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Abstract 

Product development requires scheduling that considers the interdependence between activities. The 

definition of the interdependencies and duration of activities, communication times and the level of 

overlap between activities is needed for project scheduling. However, these parameters have epistemic 

uncertainties that can affect project scheduling. In this work, different global sensitivity analysis 

techniques were applied to identify the parameters that had the greatest effect on project scheduling. It 

was concluded that standardized regression coefficients as well as the Morris and Sobol’ methods 

were the most appropriate. It was also found that global sensitivity analysis can help to focus resources 

based on the definitions and control the uncertainty of key activities. Furthermore, it was concluded 

that control of the uncertainty of key activities reduces the uncertainty and duration of projects. 
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1. Introduction 

 

A profitable and effective product is the key to success in today’s ever-changing and competitive 

market. As a result, strong competition in several industries has forced manufacturing firms to develop 

innovative and higher quality profitable products at an increasingly rapid pace (Kirshnan et al., 1997). 

The scheduling and management of large and complex projects is a difficult commission that requires 

effective tools (Herroelen, 2005). The dependency structure matrix, or design structure matrix (DSM), 

has been shown to be a powerful tool for the management of complex projects because a) it can 

accurately represent the interdependence and / or relationships between different components of a 
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system; b) overcomes the size and complexity limitations of digraphs; c) it is easy to understant and 

able to handle the processes in their entirety; and d) the matrix format is suitable to program and 

calculate using computers (Chen and Lin, 2003). Chen et al. (2003) presented a project scheduling 

framework based on DSM to handle sequencing, monitoring, and control of a collaborative product 

development. Sosa et al. (2004) investigated how the organizational and system boundaries, design 

interface strength, indirect interactions, and system modularity impact the alignment of design 

interfaces and team interactions. They used DSM to study complex product architectures in terms of 

component interfaces and to build statistical models for proper hypothesis testing using DSM data. 

The use of parameter-based DSM as a process modeling and system analysis tool for building design 

in the architecture/engineering/construction industry was proposed by Pektaş and Pultar (2006). Tang 

et al. (2010) studied how to capture and trace the design knowledge through a single-domain and 

multi-domain DSM. They proposed a DSM-based design knowledge management system that allows 

for efficient knowledge capturing, searching, and tracing in product design. 

Project scheduling is an important element of project management. The procedures range from the 

traditional models of CPM and PERT to sophisticated optimization models (Węglarz et al., 2011), 

algorithms and heuristics based methods (Liang, 2009). Project scheduling research concentrates on 

the generation of a procedure that optimizes the scheduling objective, usually the project duration, and 

that should serve as a baseline schedule for executing the project (Herroelen and Leus, 2005). 

Research has been conducted for project scheduling using DSM where the interdependence of 

activities has been considered in the schedule as well, as DSM has been shown to be a powerful tool 

for the management of complex projects.  

Project scheduling has considerable uncertainty because project activity parameters are also subject to 

uncertainties (Dixit et al., 2014, Chtourou and Haouari, 2008). These uncertainties are usually 

epistemic (due to lack of knowledge) and not aleatory (inherent randomness of the system). Examples 

of epistemic uncertainties are activities that can take more or less time than originally estimated, such 

as material arriving behind schedule, unavailable resources, and incorrect estimation of activity 

overlap. There are some aleatory uncertainties, such as weather conditions or natural events that cause 
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delays. From the viewpoint of project management, little can be done to control aleatory uncertainties, 

but actions can be taken regarding epistemic uncertainties. In addition activity durations and overlap 

factors can have different values by allocating different monetary resources to its execution (Zamani, 

2013). However, what are the key uncertainties that require more control or study? 

Herroelen and Leus (2005) define five approaches for dealing with uncertainty in the scheduling 

environment: reactive scheduling, stochastic scheduling, scheduling under fuzziness, proactive 

scheduling, and sensitivity analysis. The first four approaches are related to uncertainty analysis, and 

therefore use different methods to represent and address uncertainty. Sensitivity analysis has recently 

emerged in the project scheduling environment, but only "what if ...?" type of questions have been 

addressed. There are several sensitivity analysis methods that need to be explored in the scheduling 

environment. 

The objective of this work is to assess global sensitivity analysis (GSA) methods for project 

management. The DSM-based project duration is used as an example. The focus of this study is the 

use of GSA to identify key input uncertainties for the reduction of uncertainty in the project duration. 

 

2. DSM-based project duration 

DSM has been used for project scheduling in the past. Browning (1998) used DSM to enable critical 

path calculations by defining the amount of effort or work as the duration of the activities. Wang and 

Lin (2009) developed an overlapping process model to analyze the impact of the process structure on 

the lead-time of a development project with multiple activities. A DSM was used to represent the 

complex interaction patterns between the development activities. A triangular distribution was used to 

represent the uncertainties in the activity duration and reworks. Srour et al. (2013) provided a method 

to automatically generate a fast-track design schedule without violating the dependency information. 

They also extended the basic DSM method to construction projects. Maheswari and Varghese (2005) 

developed methods for the estimation of project durations including the communication time and 

natural overlaps between activities. The dependency between the activity duration, communication 

time, and overlap time factors were used to estimate the project duration. Uncertainty was not 
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considered in the work of Maheswari and Varghese, which motivated the development of different 

studies to represent uncertainty in the input parameters. Gálvez et al. (2012) studied the effect of the 

uncertainty associated with task programming using DSM and grey theory, or interval arithmetic. Shi 

and Blomquist (2012) extended the DSM method proposed by Maheswari and Varghese using fuzzy 

numbers.  

The methods of Gálvez et al. (2012) and Shi and Blomquist (2012) allow for representation of the 

uncertainty in the input parameters and calculation of the uncertainty in the project duration. One of 

the drawbacks of these methods is the need to characterize all the input factors, which are typically 

defined through an expert review process. Definition of the distribution that characterizes the 

epistemic uncertainty in the duration of activities and the time overlap factors can be one of the most 

important parts of uncertainty analysis because these distributions can determine the uncertainty in the 

project duration. These distributions must be defined through an expert review process, and their 

development can constitute a major analysis cost. The process of extracting expert knowledge about 

an unknown quantity or quantities and formulating that information as a probability distribution is 

known as elicitation (O’Hagan et al., 2006; Meyer and Booker, 2001). The scope of elicitation can 

vary widely depending on the purpose of the analysis, size of the analysis, and resources available to 

perform the analysis. One possible analysis strategy is to perform GSA with crude definitions of the 

distribution functions for the input factors (i.e., activity duration and time overlap factors) to identify 

key input factors and to understand the behavior of the project duration uncertainty. Then, resources 

can be concentrated were they are needed.  

As previously mentioned, the objective of this work is to survey GSA methods for project 

management. An example using both the traditional method (sequential: an activity starts once its 

predecessors are completed) and phased method (some amount of overlap occurs between pairs of 

activities) is used to illustrate and assess the GSA methods. The example is given below. 

The example consists of five activities from A to E. The DSM representation of the example is given in 

Figure 1. The DSM is a square matrix containing a list of activities in the rows and columns in the same 

order. The order of activities in the rows and columns in the matrix indicates the sequence of execution. 
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Values on the diagonal are the mean duration of the activities (days). For example, Figure 1 shows that 

the mean duration of activity A is 2 days. The marks in the off-diagonal cells indicate that these 

activities are information predecessors, with activity inputs in its row and activity outputs in its column. 

For instance, activity B needs information from activity A and provides information to activity D.  

In Figure 1, the traditional, sequential method of project scheduling is shown. In this method, an 

activity starts once its predecessors have been completed. Based on the mean duration of the activities, 

the conventional project duration was estimated to be 14 days (Figure 1). Note that activity C has no 

effect on the project duration, and all other activities are shown in the order of execution with no time 

between activities. The conventional project duration is estimated using the following equations: 

 

                                      (1) 

                                             (2) 

                                                                (3) 

  

Where n is the number of activities, i denotes all the immediate predecessors of activity j, j is the 

current activity chosen in the order identified by the DSM, ES means early start, EF early finish, and 

    denotes the diagonal values of the DSM (duration of the activity). 

The values in Figure 1 correspond to the expected values of the activity durations. Two situations were 

analyzed. First, a variation of ± 1 day in the activity durations represented by a uniform distribution (all 

the activity durations were equally likely) was considered. The values for activities A to E were U(1,3), 

U(3,5), U(4,6), U(4,6), and U(2,4), respectively. U(x,y) represents a uniform distribution between the 

values x and y. This study will henceforth be called Case 1. For Case 2, a variation of ± 50%, also 

represented by a uniform distribution, was considered. This made the activity duration uncertainties 

proportional to the nominal values. The values for activities A to E in Case 2 were U(1,3), U(2,6), 

U(2.5,7.5), U(2.5,7.5), and U(1.5,4.5), respectively. 

In Figure 2, the fast-track, overlap or phased method for project scheduling is shown. In this method, 

some overlap occurs between pairs of activities. Figure 2 shows the same example as Figure 1 with 
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overlap between activities being allowed. The overlap is represented in the DSM in the form of ratios 

called time factors, which were introduced by Maheswari and Varghese (2005). Two times factors were 

used, the time factor for receiving the information for the successive activity (represented by matrix 

   , given by the off-diagonal cell in Figure 2b), and the time factor for sending information from the 

predecessor activity (represented by matrix    , given by the off-diagonal cell in Figure 2c). For 

example, 0.8 in     implies that A can send the required information through B after 80% of its 

duration has passed; 0.15 in     implies that to continue, it is essential that B receive information from 

A after 15% of its duration has passed, instead of at the beginning of the task. Values of 1 and 0 in     

and     indicate that overlap is not possible/allowed between the activities. Based on the mean values of 

the activity durations and factor time, the natural overlap project duration was estimated to be 10 days 

(Figure 2a).  

The natural overlap project duration is estimated with the following equations, 

 

                                                             (4) 

                                      (5) 

                                                                   (6) 

 

Note that     and     are the diagonal values of the DSM (duration of activity). 

The nominal values are shown in Figure 2. The uncertainty is applied as follows. 1) The same 

uncertainty as in case 1 was considered for the duration of the activity. The values for the durations of 

activities A to E were U(1,3), U(3,5), U(4,6), U(4,6), and U(2,4), respectively. 2) A common uniform 

distribution, U(0.65, 0.95), was used for the    ,    , and     time factors. Similarly, a common 

uniform distribution, U(0.05,0.25), was used for the    ,    , and     time factors. 3) The time factors 

   ,    ,    , and     did not have uncertainties, and therefore had the values given in Figure 2. 4) 

Values of 1 for factors    ,    , and 0 for    , and     denoted that activity C did not overlap 

activities A and E. 
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Communication times between activities are easily incorporated by modifying equation (2) by 

                     in equations 1 to 3.     is the communication time between activities j and 

i. This was not included here because the communication time can be considered an activity between 

dependent activities. 

 

3. Assessment of global sensitivity analysis methods 

Sensitivity analysis refers to the determination of the contribution of individual uncertainty inputs to 

the uncertainty in the outputs (Helton et al. 2006). The first approach to sensitivity analysis is known 

as the local approach, where the effect of small input perturbations on the model is considered. Local 

sensitivity analysis has several limitations such as linearity and normality assumptions, as well as local 

variations. In contrast to local sensitivity analysis, global sensitivity analysis (GSA) considers the 

entire range of input variations. According to Saltelli et al. (2008), the GSA can be defined as “the 

study of how uncertainty in the output of a model (numerical or otherwise) can be apportioned to 

different sources of uncertainty in the model input”. These techniques have being widely used in 

different engineering areas to determine the most significant variables in a model. The general 

objectives of GSA are the following: a) the identification of significant and insignificant factors and 

possibly a reduction of the number of design variables in the optimization problem, and b) the 

improvement of the understanding of the model’s behavior (highlighting interactions among factors, 

finding combinations of factors that result in high or low values for the model output, etc.). GSA 

corresponds to the evaluation of an output model when all the model factors are simultaneously 

evaluated, and is generally resolved by numerical methods. This methodology has the advantage of 

simultaneously assessing all factors. However, it requires a large amount of data for the model to be 

evaluated, and the mathematical techniques are more complex.  

In this section several GSA methods are applied to the examples described in the previous section. Only 

a brief description given for each method; readers who are interested in a more thorough description 

can see the following references: Saltelli et al. (2008, 2009); Iooss and Lemaȋtre (2015); Helton et al. 

(2006); Ionescu-Bujor and Cacuci (2004); Cacuci and Ionescu-Bujor (2004); and Frey and Patil (2002). 
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The software R (R Core Team, 2013) and sensitivity package (Pujol et al., 2014), which is a free 

software environment for statistical computing and graphics, were used for all the calculations.  

 

3.1.  Scatterplot  

The scatterplots provide a visualization of the output factor (project duration) versus the input factors 

(activity durations and overlap time factors) and can reveal nonlinear or other unexpected relationships 

between the outputs and inputs. Scatterplots can be used as a starting point for complex analyses and 

can help with the selection of the sensitivity analysis strategy. They can also be used to identify linear 

relationships, monotonic relations and the existence of thresholds among other potential trends. This is 

shown in Figure 3 for two input factors in cases 1 and 3. In Figure 3, the polynomial smoother is 

plotted for each cloud of points to clearly identify the mean trend of the project duration versus each 

input factor. Figures 3a and 3b show the scatterplot for the B and C activity durations, respectively, for 

case 1. It is clear that the project duration increases as the duration of activity B increases, whereas 

there is no dependency on the project duration with duration of activity C. This is to be expected 

because the duration of activity C has no effect on the project duration (see Figure 1). Figures 3c and 

3d show the scatterplot for the     and     time factors, respectively, for case 3. Both time factors 

affect the project duration but in the opposite manner. The effect of both time factors is small because 

the slopes of the smoothed curves are small. Even if scatterplots can be useful, they do not capture 

some of the interaction effects between inputs and are difficult to analyze for complex systems with 

many variables, which can be the case in project scheduling. 

 

3.2. Partial Correlation Coefficients  

In this section, correlation coefficients will be introduced. They are based on the Pearson correlation 

coefficient, which is defined as the covariance of the variables divided by the product of their standard 

deviations.  

 

      
                   
 
   

             
  

              
  

   

              (7) 
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Where         
 
      and       

 
      are the sample means. Here    represents any input factor 

(activity duration, overlap time factor) and   the output factor (project duration). The Pearson 

correlation is a measure of the strength and direction of the linear relationship between two variables. 

The values of this coefficient are between -1 and 1. A positive value means that both   and    are 

decreasing or increasing together, and a negative value means that the input and output factors tend to 

move in opposite directions. If   and    are independent, the coefficient equals 0. 

The Partial Correlation Coefficient (PCC) gives the strength and direction of the linear correlation 

between   and a given input    in a case where the influence of the remaining variables is eliminated. 

In other words, PCC provides a measure of variable importance that tends to exclude the effects of 

other variables. More precisely, PCC is calculated using the Pearson correlation coefficient between 

     and       , where    and     represent linear regression models (               and 

                ). 

As a rule of thumb, the following guidelines regarding the strength of relationship are often useful 

(though many experts would somewhat disagree on the choice of boundaries). PCC values can be 

classified by their magnitude as strong (1.0 to 6.0, or -1.0 to -6.0), moderate (0.6 to 0.3, or -0.6 to -

0.3), weak (0.3 to 0.1, or -0.3 to -0.1), or very weak (0.1 to 0, or -0.1 to 0) correlations.  

Table 1 shows the PCC for the example with a sample size of 200 runs. For case 1, there is a perfect 

linear correlation between the duration of activities A, B, D and E and the project duration (PCC equal 

to 1). On the other hand, activity C and the project duration are uncorrelated (PCC near 0). This was 

expected because all activities have the same level of uncertainty and activity C does not affect the 

duration of the project. Values of PCC equal to 1 indicate that the model (equations 1-3) behaves 

linearly, i.e., the early start of activity E is always limited by the early finish of activity D rather than 

the early finish of C. As such, the maximization function in equation 2 always selects the early finish 

of activity D. The behavior of case 2, where the uncertainty are proportional to the activity duration, is 

similar, but there is no perfect linear correlation between the duration of activities A, B, D and E and 

the project duration. This is because the uncertainties in this case are larger than in case 1. For case 3, 
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there is not a strong linear correlation between the input factors (duration of activities, overlap time 

factor) and the project duration. This is also expected because the model (equations 4 to 6) is 

nonlinear. The duration of activities A, C, E and time factor     have PCC values over 0.6. Time 

factors    ,    , and     have negative PCC values which means that these time factors and project 

duration are inversely related. 

The use of transformations may also provide information about input and output factor relations. The 

most frequently used transformations are ranks. In this transformation the smallest sample value is 

transformed into 1, the second smallest into 2 and so on up to the largest value. The strongest reason to 

use the rank transformation in sensitivity analysis is that this transformation converts any monotonic 

relation between two variables into a linear one. After the sample (  , ) is transformed into the rank 

sample (   ,  ), the same procedure is applied to this new sample. This yields the Partial Rank 

Correlation Coefficient (PRCC) (Ioos and Lemaître, 2015). Table 1 also gives the PRCC values for the 

examples. The results are similar to the PCC results. 

 

3.3. Standardized Regression Coefficients 

In this section, standardized regression coefficients (SRC) will be introduced. SRC are calculated by 

replacing the variables with standardized variables, which is done by subtracting the sample mean 

from the variable and dividing the result by its sample standard deviation. They can be calculated 

using the linear regression coefficient (  ) associated to the variable   : 

 

       
  

 
                    (8) 

 

where    and   are the sample standard deviations for the input variable    and output variable  . The 

SRC provides a measure of variable importance. A variable is more important or its uncertainty has a 

greater effect on the uncertainty in the project duration if its absolute value is greater than the absolute 

value of another variable. Because the variables are standardized, in our examples, SRC can be more 

useful for comparing the effects of overlap time factors because these variables are measured in 
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different units of measurement. Similar to the PCC and PRCC, the SRC can be calculated for the rank 

variables, and in this case the index is called the standardized rank regression coefficients (SRRC). 

Table 2 shows the SRC and the SRRC for our examples and for a sample data of size 200. For case 1, 

duration of activities A, B, D and E have similar values of SRC and SRRC because they all affect in 

the same extent to the uncertainty of project duration. This is because the uncertainties of these 

activities are all equal. The activity duration uncertainty of activity C does not affect the uncertainty of 

project duration. For case 2, the magnitude of the activities effect on the project duration from highest 

to lowest was D > B > E > A because the uncertainties in the duration of these activities followed the 

same order. The uncertainty in the duration of activity C was marginal. For case 3, the behavior was 

different because activities B and D overlapped the other activities. Furthermore, activity C did not 

overlap with other activities. As such, the activities affected the project duration in the following 

order, from highest to lowest, A > E > C > B > D. This interesting result occurred because the overlap 

can affect the scheduling and importance of each activity duration. The overlap time factors that more 

affect the project duration are    ,     and    . These results can be very useful, as will be shown 

later. 

 

3.4. Morris method 

The Morris (1991) method is associated with experimental design methods. The motivation of Morris 

method comes from models that are complicated enough for classical experimental design and/or they 

have a moderate-to-large number of input factors. This can be the case in project scheduling, where 

uncertainties in activity durations and time factors can lead to models with a large number of input 

factors. This method designs computational experiments to determine which input factors have 

important effects on an output factor. The experimental plans are composed of individually 

randomized one-factor-at-a-time designs, and data analysis is based on the resulting sample of 

observed elementary effects. The Morris method calculates the elementary effect of the j-th input 

factor at the i-th repetition as: 

 



12 

 
 

  
  

    
        

    
        

      
       

      
  

 
       (9) 

 

where      is the output factor and   
      

  are the input factors being studied. The method 

calculates the mean of the value of the elementary effects (               by assessing the overall 

influence of the factor    on      (the larger    is, the more the j-th input contributes to the dispersion 

of the output), and standard deviation of the elementary effects (  ), which is a measure of non-linear 

and/or interaction effects of the j-th input. In this work, the absolute value of   was used, as was 

proposed by Campolongo et al. (2007),   
 .  

Figure 4 shows graphs of    versus   
   which makes it possible to distinguish between three groups of 

input factors: a) input factors that are influential without non-linear and/or interaction effects (high 

values of   
  and low values of   ); b) input factors that are influential with non-linear and/or 

interaction effects (high values of   
  and high values of   ); and c) input factors that have no effect 

(low values of   
 ). 

The Morris results confirm the results obtained by the SRC method. In case 1, the duration of 

activities A, B, D and E are influential (high value of   
 ) and have equals value of   

  because they all 

affect the uncertainty of project duration to the same extent. The duration of activity C had no effect. 

In addition, the project duration was linearly dependent on the duration of activities A, B, D and E 

(because    values are very low in comparison with the values of   
 ). For case 2, the activities affected 

the project duration in the following order, from highest to lowest, D > B > E > A, and the effect of the 

uncertainty in the duration of activity C was marginal. The influence of activities B and D had non-

linear and/or interaction effects (because    values are not very low in comparison with the values of 

  
 ). In case 3, the behavior was also similar to the results obtained using the SRC method; the only 

difference was that for SRC    >    >      and with the Morris method    >   >    . It can be 

observed that almost all the input factors had non-linear and/or interaction effects.  
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The number of model calls (n) depends on the number of input factors (p) and repetitions (r),   

      . In example 15, repetitions were used, and as a result, the numbers of model calls were 90, 

90 and 180 for cases 1, 2 and 3, respectively. 

 

3.5. Sobol’ Method 

In the Sobol’ (1993) method, the variance of the model output can be decomposed into terms of 

increasing dimension, called partial variances, which represent the contribution of the inputs (i.e., 

single inputs, pairs of inputs, etc.) to the overall uncertainty in the model output. Statistical estimators 

of partial variances are available to quantify the sensitivities of all the inputs and groups of inputs 

through multi-dimensional integrals. The calculation of all the partial variances of input groups has a 

high computation cost, which is why Homma and Saltelli (1996) introduced the concept of a total 

sensitivity index. The total sensitivity index indicates the overall effect of a given input by considering 

all the possible interactions of the respective input with all the other inputs. In this paper, the Sobol’ 

method and the improved formulas of Jansen (1999) and Saltelli et al. (2010) for the Sobol´ method 

were applied.  

The Sobol’-Jansen method calculates two indices, the first order effects sensitivity index,   , 

corresponding to a single factor (  ) and the total sensitivity indices   
 . The interpretation of the 

sensitivity indices is straightforward; the larger the sensitivity index the more influential the 

corresponding input factor or set of input factors. The first order sensitivity index measures only the 

main effect contribution of each input factor on the output variance. It does not account for the 

interactions between factors. The first-order sensitivity index (  ) is important when the objective is to 

determine the most important input uncertainties. The total sensitivity index (  
 ) is important when 

the objective is to reduce the uncertainty in the output model (Adeyinka, 2007). If the first-order 

sensitivity index (  ) of the   input factor is very small, then the uncertainty in    does not affect the 

uncertainty in the output model  . Therefore,    is non-influential, or unimportant. This does not say 

anything about input interactions or high-order sensitivity indices such as      or       . If the total 

sensitivity index (  
 ) is also small, then apart from being unimportant,    does not interact with other 
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factors (high-order effects of    are negligible). The implication of a small    and   
 , is that the 

uncertainty in   has no affect on the uncertainty in  . As such, in subsequent analyses,    can be fixed 

to its nominal value (mean or median) and further research, measurement, analysis and data gathering 

can be directed towards other factors. Conversely, regardless of the magnitude of   
 , a large value of 

the first-order sensitivity index,   , implies that    is influential. The arithmetic difference between   
  

and    indicates the magnitude of the interactions between    and other factors. 

The Sobol’-Jansen method allows for the estimation of both first-order and total indices at the same 

time, at a total cost of (n + 2) * s model evaluations, where n is the number of input factors and s is the 

sample size.  

The Sobol’-Jansen method was applied to the example for conventional project duration with five 

input factors (size of 50,000) with Monte Carlo sampling and had a cost of 350,000 model calls. For 

the example for natural overlap project duration, it had a cost of 6,500,000 model calls. 

The results given in Figure 5 are similar to the SRC in the sense that they delivered practically the 

same ranking of input factors, but additional information regarding interactions is also given. For cases 

1 and 2, the interaction between input factors was very low. For case 3 there was little interaction.   

 

3.6 Discussion 

Based on the results given for the methods SRC, Morris and Sobol’ for case 1, the uncertainties in the 

duration of activities A, B, D and E affect the uncertainty in project duration. The uncertainties in the 

duration of activity C does not affect the uncertainty in project duration. To prove this result, three 

numerical experiments were performed. In the first experiment (E1), it was considered that all 

durations in the activities had uncertainty, and Monte Carlo simulation (10,000 model calls) was used 

to estimate the maximum, mean and minimum value of the project duration, 17.7, 14.0 and 10.5, 

respectively. In the second experiment (E2), the duration of activity C was considered to have no 

uncertainty, and the durations of the other activities had uncertainty. Monte Carlo simulation was used 

to estimate the maximum, mean and minimum project duration. The results are practically the same 

(17.9, 14.0 and 10.3) as those in E1, indicating that the removal of uncertainty in the duration of 
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activity C did not reduce the uncertainty in the duration of the project. In the third experiment (E3), the 

duration of activity C had uncertainty, and the durations of the other activities had no uncertainty. 

Monte Carlo simulation was used again, and the results show that the project duration had no 

uncertainty (maximum, mean and minimum values are equal to 14). This indicates that the elimination 

of uncertainties in the duration of the activities A, B, D and E removes uncertainty in the duration of 

the project. These results are summarized in Figure 6. 

Similar numerical experiments were realized for case 2 using Monte Carlo simulation with 10,000 

model calls. For case 2, the uncertainties in the duration of activities B and D are the ones that most 

affected the uncertainty in the project duration. The uncertainties in the duration of activity C did not 

affect the uncertainty in the project duration. To prove this result, three numerical experiments were 

performed. In the first experiment (E1), all activity durations had uncertainty. In the second 

experiment (E2), the uncertainty in the duration of activity C was removed, and in the third experiment 

(E3), the uncertainties in the duration of activities B and D were removed. The results (maximum, 

mean and minimum values) for the experiments were E1 (20.4, 14.0, 7.7), E2 (20.4, 14.0, 7.6) and E3 

(16.4, 14.0, 11.6), which confirms that the elimination of uncertainties in the duration of the activities 

B and D reduces the uncertainty in the duration of the project. These results are also summarized in 

Figure 6. 

Finally, numerical experiments were performed for case 3. For case 3, the uncertainties in the duration 

of activities A and E most affected the uncertainty in the project duration. The uncertainties in the 

duration of activities B and D are the ones least affected the uncertainty in the project duration. To 

prove this result, three numerical experiments were performed. In the first experiment (E1), all activity 

durations had uncertainty. In the second experiment (E2), the uncertainty in the duration of activities B 

and D were removed, and in the third experiment (E3), the uncertainties in the duration of activities A 

and E were removed. The results (maximum, mean and minimum values) for the experiments were E1 

(14.6, 10.4, 7.4), E2 (13.4, 10.4, 7.2) and E3 (13.3, 10.4, 9.0). These results are not as easily 

interpreted as in the previous cases. This is because in case 3 there were 11 input factors, and 
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comparisons should be made considering more input factors (e.g., setting the 5 input factors that most 

affect the project duration versus the 5 input factors that least affect the project duration). 

These results confirm that the SRC, Morris and Sobol’ methods can be used to identify input factors 

that affect the uncertainty in the project duration. The final decision on where to focus efforts to 

reduce uncertainty or manipulate the input variables (e.g. by hiring extra amounts of the current types 

of resources or some different types of sophisticated resources) depends on these results and other 

aspects, such as the associated cost, availability of resources and feasibility of reducing the uncertainty 

in the activity duration. 

 

4. Case study 

This section presents the application of the SRC and Sobol´-Jansen methods of GSA to a case study 

presented by Maheswari and Varghese (2005) with the uncertainties given by Gálvez (2015). This 

case study consists of 10 tasks (A through J), as shown in Table 3. Information is also provided about 

the previous tasks and uniform distributions. Table 4 presents the uniform distributions for the 

elements of the matrices B and C.  

There are a total of 40 input factors, and identifying the input factors that influence the uncertainty in 

the project duration most is not an easy task. The results of applying the SRC and Sobol'-Jansen 

methods are shown in Table 5. Only the total Sobol´-Jansen indices are shown because the first order 

indices are very similar to the total indices (i.e., the interaction between input factors is very small). 

The results delivered by SRC and Sobol'-Jansen are virtually identical. The last column of table 5 

includes a ranking from highest to lowest according to the results of the SRC. It can be seen that this 

ranking is also valid for the total Sobol '-Jansen index. 

The first 10 input factors that affect the project duration are the following:    >    >    >   > 

       >    >   >    >   , where     represents the duration of activity  . The last 10 input 

factors that affect the project duration are the following:    >    >    >   >        >    >   > 

   >   . To verify the results, Monte Carlo simulations were performed as follows. In numerical E 1, 

all input factors were considered to have the uncertainties given in tables 3 and 4. In numerical E 2, 
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the first 10 input factors affecting the project duration were set to their mean values, and the other 

input factors still had uncertainty. In numerical E 3 the last 10 input factors affecting the project 

duration were set to their mean values, and the other input factors remained uncertain. The results 

obtained in E 1 indicate that the duration of the project takes a mean of 32.6 days with maximum and 

minimum values of 35.2 and 30.2, respectively (i.e., an uncertainty of 5). By fixing the input factors 

that least affect the duration of the project, as in E 3, the mean project duration remained 32.6 and the 

maximum and minimum durations were 35.1 and 30.2, respectively. However, by fixing the input 

factors that most affect the project duration, as in E 2, the uncertainty was reduced by 62%. The mean, 

maximum, and minimum values obtained in experiment 2 were 32.6, 33.1 and 32.2, respectively. 

The identification of input factors that most affect the uncertainty in the project duration can also be 

used to reduce the project duration by setting the input factors to convenient values (e.g., reducing the 

duration of activities). If the first 10 input factors that affect the project duration are set to the most 

convenient value (the lowest value for a positive SRC or highest value for a negative SRC), it was 

found that the mean project duration was 29.2, a reduction of 10%. However, if the last 10 input 

factors were fixed at convenient values, the mean project duration is 32.6 (i.e., no change). 

 

5. Conclusion and final comments 

Based on the studies conducted on the effect of input factors (duration of activities and overlap time 

factors), the following conclusions can be made: 

 GSA can be used to identify input factors that affect the uncertainty of the duration of 

projects. 

 The reduction in the uncertainty of input factors that affect the uncertainty of the duration of 

projects reduces the uncertainty in project duration. 

 The identification of input factors that most affect the uncertainty of the project duration can 

also be used to reduce the project duration by setting the input factors to convenient values. 

 PCC allows for the identification of the strength and direction of the linear correlations 

between the project duration and given input factors. 
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 SRC, Morris, and Sobol’ methods allow for the sorting of the input factors that most affect the 

uncertainty of the project duration. However, the Sobol’ method has a higher computational 

cost and is more difficult to implement. 

 SRC also allows for identification of the direction of the correlation between the project 

duration and given input factors. Only the     time factors had opposite directions to the 

project duration. 

 Based on the results of the Sobol’ method, it can be concluded that the interaction between 

input factors was insignificant. 

 The Morris method allows for identification of non-linear and interaction effects, but based in 

the results of the Sobol' method, the    index of Morris gives more information regarding the 

non-linear effects. Additionally, if the   Morris index is used (not the absolute value,    , the 

Morris method identifies the direction of the effect of the input factor to the project duration. 

 The introduction of overlap time factors can change the effect of the uncertainty of the 

duration of an activity. 

If GSA is used a more robust project scheduling is expected because not only the mean values of the 

input variables are used, but also the variance of these variables. 
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Table 1. Partial correlation coefficients and partial rank correlation coefficients for the example. 

 
PCC PRCC 

 
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

A 1.000 0.974 0.869 0.959 0.852 0.849 

B 1.000 0.993 0.562 0.957 0.960 0.502 

C 0.035 0.186 0.641 0.066 0.146 0.574 

D 1.000 0.996 0.577 0.955 0.976 0.469 

E 1.000 0.990 0.873 0.961 0.942 0.828 

    
  

0.278 
  

0.225 

    
  

0.661 
  

0.589 

    
  

0.566 
  

0.476 

    
  

-0.507 
  

-0.448 

    
  

-0.483 
  

-0.402 

    
  

-0.324 
  

-0.251 
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Table 2. Standardized regression coefficients and standardized rank regression coefficients for the 

example. 

 
SRC SRRC 

 
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

A 0.531 0.291 0.507 0.516 0.278 0.503 

B 0.499 0.540 0.213 0.491 0.530 0.213 

C 0.000 0.024 0.266 -0.015 0.010 0.273 

D 0.542 0.709 0.172 0.516 0.709 0.157 

E 0.568 0.437 0.530 0.569 0.398 0.514 

    
  

0.077 
  

0.072 

    
  

0.177 
  

0.168 

    
  

0.272 
  

0.260 

    
  

-0.111 
  

-0.106 

    
  

-0.124 
  

-0.123 

    
  

-0.045 
  

-0.064 
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Table 3: List of tasks with the uniform distribution in the duration (   ), as given by Gálvez et al. 

(2015). 

Task  

Identification 

Previous 

Information 

Duration, 

U(min,max) 

A - U(5.7,6.1) 

B D U(7.3,9.1) 

C A U(6.2,7.5) 

D A, F U(3.8,4.0) 

E B U(8.3,9.4) 

F A, C U(0.9,1.0) 

G F, J U(2.0,2.1) 

H I U(9.4,10.7) 

I D, G, E U(4.5,5.4) 

J F, B U(2.9,3.0) 
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Table 4: Uniform distribution of time factors Bji and time factors Cji. (Gálvez et al., 2015) 

j i 

Time 

Factors     

Time 

Factors      

U(min,max) U(min,max) 
C A U(0.79,0.80) U(0.10,0.11) 
F A U(0.99,1.00) U(0.00,0.05) 
F C U(0.57,0.60) U(0.30,0.32) 
D A U(0.79,0.80) U(0.09,0.10) 
D F U(0.67,0.70) U(0.19,0.21) 
B D U(0.87,0.90) U(0.35,0.40) 
J F U(0.89,0.90) U(0.18,0.21) 
J B U(0.92,1.00) U(0.00,0.05) 
G F U(0.46,0.50) U(0.46,0.50) 
G J U(0.96,1.00) U(0.30,0.32) 
E B U(0.83,0.90) U(0.10,0.11) 
I D U(0.56,0.60) U0.18,0.21) 
I G U(0.79,0.80) U(0.49,0.63) 
I E U(0.96,1.00) U(0.00,0.05) 
H I U(0.63,1.00) U(0.38,0.43) 
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Table 5. SRC and Sobol’-Jansen results for the case study. 

Input factor SRC 
Sobol'-
Jansen 

Ranking 

D
u

ra
ti

o
n

 o
f 

A
ct

iv
it

ie
s 

A 0.1115 0.0131 11 
C 0.2135 0.0517 6 
F 0.0113 0.0002 21 
D 0.0396 0.0024 14 
B 0.3210 0.1015 3 
J 0.0013 0.0000 35 
G -0.0046 0.0000 25 
E 0.3371 0.1213 2 
I 0.2489 0.0658 5 

H 0.2816 0.0783 4 

Ti
m

e 
fa

ct
o

r 
 
  

 

CA 0.0368 0.0018 15 
FA -0.0011 0.0000 36 
FC 0.0782 0.0056 13 

DA 0.0030 0.0000 30 
DF 0.0118 0.0001 20 
BD 0.0366 0.0018 16 
JF 0.0046 0.0000 24 
JB 0.0031 0.0000 28 
GF -0.0006 0.0000 38 
GJ -0.0028 0.0000 32 
EB 0.1810 0.0432 7 

ID 0.0028 0.0000 33 
IG 0.0030 0.0000 29 
IE 0.1281 0.0166 10 
HI 0.6606 0.4398 1 

Ti
m

e 
fa

ct
o

r 
  

 
 

CA -0.0300 0.0006 18 

FA 0.0036 0.0000 27 
FC -0.0086 0.0000 22 
DA 0.0058 0.0000 23 
DF -0.0349 0.0008 17 
BD -0.1389 0.0224 9 
JF -0.0008 0.0000 37 
JB 0.0015 0.0000 34 

GF 0.0001 0.0000 40 
GJ 0.0005 0.0000 39 
EB -0.0296 0.0010 19 
ID -0.0036 0.0000 26 
IG -0.0030 0.0000 31 
IE -0.0870 0.0081 12 

 
HI -0.1746 0.0332 8 
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  Figure 1.  DSM showing the mean values of duration of activities (matrix      and conventional 

scheduling. 
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Figure 2. DSM showing the mean values of duration of activities and time factor of transfer of 

information between activities, and overlap scheduling. 

 

 

 

 

 

 

 

 

 

 
a) Overlap scheduling 

 A B C D E   A B C D E 

A 2      A 2     

B 0.8 4     B 0.15 4    

C 1.0  5    C 0  5   

D  0.8  5   D  0.15  5  

E   1.0 0.8 3  E   0 0.15 3 

b) Mean time factor of processor activities 

(     
 

c) Mean time factor of receiving information 

(   ) 
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Figure 3. Example of scatterplots and polynomial smoother curves: a) duration of activity B for case 1; 

b) duration of activity C for case 1; c) time factor     for case 3; and d) time factor     for case 3. 
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Figure 4. Results of Morris method for a) case 1, b) case 2, and c) case 3. 

 

  

 

 

C 

D 
A, E 

B 

 

C 

D 

A 

B 

E 

 

C 

D 

A 

B 

E 

BBA 

BDB BED 

CBA 
CDB 

CED 



5 

 
 

 
a) 

 
b) 

 
c) 

Figure 5. Results of Sobol’ method for a) case 1, b) case 2, and c) case 3. 
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Figure 6. Numerical experiments using Monte Carlo simulation with 10,000 model calls. 
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