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Abstract
The amounts of ancient documents transcribed by means of HTR tech-
nology have been rising dramatically over the last years. Consequently,
the development and enhancement of HTR methods and algorithms have
been rising as well. However, Layout Analysis remains a bottleneck in
the development and generalization of HTR technology. In this work we
present a new Interactive-Probabilistic method that incorporates the user
feedback in the Layout Analysis process, in order to provide not only a
very accurate layout, but an interactive framework in which user feedback
is used to help the user to fix any error.

Resumen
La cantidad de documentos antiguos transcritos por medio de la tecnología
HTR se ha incrementado drásticamente en los últimos años. En conse-
cuencia, el desarrollo y la mejora de los métodos y algoritmos de HTR
también han aumentado. Sin embargo, Layout Analysis sigue siendo un
cuello de botella en el desarrollo y la generalización de la tecnología de
HTR. En este trabajo se presenta un nuevo método Interactivo-Probabilístico
que incorpora la realimentación del usuario en el proceso de Layout Anal-
ysis, con el fin de proporcionar, no sólo un diseño muy preciso, sino un
marco interactivo en el que se utiliza la realimentación de los usuarios
para ayudar al usuario a corregir cualquier error.

Resum
La quantitat de documents antics transcrits per mitjà de la tecnologia HTR
s’ha incrementat dràsticament als últims anys. Açò ha provocat que el de-
senvolupament i la millora dels mètodes i algoritmes d’HTR hagen aug-
mentat també. Però el Layout Analysis continua sent el coll d’ampolla del
desenvolupament i la generalització de la tecnologia HTR. Aquest treball
presenta un nou mètode Interactiu-Probabilístic que incorpora la retroali-
mentació de l’usuari al procés de Layout Analysis amb la finalitat de pro-
porcionar no només un disseny molt precís, sinó un marc interactiu al que
s’utilitza la realimentació dels usuaris per a ajudar a l’usuari a corregir
qualsevol error.
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Chapter 1. Introduction

1.1 Introduction

Handwritten Text Recognition can be defined as the problem of finding
the most likely word sequence for a given handwritten sequence image
[13]. Under this definition, the presence of an input image is needed, but
this image should contain only a handwritten sequence; this meas that
only one "line" of handwritten text is processed at once. Now, since main
goal of HTR systems is to translate not just a single line, but the complete
page or even the complete book, a previous system is needed in order to
extract those lines from the whole page and, in an upper level, to extract
the different zones of the page (paragraph, marginal notes, illustrations,
page number, etc.). Notice that, this is a very important step of the HTR
process; for example, if we develop a system to recognize text in an im-
age, but we provide an illustration without text, the results of that system
are expected to be erroneous. In the best case system is capable of ignore
that kind of inputs, but we waste time and computing resources on it. In
addition, knowledge of the type of zone is very useful to provide some
context to the text in the zone, and since each zone can be semantically
different, each zone can be processed differently.

Document Layout analysis (DLA) is the process of identifying and
categorizing the regions of interest in an image of a document. Commonly
this process is divided in two sub problems [6]: detection and labeling of
the different zones in the image (body, illustrations, marginalia) is called
geometric layout analysis, and the classification of these zones into their
logical role (title, caption, footnote, etc.) is called the logical layout anal-
ysis. Several methods have been developed for DLA [1–3, 5, 9, 16, 18],
most of them based on Computer Vision techniques, such as, binariza-
tion [11, 14], skew correction [10, 12, 15] and Connected Components
labeling [4, 8], among others. All of these methods are designed for an
user-free system, as a consequence, any error on the system result must
be fixed from scratch by the user.

In this work, an Interactive-Probabilistic approach for image layout
analysis is proposed, with the aim of providing, not only a very accurate
layout, but an interactive framework in which user feedback is used to fix
any error. Conditional Random Fields models have been combined with a
prior-probability model and Interactive Pattern Recognition [17] to build
the new method.
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1.2. Motivation

This document is organized as follows: In the first chapter we intro-
duce the topic under study, and cover the motivation and our approach. In
Chapter 2 we cover technical fundaments of our approach along with eval-
uation measures. Our approach is explained in detail in Chapter 3. Then,
experiments and results that help us evaluate the proposed method are pre-
sented and discussed in Chapter 4. Finally, in Chapter 5 we present the
conclusions extracted from our research, and future work to be covered.

1.2 Motivation

Several manuscripts have been digitized in order to preserve the valu-
able information from the day-by-day deterioration of the physical docu-
ment. The amount and importance of the information contained in these
manuscripts motivates the development of several techniques and tools to
explore, analyze, and read them in a more comprehensive manner. These
technologies and tools cover from image quality enhancement to auto-
matic Handwritten Text Recognition (HTR).

One of the most crucial steps in HTR is Document Layout Analysis.
This is the process in which zones of interest in a page image are detected
and categorized. This process is commonly performed by hand, and some-
times assisted by semi-automatic methods [7, 16, 19] (semi-automatic be-
cause the final user always needs to review the results).

With the premise that the user always needs to reviewa the results, and
assuming the importance of the DLA in HTR systems, it is highly desir-
able to study interactive methods to improve the aforementioned systems.

1.3 Related Work

Several methods have been developed on the last few years to extract the
correct Layout from digitized pages. Most of them [1–3, 5, 9, 16, 18]
follow a similar set of steps:

aAt the time this paper is written state-of-the-art methods are far away to achieve a
completely automatic system.
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Chapter 1. Introduction

(i) Image binarization.

(ii) Skew correction.

(iii) Connected Components and/or White spaces analysis.

(iv) Some heuristic to link/merge blocks found in the previous step.

(v) Clean the result (filter out small blocks, remove unsuitable blocks,
etc.).

Furthermore, in all of the methods studied, a binarization step is per-
formed, which is a very hard problem by itself. This causes an increment
in the difficulty of the original problem and a direct dependence from the
binarization method. Also, used heuristics limit the generalization of the
methods, since several parameters needs to be tuned by the user based on
the features of the input images (page degradation, number of columns,
illustrations, quality of the scan, etc.).

1.4 Overview of the Proposal Approach

As mentioned above, methods proposed until now still have errors. Thus,
the user needs to go trough all the images in order to review if the layout
proposed by the classification method is correct or not; then, if there is
any error, the user must fix it. In this work we propose to use a probabilis-
tic methodology to provide not only a good layout but to help the user to
easily fix any error provided by the classifier. Under this context, we use
the Interactive Pattern Recognition (IPR) framework proposed by Toselli
et al. [17] to solve this issue presented in Layout Analysis.

The IPR framework forces, from its definition, to use a probabilistic
model in order to take advantage of the information inside the model and
the information provided by the user iteratively. Therefore, we do not
need just a classification of the zones of the page (i.e. a single hypothesis
provided by the classifier), but, the probability of each possible hypoth-
esis, where each hypothesis represents a possible layout under the page
restrictions. Of course, this normally means a huge search space, even
on a simple small image. In order to guide search algorithms to the best
hypothesis, a prior-probability distribution over the limits of the zones
should be learned form training data. Assuming that zones are rectangles,
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1.5. Context of Applications and Assumptions

limits can be defined by upper-left and bottom-right corners; therefore,
prior-probability on these two corners is estimated.

We use Conditional Random Fields to model the conditional distribu-
tion of the image pixels in each layout zone (p(hk|xij)b) and to provide the
main probability distribution to the IPR framework. Also, multi-variable
Gaussian mixture models are used to learn the prior-probability distribu-
tion of the corners of each zone in the layout.

Finally, a brute force approach is taken to search best hypothesis under
the probabilistic model and the user feedback.

1.5 Context of Applications and Assumptions

Many enhancements and test cases should be done on the proposed system
before reaching stable version of it. For this reason, this project will be
divided into some stages to fulfill quality and time restrictions; in this
work we will present a the first step, which is restricted by the following
constrains for experimentation:

• Experiments will be conducted over a small set of images.

• Experiments will be limited to only search for the main paragraph
in the pages.

• Page images are assumed to have only a main paragraph, margina-
lia, titles, catch-words, and other types of zones, but not illustrations
or figures.

These constrains are appropriate to present the method without loss of
generality, because all the theory behind it is not limited by the constrains,
but just by the experimentation.

bSee Section 3.1 for a detailed description of the notation
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1.6 Expected Outcomes/Results

The expected results are:

• A formal definition of the new probabilistic method, based on CRFs,
GMMs and the IPR framework.

• Evaluation of the performance of proposed method, based on state-
of-the-art evaluation methodologies.

• A review of the impact of the new approach in the final user effort.

• A demo to present new method features.

• A solid base for future project steps.
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Chapter 2. Fundaments

the proposed method is founded on several other methods and algo-
rithms. In this chapter a short overview of those methods and algorithms
is presented. Also, some evaluation measures are presented in order to
define experiments evaluation criteria.

2.1 Principal Components Analysis

Principal Components Analysis is probably the most known non-supervised
technique used to reduce the dimensionality of a data set. Although, PCA
does not discriminate between classes, it is very used because most infor-
mation in the data is preserved after reduction [3].

PCA main goal is to find a projection matrix W , which minimizes the
reconstruction error. The solution of this problem is well know [18] and it
is to chose those eigenvectors of the covariance matrix, whose eigenvalues
are the highest ones; then, the first k eigenvectors, with highest eigenval-
ues, are used to compose the projection matrix W . The algorithm can be
summarized in the following steps:

1. Compute the mean of the data.

2. Subtract the mean to all data.

3. Calculate the covariance matrix on data.

4. Calculate the eigenvectors and eigenvalues of the covariance matrix,
ordered by highest eigenvalues.

5. Define projection matrix W by the first k eigenvectors.

For a detailed explanation about how PCA works, please refer to [3, 18]

2.2 Conditional Random Fields

In the case of image labeling, a natural way to represent the dependencies
between the pixels of the image is by means of a bidimensional grid-like
structure, which can be modeled by a Markov Random Field (MRF) [13].
In this representation, each pixel in the image is represented by a node
in the graph and its attributes vector x. In this problem the objective

10



2.3. Gaussian Mixture Models

is to find the combination of class labels y for each feature vector x that
maximizes the probability of the graphical model (Maximum a Posteriori-
probability). One way to model this distribution is in terms of the energy
associated with a Conditional Random Field (CRF) [12, 20]. If F = {Ψd}
is the set of factors in some factor graphG, where d is an integer index that
ranges from 1 to D (being D the number of factors), then the conditional
distribution for CRF with respect to a set of computed features is:

P(y|x) =
1

Z(x)

∏
ΨD∈F

exp

{ KD∑
ζ=1

θdζϕdζ(yd,xd)

}
(2.1)

where ϕdζ is a feature function, ζ ∈ K;K the number of features, θdζ
is the set of weights of each factor d. The constant Z(x) represents the
partition function, a normalization factor to ensure the proper definition of
the probability distribution. Typically, the parameters θdζ will be learned
from data by means of some well known methods, namely: BFGS [2],
L-BFGS [4], EM [15], SGD [22] or AROW [11].

2.3 Gaussian Mixture Models

Several methods have been developed to estimate the the probability den-
sity function (PDF) of any arbitrary distribution from a set of training
samples [6, 8, 14]. Among the possible distribution functions estimators,
Gaussian mixture models (GMM) are widely used in several tasks and
have proved to be a powerful tool.

A Gaussian mixture model is defined as the result of a weighted sum
of M Gaussian components:

p(x) =
M∑
i=1

πiN (x|µi,Σi) (2.2)

where πi parameters are called mixing coefficients and corresponds
with the weight of the component i. These coefficients are restricted to
satisfy

∑M
i=1 πi = 1. Each Gaussian density N (x|µi,Σi) is called a com-

ponent of the mixture and has its own mean µi and covariance Σi. Finally,
the estimation of each mixture parameter (πi, µi,Σi) is performed by us-
ing the Expectation-Maximization (EM) algorithm [8].

11



Chapter 2. Fundaments

2.4 Interactive Pattern Recognition

In the classical Pattern Recognition paradigm, x is an input stimulus, ob-
servation or signal and h a hypothesis or output, which the system has
to derive from x. Let M be a model or set of models used by the sys-
tem to derive its hypotheses. In general,M is obtained through a “batch”
training process from a given training sequence of pairs (x, h)i from the
task being considered [9]. This initial problem statement typically aims at
full automation and the “eventual” need for human intervention is over-
looked in the mathematical formulation. By ignoring the essential need
for human feedback [21], the resulting technologies and systems gener-
ally fail to take advantage of the opportunities that could provide the user
knowledge.

In traditional PR decision theory it is common to develop techniques
that aim at minimizing the cost of wrong hypotheses. In the simplest case,
a 0/1 cost function is used, which corresponds to minimizing the number
of wrong hypotheses. Under this minimal error criterion, a best hypothesis
is shown to be one which maximizes the posterior probability P r(h|x).
Using a modelM , this is approximated as:

ĥ = arg max
h∈H

P r(h|x) ≈ arg max
h∈H

P
M

(h|x) (2.3)

where H is the (possibly infinite) set of valid hypotheses. Minimal error
is also the main criterion adopted to guide the development of statistical
learning approaches to train (the parameters of)M from the training data.

2.4.1 Definition

Interactive Pattern Recognition (IPR) is a framework for the development
of the underlying ideas of feedback, multimodality and adaptation on PR
systems. For example, feedback takes the direct advantage of the infor-
mation provided by the user in each interaction step to improve raw per-
formance.

As in classical PR, x is an input stimulus, observation or signal and h
is a hypothesis or output, which the system derives from x. By observ-
ing x and h, an operator or user provides some (perhaps null) feedback
signal, f , which may iteratively help the system refine or improve its hy-
pothesis until it is finally accepted. M is a model or set of models which
is used by the system to derive its hypotheses. In general,M is initially

12



2.4. Interactive Pattern Recognition

obtained in "batch mode", as in traditional PR, from training pairs (x, h)i.
Now, during the interactive operation, the valuable user feedback signals
produced in each interaction step are advantageously used in an adaptive
training process which progressively tunesM to the specific task and/or
to the way the user makes use of the system in this task.

2.4.2 Using the Human Feedback Directly

Human interaction offers a unique opportunity to improve the quality of
the system hypothesis h, without varying the modelM [21]. As discussed
before, for fixedM and x, a best hypothesis, ĥ, is defined by Eq. (2.3).
Now interaction allows to add more conditions, that is:

ĥ = arg max
h∈H

P
M

(h|x, f) (2.4)

where f stands for the feedback from the user. Based on that feedback,
system must provide a new hypothesis ĥ and ask the user for new feedback
information. The process continues in this way until the system output is
acceptable by the user.

2.4.3 Taking interaction history into account

Since IPR process makes history from previous interaction steps, it would
be desirable to use that information to improve the system hypothesis.
Let h′ be the history. It can be represented by the optimal hypothesis, ĥ,
obtained by the system in its previous interaction steps for the given x.
Since previous hypotheses have been supervised/corrected by the user, a
part of h′ will be correct for the given x. Taking history into account, Eq.
(2.4) becomes:

ĥ = arg max
h∈H

P
M

(h|x, h′, f) (2.5)

2.4.4 Interaction with Deterministic Feedback

If feedback modality can be considered deterministic (traditional key-
board and mouse), decoding becomes simple, since any feedback can be

13
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simplified as a function d : F → D, which maps each raw feedback sig-
nal, f , into its corresponding unique decoding d = d(f). Hence, we can
interchangeably use a feedback signal f and its (trivial and unique) decod-
ing d = d(f). Using d rather than f in Eq. (2.5), applying the Bayes rule,
and droppingM to simplify notation, we can now write the prediction of
ĥ in more detail:

ĥ = arg max
h∈H

P(h|x, h′, d) = arg max
h∈H

P(x|h′, d, h) P(h, h′, d) (2.6)

2.5 Evaluation Measures

Evaluation methodologies for quantitative and qualitative results in any
scientific or engineering study are fundamental in order to measure stud-
ied methods results and provide a defined and structured way to be com-
pared withing others. Layout analysis lacks of a single well defined and
widespread evaluation methodology; instead, several methods are avail-
able in the literature, most of them developed to text line detection. Pixel-
wise evaluation (sometimes called Overlap-based) has been used by [1,
5, 16], but pixel-wise evaluation is highly dependent on a strictly defined
ground-truth, since the ground-truth for page segmentation is quite am-
biguous and may differ between users, other methods have been devel-
oped to minimize the dependency on a strictly defined ground-truth on
the evaluation metric [7, 19] or just to measure performance based on the
zones instead of the pixels [17].
In this work, a general pixel-wise precision/recall methodology is used to
evaluate CRFs performance, since no zone is detected but the pixels that
belong to a specific zone. For methods were zone is detected, MatchScore
[17] and Goal-Oriented Success Rate (GoSR) [19] will be used.

2.5.1 Pixel-wise performance

Pixel-wise performance is computed by means of the well known perfor-
mance (P, Eq. (2.7)), recall (R, Eq. (2.8)) and F1-score (F1, Eq. (2.9)).

P =
TP

TP + FP
(2.7)

14
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R =
TP

TP + FN
(2.8)

where TP , FP , and FN stand for "True Positives" (pixels inside a zone,
classified as belonging to this zone), "False Positives" (pixels outside a
zone, classified as belonging to this zone) and "False Negatives" (pixels
inside a zone, classified as not belonging to this zone) respectively.

F1 =
2 · P ·R
P +R

(2.9)

2.5.2 MatchScore

MatchScore was used in the ICDAR (2005 to 2009) competitions [10].
The method is intended, first, to select if a zone pair (h∗i , hk) is a one-to-
one match (Eq. (2.10)), i.e. the ground-truth zone h∗i match to result zone
hk based on some threshold Ta; then, if the zones have a one-to-one match
performance, metric is computed as shown in Eq. (2.11).

MatchScore(i, k) =
T(h∗i ∩ hk)
T(h∗i ∪ hk)

(2.10)

where T(·) a function which counts the pixels inside a zone.

FMi,k =
2T(h∗i ∩ hk)

T(h∗i ) + T(hk)
(2.11)

Finally, global performance is extracted by calculating the average values
of performance metric for all the one-to-one zone pairs.

2.5.3 Goal-Oriented Success Rate

Goal-Oriented performance [19] aims at evaluate how much of the in-
formation contained in the ground-truth is also contained in the system
result; due to that, only foreground pixels are taken into account. Use of
foreground pixels forces us to have a pixel level ground-truth, most of the
times in the form of a binarized version of the image. Also, the method-
ology used to define if some zones have a one-to-one match is changed
from MatchScore to Eq. (2.12).

Iik =

{
h∗i ∩ hk if h∗i ∩ hk 6= ∅ and T(Iik)

T(hk)
> Ta

∅ otherwise
(2.12)
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Then, success rate (SR) is defined as follows:

SR =

∑|h∗|
i=1

∑K
k=1 wik × T(Iik)∑|h∗|
i=1 T(h∗i )

(2.13)

where wik corresponds to a weight for each intersection region Iik
ranging the interval [0, ..., 1], which depends on the following conditionsa:

(i) the ground-truth region h∗i has been detected correctly

(ii) the ground-truth region h∗i has been split

(iii) the result region hk has been overlapped by two or more ground-
truth regions (merge)

(iv) non-text elements have been included in the result region hk
(v) if more than one of the previous conditions is satisfied, the weight

with the smaller value is selected

Notice that, in our case, since only one zone is under scrutiny (the main
paragraph), any other zone in the layout is considered as a non-text ele-
ment; therefore, wik belongs to condition (iv), hence, to Eq. (2.14).

wik =
T(Iik)

T(hk)
(2.14)
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Chapter 3. Interactive Layout Analysis

3.1 Interactive Layout Analysis

Document Layout analysis is the process of identifying and categorizing
the regions of interest in an image of a document. Commonly, this process
is divided into two sub problems [1]: detection and labeling of the differ-
ent zones in the image (body, illustrations, marginalia) is called geometric
layout analysis, and the classification of these zones into their logical role
(title, caption, footnote, etc.) is called the logical layout analysis.

As an input we have an image X = {x1,1, x1,2, .., xn,m}, which is
associated with a rectangular grid G of size n × m. Each image site s
is associated to a cell in the grid defined by its coordinates over G and
denoted Gij, 1 ≤ i ≤ n, 1 ≤ j ≤ m. The site set is denoted
S = {s1, s2, ..., sD} 1 ≤ D ≤ n×m.

Now lets define L = {l1, l2, ..., l`} the set of all the possible zones in a
Layout, under this definition, L is a unconstrained set, then any combina-
tion of zones is allowed, for instance, paragraph, marginalia, illustrations,
lines, words, etc. Notice that, since L is unconstrained several zones of the
same type are allowed as well. In the other hand, each image is associated
to some K-zones Layout defined as h∗ = {h1, h2, ..., hK};h∗ ⊆ L, hence-
forth, h∗ is called the Layout ground-truth of that specific image. Then
each site sd belongs to a single layout zone, i.e., sd =⇒ hk; hk ∈
h∗, sd ∈ S.

In our case, each layout zone is a rectangle defined by its coordinates
over G as hk = (uk, bk), 1 ≤ k ≤ K. Where uk are the upper-left
corner, and bk re the bottom-right ones. Figure 3.1 shows an example of
this kind of layout zones.
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3.1. Interactive Layout Analysis

Figure 3.1: Layout zones example. Red=Paragraph, Green=marginalia,
Blue=catch-word

3.1.1 Layout Analysis Problem

Let define a structured hypotheses space [5] H = {h1, h2, ..., hT}a over
the site set S, where ht ⊆ L, 1 ≤ t ≤ T . We want the hypothesis
ĥ which provides the best layout for the site set. Under minimal error
criterion, a best hypothesis is shown to be the one which maximizes the
posterior probability [2] P(h|S).

ĥ = arg max
h∈H

P(h|S) (3.1)

However, in many cases it is difficult to directly estimate P(h|S) and is
better to apply the Bayes rule [5]:

ĥ = arg max
h∈H

P(S|h) P(h)

P(S)
= P(h) P(S|h) (3.2)

a Based on this definition, H is finite but huge; in the worst case, each site s belongs
to a different layout zone; then, |H| is defined by the size of the set of sites and the
number of different zones as:

|H|=
(
|L|+D − 1

D

)
=

(|L|+D − 1)!

D!(|L|−1)!
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Chapter 3. Interactive Layout Analysis

where the term P(S) has been dropped since it does not depend on the
maximization variable, h. P(S|h) is the probability of a site set S given
the layout hypothesis h, and P(h) is its prior probability.

Prior probability P(h) can be modeled by a Gaussian Mixture Model
(Mg), which is a Gaussian mixture for each corner of each layout zone,
where each corner is assumed independent of the others but constrained
to uk > bk∀k ∈ h (element-wise), by computational reasons.

P(h) ≈ P
Mg

(h) =
K∏
k=1

P
Mg

(uk) P
Mg

(bk) (3.3)

The likelihood, P(S|h), can be approached through a simple naïve
Bayes decomposition, under spatial independence assumptionb, as fol-
lows:

P(S|h) =
D∏
d=1

P(sd|h) (3.4)

where each P(sd|h) can be modeled, for instance, by K-NN, CRF’s,
RBMs+linear regression function, NN, etc.

Formally, Eq. (3.2) can be re-written as:

ĥ ≈ arg max
h∈H

K∏
k=1

P
Mg

(uk) P
Mg

(bk)

Dk∏
d=1

P(sd|(uk, bk)) (3.5)

where Dk is the sub-set of sites inside the layout zone k. In order to
prevent precision issues on our calculations, we apply log in both sides of
Eq. (3.5).

log ĥ ≈ arg max
h∈H

K∑
k=1

(
log P

Mg

(uk) + log P
Mg

(bk)

+

Dk∑
d=1

log P(sd|(uk, bk))

)
(3.6)

bSpatial independence: each site is independent from the others in the set.
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3.1.2 Interactive Framework

Interactive framework aims to improve the classical pattern recognition
paradigm results by taking into account user feedback. As Layout Analy-
sis problem is defined in Eq. (3.6), system will provide the best hypothe-
sis it can, but if there is any error, user commonly will need to remove the
prediction and define layout from scratch. This kind of issues could be
minimized by the insertion of the feedback (f ) and the feedback history
(h′) on the model [5]. taking Eq. (2.6) into Eq. (3.6) an interactive version
of the system is defined as:

log ĥ ≈ arg max
h∈H

K∑
k=1

(
log P

Mg

(uk|h′, f) + log P
Mg

(bk|h′, f)

+

Dk∑
d=1

log P(sd|(uk, bk), h′, f)

)
(3.7)

As a result, the new system must be designed to compute Eq. (3.6) as
a first hypothesis, and then Eq. (3.7) will be computed on each iteration
until the presented hypothesis satisfies the user.

3.2 System Architecture

The proposed method can be divided into a two stage process:

• Stage 1: Traditional Pattern Recognition batch-processing paradigm
is performed, using a small training set, thus, we use a small training
set to learn about the corpus and train the probabilistic model.

• Stage 2: Then, user interaction is used to review the results and
correct system mistakes.

On each stage, several sub-process must be performed. Figure 3.2 presents
a block diagram of the system, and a detailed explanation of each block is
presented in further sections in this chapter.
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Figure 3.2: System Architecture Diagram.

3.3 Pre-processing

In order to keep this stage of the project as simple as possible, and under
the assumption that pre-processing images will provide an enhancement
over system performance, images are only transformed to color intensity
space and resolution is reduced by feature extraction constrains. This pre-
processing steps are focused on reducing the computational cost instead
of improving the system performance. Other well know techniques, such
as, noise reduction, binarization and skew correction, would be studied on
future project stages.

3.4 Feature Extraction

For each site sd ∈ S we extract a set of characteristics, this set of char-
acteristics is divided into a two groups: 1. the site color intensity and its
neighbors, 2. the site position. First group is extracted from a (w × w)
window, centered on the site sd as follows (See Figure 3.3 for a visual
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representation of the process):

νd = Y[bd
c
c−bw

2
c : bd

c
c+bw

2
c, d−bd

c
c−bw

2
c : d−bd

c
c+bw

2
c] (3.8)

where Y[a1 : a2, a3 : a4] stands for a sub-matrix of Y defined by the
rows from a1 to a2 and the columns from a3 to a4; and Y a matrix con-
taining the value of the color intensity of each site in the set S of size
(r × c); r ∗ c = D.

Then, depending of w the size of νd could be very high, for example, if
w = 33, the size of νd is 1024. In order to reduce the size of the attributes
vector, we take each row of νd as an data input and apply PCA algorithm
over it to reduce data dimensionality to a (η × w) new matrix; finally
we apply PCA again over this new matrix to reduce attributes matrix to a
(η × η) matrix, now this reduced matrix is re-shaped to a (1× η2) vector
and defined as:

βd = vec(Υ(Υ(νd, η)T , η))T (3.9)

where vec(·) is the vectorization function [3], and Υ(x, η) is a function
that returns the re-scaled or reduced data of input x, by means of PCA
algorithm, using the first η eigenvectors.

Finally a set of eleven features are selected based on previous at-
tributes, also η parameter is anchored to 3, in order to keep βd small (only
9 elements):

ϕd0 = βd

ϕd1 = βd−1

ϕd2 = βd+1

ϕd3 = βd−c

ϕd4 = βd+c

ϕd5 = βd−1|βd
ϕd6 = βd|βd+1

ϕd7 = βd−c|βd
ϕd8 = βd|βd+c

ϕd9 = bd
c
c

ϕd10 = d− bd
c
c
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Figure 3.3: Feature extraction process
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where first eight features are related to site color intensity and final two are
the position of the site in the image. Also, "bi-gram" notation (βi|βj) is
used on features five to eight in order to represent sequential relationship
between the site sd and its neighbors.

3.5 CRF’s Learning

As mentioned in Section 2.2, CRF’s is a powerful tool to estimate a posteriori-
probability that maximizes the probability of a graphical model. In this
work the CRFsuite tool [4] is used to learn a CRF model from features
selected in Section 3.4. CRFsuite is an implementation of linear-chain
CRFs for labeling sequential data; it is a very well know tool for fast train-
ing and tagging. It is very fast and, most important, definition of features
is very flexible, which allows the user to define many kind of features.
The format of the input data is very well described on the tool’s web site
[4]. Based on the format restrictions of the tool, and in order to keep
the number of features low (and the model size as well), each feature is
internally converted into strings by adding a "-" character between each
value; for instance, the feature ϕdζ = [w0, w1, w2, w3, w4, w5, w6, w7, w8]
is converted to "ϕdζ=w0-w1-w2-w3-w4-w5-w6-w7-w8".

Finally, each feature should look like the following example, where
TAB character was replaced by new-line in order to keep it more readable,
and feature name changed to keep previous notation:
0
ϕd0=210−127−127−86−131−127−86−123−127
ϕd1=45−127−127−168−131−127−168−123−127
ϕd2=44−127−127−169−131−127−169−123−127
ϕd3=29−127−127−177−122−127−176−132−127
ϕd4=70−127−127−156−130−127−156−124−127
ϕd5=29−127−127−177−122−127−176−132−127|210−127−127−86−131−127−86−123−127
ϕd6=45−127−127−168−131−127−168−123−127|210−127−127−86−131−127−86−123−127
ϕd7=210−127−127−86−131−127−86−123−127|44−127−127−169−131−127−169−123−127
ϕd8=210−127−127−86−131−127−86−123−127|70−127−127−156−130−127−156−124−127
ϕd9=4
ϕd10=79

After training, marginal probability of each class is extracted using the
tag option, giving P(sd|h0) and P(sd|h1), were h0 and h1 means back-
ground and paragraph, respectively. In Figure 3.4 we can see an example
of the marginal probabilities obtained from the CRF model. A learning
algorithm should be selected by experimentation (see Section 4.3.1 for
details).
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Figure 3.4: Marginal probability maps extracted from CRF model results. Left
image is the map for background and right one is the map for paragraph zone.
Dark red means high, and blue/yellow means low.

3.6 GMM Learning

The prior-probability model of corner location of the zones in the image
can be estimated by a multi-variable GMM. Thus, corners in the ground-
truth (h∗) are used to estimate a GMM model over each corner. For this
stage of the project (only the main paragraph is taken into account), upper-
left corner of the zone (uk) is modeled by a Gaussian mixture of two
components, whereas bottom-right corner (bk) is modeled by three com-
ponents; in both of them a diagonal covariance matrix is used, in order to
keep mixture axis parallel to image axis.

Many tools have been developed to estimate GMMs from data, using
the EM algorithm. For Python a library called scikit-learn is a par-
ticularly well known library which implements GMM estimation, among
many other algorithms. It is very straightforward to use and efficient;
hence, it is used in this work to estimate GMMs of each corner of each
layout zone. In Figure 3.5, log-probability of main paragraph corners is
drawn for all possible uk and bk (k equal paragraph in this case) in an
image.
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Figure 3.5: Gaussian Mixture Models over main paragraph corners.

3.7 User Interaction

As defined in previous sections, the user will review all the pages and
provide some feedback to the system in order to fix any error, i.e., user will
interact with the system only through the mouse following deterministic
rules:

(i) Left-click over the image: mouse pointer coordinates are a correct
corner of some zone in h∗.

(ii) Right-click over the image: layout is correct (i.e. "OK signal")

(iii) Click outside the image: close the system.

As a consequence of using a deterministic feedback, the signal does
not need to be "decoded" and it can be used directly [5] on Eq. (3.7) as
the feedback f . Feedback under this context means a constrain under the
search spaceH, i.e., rule (i) limits the search space to only those hypothe-
ses where the selected coordinates in the image are part of h; then, that
coordinate will be considered as "anchored". Also, history is important
to constrain the search space to only those zone corners in the hypoth-
esis which are not "anchored" by the user in previous iterations. User
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interaction is defined in Algorithm 1; note that this algorithm encompass
completely Stage 2 presented in Figure 3.2.

Algorithm 1: Interactive Algorithm
Data: a set of images X , Prob site model P , Prob layout Model Q
Result: best, under the model, array of layout hypothesis ĥ
for x ∈ X do

ĥx = Eq. (3.6);
while f 6= OK do

h′ = ĥx;
f = decodeUserFeedback();
ĥx = Eq. (3.7);

return ĥ

Bibliography

[1] Cattoni, R., Coianiz, T., Messelodi, S., and Modena, C. (1998). Geo-
metric layout analysis techniques for document image understanding:
a review. ITC-irst Technical Report, pages 1–68.

[2] Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classifica-
tion. Wiley-Interscience, 2nd edition.

[3] Magnus, J. R. and Neudecker, H. (1999). Matrix differential calcu-
lus with applications in statistics and econometrics. J. Wiley & Sons,
Chichester, New York, Weinheim.

[4] Okazaki, N. (2007). CRFsuite: a fast implementation of Conditional
Random Fields (CRFs).

[5] Toselli, A. H., Vidal, E., and Casacuberta, F. (2011). Multimodal
Interactive Pattern Recognition and Applications. Springer.

30



CHAPTER 4

EXPERIMENTS AND RESULTS

Chapter Outline
4.1 Corpus Description . . . . . . . . . . . . . . . . . 32

4.2 Implementation Notes . . . . . . . . . . . . . . . . 33

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . 35

4.4 Results Discussion . . . . . . . . . . . . . . . . . . 42

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . 44

Lorenzo Quirós Díaz Interactive Layout Analysis



Chapter 4. Experiments and Results

4.1 Corpus Description

To develop and test the new method proposed in this document a manuscript
under the following requirements is preferred to be selected:

• Reasonably good state of preservation.

• Available in some digital format.

• Reasonably large.

• Well-defined layout zones.

• Layout should be complex enough to exemplify method strengths
and weaknesses.

• Ground-truth available or easy to build.

Under these constrains, the manuscript chosen for the present work is the
first tome of a seven volume manuscript entitled "Historia de las Plan-
tas" PLANTAS for short, a XVII century handwritten botanical speci-
men book compiled by Bernardo Cienfuegos, one of the most outstanding
Spanish botanists in the XVII century. The first volume has 49 pages
at the beginning comprising indices, reference tables, a botanical glos-
sary in different languages, and a 36-page preface written by Cienfuegos.
This is followed by 887 numbered pages that contain 152 chapters about
cereals and related plants, including 126 botanical illustrations. All in
all, the first volume has 1 035 pages, containing about 20,000 handwrit-
ten text lines. This corpus is already digitized at 300ppi in 24 bit RGB
color, available as JPG images along with their respective ground-truth
layout in PAGE XML format [7] compiled by PRHLT group [1] using
seven categories, namely: catch-word, heading, marginalia, page-number,
paragraph, signature-mark, and float (illustrations); see Figure 4.1 for ref-
erence.

In this stage of the presented work only a sub-set of 39 pages was
considered, in order to accomplish with stage and time restrictions. Pages
that contains indexes, reference tables, and illustrations were excluded
since goals of this stage are restricted to the main paragraph. 22 of these
pages were selected for training the model, and the remaining 17 for test
(see Section 6.1 for reference).
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4.2. Implementation Notes

Figure 4.1: PLANTAS layout zones; green for marginalia, red for paragraph,
and blue for catch-word.

4.2 Implementation Notes

System was implemented mainly in Python 2.7 due to the facilities pro-
vided by the language (N-dimensional array structures, image processing
tools, plotting tools, etc) and how quickly is possible to develop a new
piece of software. Besides, CRFSuite is used to handle CRF training
and tagging steps. In this chapter some implementation details will be
explained for clarification; most of them are related to non-direct imple-
mentation of the theory explained in Chapters 2 and 3, and implemented
towards code optimization.

4.2.1 Integral Image

Integral Image (or sometimes called Summed Area Table) is a data struc-
ture and algorithm first used by Crow [3] in Computer Graphics, and in-
troduced by Viola and Jones [8] to Computer Vision. It is widely used
for quickly and efficiently generating the sum of values in a rectangular
subset of a grid. The Integral Image I of an M × N input image A is
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Chapter 4. Experiments and Results

defined as a 2D cumulative sum of A:

I[x, y] =
∑

x′≤x,y′≤y

A(x′, y′) x ≤M, y ≤ N (4.1)

Then, using the integral image any rectangular sum can be computed in
four array references [8] (see Figure 4.2), i.e. four accesses to the I matrix
instead of (xẏ) accesses to A using the direct approach.

Figure 4.2: The sum of the pixels within rectangle D can be computed with four
array references. The value of the Integral Image at location 1 is the sum of
the pixels in rectangle A. The value at location 2 is A + B, at location 3 is A +
C, and at location 4 is A + B + C + D. The sum within D can be computed as
4 + 1− (2 + 3).[8]

Since the CRF model provides the probability of each site in the site
set S, we can see it as a matrix and use Integral Image for all related
calculations. For example in Eq. (3.7) we need to compute the sum of the
probability of each site inside each k layout-zone; this can be computed
as:

Dk∑
d=1

log P(sd|(uk, bk)) = Ik[bk] + Ik[uk]− Ik[ukr, bkc]− Ik[bkr,ukc]

(4.2)
with vectors uk and bk defined in Section 3.1.

4.2.2 Element-wise to matrix evaluation

User interaction requires a system fast enough to keep real time feeling to
the user, i.e. less than 1.0 seconds [6]. In this system user interacts as ex-
plained on Section 3.7, but direct implementation of Eq. (3.7) using for
loops is just not fast enough to keep real time feeling (≈ 25 seconds per
click). In order to reduce the time consumed by the CPU to compute Eq.
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4.3. Experiments

(3.7) a matrix-like version of the equation is implemented. This allows
the system to use numpy multidimensional and broadcasting features to
reduce delay.
Then, Eq. (3.7) is transformed into Eq. (4.3), where sums have been ex-
panded to the specific case of this work (only main paragraph); Ik means
for the Integral Image of the probabilities of the layout zone k, Pu1 and
Pb1 are the probability matrix from u1 and b1 GMM models respectively,
fr and fc are the decoded feedback from the user as the row and column
selected respectively.

ĥb1 = arg min I0[n,m]

− (I0[fr : n, fc : m] + I0[fr − 1, fc − 1]− I0[fr − 1, fc : m]− I0[fr : n, fc − 1])

+ (I1[fr : n, fc : m] + I1[fr − 1, fc − 1]− I1[fr − 1, fc : m]− I1[fr : n, fc − 1])

+ Pu1 [fr, fc] + Pb1 [fr : n, fc : m]

ĥu1 = arg min I0[n,m]

− (I0[fr, fc] + I0[0 : fr − 1, 0 : fc − 1]− I0[0 : fr − 1, fc]− I0[fr, 0 : fc − 1])

+ (I1[fr, fc] + I1[0 : fr − 1, 0 : fc − 1]− I1[0 : fr − 1, fc]− I1[fr, 0 : fc − 1])

+ Pu1 [1 : fr, 1 : fc] + Pb1 [fr, fc] (4.3)

where Ik[a1 : a2, a3 : a4] stands for a sub-matrix of Ik defined by the rows
from a1 to a2 and the columns from a3 to a4; and Ik is of size (n×m).

Under this approach, time to compute min value is reduced from≈ 25
seconds to ≈ 0.06 seconds, which is enough for current application.

4.3 Experiments

Experiments have been conducted over the selected corpus to obtain the
model parameters, such as features to train CRF models, window size of
those features, and training algorithm, among others. Parameters search
is not exhaustive since main goal of this stage is not to get the best model,
but to demonstrate the interactive algorithm features. All the results have
been evaluated using the methods presented in Section 2.5.

4.3.1 Conditional Random Fields

CRF performance is highly dependent on features selection; because of
that, some values of image zoom (Z), window size (W), grid size (G) were
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Chapter 4. Experiments and Results

tested. AROW [5] training algorithm was selected to train the CRF model
because is proved to be very fast and results are similar to L-BFGS [2] or
others. Results are presented in Appendix 6.2, Table 6.2 for reference. In
view of the results, the following parameters are selected to train the final
model: Z=0.3, W=33 and G=3. Quantitative results are shown in Table
4.1 and some examples of qualitative results in Figure 4.3, where all pixels
inside the blue rectangle are labeled as "paragraph" in the ground-truth.

(a) (b)

(c) (d)

Figure 4.3: CRF’s qualitative results, pixels classified as background in yellow,
pixels classified as paragraph in purple. Ground-truth rectangle in blue. Pages a)
0944, b) 0945, c) 0948 and d) 0958.
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4.3. Experiments

Table 4.1: CRF’s site level quantitative results.

Page Precision Recall F1
0944 0.908 0.914 0.907
0945 0.953 0.953 0.953
0946 0.958 0.956 0.956
0947 0.951 0.952 0.951
0948 0.949 0.951 0.950
0956 0.894 0.896 0.891
0957 0.946 0.945 0.945
0958 0.931 0.927 0.927
0959 0.952 0.952 0.952
0960 0.955 0.954 0.954
0961 0.950 0.950 0.950
0962 0.909 0.921 0.910
0963 0.919 0.914 0.916
0964 0.909 0.910 0.908
0965 0.942 0.942 0.942
0966 0.947 0.947 0.947
0967 0.945 0.946 0.945

Average 0.936 0.936 0.936

4.3.2 Connected Components Labeling (CCL) Approach

Connected components algorithms based on morphological operations are
a simple method to detect connected objects or regions in binary images.
A simple version of this kind of algorithms [4] is implemented as a point
of comparison for the proposed method. Thus, all adjacent sites classi-
fied as "paragraph" by the CRF model are grouped; then, we search for
the minimum rectangle where all sites of the same group fits; and finally,
based on user experience, only the biggest rectangle is selected. See Fig-
ure 4.4 for some qualitative examples and Table 4.2 for quantitative re-
sults.
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Chapter 4. Experiments and Results

(a) (b)

(c) (d)

Figure 4.4: CCL results examples, red line. Ground-truth added for reference,
blue line. Pages a) 0944, b) 0945, c) 0948 and d) 0958.
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Table 4.2: CCL quantitative results.

Page MatchScore GoSR
0944 0.862 0.768
0945 0.958 0.926
0946 0.929 0.877
0947 0.969 0.944
0948 0.965 0.937
0956 0.873 0.782
0957 0.956 0.921
0958 0.923 0.863
0959 0.984 0.971
0960 0.932 0.879
0961 0.967 0.942
0962 0.861 0.765
0963 0.970 0.944
0964 0.878 0.787
0965 0.948 0.908
0966 0.929 0.873
0967 0.950 0.912

Average 0.933 0.882

4.3.3 Prior-Probability Approach

Prior-Probability is used to estimate the best "paragraph" coordinates, i.e.
we maximize Eq. (3.6) over all (uk, bk) in the image range using a brute
force approach and the methods explained in Section 4.2. See Figure
4.5 for some qualitative results examples, and Table 4.3 for quantitative
results.
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Chapter 4. Experiments and Results

(a) (b)

(c) (d)

Figure 4.5: Proposed method results example, blue line for ground-truth, red line
for connected components labeling approach, green line for proposed approach.
Pages a) 0944, b) 0945, c) 0948 and d) 0958.
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Table 4.3: Proposed method quantitative results.

Page MatchScore GoSR
0944 0.924 0.862
0945 0.975 0.956
0946 0.988 0.977
0947 0.968 0.943
0948 0.983 0.969
0956 0.882 0.791
0957 0.978 0.960
0958 0.930 0.875
0959 0.969 0.945
0960 0.988 0.978
0961 0.973 0.952
0962 0.927 0.869
0963 0.937 0.888
0964 0.934 0.878
0965 0.969 0.944
0966 0.974 0.951
0967 0.966 0.940

Average 0.957 0.922

4.3.4 Interactive Approach

User is allowed to change system hypothesis by a simple click over the
image. This feedback is decoded and a new hypothesis is presented to the
user. Number of clicks needed by the user to define the main paragraph
and new hypothesis are recorded. Quantitative results are presented on
Table 4.4 along with the number of clicks performed by an user.
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Table 4.4: Post-user-feedback quantitative results.

Page MatchScore GoSR # Clicks
0944 0.978 0.960 1
0945 0.975 0.956 0
0946 0.988 0.977 0
0947 0.968 0.943 0
0948 0.983 0.969 0
0956 0.974 0.952 2
0957 0.978 0.960 0
0958 0.983 0.969 1
0959 0.969 0.945 0
0960 0.988 0.978 0
0961 0.973 0.952 0
0962 0.975 0.955 1
0963 0.956 0.921 1
0964 0.971 0.947 1
0965 0.969 0.944 0
0966 0.974 0.951 0
0967 0.966 0.940 0

Average 0.975 0.954 —

4.4 Results Discussion

CRF model performed an average of 93.6% F1-score. Although the set
of features selected were very elemental (only site color intensity and
position) and a non-exhaustive parameter search was done, results are
very promising for further stages. Misclassification of marginalia and title
zones could be because color intensity is a feature more to identify text
than to identify the different layout zones. That means that layout zone
classification lays mostly on position feature. Also, only two classes have
been used for training the CRF model. Although this model provides pos-
terior probability needed for the interactive model, feature selection needs
to be improved for further stages of this project.

CCL is highly dependent on geometric distribution of posterior prob-
ability from the CRF model and, after segmentation, there is no easy and
general way to improve raw results. For this reason, this approach is used
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4.4. Results Discussion

only as a point of comparison for the proposed method. Performance com-
puted by GoSR and MatchScore are pretty different (93.2% and 83.2%
respectively on average), because the first method is most a measure of
how similar are the polygons, but the second method finds how much of
the information is on both polygons. Notice that almost all marginalia
and title zones have been classified as paragraph. This is due to the high
dependence on geometric distribution.

Prior-probability plays a main role in next approach; most of the margina-
lia zones are not longer classified as a paragraph, and rectangle boundary
is stretched to text boundary, which relies on a average 4% GoSR im-
provement over the CCL approach. This is up to a 13% improvement in
complex cases (see Table 4.3).

Finally, methods studied in the bibliography and the method proposed
in this work still have errors that must be fixed manually by some hu-
man. The interactive approach based on the proposed method provides the
framework to help user to fix those errors. Under that premise, not only
the system performance must be computed, but the user effort as well. On
this seventeen pages corpus, 65% of the times user made no changes on
the first provided hypothesis. Thus, hypothesis is good enough to identify
the paragraph. On the other hand, 30% of the times the user performs
only one click in order to fix errors in the hypothesis. Finally, only in one
case two clicks were needed. Performance average is 97.5% and 95.3%
on MathScore and GoSR methods respectively; notice that 100% was not
reached in any case because users have a different concept of how much
the border of the zone needs to be to the border of the text, or cases where
two o more blocks cannot be divided by a single line. See examples on
Figure 4.6.
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(a)

(b)

Figure 4.6: Examples of different zone boundaries provided by different users.
a) small section of a character is out due to an adjustment to text border, b) single
horizontal line cannot divide upper and bottom zones.
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Chapter 5. Conclusions and Future Work

5.1 Conclusions

For the human beings is very easy to identify a document structure, but
the number of variations in the documents (quality, author style, type of
paper used, etc.) and the complexity of the structure itself makes Layout
Analysis a very hard problem to solve by a computer system. Contribu-
tions of this work in the aim to solve Layout Analysis problem and other
conclusions are presented as follows:

• A new method for Layout Analysis for ancient documents is pre-
sented. It was also shown that the method works, at least, to extract
the main paragraph of the page, which is commonly where most of
the information remains.

• Inclusion of the prior-probability in the model shown a direct im-
provement over the CCL method, without any heuristics.

• The interactive approach provides to the user the ability to fix any
error produced in the classification stage. The number of clicks
needed to fix the errors has been reduced; consequently, time ex-
pended in the task is reduced as well.

• Geometric and logical layout sub-problems have been merged in
the proposed method; this allows HTR steps to take into account
syntactic differences between different layout-zones.

• The proposed method does not need a binarization step, this makes
the method independent of one of the most difficult steps of state-
of-the-art methods. In consequence, the new method decrements
the potential sources of error.

5.2 Future Work

As mentioned in Chapter 1, in this paper only the first stage of the project
is presented; then, the following extensions could be performed:

• Remove single zone constrain: currently only main paragraph zone
is detected; further stages of the project require to include any type
of layout zones, indeed, marginalia, titles, catch-words, etc.

48



Bibliography

• Improve CRF’s features: features used to train the CRF model are
very weak, and this reduces system performance and generalization;
a good starting point would be to explore the use of Convolutional
Neural Networks to extract these features automatically.

• Include non-deterministic feedback: although deterministic feed-
back is useful under Layout Analysis conditions, a non-deterministic
feedback would make the system more flexible.

• Replace brute force algorithm: even though, the brute force algo-
rithm performs properly to search best hypothesis on a single-zone
case, in order to include any type of layout zones we need to use a
more efficient algorithm, like Gradient Descent.

• More experiments on complex corpora: in order to test com-
pletely the proposed methodology and compare it to state-of-the-
art methods, an extensive set of experiments needs to be conduced;
thus, complementary experiments on complete book corpus [2] and
the latest contest corpus [1] are planned.
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Chapter 6. Appendix

6.1 Corpus Distribution Table

Table 6.1: Corpus Pages Distribution

Name ID used to
Mss_003357_0944_pag-811[843] 0944 test
Mss_003357_0945_pag-812[844] 0945 test
Mss_003357_0946_pag-813[845] 0946 test
Mss_003357_0947_pag-814[846] 0947 test
Mss_003357_0948_pag-815[847] 0948 test
Mss_003357_0956_pag-823[855] 0956 test
Mss_003357_0957_pag-824[856] 0957 test
Mss_003357_0958_pag-825[857] 0958 test
Mss_003357_0959_pag-826[858] 0959 test
Mss_003357_0960_pag-827[859] 0960 test
Mss_003357_0961_pag-828[860] 0961 test
Mss_003357_0962_pag-829[861] 0962 test
Mss_003357_0963_pag-830[862] 0963 test
Mss_003357_0964_pag-831[863] 0964 test
Mss_003357_0965_pag-832[864] 0965 test
Mss_003357_0966_pag-833[865] 0966 test
Mss_003357_0967_pag-834[866] 0967 test
Mss_003357_0158_pag-053[057] 0158 train
Mss_003357_0159_pag-054[058] 0159 train
Mss_003357_0161_pag-056[060] 0161 train
Mss_003357_0162_pag-057[061] 0162 train
Mss_003357_0163_pag-058[062] 0163 train
Mss_003357_0176_pag-071[075] 0176 train
Mss_003357_0177_pag-072[076] 0177 train
Mss_003357_0178_pag-073[077] 0178 train
Mss_003357_0179_pag-074[078] 0179 train
Mss_003357_0180_pag-075[079] 0180 train
Mss_003357_0181_pag-076[080] 0181 train
Mss_003357_0182_pag-077[081] 0182 train
Mss_003357_0183_pag-078[082] 0183 train
Mss_003357_0184_pag-079[083] 0184 train
Mss_003357_0185_pag-080[084] 0185 train
Mss_003357_0186_pag-081[085] 0186 train
Mss_003357_0187_pag-082[086] 0187 train
Mss_003357_0188_pag-083[087] 0188 train
Mss_003357_0189_pag-084[088] 0189 train
Mss_003357_0190_pag-085[089] 0190 train
Mss_003357_0191_pag-086[090] 0191 train
Mss_003357_0192_pag-087[091] 0192 train
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6.2 CRF’s parameter search.

Table 6.2: CRF’s parameters search results. Z=zoom, W=window,
G=granularity, FT= feature extraction time, TrT= Training time, TeT= Test time,
P= Precision, R= Recall, F1= F1-score.

# Z W G FT[s] TrT[s] TeT[s] P R F1
1 0.1 9 3 4.916 16.822 1.150 0.899 0.900 0.897
2 0.1 9 9 1.151 0.074 0.117 0.868 0.865 0.859
3 0.1 9 12 0.937 0.035 0.062 0.878 0.874 0.872
4 0.1 17 3 20.448 16.054 0.962 0.894 0.884 0.882
5 0.1 17 9 3.619 0.074 0.092 0.895 0.886 0.884
6 0.1 17 12 2.727 0.019 0.052 0.852 0.833 0.828
7 0.1 33 3 23.603 0.997 0.792 0.843 0.811 0.817
8 0.1 33 9 3.920 0.044 0.084 0.858 0.796 0.804
9 0.1 33 12 2.815 0.015 0.043 0.850 0.714 0.714

10 0.1 65 3 32.006 1.050 0.704 0.684 0.659 0.668
11 0.1 65 9 5.078 0.064 0.067 0.820 0.667 0.687
12 0.1 65 12 3.528 0.029 0.037 0.863 0.712 0.742
13 0.2 9 3 18.714 142.845 4.559 0.866 0.868 0.866
14 0.2 9 9 2.714 0.825 0.523 0.852 0.852 0.847
15 0.2 9 12 2.127 0.290 0.261 0.882 0.885 0.882
16 0.2 17 3 88.976 122.980 4.235 0.866 0.863 0.858
17 0.2 17 9 11.068 5.450 0.422 0.863 0.858 0.851
18 0.2 17 12 6.758 0.219 0.225 0.895 0.896 0.892
19 0.2 33 3 105.599 81.756 4.396 0.905 0.901 0.901
20 0.2 33 9 13.263 1.048 0.410 0.895 0.888 0.887
21 0.2 33 12 8.095 0.246 0.214 0.896 0.889 0.888
22 0.2 65 3 173.887 76.256 3.759 0.853 0.848 0.850
23 0.2 65 9 20.629 0.477 0.393 0.837 0.812 0.819
24 0.2 65 12 12.392 0.287 0.220 0.829 0.803 0.808
25 0.3 9 3 41.491 457.521 12.270 0.829 0.832 0.829
26 0.3 9 9 5.174 19.041 1.207 0.859 0.860 0.859
27 0.3 9 12 3.271 1.414 0.554 0.866 0.868 0.867
28 0.3 17 3 195.334 341.149 10.868 0.881 0.882 0.880
29 0.3 17 9 23.479 17.754 1.117 0.880 0.883 0.880
30 0.3 17 12 13.886 2.578 0.563 0.885 0.888 0.884
31 0.3 33 3 24.153 20.972 9.582 0.936 0.937 0.936
32 0.3 33 9 29.088 15.112 0.973 0.898 0.898 0.896
33 0.3 33 12 16.788 1.933 0.527 0.895 0.892 0.890
34 0.3 65 3 396.537 190.954 9.099 0.901 0.898 0.899
35 0.3 65 9 45.363 2.987 0.927 0.891 0.881 0.883
36 0.3 65 12 26.538 6.580 0.502 0.881 0.870 0.870
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NOMENCLATURE

AROW Adaptive Regularization of Weights

BFGS Broyden–Fletcher–Goldfarb–Shanno

CCL Connected Components Labeling

CRF Conditional Random Field

DLA Document Layout Analysis

GMM Gaussian Mixture Model

IPR Interactive Pattern Recognition

L-BFGS Limited-memory BFGS

PCA Principal Components Analysis

PDF Probabilistic Distribution Function

PR Pattern Recognition
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6.2. CRF’s parameter search.
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