min

(

IAEMain
pert

(2·0.5)
,
IAETail

pert

(2·3)

)]

Td2 ∈ [0, 10]

JI(θ) = sup
ω

σ̄ (S(ω)) , ω ∈ (10−2, 102) b1,2 ∈ [0, 1]

JT (θ) = sup
ω

σ̄ (T (ω)W (ω)) , ω ∈ (10−2, 102), s.t.J5 > 0.8

N = 20 will also be used. Therefore, themood4ctapproach will be used to adjust the parameters306

Kc1, Ti1, b1 for the PI controller andKc2, Ti2, b2 andTd for the PID controller. Both will be307

tuned under SISO design considerations.308

A total of five objectives are defined (see Table I).JE(θ), JU(θ), JC(θ), andJT (θ) are defined309

according to equations (19), (20), (21) and (10) respectively. ObjectiveJI(θ) is included to prefer310

controllers with better disturbance rejection.311

TheΘ∗
P andJ∗

P from themood4ctapproach for PID tuning7 are shown in Figure 8. A total312

of 471 non-dominated controllers were found (a controllerssubsetGk1i is identified for further313

analysis). The following geometrical remarks (GR) on the level diagrams and their corresponding314

control remarks (CR) can be seen in Figure 8:315

GR 1: It can be observed that two different subsets of solutions appear when solutions with316

7A random search with the same number of function evaluationsused by the MOEA was performed for comparison purposes.

This approach calculates a Pareto front approximation with161 solutions. The approximation calculated by the MOEA dominates

49 solutions of the random search approach; the random search approximation does not dominate any solution of the MOEA

approximation.
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Fig. 8: J∗
P for PID controller. Dark solutions match the arbitrary requirementJU ≤ 1.

JU(θ) ≤ 1 are separated.317

CR 1: The IADU performance indicator for control action is a quality indicator to differentiate318

damping solutions along the Pareto front.319

GR 2: For solutions withJU(θ) ≤ 1, the lowerJU(θ), the higherJE(θ).320

CR 2: For overdamped solutions, the higher the control effort (IADU), the better the perfor-321

mance (IAE).322

GR 3: For solutions withJU(θ) ≤ 1, the lowerJE(θ), the higherJI(θ).323

CR 3: For overdamped solutions, the better the performance (IAE), the worse the disturbance324

rejection (JI(θ)).325

GR 4: For solutions withJU(θ) ≤ 1, the lowerJE(θ), the higherJT (θ).326

CR 4: For overdamped solutions, the better performance (IAE), the worse the robustness.327

All of these points are well-known considerations in control theory. The Pareto front enables328

the visualization of this trade-off between objectives; and the DM can choose a solution that329

meets his own needs and preferences.330
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TABLE II: MOO statement for the state space controller approach.

min
θ∈ℜ16

J(θ) ∈ ℜ5

JE(θ) = Ts

[

max

(

IAEMain
step

0.4
,
IAETail

step

2.4

)

+ 10−2 min

(

IAEMain
step

0.4
,
IAETail

step

2.4

)]

θi ∈ [−10, 10]

JU (θ) = max
(
∑

∆uMain
step +

∑

∆uMain
pert ,

∑

∆uTail
step +

∑

∆uTail
pert

)

+ i ∈ (1, 2, . . . , 16)

10−2 min
(
∑

∆uMain
step +

∑

∆uMain
pert ,

∑

∆uTail
step +

∑

∆uTail
pert

)

JC(θ) = Ts

[

max

(

IAEMain
pert

(2·0.5)
,
IAETail

pert

(2·3)

)

+ 10−2 min

(

IAEMain
pert

(2·0.5)
,
IAETail

pert

(2·3)

)]

JI(θ) = trace(K ∗K′)

JT (θ) = sup
ω

σ̄ (T (ω)W (ω)) , ω ∈ (10−2, 102), s.t.J5 > 0.8

2) State space feedback controller tuning:The above proposal used a PI-PID SISO strategy331

to address the control of a MIMO system. Such an approach is sometimes not enough to gain332

satisfactory control in a wide operational working zone, mainly because of the coupling dynamics.333

For this reason, a matrix gain for a state space (SS) control approach is selected as a second334

strategy (see Figure 7).335

The mood4ctapproach will be used to adjust a feedback gain matrixK2×8 to control the336

system. A total of five objectives are defined (see Table II). ObjectivesJE , JU , JC, and JT337

are again defined according to equations 19, 20, 21 and 10. Objective JI is included to have338

preference over controllers with lower numerical sensibility, i.e. well balanced controllers at the339

implementation stage.340

The Pareto front approximationJ∗
P

8 is shown in Figure 9. As a result, 589 non-dominated341

solutions were found (a controllers subsetGk2i is identified for further analysis). The following342

geometrical remarks (GR) and their corresponding control remarks (CR) can be seen in Figure343

8A random search with the same number of function evaluationsused by the MOEA was performed for comparison purposes.

This approach calculates a Pareto front approximation with86 solutions. The approximation calculated by the MOEA dominates

85 solutions of the random search approach; the random search approximation does not dominate any solution of the MOEA

approximation.
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9:344

GR 1: For solutions withJU ≤ 1, the lowerJU(θ), the higherJE(θ).345

CR 1: For overdamped solutions, the higher the control effort (IADU), the better the perfor-346

mance (IAE).347

GR 2: For objectiveJI(θ), solutions matching the requirementJU(θ) ≤ 1 have the lower348

trace.349

CR 2: Solutions with more balanced coefficients in the matrixgain are solutions that offer350

less damping responses.351

B. Experimental validation352

To validate both approaches, the setpoint pattern on Figure10 is used on the real TRMS9.353

It is important to note that such a pattern is different from the one used at the optimization354

stage. In this way, it will be possible to evaluate and validate themood4ctapproach. The new355

9Controllers from Tables III and VI were implemented in a National Instruments PXI-1002 System.

January 11, 2012 DRAFT



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. 1X, JANUARY 20XX 21

−0.5

−0.3

0

0.3 
M

ai
n 

[r
ad

]

0 40 80 120 160 200 240 280 320 360 400
−2

−1

0

1

2

T
ai

l [
ra

d]

Time (secs)

Zone D
120 secs.

Zone C
80 secs.

Zone B
80 secs.

Zone A
60 secs.
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pattern evaluates the performance of a given controller in maintaining zero-reference (zone A);356

a setpoint change in the main angle (zone B); a setpoint change in the tail position (zone C);357

and simultaneous changes in reference (zone D).358

1) PID controller - experimental results:A subset of three controllers (see Table III) are359

selected from the Pareto set (Figure 8) for further analysison the TRMS. ControllerGk13 is360

selected due to its performance onJE(θ); controller Gk11 due to its trade-off for objectives361

JU(θ) andJC(θ) (some performance is sacrificed in order to obtain a better control effort and362

less coupling between the main and tail closed loops). Finally, controllerGk12 is selected due to363

its robustness (this is a controller capable of working witha larger set of plants because it has364

a smallerJT (θ) value). In all cases, it is observed that the robustness requirementJT (θ) < 1365

is not achieved. The reason for this could be: 1) it is not possible to use a PID scheme to366

control the system; or 2) the weighting function for robustness has not been chosen correctly367

(i.e. it is an excessive constraint) and the control engineer needs to evaluate if this constraint368

could be relaxed. After some analysis on the closed loop frequency response, it is determined369

that it is possible to use these controllers in a small operation range. The performances of these370

controllers with the reference pattern for the real test (see Figure 10) are shown in Tables IV,371

V and Figure 11.372

As expected, controllerGk12 had the worst performance, but fewer coupling effects and the373
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TABLE III: PID controllers selected fromΘ∗
P (Figure 8).

JE(θ) JU (θ) JC(θ) JI(θ) JT (θ) θ = (Kc1, Ti1, b1,Kc2, Ti2, Td2, b2)

Gk11 6.83 0.82 0.65 4.76 4.58 θ = (0.001, 0.006, 0.99, 0.269, 8.258, 1.420, 0.626)

Gk12 8.60 0.79 0.59 2.94 2.61 θ = (0.001, 0.008, 0.68, 0.2533, 8.45, 1.14, 0.84)

Gk13 6.81 3.76 2.74 4.76 4.58 θ = (0.001, 0.006, 0.70, 0.999, 7.396, 1.887, 0.6721)

TABLE IV: Performance of PI-PID controllers on the real TRMS(Zones A and B)

Zone A

IAE IADU Obj

Main 4.76E+000 2.85E-002 J1 = 1.31E − 001

Gk11 Tail 1.07E+001 4.67E+000 J2 = 4.67E + 000

—– —– J3 = −−−−−

Main 6.45E+000 3.05E-002 J1 = 2.43E − 001

Gk12 Tail 3.42E+001 4.81E+000 J2 = 4.81E + 000

—– —– J3 = −−−−−

Main 3.58E+000 2.03E-002 J1 = 9.89E − 002

Gk13 Tail 8.17E+000 1.65E+001 J2 = 1.65E + 001

—– —– J3 = −−−−−

Zone B

IAE IADU Obj

Main 3.73E+002 2.23E+000 J1 = 2.49E + 001

Gk11 Tail 1.14E+003 5.74E+001 J2 = 5.74E + 001

—– —– J3 = 3.81E + 000

Main 4.44E+002 2.11E+000 J1 = 2.96E + 001

Gk12 Tail 1.27E+003 5.91E+001 J2 = 5.91E + 001

—– —– J3 = 4.24E + 000

Main 3.86E+002 2.20E+000 J1 = 2.57E + 001

Gk13 Tail 3.12E+002 1.80E+002 J2 = 1.80E + 002

—– —– J3 = 1.04E + 000
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TABLE V: Performance of the PI-PID controllers on the real TRMS (Zones C and D)

Zone C

IAE IADU Obj

Main 5.68E+001 3.45E-001 J1 = 1.13E + 001

Gk11 Tail 5.65E+002 4.26E+001 J2 = 4.26E + 001

—– —– J3 = 1.14E + 000

Main 5.71E+001 2.74E-001 J1 = 1.28E + 001

Gk12 Tail 6.42E+002 3.87E+001 J2 = 3.87E + 001

—– —– J3 = 1.14E + 000

Main 6.36E+001 3.69E-001 J1 = 8.64E + 000

Gk13 Tail 4.32E+002 1.21E+002 J2 = 1.21E + 002

—– —– J3 = 1.27E + 000

Zone D

IAE IADU Obj

Main 3.97E+002 2.36E+000 J1 = 5.48E + 001

Gk11 Tail 1.41E+003 7.45E+001 J2 = 7.45E + 001

—– —– J3 = −−−−−

Main 6.03E+002 1.97E+000 J1 = 7.76E + 001

Gk12 Tail 1.87E+003 6.34E+001 J2 = 6.34E + 001

—– —– J3 = −−−−−

Main 3.88E+002 2.19E+000 J1 = 3.70E + 001

Gk13 Tail 5.57E+002 2.24E+002 J2 = 2.24E + 002

—– —– J3 = −−−−−

best control effort on zones C and D. ControllerGk13, as indicated by the Pareto front, has the374

highest control effort in all cases and the best performanceon zones A and D. Finally, controller375

Gk11 presents a good trade-off between performance and control effort.376

2) State space approach - experimental results:A subset of six controllers (Table VI) was377

selected from the Pareto set (Figure 9), according to the control requirements and the closed378

loop frequency response on the linear model. Notice that it is possible to fulfill the requirement379

JT (θ) < 1, meaning that a larger set of plants can be controlled by the state space approach.380

Controller Gk21 is selected because it is the controller with the lowest 2-norm on the level381

diagram, while controllerGk22 is selected to analyze the impact ofJI(θ) on performance.382

ControllersGk23 and Gk24 are selected to validate the trade-off achieved by decreasing the383
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Fig. 11: Performance on the real TRMS of themood4ct-PID approach for the setpoint pattern.

performance in order to gain a better control action and lesscoupling effects between the main384

and tail angles. The performance of these controllers with the reference step pattern for the real385

test (see Figure 10) is shown in Tables VII, VIII and in Figure12.386

TABLE VI: State space controller and their performances at the optimization stage.

JE(θ) JU (θ) JC(θ) JI(θ) JT (θ)

Gk21 3.61 1.91 1.25 43.58 0.83

Gk22 4.82 1.41 0.53 201.52 0.83

Gk23 5.77 0.77 0.68 3.67 0.83

Gk24 7.93 0.65 0.71 2.96 0.83

Gk21 andGk22 are controllers with outstanding performance at the expense of high control387

efforts (JU(θ)) and larger trace values (JI(θ)). ControllerGk21 exhibits more coupling effects as388

was pointed byJC(θ), and noise sensitivity (JI(θ)). ControllerGk22 exhibits a better performance389

thanGk21 due to coupling effects (JC(θ)), but also shows a higher noise control effort (JI(θ)).390

Controller Gk23 and Gk24 has almost the same performance for objectivesJU(θ), JC(θ),391
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JI(θ), JT (θ) and it is possible to see the tradeoff predicted by the Paretofront approximation.392

ControllerGk24 shows worse performance than controllerGk23, but with less control effort.393

TABLE VII: Performance of the state space controller on the real TRMS (Zones A and B).

Zone A

IAE IADU Obj

Main 8.64E+000 3.07E+001 J1 = 2.18E − 001

Gk21 Tail 1.36E+001 2.17E+001 J2 = 3.07E + 001

—– —– J3 = −−−−−−

Main 6.47E+000 7.71E+001 J1 = 1.88E − 001

Gk22 Tail 1.74E+001 2.90E+001 J2 = 7.71E + 001

—– —– J3 = −−−−−

Main 9.96E+000 7.94E+000 J1 = 2.79E − 001

Gk23 Tail 2.39E+001 8.61E+000 J2 = 8.61E + 000

—– —– J3 = −−−−−

Main 9.67E+000 6.71E+000 J1 = 2.66E − 001

Gk24 Tail 2.19E+001 5.11E+000 J2 = 6.71E + 000

—– —– J3 = −−−−−

Zone B

IAE IADU Obj

Main 2.53E+002 1.61E+002 J1 = 1.69E + 001

Gk21 Tail 1.63E+002 1.24E+002 J2 = 1.61E + 002

—– —– J3 = 5.42E − 001

Main 2.11E+002 4.18E+002 J1 = 1.40E + 001

Gk22 Tail 3.46E+002 1.59E+002 J2 = 4.18E + 002

—– —– J3 = 1.15E + 000

Main 3.17E+002 4.85E+001 J1 = 2.11E + 001

Gk23 Tail 3.28E+002 5.72E+001 J2 = 5.72E + 001

—– —– J3 = 1.09E + 000

Main 5.79E+002 4.33E+001 J1 = 3.86E + 001

Gk24 Tail 3.28E+002 3.56E+001 J2 = 4.33E + 001

—– —– J3 = 1.09E + 000
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TABLE VIII: Performance of the state space controller on thereal TRMS (Zones C and D).

Zone C

IAE IADU Obj

Main 1.34E+002 1.57E+002 J1 = 1.01E + 001

Gk21 Tail 5.07E+002 1.10E+002 J2 = 1.57E + 002

—– —– J3 = 2.67E + 000

Main 4.86E+001 4.02E+002 J1 = 1.25E + 001

Gk22 Tail 6.26E+002 1.58E+002 J2 = 4.02E + 002

—– —– J3 = 9.73E − 001

Main 6.77E+001 3.70E+001 J1 = 1.04E + 001

Gk23 Tail 5.20E+002 4.23E+001 J2 = 4.23E + 001

—– —– J3 = 1.35E + 000

Main 1.06E+002 3.09E+001 J1 = 1.46E + 001

Gk24 Tail 7.28E+002 2.52E+001 J2 = 3.09E + 001

—– —– J3 = 2.12E + 000

Zone D

IAE IADU Obj

Main 2.90E+002 2.25E+002 J1 = 3.01E + 001

Gk21 Tail 5.34E+002 1.64E+002 J2 = 2.25E + 002

—– —– J2 = −−−−−

Main 2.18E+002 6.37E+002 J1 = 2.96E + 001

Gk22 Tail 7.54E+002 2.48E+002 J2 = 6.37E + 002

—– —– J3 = −−−−−

Main 3.42E+002 4.99E+001 J1 = 3.61E + 001

Gk23 Tail 6.64E+002 5.51E+001 J2 = 5.51E + 001

—– —– J3 = −−−−−

Main 6.20E+002 5.15E+001 J1 = 6.26E + 001

Gk24 Tail 1.06E+003 4.23E+001 J2 = 5.15E + 001

—– —– J3 = −−−−−

C. Comparison between control approaches394

With the multiobjective approach and the LD tool it is possible to perform an overall com-395

parison between both control approaches. The comparison will be not limited by using just a396

pair of solutions (controllers), and the whole set of controllers will be used in accordance with397

the quality of their performances along the Pareto front approximation.398
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Fig. 12: Performance on the real TRMS of themood4ct-SS approach on setpoint pattern.

As objectiveJI(θ) corresponds to the particular implementation of each controller, a com-399

parison can be performed in the objective subsetJs(θ) = [JE(θ), JU(θ), JC(θ), JT (θ)]. A new400

level diagram, using both set of solutions (with the ideal solution being the minimal offered by401

two approaches) is built (see Figure 13). Again, it is possible to make some geometrical remarks402

(GR) and their corresponding control remarks (CR):403

GR 1: In objectiveJE there is a range of solutions where both approaches coincidein the LD404

(Zone A).405

CR 1: There are configurations for each controller capable ofreaching the same level of406

performance in the rangeIAE ≈ [6, 15].407

GR 2: For the above mentioned range, solutions of the frontalstate space tend to have better408

values inJC(θ) andJT (θ).409

CR 2: For the performance rangeIAE ≈ [6, 15] the state space controller gives a better410

trade-off for control effort and robustness than a PID controller.411

GR 3: Solutions below‖Ĵ(θ)‖2 (Zone B) correspond to second front solutions. These solu-412

tions tend to disperse with larger values in objectivesJU(θ), JC(θ), andJT (θ).413
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CR 3: The state space approach can reach closer values to the ideal solution. Nevertheless,414

these solutions may include the worst values for control effort, coupling effect, and415

robustness.416

With such graphical analysis, it is possible to see the trade-off gained by using a modern417

control strategy such as a state space controller over a PID controller. In some instances, it will418

be worthwhile seeing if a complex control technique is justified over a classical technique (such419

as a PID controller) according with the DM preferences.420

V. CONCLUSIONS421

In this work, a holistic multi-objective optimisation design for controller tuning (mood4ct)422

has been presented. Withmood4ct, it is possible to achieve a higher degree of flexibility for423

choosing a solution that matches the desired level of trade-off between conflicting objectives,424

such as performance, control effort, and robustness. The approach includes the use of mean-425

ingful performance objectives through simulation, and theuse of a flexible tool to visualize426

m-dimensional Pareto fronts.427
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Mood4cthas been used to control a non-linear MIMO system. The controller tuning approach428

has been shown to be flexible for classical PID controllers and state space controllers tuning. It429

has also been shown to be reliable and robust enough to control the system with different430

reference patterns. This approach makes it possible to achieve a desired trade-off between431

performance and robustness, which leads to better implementation results on a real system than432

the results achievable by optimizing just a performance measurement. As the tendencies are those433

predicted byJ∗
P from the optimization stage with the process model, themood4ctprocedure is434

validated as a tool for designing different control architectures.435

Finally, using the level diagram tool a global comparison has been made between different436

control approaches, and this is useful to determine if a complex control technique is justified in437

preference to a classical technique that matches the DM preferences. Further research will focus438

on more interpretable objectives for robust control and stability.439

APPENDIX440

All models and controllers in this work are available to download (Simulinkc© format) from:441

• http://personales.upv.es/gilreyme/mood4ct/mood4ct.html442

A. State space linear model443





ẋ = Ax+Bu

y = Cx
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