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Abstract

Partitioned architectures isolate software components into independent partitions whose
execution will not interfere with other partitions, preserving temporal and spatial iso-
lation. Hierarchical scheduling can effectively be used to schedule these systems.
Schedulability analysis of hierarchical real-time systems is based on prior knowledge
of the local and the global scheduling algorithms.

In a partitioned system with safety and security issues and certification assurance
levels, global scheduling is usually generated using a static table. Therefore, each par-
tition must allocate task jobs only in the temporal windows reserved for that partition.
Even if the static table can come originally from a periodic server or other scheduling
policy, the final plan may be modified due to changes in the system requirements. As
a consequence, the CPU assignment to a partition does not have to correspond to any
known policy. In this case, it is not possible to use existing scheduling analysis for
hierarchical systems.

This paper studies a new scheduling problem: a hierarchical system in which global
policy is not known but provided as a set of arbitrary time windows.
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1. Introduction

In many domains such as avionics, space or industrial control systems, hard real-
time constraints, safety and security issues and certification assurance levels are com-
monly required. Integrated Modular Avionics (IMA) is an architectural proposal that
emerged as a design concept to integrate several applications with different levels of
criticality in a hardware platform. The IMA approach proposes to encapsulate func-
tions into partitions configuring a partitioned system. Partitioned architectures isolate
software components into independent partitions whose execution must not interfere
with others, preserving temporal and spatial isolation. Several projects have been suc-
cessfully developed using this approach in the avionic market.

In the last decade, the European space sector has adapted the initial IMA approach
for the space requirements for the new generation of satellites [1]. The IMA-SP project
focused on mono-processors [2]. The platform defines a virtualization layer (hyper-
visor) that permits execution of several partitions. Each partition can contain a guest
operating system and the application software. The hypervisor is in charge of ensuring
temporal and spatial isolation of partitions.

An IMA development process involves several roles like:

• System Architect (SA): The SA is responsible for defining the overall system
requirements and system design, including optimal decomposition into hosted
partitions jointly with the detailed resource allocation per partition.

• System Integrator (SI): The SI is responsible for verifying the feasibility of the
system requirements defined by the SA, as well as responsible for the configura-
tion and integration of all components.

• Application Suppliers (AS): An AS is responsible for developing an application
according to the overall requirements from the SA and the SI. AS must verify
compliance with the allocated budget and safety parameters. Assuming that each
application is located in a partition and a partition can have only one application,
an AS can also be called Partition Developer (PD).

There are other roles in the process but due to space restrictions we only detail
those interesting for the purpose of this article. For a complete description of the main
roles and responsibilities see ([3]).

A key element in the development process and the final execution is the configura-
tion of the system defined by the SA, which includes the description of the components
and resource allocation. This is identified as configuration data or configuration file. In
order to preserve the confidentiality of the development process, configuration data is
split and delivered to each PD with the required information for developing the appli-
cation.

The SI is responsible for CPU allocation of temporal resources to applications while
the PD manages the time budget assigned to its tasks by the SI. Based on the proposed
software architecture in an IMA system where a hypervisor supports the execution
of several temporal and spatial isolated partitions, the system can be modeled as a
hierarchical real-time system in which tasks are allocated to partitions. The SI allocates
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CPU in the global level, according to the scheduling algorithm of its choice, while
the PD internally schedules tasks with its own scheduling algorithm and the assigned
CPU budget. The SI is responsible for ensuring feasibility in the global level while
PD ensures feasibility in the corresponding local level. Figure 1 shows the structure
of a partitioned system. The scheduling plan in the global level schedules partitions
according to an offline plan defined in the static configuration file of the system.

Figure 1: General overview of the partitioned system

Thus, a partition does not have all the time assigned to schedule its tasks, but only
certain slots throughout the hyper-period. An example is shown in Figure 2, where a
partition with a set of periodic tasks is scheduled under EDF (Earliest Deadline First)
policy.

Figure 2: Execution chronogram and CPU supply of a partition

In the previous figure, the global scheduler peridically assigns the CPU to the task
set, that is, the partition receives a periodic resource supply that provides 3 units of
CPU every 10 units of time. The black rectangles at the bottom of the figure represent
the slots assigned to the partition. Obviously, tasks cannot execute outside these slots,
since they are reserved for other partitions.

The list of assigned slots is provided by the SI, responsible for ensuring the feasi-
bility in the global level. Thus, PD gives the SI its temporal requirements, normally in
the form of CPU bandwidth. The SI calculates and assigns this bandwidth to partitions
using a well known bandwidth server or cyclic scheduling. ARINC 653 standard [4]
defines a hierarchical scheduling where a static cyclic executive scheduler is used in
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the global level.
If the assignment is made using a bandwidth algorithm or a periodic resource

model, the corresponding feasibility tests are available in the literature so the PD can
apply them to know if its tasks are schedulable with this slots assignment (see section
8). On the contrary, if the SI makes the asignment arbitrarily (i.e. not following any
existing scheduling algorithm) the authors are not aware of any article that addresses
and solves this problem.

Below, we present an example of why a partition can be assigned an arbitrary se-
quence of slots. Let us assume a partitioned system with three partitions (P1, P2 and
P3) and the scheduling plan shown in Figure 3(a).

If the temporal requirements of P2 changefor any reason, P2 will be scheduled in
the empty slots not used by P1 and P3 (Figure 3(b)). These slots do not correspond to
any periodic reservation so we can consider that the sequence of slots provided by SI
to PD of P2 are arbitrary. Of course, we can also re-schedule the entire system but then
the scheduling of P1 and P2 would change, requiring certification of partitions whose
requirements do not change. Such an effort must be avoided if possible.

(a) Initial situation

(b) One of the partitions changes its temporal parameters.

Figure 3: Changing temporal parameters in one partition.

If we later add a fourth partition to the system (P4) we will have to schedule P4
in the idle slots not used by P1, P2 and P3. Again, the slots reserved for P4 can be
considered arbitrary (Figure 4(b)).

These two situations show two different scenarios where a partition must be sched-
uled in time slots that do not follow any known allocation. Schedulability tests for
hierarchical systems are based on calculating the worst case response time of tasks in
the local level and adding the worst case overhead due to the global level. This last
overhead cannot be calculated if the scheduling policy in the global level is not known.
Thus, the existing literature does not give a solution to this problem. For this reason,
we provide a solution to analyze the schedulability of a task set of a partition where the
scheduling algorithm is arbitrary at global level.
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(a) Initial situation

(b) Addition of a new partition.

Figure 4: Adding partitions to the partitioned system.

1.1. Contributions and outline

The problem to be addressed is concerned with the schedulability of a hierarchical
system composed of two levels. The global level policy is not known but provided by
the SI as a set of arbitrary time slots. By arbitrary we understand that the sequence of
slots is not derived from any known scheduling algorithm in the global level. This is
the most important difference with respect to existing papers in the area.

This article provides a method for determining a sequence of slots provided by the
SI that makes the local level schedulable. Specifically, we define two different slots
assignments.

We also provide a basic schedulability analysis so the PD can accept the slots as-
signment. In the local level, we assume EDF. Obviously, our results can be used even
if the scheduling algorithm in the global level is known.

The article is organized as follows: Section 2 presents the model and notation used,
while in section 3 the calculation of schedulable supply bound functions is explained.
Section 4 presents some results for the schedulability areas defined between the supply
bound functions presented in the previous section. The schedulability test is presented
in section 5. Section 6 contains the evaluation of our proposal while section 7 presents
a comparison with a similar work. Section 8 reviews the most important works in the
field of hierarchical scheduling. Finally, section 9 summarizes the contributions of the
article and future lines of work.
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2. System model and notation

Our model is concerned with the pre-emptive scheduling of real-time applications
on a uniprocessor. Each application consists of a number of partitions P1, .., Pm. Each
partition comprises a number of tasks. Thus, our hierarchical system has two levels,
the partition (or global) level and the task (or local) level, each of them with its own
scheduling policy. In this work, we will assume that the local level is scheduled under
EDF scheduling policy and the global level is scheduled under any scheduler. The
information regarding the global scheduling is provided as temporal windows or slots
in which a partition is allowed to execute.

From now on, the sub index used to refer to a partition will be omitted to simplify
the notation. Therefore, formally, a partition P can be defined1 as a tuple P = {τ,R}
where:

• τ = {τ1, τ2, .., τn} is a set of n tasks. A task τi is characterized by a tuple τi =
{φi, Ci, Di, Ti}where φi is the offset, Ci is the worst case computation time,Di

is the relative deadline and Ti is the period. When all parameters in the system
are integers, we may assume without loss of generality that all preemptions occur
at integer time values. We then assume, for the remainder of the article, that all
parameters are indeed integers. Moreover, constrained deadlines are assumed so
Di ≤ Ti.

• An arbitrary CPU supply R is represented by a sequence of p intervals I1, I2, ..., Ip.
Every Ii / 1 ≤ i ≤ p is a closed interval Ii =: [si, ei] repeated every lcmτ

2, so
that 0 ≤ si < ei < si+1 and ep ≤ lcmτ .

Therefore, ∀t exists a unique interval Ii so that si ≤ t ≤ ei. The CPU supply
R for a partition determines the p temporal slots in which tasks allocated to the
partition are allowed to execute.

The problem to solve is concerns the schedulability of the partition, that is, if task
set τ can be scheduled without deadline misses in the slots defined by R.

2.1. Supply bound function
Although we have characterized R as a set of intervals, it can also be represented

graphically.
Figure 5 shows two possible CPU supplies for the example of Figure 2 with a peri-

odic supply R=(θ, π), where the global level provides θ units of time each π units. In
the figure θ = 3 and π = 10 so both supplies are non-decreasing functions that grow
with a slope of 45 degrees at least 3 units every 10 units. wcsbfR(t) represents the
worst case because provides the 3 units of CPU as late as possible while sbfR(t) rep-
resents other specific allocation of the periodic supply. Therefore, we call the function
that represents any specific allocation, the supply bound function of R (sbfR(t)). In
this case, note that sbfR(t) totally coincide with the slots allocation of Figure 2 in the
sense that the partition is allowed to execute only when sbfR(t) function increases.

1In the definition of the partition we omit all non-temporal resources
2Least Common Multiple of T1, .., Tn
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Figure 5: Periodic supply bound functions (θ = 3, π = 10)

Given a CPU supply R and an interval of length t, the supply bound function gives
the amount of resource that model R is guaranteed to supply in any time interval of
length t [5]. We can define the supply bound function of R, accordingly with the above
definition.

Definition 1. The supply bound function (sbfR(t)) of an arbitrary supply R expressed
as a set of intervals is:

sbfR(t) =



j∑
i=0

(ei − si) + t− sj if ∃j/t ∈ [sj , ej ],

j∑
i=0

(ei − si) if ∃j/ej < t < sj+1.

, where si is the starting point of an interval and ei is its ending point. From si to
ei, the tasks of the partition can be executed. In Figure 5, these intervals correspond
with the intervals where sbfR(t) increases. Then, a CPU supplyR can be characterized
either by a set of intervals Ii or by its sbfR(t).

Moreover, the following definitions will be used in the next sections.

Definition 2. [6] The function Gτ (t) represents the computation time demanded from
initial time to time t for a tasks set τ . It can be calculated as:

Gτ (t) =

n∑
i=1

Ci ·
⌈
t

Ti

⌉
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It is a positive and non-decreasing function that only increases when a task is re-
leased, that is, it grows as many units as time computation are required by the task that
has been activated.

If tasks are simultaneously activated at time t = 0 (i.e. φi = 0 for all the tasks so
the task set is synchronous), then:

Definition 3. [7][8] The maximum cumulative execution time requested by jobs of τ
whose absolute deadlines are less than or equal to t is:

dbfτ (t) =

n∑
i=1

Ci

⌊
t+ Ti −Di

Ti

⌋
It is a positive and non-decreasing function that only increases in the so-called

scheduling points that is, when a deadline arrives.
To generalize, when the task set is asynchronous (i.e. ∃φi 6= 0), the processor

demand function in interval [t1, t2) is defined as:

Definition 4. [9][8]

dbf(t1, t2) =

n∑
i=1

ηi(t1, t2)Ci

where:

ηi(t1, t2) = max{0, (
⌊
t2 − φi −Di

Ti

⌋
−
⌈
t1 − φi
Ti

⌉
+ 1)}

From now on, let us assume the task set is synchronous. Therefore, definition 3
will be used to deduct the minimum supply bound function, in spite of the possibility
of using definition 4 to obtain any other demand function.
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3. Schedulable supply bound functions

In this section, we will define specific sbfR(t) that ensure the schedulability of task
sets, τ . Specifically, two functions are obtained: gsbfτ (t) and msbfτ (t).

3.1. Schedulable sbfτ (t) based on G(t)

This section presents the demanded computation supply function (gsbfτ (t)). This
function gives a schedulable supply for τ . We will base our method on the Gτ (t)
function (Definition 2).

Definition 5. A characteristic point, tj , of Gτ (t) is the one complying with:

Gτ (tj − ε) < Gτ (tj + ε) 0 ≤ tj ≤ lcmτ ∀ε→ 0

, so that tj coincides with the activation of τi ∈ τ .

Property 1. [7] Let τ be a schedulable task set. Let tx be an instant tx such that:

Gτ (tx) ≤ tx

Then, the processor must have been idle for at least tx−Gτ (tx) time units from initial
time.

From Definition 2 and Property 1, the demanded computation supply function
(gsbfτ (t)) is presented.

Definition 6. The gsbfτ (t) is defined as:

gsbfτ (t) =


t−

j−1∑
i=0

(si+1 − ei) if ∃j/t ∈ [sj , ej ],

Gτ (t) if ∃j/ej < t < sj+1.

, where:

sj = tj + θj

ej = tj −Gτ (tj − ε) +Gτ (tj + ε) + θj

θj = max{0, (ej−1 − tj)}

and each tj is an characteristic point of Gτ (tj).

Figure 6 shows how the function is obtained graphically in the first intervals. In
this Figure, the characteristic points are depicted (t1, t2, ...) and, applying Definition 6,
the start and end points of the intervals of gsbfτ (t) are calculated. They correspond to
the intervals where gsbfτ (t) increases.
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Figure 6: Calculation of gsbfτ (t) in [0, t4)

To obtain a more compact definition, let us replace the values of sj and ej :
j−1∑
i=0

(si+1 − ei) = (s1 − e0) + (s2 − e1) + ...+ (sj − ej−1)

= t1 + θ1 − (t0 −Gτ (t0 − ε) +Gτ (t0 + ε) + θ0+

+ t2 + θ2 − (t1 −Gτ (t1 − ε) +Gτ (t1 + ε) + θ1+

+ ...+

+ tj−1 + θj−1 − (tj−1 −Gτ (tj−2 − ε)+
+Gτ (tj−2 + ε) + θj−2)+

+ tj + θj − (tj −Gτ (tj−1 − ε) +Gτ (tj−1 + ε) + θj−1)+

= −t0 +Gτ (t0 − ε)− θ0 + tj + θj −Gτ (tj−1 + ε)

As t0 = Gτ (t0 − ε) = θ0 = 0 and Gτ (tj−1 + ε) = Gτ (tj − ε), then, one more
compact definition of gsbfτ (t) is:

gsbfτ (t) =


t− tj − θj +Gτ (tj − ε) if ∃j/t ∈ [sj , ej ],

Gτ (t) if ∃j/ej < t < sj+1.

Once gsbfτ (t) has been defined, the schedulability of τ under this CPU supply can
be demonstrated. For this reason, the concept of initial critical interval (ICI) must be
introduced. ICI [10] is defined as the temporal interval between initial time and the first
instant R, when all requests have already been served and no additional requests have
arrived yet, assuming that the processor is not idle while tasks are pending. Therefore,
this range is [0, R).
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Lemma 1. [10] [11] Let τ be a synchronous periodic task set and [0,R) its initial
critical interval (ICI). τ is schedulable if and only if it can be scheduled in ICI.

Next theorems are used to construct the gsbfτ (t) interval by interval and, in each
interval, the condition gsbfτ (t) ≤ t will be checked.

Theorem 1. Let t1 ∈ N so that:

min
t

t1 : Gτ (t1) ≤ t1 ∀t ∈ (0, lcmτ ]

Then,
gsbf(t) = t if t ∈ [0, t1)

PROOF. Because of the definition of ICI, in the range [0,R) there is no CPU idle time.
For this reason, from 0 to t1, the processor must be always busy. So, t1 = R.

Theorem 2. Let t2 ∈ N so that:

min
t

t2 : Gτ (t2 − ε) ≤ Gτ (t2 + ε) t1 < t2 ≤ lcmτ ∀ε→ 0

, that is, t2 is a characteristic point of Gτ (t).
Then,

gsbfτ (t) =

{
t if t ∈ [0, t1),

Gτ (t) if t ∈ [t1, t2).

PROOF. The proof is based on the addition of a new task τn+1, which will be executed
only when CPU is idle, that is, when τ is not executing. This time corresponds to the
interval [t1, t2). Let

τ ′ = τ
⋃
τn+1

where

φn+1 = t1

Cn+1 = t2 − t1
Dn+1 = t2

Tn+1 = max{φ1, ..., φN , φn+1}+ 2 · lcmτ [9]
= φn+1 + 2 · lcmτ

Once this task has been added, let’s check that the first interval, R, when all requests
have already been served and no additional requests have arrived yet, is [0, t2).

Gτ ′(t) = Gτ (t) +Gτn+1(t)

=

n∑
i=1

Ci

⌈
t

Ti

⌉
+ (t2 − t1)

⌈
t

φn+1 + 2 · lcmτ

⌉

=

n∑
i=1

Ci

⌈
t

Ti

⌉
+ (t2 − t1)
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When t = t2 − ε, Gτ (t) = t1 the result of the previous equation is:

Gτ ′(t2 − ε) = Gτ (t2 − ε) +Gτn+1(t2 − ε)

=

n∑
i=1

Ci

⌈
t2 − ε
Ti

⌉
+ (t2 − t1)

= t1 + (t2 − t1)
= t2

It is clear that, adding this new task set, Gτ ′(t) = t and the new ICI is [0, t2). So,
as a result of Lemma 1, to prove schedulability of τ ′, the condition dbfτ ′(t) ≤ t must
be held in all the scheduling points in [0, t2).

Let us assume that tx is a scheduling point in [0, t2). As tx < Dn+1 clearly
dbfτ ′(tx) = dbfτ (tx) ≤ tx. Therefore, the schedulability of τ has been demostrated
because of its schedulability in ICI.

As a result of the previous theorem, we derive the next interval.

Lemma 2. Let t3, t4 ∈ N so that:

t3 : Gτ (t2 + ε)−Gτ (t2 − ε) + t2

t4 : Gτ (t4 − ε) ≤ Gτ (t4 + ε)

, where t2 ≤ t3 ≤ t4 ≤ lcmτ , ∀ε→ 0
Then,

gsbfτ (t) =


t if t ∈ [0, t1),

Gτ (t) if t ∈ [t1, t2),

t− (t2 − t1) if t ∈ [t2, t3),

Gτ (t) if t ∈ [t3, t4).

PROOF. Following the same reasoning as Theorem 2, we add a new task whose com-
putation time coincides:

τ ′′ = τ
⋃
τn+1

⋃
τn+2

where

φn+1 = t1

Cn+1 = t2 − t1
Dn+1 = t2

Tn+1 = max{φ1, ..., φN , φn+1, φn+2}+ 2 · lcmτ

= φn+2 + 2 · lcmτ

φn+2 = t3

Cn+2 = t4 − t3
Dn+2 = t4

Tn+2 = max{φ1, ..., φN , φn+1, φn+2}+ 2 · lcmτ

= φn+2 + 2 · lcmτ
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Once this task has been added, let us calculate the ICI in this new scenario:

Gτ ′′(t) = Gτ (t) +Gτn+1(t) +Gτn+2(t)

=

n∑
i=1

Ci

⌈
t

Ti

⌉
+ (t2 − t1)

⌈
t

φn+2 + 2 · lcmτ

⌉
+

+ (t4 − t3)
⌈

t

φn+2 + 2 · lcmτ

⌉
=

n∑
i=1

Ci

⌈
t

Ti

⌉
+ (t2 − t1) + (t4 − t3)

When t = t4 − ε, Gτ (t) = t1 + (t3 − t2). Therefore:

Gτ ′′(t4 − ε) = Gτ (t4 − ε) +Gτn+1(t4 − ε) +Gτn+2(t4 − ε)

=

n∑
i=1

Ci

⌈
t4 − ε
Ti

⌉
+ (t2 − t1) + (t4 − t3)

= t1 + (t3 − t2) + (t2 − t1) + (t4 − t3)
= t4

It can be concluded that, adding a new task set,τn+2, Gτ ′′(t) = t in t = t4 so
the new ICI is [0, t4). So, as a result of Lemma 1, to prove schedulability of τ ′′, the
condition dbfτ ′′(t) ≤ t must be held in all the scheduling points in [0, t4).

Let us assume that tx is a scheduling point in [0, t4). As tx < Dn+2, in Theorem 2
it has been demonstrated that dbfτ ′′(tx) = dbfτ ′(tx) ≤ tx. So, τ ′′ is schedulable in
the hyperperiod because of its schedulability in ICI.

From these first intervals, the complete definition of the demanded computation
supply function can be built recursively. Values of sj and ej are deduced according to
the different shapes of the function, depending on how Gτ (t) is built.

The algorithm that implements the slot construction is presented in Listing 1.

Listing 1: gsbfτ (t) algorithm

1 function gsbf(τ ) is
2 j,ej ,sj ,t0,t1=0;
3 ε→ 0;
4 while(t1<lcmτ ) loop
5 if G(t0 − ε) < G(t0 + ε) then
6 θ0 = max {0, ej − t0};
7 sj = t0 + θ0;
8 ej = t0 −G(t0 − ε) +G(t0 + ε) + θ0;
9 end if ;

10 t0++; j++;
11 end while;
12 end gsbf;
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The gsbfτ (t) represents a set of temporal windows that can successfully schedule
τ . Many sets of slots fulfil this purpose, however, because CPU time is supplied only
when a task is activated, that is, as soon as possible. And for this reason, the resulting
schedule exactly coincides with the schedule resulting from assigning all CPU time to
the partition.

3.1.1. Example of gsbfτ (t) use
Let’s consider a partition with three tasks (τ = {τ1, τ2, τ3}). Task parameters are

listed in Table 1. The definition of gsbfτ (t) in definition 6 is used to calculate the

Table 1: Task parameters
Ci Di Ti

τ0 1 4 5
τ1 6 10 15
τ2 5 21 30

function. The first step consists in calculating Gτ (t) and all its characteristic points
in [0, lcmτ ]. Table 2 shows all these values. Now, applying Definition 6, si and ei

Table 2: Characteristic points of gsbfτ (t)
t 0 5 10 15 20 25

Gτ (t) 12 13 14 21 22 23

are calculated within [0, lcmτ ] and represented in Table 3. The last step is to calcu-

Table 3: Definition of [si, ei]
i 0 1 2 3 4 5
si 0 12 13 15 22 25
ei 12 13 14 22 23 26

late gsbfτ (t) inside each interval. Once it has been calculated, the representation of
the function is shown in Figure 7. As seen, CPU will be busy in the intervals where
gsbfτ (t) grows. These intervals are defined in Table 4. The execution chronogram of
the task set considering that the CPU supply R coincides with the demanded computa-
tion supply function is depicted in Figure 8. As seen, the task set is schedulable in this
slot assignment.

Thus, the schedulability of the gsbfτ (t) function for a task set and the methodology
for calculating it have been demonstrated.

3.2. Schedulable sbfτ (t) based on dbfτ (t)

In Section 3.1, a valid supply that gives CPU when tasks are activated has been
presented. Now, another valid supply is being presented but, in this new situation,
CPU is supplied just before the deadlines arrive. If gsbfτ (t) consists on supplying
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Figure 7: Representation of gsbfτ (t)

Table 4: Definition of [si, ei]
si ei

I1 0 14
I2 15 23
I3 25 26

CPU as soon as possible (for task activation), msbfτ (t) will consist in supplying CPU
as late as possible.

To obtain msbfτ (t), we base our method on the demand bound function for a task
set. We build msbfτ (t) by intervals and we prove that in each interval there are no
deadline misses. Thus, msbfτ (t) will be generalized.

Theorem 3. Let t1 ∈ N so that:

t1 − dbfτ (t1) = min
t

(t− dbfτ (t)) ∀t ∈ (0, lcmτ ]

And,

msbfτ (t) =

{
t− t1 + dbfτ (t1) if t ∈ [t1 − dbfτ (t1), t1],
0 if t ∈ [0, t1 − dbfτ (t1)).

If sbfR(t) = msbfτ (t) then τ is schedulable.

PROOF. The proof is based on adding a new task τn+1. This task can only be executed
when τ is not allowed to execute, that is, in [0, t1 − dbfτ (t1)) and we demonstrate that
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Figure 8: Execution chronogram of τ with gsbfτ (t) in Table 4

the new set is schedulable. Then, computation time of τn+1 is increased in order to
check that the new set is not schedulable.

Let
τ ′ = τ

⋃
τn+1

where

Cn+1 = t1 − dbfτ (t1)
Dn+1 = t1 − dbfτ (t1)
Tn+1 = max{φ1, ..., φN}+ 2 · lcmτ

φn+1 = 0

To prove schedulability of τ ′, the condition dbfτ ′(t) ≤ t must be met in all the
scheduling points in [0, t1]. Let us assume that a is a scheduling point in [0, t1]. If
a < Dn+1, obviously dbfτ ′(a) = dbfτ (a) ≤ a. If a ≥ Dn+1 the demand bound
function of the new task set τ ′ is:

dbfτ ′(a) = dbfτ (a) + Cn+1

= dbfτ (a) + t1 − dbfτ (t1)

As t1 − dbfτ (t1) = min
t

(t− dbfτ (t)) then

t1 − dbfτ (t1) ≤ (a− dbfτ (a))
So,

dbfτ ′(a) ≤ dbfτ (a) + a− dbfτ (a)
≤ a

Now, let us assume
τ ′′ = τ

⋃
τn+1

and

Cn+1 = t1 − dbfτ (t1) + ε

Dn+1 = t1 − dbfτ (t1) + ε

Tn+1 = max{φ1, ..., φN}+ 2 · lcmτ

φn+1 = 0
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being ε a small positive number such that 0 < ε ≤ 1.
Following the same reasoning:

dbfτ ′(t1) = dbfτ (t1) + t1 − dbfτ (t1) + ε

= t1 + ε

so τ ′′ is not schedulable.

As a result of the previous theorem, msbfτ (t) until t1, expressed as a set of inter-
vals, is msbfτ (t) = I0 = [t1 − dbfτ (t1), t1]. Using a similar approach we derive the
next interval.

Lemma 3. Let t2 ∈ N, t1 < t2 so that:

t2 − dbfτ (t2) = min
t

(t− dbfτ (t)) ∀t ∈ (t1, lcmτ ]

And

msbfτ (t) =



t− t1 + dbfτ (t1) if t ∈ [t1 − dbfτ (t1), t1],
dbfτ (t1) if t ∈ (t1,

t2 − dbfτ (t2) + dbfτ (t1))

t− t2 + dbfτ (t2) if t ∈ [t2 − dbfτ (t2)
+dbfτ (t1), t2],

0 if t ∈ [0, t1).

If sbfR(t) = msbfτ (t) then τ is schedulable.

PROOF. Schedulability in [0, t1] is assured due to Theorem 3. Following the same
reasoning as Theorem 3, we add a task whose computation time coincides with the idle
time between I0 and SI1 and its deadline is equal to the start time of I1 (s1).

Let
τ ′ = τ

⋃
τn+1

⋃
τn+2

where

Cn+1 = t1 − dbfτ (t1)
Dn+1 = t1 − dbfτ (t1)
Tn+1 = max{φ1, ..., φN}+ 2 · lcmτ

φn+1 = 0

Cn+2 = t2 − dbfτ (t2) + dbfτ (t1)− t1
Dn+2 = t2 − dbfτ (t2) + dbfτ (t1)

Tn+2 = max{φ1, ..., φN}+ 2 · lcmτ

φn+2 = t1
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Let us assume that a is a scheduling point in (t1, t2]. If a < Dn+2, then dbfτ (a) =
dbfτ ′(a), so the new task set is schedulable. If a ≥ Dn+2, following the same reason-
ing as in Theorem 3, the computation time of τn+1 and τn+2 is added to sbfτ ′(t):

dbfτ ′(a) = dbfτ (a) + t1 − dbfτ (t1)+
+ t2 − dbfτ (t2) + dbfτ (t1)− t1
= dbfτ (a) + t2 − dbfτ (t2)

Given
t2 − dbfτ (t2) ≤ (a− dbfτ (a))

that

dbfτ ′(a) ≤ dbfτ (a) + a− dbfτ (a)
≤ a

Theorem 3 and Lemma 3 provide a method for obtaining the first two intervals of
msbfτ (t) function and it has been proved that this function is schedulable. Figure 9
shows graphically how the function is obtained.

Figure 9: Calculation of msbfτ (t) in [0, t2]

It is straightforward to recursively construct all the minimum supply slots needed
by τ to maintain feasibility: finding tj points in where it holds that tj − dbfτ (tj) is the
minimum value in (tj−1, lcmτ ]. We call these points the minimum scheduling points
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tj . Therefore, the msbfτ (t) is defined as in Definition 1 but now we can give specific
values to sj and ej :

msbfτ (t) =



j∑
i=0

(ei − si) + t− ej if ∃j/t ∈ [sj , ej ],

j∑
i=0

(ei − si) if ∃j/ej < t < sj+1.

where sj = tj − dbfτ (tj) + dbf(tj−1) and ej = tj .
Replacing the values of sj and ej in the previous definition:

j∑
i=0

(ei − si) = t1 − t1 + dbfτ (t1)− dbf(t0)+

+t2 − t2 + dbfτ (t2)− dbf(t1) + ...

Assuming that t0 = 0 and dbfτ (0) = 0:

j∑
i=0

(ei − si) = dbfτ (tj)

Therefore, we can provide a more compact definition for msbfτ (t).

Definition 7. The definition of the minimum supply bound function msbfτ (t) is:

msbfτ (t) =


t− tj + dbfτ (tj) if ∃j/t ∈ [sj , ej ],

dbfτ (tj) if ∃j/ej < t < sj+1.

The algorithm that implements the slot construction is presented in Listing 2.

Listing 2: msbfτ (t) algorithm

1 function msbf(τ ) is
2 i , ei,si,t1,t2=0;
3 while(t2<lcmτ ) loop
4 t2= min

ei<t≤lcmτ
(dbfτ (t));

5 si = t2 − dbfτ (t2) + dbfτ (t1);
6 ei = t2;
7 t1 = t2;
8 i ++;
9 end while;

10 end msbf;

The previous function is obtained from dbfτ (t) in Definition 3, particularized for
synchronized tasks. If we assume the possibility of asynchronism between tasks (i.e.,
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φi 6= 0), this algorithm is also valid due to the inclusion of the offset in Definition 4.
If a task set is synchronous, Definition 3 will be applied to obtain dbfτ (t) and, con-
sequently, msbfτ (t). However, if any task does not start at the same time as others,
then another dbfτ (t) will be obtained because of this offset and, consequently, other
msbfτ (t), which will also meet the criteria of schedulability of all tasks.

The previous algorithm works over the entire hyperperiod (lcmτ ), which depending
on the values of task periods can be a large value. To overcome this disadvantage, we
can use the results presented by Brocal and Balbastre In [12], an algorithm is presented
that can be used to compute the minimum hyperperiod for a set of periodic activities
when period is specified as a range. If, in spite of considering periods as specific
values, we treat them as ranges of valid values, [12] will select the value inside each
interval which causes the minimum hyperperiod. This method drastically reduces the
hyperperiod.

As noted in the conclusions section, we are working on an upper bound ofmsbf(τ)
to reduce the complexity of the algorithm.

Oncemsbfτ (t) is obtained, the following theorem provides the schedulability con-
dition of {τ,R}.
Theorem 4. A task set τ is schedulable under a CPU supply R if and only if:

∀t sbfR(t) = msbfτ (t)

PROOF. We prove that for any time point a :

msbfτ (a) ≥ dbfτ (a) ∀a ∈ [0, lcmτ ]

We assume two cases:

• Case 1: a /∈ [sj , ej ].

• Case 2: a ∈ [sj , ej ].

Case 1: If a /∈ [sj , ej ], then ∃j so ej < a < sj+1. Applying the second case in the
msbfτ (t) definition:

msbfτ (a) = dbfτ (a)

Case 2: If a ∈ [sj , ej ], applying the first case of the msbf definition:

msbfτ (a) = a− tj + dbfτ (tj)

As dbfτ (t) is a positive and monotonic increasing function it holds that [10]:
If a ≤ tj then dbfτ (a) ≤ dbfτ (tj)
And, as τ is schedulable then dbfτ (tj)− tj ≤ 0.
Therefore:

msbfτ (a) ≥ dbfτ (a)− dbfτ (tj)− tj
≥ dbfτ (a)

In any case: msbfτ (a) ≥ dbfτ (a).
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3.2.1. Example of msbfτ (t) use
Let us consider a partition with three tasks (τ = {τ1, τ2, τ3}). Task parameters are

listed in Table 1. Figure 10 shows the execution chronogram for the task set scheduled
under EDF policy if the partition is the only one in the system, that is, the CPU supply
is a unique slot I0 = [0, 30]. As the figure shows, the task set is schedulable since there
are no missed deadlines throughout the hyperperiod (lcmτ ).

Figure 10: Execution chronogram of τ with R = I0 = [0, 30]

Let us consider now that there are more partitions in the system so the SI assigns to
the considered partition a CPU supply R which matches the msbfτ (t).

To find out whether the CPU supply R is able to successfully schedule the task set,
we obtain msbfτ (t). The methodology, as explained in the previous sections consists
of calculating the minimum t− dbfτ (t) in [0, lcmτ ]. Table 5 shows t− dbfτ (t) for all
the scheduling points in [0,30].

Table 5: Scheduling points
t 4 9 10 14 19 21 24 25 29

dbfτ (t) 1 2 8 9 10 15 16 22 23
t− dbfτ (t) 3 7 2 5 9 6 8 3 6

The scheduling point with the minimum slack (t− dbfτ (t)) is t1 = 10. Therefore,
according to Theorem 3, the first slot of msbfτ (t) is I0 = [t1−dbfτ (t1), t1] = [2, 10].

In the second iteration, we must search for the next scheduling point with the min-
imum slack in (10,30]. This point is t2 = 25. Therefore, the next slot of msbfτ (t) is
I1 = [t2 − dbfτ (t2) + dbfτ (t1), t2] = [11, 25].

In the third and last iteration, it is clear that t3 = 29 as it is the only remaining
scheduling point in (25, 30]. Therefore I2 = [t3− dbfτ (t3) + dbfτ (t2), t3] = [28, 29].
Table 6 summarizes the slots of msbfτ (t) and the representation of the function is
depicted in Figure 11.

Table 6: Minimum supply bound
si ei

I1 2 10
I2 11 25
I3 28 29
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Figure 11: Representation of msbfτ (t)

The execution chronogram of the task set considering that the CPU supply R coin-
cides with the minimum supply calculated is depicted in Figure 12. We see in the figure
that the task set is schedulable and that this slots assignment are the more restrictive
ones, since if any slot is reduced, task τ2 will miss its deadline.

Figure 12: Execution chronogram of τ with R = msbfτ (t)

As sbfR(t) = msbfτ (t), the task set is schedulable. It is depicted in Figure 12.
Finally, it has become clear the schedulability analysis exposed in section 5.
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4. Schedulability areas

In this section, we obtain information about the schedulability of sbfR(t) depend-
ing on its relationship with gsbfτ (t) and msbfτ (t).

Both gsbfτ (t) and msbfτ (t) are minimum supply functions in the sense that both
supply the minimum instants of CPU to assure schedulability of τ .

In Figure 13, three zones according to the relation with msbfτ (t) and gsbfτ (t) are
depicted:

• Zone 1: This area depicts CPU supply R functions that are greater than gsbfτ (t)
and, consequently, greater than msbfτ (t).

• Zone 2: This area depicts CPU supply R functions that are between msbfτ (t)
and gsbfτ (t).

• Zone 3: This area depicts CPU supply R functions that are lesser than msbfτ (t).

Figure 13: Zones according to the position of msbfτ (t) and gsbfτ (t)

For the periodic resource model with D=T (periodic sbfR(t)) any sbfR(t) located
in Zone 1 and 2 is schedulable whereas any sbfR(t) located in Zone 3 is not ([13]).
However, as the following counterexamples show, this is no longer true if the slot
assignation is arbitrary.

4.1. ZONE 1: CPU supply R greater than gsbfτ (t) and, consequently, msbfτ (t)
Some might think that any sequence of slots whose characteristic function sbfR(t)

is greater than gsbfτ (t) and, consequently, msbfτ (t), would assure the schedulability
of task set τ . The next example is used to refute this theory.
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Let us consider the partition whose tasks are defined in Table 1. Let us consider
now that there are more partitions in the system so the SI assigns to the considered
partition a CPU supply R shown in Table 7.

Table 7: CPU supply R
si ei

I1 0 5
I2 7 25
I3 29 30

The msbfτ (t) of the task set is calculated following the description in Section 3.2
and, representing in the same graph msbfτ (t) and sbfR(t), it is observed that sbfR(t)
is always above or equal to msbfτ (t) (see Figure 14).

Figure 14: Graphical representation of dbfτ (t),msbfτ (t) and sbfR(t)

However, as can be seen in Figure 15, this task set is not schedulable in partition
R defined by sbfR(t). τ0 misses its deadline in its fifth activation. τ0 is activated in
time = 25u.t. and the next deadline is in time = 29u.t.. Inside the interval [25,29],
there is no CPU supply R. So, the task set is not schedulable.

Although sbfR(t) is above msbfτ (t), the partition must be defined in such a way
as to guarantee the that every task meets the deadlines. If, from the request of a task
until the arrival of the corresponding deadline, the task does not have enough time to
being executed entirely, the system will not be schedulable, as occurs in the previous
situation.
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Figure 15: Execution chronogram of τ with R in Table 7

The same happens with gsbfτ (t). Therefore, the idea of ensuring the schedulability
of a task set whenever sbfR(t) is greater than gsbfτ (t) is rejected.

Let us consider the task set in Table 1 and the CPU supply in Table 8. As Figure 16
shows, sbfR′(t) is always greater than or equal to gsbfτ (t) but, as Figure 17 shows,
the task set is not schedulable.

Table 8: CPU supply R’
si ei

I1 0 25
I2 29 30

Figure 16: Graphical representation of Gτ (t), gsbfτ (t) and sbfR′ (t)
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Figure 17: Execution chronogram of τ with R′ in Table 8

4.2. ZONE 2: CPU supply R between msbfτ (t) and gsbfτ (t)

Now, let us suppose another scenario: msbfτ (t) ≤ sbfR(t) ≤ gsbfτ (t) used to
check that one sbfR(t), which is defined between gsbfτ (t) and msbfτ (t), does not
necessarily assure the schedulability of the task set. It depends on how the function is
defined and if the deadlines are met or not.

Let us define a partition defined by the tasks τ ′ in Table 9 and the CPU supply R”
in Table 10.

Table 9: Task parameters τ ′

Ci Di Ti
τ ′0 2 8 10
τ ′1 5 10 25
τ ′2 7 40 50

Table 10: CPU supply R”
si ei

I1 2 16
I2 21 25
I3 32 39
I4 43 44
I5 45 46

Calculating all the functions as described in previous sections, Figure 18 shows
msbfτ ′(t) ≤ sbfR′′(t) ≤ gsbfτ ′(t) ∀t. However, Figure 19 shows that τ ′ is not
schedulable, because τ ′1 misses its deadline in its second activation.
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Figure 18: Graphical representation of msbfτ ′ (t), gsbfτ ′ (t) and sbfR′′ (t)

Figure 19: Execution chronogram of τ ′ with R′′ in Table 10

4.3. ZONE 3: CPU supply R less than msbfτ (t)

According to the definition of msbfτ (t), it is the most restrictive function for
scheduling a task set. If any supply CPU R is lesser than msbfτ (t), the task set will
not be schedulable.

Let us define now a CPU supply, R”’, shown in Table 11 and task set τ ′.

Table 11: CPU supply R”’
si ei

I1 4 10
I2 12 13
I3 17 18
I4 26 30
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Figure 20: Graphical representation of msbfτ ′ (t) and sbfR′′′ (t)

As Figure 20 shows, if sbfR′′′(t) ≤ msbfτ ′(t), in the minimum scheduling points,
the CPU supply will not be enough to schedule the tasks. This is because at these
points, sbfR′′′(t) ≤ dbfτ ′(t).

All these counterexamples show that, in contrast to what we might think, the schedu-
lability of a task set is not constrained by being in Zone 2. However, a task set will not
be schedulable if its sbfR(t) is less than msbfτ (t), that is, Zone 3.

As it has been demonstrated, the condition sbfR(t) ≥ msbfτ (t) it is not enough
because sbfR(t) can increase at the beginning and have a long idle interval and still be
above msbfτ (t) and miss deadlines during the long idle interval. However, a periodic
resource R = (θ, π) ensures θ units of resource every π units of time. This, jointly
with the condition sbfR(t) ≥ msbfτ (t) ensures that the processor is assigned to τ
whenever it is needed to not miss deadlines.

In an arbitrary CPU supply, it must be ensured that sbfR(t) provides enough CPU
time from time to time but not necessarily periodically. With this idea, the objetive of
the next section is to provide a schedulability test using gsbfτ (t) and msbfτ (t).

5. Schedulability analysis

Theorem 5 and Theorem 6 provide two alternative schedulability tests.
Let us use the definition of the sbfR(t) in definition 1 and msbfτ (t) function in

definition 7.

Theorem 5. Let sbfR(t) be a function so that:

msbfτ (t) ≤ sbfR(t) ≤ t
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and, moreover, sbfR(t) increases, at least, at the same time intervals as msbfτ (t).

Then, τ is schedulable in R.

PROOF. It has been demonstrated that any sequence of slots sbfR(t) that coincides
with msbfτ (t) ensures the schedulability of {τ,R} (Section 3.2). So, if a sequence of
slots supplies CPU time at the same time as msbfτ (t) and also supplies it at another
extra time, obviously, the task set will also be schedulable.

In other words, any function sbfR(t) that is above msbfτ (t) and, moreover, in-
creases, at least, at the same time intervals as msbfτ (t), will be schedulable. Then, the
gradient of sbfR(t) has to be equal to the gradient of msbfτ (t) at least in [sj , ej ] to be
schedulable, that is, both functions have to be parallel lines at least in that interval. See
Figure 21.

The extra time mentioned previously represents CPU idle time.

Figure 21: Conditions of schedulability in {τ, R}

Lemma 4. If msbfτ (t) ≤ sbfR(t) and sbfR(t) increases, at least, at the same time
intervals as msbfτ (t), then the number of units of time that the CPU is idle are calcu-
lated as follows:

CPU idle time =
∑
∀n

[en − sn]−
∑
∀j

[ej − sj ]

This situation can be illustrated by the following example. For the task set defined
in Table 1, the msbfτ (t) is obtained in Section 3.2.1 and the execution chronogram
when sbfR(t) = msbfτ (t) is depicted in Figure 12.
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Let us suppose another situation: an sbfR(t) that is greater than the previously
calculated msbfτ (t). Moreover, it also increases in the same intervals as msbfτ (t)
and also in other extra intervals, as shown in Figure 22.

Figure 22: Example of schedulability in {τ, R}

In this figure, msbfτ (t) is depicted in red and sbfR(t) is depicted in blue. It is
further observed that sbfR(t) increases at the same time as msbfτ (t), that is, time
intervals in grey. In addition, there are other time intervals in which sbfR(t) increases
but msbfτ (t) does not. They are highlighted in green.

Figure 23: Chronogram execution of schedulability in {τ,R}

Figure 23 shows the task set is schedulable in {τ,R} but there is CPU idle time. In
fact, there is as much idle time as time instants when sbfR(t) increases but msbfτ (t)
does not.

So, the methodology for determining whether a function sbfR(t) ensures the schedu-
lability of τ is:
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1. Calculate the msbfτ (t) for the task set, τ , and express it as set of intervals Ij =
[sj , ej ] where the function increases.

2. Express sbfR(t) as a set of intervals IR = [sR, eR] in which the function in-
creases.

3. Check if Ij ⊆ IR, that is, sR ≤ sj ≤ ej ≤ eR,∀j, R.

The same happens with gsbfτ (t). Let us use the definition of gsbfτ (t) in defini-
tion 6.

Theorem 6. Let sbfR(t) be a function so that:

gsbfτ (t) ≤ sbfR(t) ≤ t
and, moreover, sbfR(t) increases, at least, at the same time intervals in as gsbfτ (t).

Then, τ is schedulable in R.

PROOF. In Section 3.1 it has been demonstrated that any sequence of intervals, R, de-
fined by sbfR(t) that coincides with gsbfτ (t) will ensure the schedulability of {τ,R}.
If, in addition to these intervals, other time instants are added to R, obviously τ will be
also schedulable.

In other words: any sbfR(t) greater than gsbfτ (t) and, whose gradient coincides
with the gradient of gsbfτ (t) in [sj , ej ] coincides. See Figure 24.

Figure 24: Conditions of schedulability in {τ, R}

The additional time instants in which sbfR(t) increases but gsbfτ (t) does not,
represent the idle time of CPU.
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Lemma 5. If gsbfτ (t) ≤ sbfR(t) and sbfR(t) increases, at least, at the same time in-
tervals as gsbfτ (t), then the number of units of time that the CPU is idle are calculated
as follows:

CPU idle time =
∑
∀n

[en − sn]−
∑
∀j

[ej − sj ]

This situation can be illustrated by the following example. For the task set defined
in Table 1, the gsbfτ (t) is obtained in Section 3.1.1 and the execution chronogram
when sbfR(t) = gsbfτ (t) is depicted in Figure 8.

Let us suppose another situation: an sbfR(t) that is greater than the previously
calculated gsbfτ (t). Moreover, it also increases in the same intervals as gsbfτ (t) and
in other extra intervals, as shown in Figure 25.

Figure 25: Example of schedulability in {τ, R}

In this figure, gsbfτ (t) is depicted in red and sbfR(t) is depicted in blue. It is
further observed that the sbfR(t) increases at the same time as gsbfτ (t), that is, time
intervals in grey. In addition, there are other time intervals in which sbfR(t) increases
but gsbfτ (t) does not. They are highligthed in green.

As Figure 26 shows, the task set is schedulable in {τ,R} but there is CPU idle time.
In fact, there is as much idle time as time instants when sbfR(t) increases but gsbfτ (t)
does not.

So, the methodology to be followed to determine if a function sbfR(t) ensures the
schedulability of τ is the same as the case of msbfτ (t):

1. Calculate the gsbfτ (t) for task set, τ , and express it as set of intervals Ij =
[sj , ej ] where the function increases.

2. Express sbfR(t) as a set of intervals IR = [sR, eR] in which the function in-
creases.
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Figure 26: Chronogram execution of schedulability in {τ,R}

3. Check if Ij ⊆ IR, that is, sR ≤ sj ≤ ej ≤ eR,∀j, R.

In this section, a condition of schedulability has been proposed. In previous sec-
tions, two different schedulability algorithms have been presented (msbfτ (t) and gsbfτ (t))
and, now, we have suggested a way of checking the schedulability of any sequence of
slots by comparing to these functions.

It can be concluded that not all the sbfR(t) greater than msbfτ (t) or gsbfτ (t) will
ensure the schedulability of {τ,R} but, in the specific above-mentioned conditions, it
will.

6. Simulations

The main purpose of this section is to establish a relation between any sbfR(t) and
the msbfτ (t) or gsbfτ (t), to ensure the schedulability of τ in R. What seems certain
is that, if sbfR(t) is equal to or grows at the same time as msbfτ (t) or gsbfτ (t), τ will
be schedulable in R, as proven in previous sections.

Our first hypothesis consisted in the fact that any sbfR(t) function greater than
msbfτ (t) or gsbfτ (t) would guarantee the feasibility of τ in R. In Section 4, this the-
ory has been rejected. Moreover, in that section, we differentiated the three zones in
accordance with the position of sbfR(t) in relation to msbfτ (t) and gsbfτ (t) (Fig-
ure 13).

In this section, the percentage of schedulable task sets according to the zone where
sbfR(t) is located is calculated. To this end, we simulate two situations:

• For the task set defined in Table 7, we generate different random sequences of
slots, that is, sbfR(t), and we check the schedulability of the task set in R. The
sbfR(t) generated is totally random so that the function generated can be con-
tained in any of the zones mentioned before.

After 300000 random sets generated, the results are as follows:

– In cases where sbfR(t) < msbfτ (t), τ is never schedulable in R, as stated
in Theorem 5.

– In cases wheremsbfτ (t) ≤ sbfR(t) < gsbfτ (t), the percentage of task set
τ schedulable in R is 76.30%.
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– In cases where sbfR(t) > gsbfτ (t), the percentage of task set τ schedula-
ble in R is 72.45%.

On the basis of the results, we can deduce that although percentages are quite
similar, the greater the sbfR(t), the more probability that τ will be non-schedulable.
In other words, supplying more computation time than the time defined bymsbfτ (t)
or gsbfτ (t) does not imply that the task set is schedulable.

• We generate n task sets for each utilization factor Ut in [0.4, 0.9], with 4Ut =
0.1. With n = 300000 iterations, the results are as follows:

– In cases wheremsbfτ (t) ≤ sbfR(t) < gsbfτ (t), the percentage of task set
τ schedulable for each utilization factor is depicted in Figure 27.

Figure 27: % schedulable τ in msbfτ (t) ≤ sbfR(t) < gsbfτ (t)

– In cases where sbfR(t) > gsbfτ (t), the percentage of schedulable task set
τ for each utilization factor is depicted in Figure 28.

Figure 28: % schedulable τ in sbfR(t) > gsbfτ (t)

According to the results, we can deduce that the utilisation factor is independent
of the feasibility of the proposed method; that is, the fraction of time that the
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processor is busy does not contribute to a better or worse schedulability. And,
moreover, as shown in the previous situation, the longer the sbfR(t), the more
probability that τ will be non-schedulable (5% approximately).

7. Comparison of the minimum CPU supply function with other similar methods

As we stated in the introduction, there are no works related to the analysis of ar-
bitrary global CPU. Nevertheless, we can compare our methods with other works that
assume a periodic supply at this level. Specifically, [14] presents a schedulability anal-
ysis for a periodic supply (R=(θ, π)) at global level (Di = Pi ∀i) and EDF at local
level with the following condition:

∀0 < t < lcmτ dbfτ (t) ≤ sbfR(t)
In this paper, to find out wheter a specific periodic supply R sucessfully schedules

a set of tasks, the above equation must be simulated to obtain a solution space for θ and
π. This equation was solved for the following set of tasks: τ = (T1(7, 50), T2(9, 75)).
When π = 10, the minimum θ was 2.8.

We are going to obtain the minimum θ using our msbfτ (t). In the example, the
characteristic points are t1 = 50, t2 = 75, t3 = 100 and t4 = 150. At these points
the values of msbfτ (t) are: msbfτ (t1) = 7, msbfτ (t2) = 16, msbfτ (t3) = 23 and
msbfτ (t4) = 39.

We have to be sure that any periodic sbfR(t) with a period of 10 must be on top
of msbfτ (t) at the characteristic points. Therefore, at t1, 7 units of time have at least
been served. It is easy to see that to fulfill this condition, at t1 then:

θ =
msbfτ (t1)

t1
π

=
7
50
10

= 1.4.

Repeating this procedure for other scheduling points and choosing the maximum θ
of all, then θ = 2.6. This value is lower that the one calculated by Shin and Lee, which
means that their proposal is an approximation and not an exact calculation. In fact,
for θ = 2.5 the task set is not schedulable. Figure 29 shows the comparison between
msbfτ (t) and the periodic supplies with the minimum θ calculated by Shin and Lee
and by us.

8. Related work

In a partitioned architecture, partitions can be viewed as components that consist
of a real-time workload and a scheduling policy for the workload. This definition
coincides with a hierarchically organized compositional system. Different works in
compositional scheduling have been proposed for a variety of real-time task models
([15, 16, 13, 5]).

Hierarchical scheduling has been a topic of research interest in recent years. One
of the first works in this area is the one presented by Deng and Liu [17], based on a
two-level real-time scheduling framework. Kuo and Li [18] presented an exact schedu-
lability condition for this framework assuming fixed priority pre-emptive scheduling.

35



Figure 29: Comparison between two periodic supplies R=(2.6,10) and R=(2.8,10) and msbfτ (t) for τ =
(T1(7, 50), T2(9, 75))

Lipari and Baruah [19] presented a similar work with EDF. Saewong et al. [20] pro-
vided a response time analysis for fixed-priority hierarchical systems. This analysis
was pessimistic as shown by Davis and Burns in [21]. However, Davis and Burns
gave an exact response time calculation only for the partition with the highest priority.
Almeida and Pedreiras [22] improved the analysis by Saewong et al. but, again it was
not an exact analysis. In [23], Bril et al. show that the worst case response time of
a task is not necessarily assumed for the first job with the critical instant conditions
provided by Davis and Burns. They claim that the existing analysis could be improved
but they do not provide an alternative analysis. The exact response time was provided
by Balbastre et al. in [24]. Lipari and Bini [25] provide a kind of sensitivity analysis
of the global level for a two-level hierarchical system, providing a methodology for
calculating the domain parameters that makes the task set feasible.

Lorente and Palencia [26] presented a worst-case response time analysis for the
tasks in a two level hierarchical EDF systems. Zhang and Burns [27] propose an exact
schedulability analysis for the application tasks when the local scheduler is EDF.

9. Conclusions

This article considers the case of a two level hierarchical real-time system, where
local level tasks tasks are scheduled under EDF policy whereas the global level does
not follow a known scheduling policy and the only information is provided as a set of
CPU slots.

The first contribution is the calculation of CPU supply functions that ensure the
schedulability of task sets; specifically, two different functions are defined: firstly, a
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CPU supply which offers CPU when tasks are released (gsbf ) and, secondly, a CPU
supply which offers CPU as late as possible (msbf ), meeting the deadlines in both
situations and providing the minimum CPU.

This article also provides a schedulability analysis of a task set, relating any CPU
supply with the functions mentioned before. In other words, the proposed method can
be used to check if a set of time intervals provided by the SI can be accepted by the PD
or not.

Moreover, our model can also be used with any existing server in the global level
since it is a generalization of any scheduling in the global level. Although we initially
apply our results to static scheduling, further work will focus on providing on-line
algorithms to calculate msbfτ (t) in a specific window. This could be especially useful
in flexible environments, where even if the scheduling algorithm is known a priori,
jitter or latencies makes final slots execution difficult to predict.

Improvements in the msbfτ (t) and gsbfτ (t) calculation are also foreseen. The
proposed algorithm needs all the hyperperiod space to be exact. This value could be a
large number so an upper bound formsbfτ (t) and gsbfτ (t) might be obtained to avoid
studying the complete hyperperiod.

To conclude, we will also extend this study to consider fixed priorities in the local
level.
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