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Answers that Have Integrity

Hendrik Decker ?

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia, Spain

Abstract. Answers to queries in possibly inconsistent databases may
not have integrity. We formalize ‘has integrity’ on the basis of a definition
of ‘causes’. A cause of an answer is a minimal excerpt of the database
that explains why the answer has been given. An answer has integrity if
one of its causes does not overlap with any cause of integrity violation.

1 Introduction

We continue the development of ‘answers that have integrity’ (in short, AHI ) in
databases that may suffer from extant violations of integrity. It has begun in [6],
for databases, queries, constraints and answers without negation. In this paper,
definitions and results are generalized to be applicable also if there is negation.

Consistent query answering (CQA) [1] is a popular approach to provide useful
answers in inconsistent databases. Roughly, CQA defines an answer to be consis-
tent if the answer is true in each minimal repair. Unfortunately, the consistency
of answers is not invariant under different notions of minimality.

We elaborate the alternative idea of answers that ‘have integrity’, i.e, an-
swers that are reasonably correct in the presence of integrity violation. This idea
is based on ‘causes’, i.e., certain extracts of the database that explain why an an-
swer is given, or why a constraint is violated. Intuitively, an answer has integrity
if one of its causes does not overlap with any cause of integrity violation.

Arguably, AHI does not suffer from any ambivalence of minimality, nor from
several other shortcomings associated to CQA. However, while computing AHI

for definite databases and queries is very simple, it seems to be as complex as
computing CQA in general.

Apart from some background of database logic, we broach, in Section 2, the
only-if halves of predicate completions as a basis for defining causes of negative
answers. Section 3 contains the main definitions for characterizing causes. In
Section 4, we define and discuss how to compute AHI. In Section 5, we compare
AHI to related work. In Section 6, we conclude with an outlook to further work.

2 Preliminaries

In 2.1, we address the foundations of the database logic upon which the remain-
der of the paper is built. In 2.2, we make explicit an implicit part of the database,
viz. ground instances of the only-if halves of predicate definitions, since they may
contribute to causes for explaining negative answers.
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2.1 Background

As a formal framework, we opt for datalog. We denote logical consequence by |=.
We use the abbreviation iff for ‘if and only if’.

We assume a universal language denoted by L that contains a finite universal
domain Lc of constant terms over which each attribute variable in each database
ranges. W.l.o.g., we represent the elements in Lc by natural numbers. By over-
loading, we use = as the identity predicate in L, as the assignment symbol in
substitutions of variables with terms, and as meta-level equality. Since ‘,’ is used
as the conjunction operator between literals in the body of clauses, we use ‘;’ as
the delimiter between elements of sets of clauses.

As in [21], we call each database without any occurrence of negative literals
in the body of its clauses a definite database, and each database without self-
recursive definitions of predicates a hierarchical database. As opposed to definite
databases, which may contain self-recursive definitions of predicates, hierarchical
database clauses may contain negative literals in their body. Unless mentioned
otherwise, each database considered in this paper is assumed to be hierarchical.
Answers that have integrity in definite databases are studied in [6].

We say that a formula F is a conjunctive sentence if F is a universally closed
non-empty conjunction of literals. If all literals in F are positive, we also say
that F is a definite sentence.

For each database D and each conjunctive sentence F , we write D(F ) = true
and say ‘F is true in D’ if F is a logical consequence of the theory associated to
D (e.g., the completion of D, or some standard model theory such as the set of
stable models of D). Otherwise, we write D(F ) = false and say ‘F is false in D’.

Let D be a database and L a ground literal such that D(L) = true. We say
that L is terminal in D if the atom of L does not match the head of any clause
with non-empty body in D. For instance, ∼p(1, 2) is terminal in {p(x, 1)← q(x);
q(1)}. If the predicates in L are partitioned, as usual, into extensional and in-
tensional ones, then each extensional fact is terminal.

We assume, w.l.o.g., that each query is a conjunctive query, possibly with
negative literals, where the predicates in the query are defined by clauses in the
database. Similarly, we assume that each integrity constraint (shortly, constraint)
is a denial, i.e., a clause with empty head and a conjunction of (possibly negative)
literals as its body. Each finite set of constraints is called an integrity theory.

We assume each clause C to be range-restricted, i.e., each variable in C occurs
is a positive literal in the body of C.

We do not flatten databases by materializing the definition of predicates or
by representing the database by some standard model, since such an unfolding of
database clauses with non-empty body may lead to a loss of causal information.

Example 1. The two databases D1 = {p← r; r; s} and D2 = {p← s; r; s} have
the same flattened version: {p; r; s}. That version, however, does not provide to
identify that r is part of the cause of the truth of p in D1 and s is not, nor that
s is part of the cause of the truth of p in D2 and r is not.



Definition 1. For each database D, let D+ denote the set of ground instances
of clauses in D.

2.2 Only-if Halves

In [6], we have defined causes for positive answers in definite databases. For that,
it was sufficient to define a cause very simply as a minimal subset of D+ of which
the answer is a consequence. Now, we are going to deal also with negation.

Since causes are meant to be some sort of explanation, causes of negative
answers and positive consequences thereof need to recur on the negative infor-
mation that is conveyed by the database. Negative consequences of databases
usually are justified by some closure axioms. For negative consequences of definite
databases, the closed world assumption CWA [23] usually is the closure axiom
of choice. For each hierarchical database D, the completion comp(D) (which
coincides with CWA for definite databases without recursion) is the standard
axiomatization for inferring negative consequences from D.

For each predicate p in L, the well-known iff-completion (also called predicate
completion or, in short, completion) of p is defined in [5, 21].

Example 2. Let D = {p(x, 1)← r(x); p(1, y)← s(y, z); s(1, 2); s(2, 3)}. Further,
let us assume that p, r and s are the only predicate symbols in L. Then, comp(D)
consists of the following iff-completions, each of which is a universally closed
sentence with existentially quantified ‘local’ variables that do not occur in the
head of any clause. We omit the universal quantifier prenex for all non-local
variables in the completions below, and also the equality theory associated to
comp(D) that interprets = as identity.

p(x, y) ↔ (y= 1∧ r(x) ∨ x= 1∧∃z(s(y, z)))
∼r(x)

s(x, y) ↔ (x= 1∧ y= 2 ∨ x= 2∧ y= 3)

Definition 2. Let D be a database, p(x1, . . . , xn) an atom in L, p the iff-
completion of p in comp(D), n (n≥ 0) the arity of p, θ a (not necessarily ground)
substitution of the variables x1, . . .,xn and A = p(x1, . . . , xn)θ.
a) The iff-completion A of A is obtained by applying θ to the ∀-quantified
variables in p.
b) The sentence obtained by replacing ↔ in A with → is called the only-if half
of A, and A is called the head of that sentence.
c) Let D− denote the set of only-if halves of all ground atoms in L. Assume
that D− is factorized modulo renamings of variables.

For easy reading, we are going to represent elements of D− in a simplified
form, if possible. It is obtained by replacing equations with their truth value and
applying common equivalence-preserving laws for the composition of subformulas
with true or false. Elements of D− the simplification of which is true are omitted.



Example 3. For D as in Example 2, the only-if half of p is
p(x, y) → (y= 1∧ r(x) ∨ x= 1∧∃z(s(y, z))).

Its instance
p(1, 1) → (1 = 1∧ r(1) ∨ 1 = 1∧∃z(s(1, z))),

obtained by the substitution {x= 1, y= 1}, is obviously equivalent to
p(1, 1) → (true ∧ r(1) ∨ true ∧∃z(s(1, z)))

which can be further simplified to
p(1, 1) → (r(1) ∨ ∃z(s(1, z))).

Similarly, the instance
p(2, 3) → (3 = 1∧ r(2) ∨ 2 = 1∧∃z(s(3, z)))

obtained by the substitution {x= 2, y= 3} of x and y is equivalent to
p(2, 3) → (false ∧ r(2) ∨ false ∧∃z(s(3, z)))

which simplifies to
p(2, 3) → false

which finally is equivalent to
∼p(2, 3).

Similarly, the instance s(2, 3)→ (2 = 1∧ 3 = 2 ∨ 2 = 2∧ 3 = 3) of the only-if half
of the completion of s first simplifies to s(2, 3) → (false ∧ false ∨ true ∧ true),
which is equivalent to s(2, 3) → true, which is equivalent to true.

3 Excerpts, Explanation Bases, Causes

We develop a formal notion of our intuition of ‘cause’ in three steps.
First, we define an ‘excerpt’ of a database D to consist of a ‘positive’ and a

‘negative excerpt’, i.e., a subset of D+ (Definition 1) and, resp., a subset of D−

(Definition 2c).
Second, we define, for each database D and each sentence F that is true in

D, an ‘explanation base’ of F in D to be an excerpt E of D such that F is a
logical consequence of E.

Third, we define a ‘cause’ of F in D to be a minimal explanation base of F
in D. Thus, a cause is an explanation base that is free of superfluous elements.

Similarly, we define the causes of an answer substitution θ of the variables
in a query ←B in D to be the causes of ∀(Bθ), i.e., the universal closure of
Bθ, in D, and the causes of the violation of a denial constraint ←B as the
causes of the answer yes (i.e., the identity substitution) to the query ← violated
in D∪{violated←B}, where violated is a distinguished 0-ary predicate that does
not occur in D.

In section 4, we will then define that an answer to a query in a database
D ‘has integrity’ if it has a cause that does not overlap with any cause of the
violation of any constraint in D.



3.1 Excerpts

Definition 3. Let D be a database and P a set of ground sentences. P is called
a positive excerpt of D if P ⊆D+.

The following result entails that the truth of a definite sentence in a positive
excerpt P of a definite database cannot be non-monotonically changed by adding
possibly non-definite clauses to P .

Theorem 1. For each positive excerpt P of some database and each conjunc-
tive sentence F such that P |=F , F is true in each database of which P is a
positive excerpt.

To prove Theorem 1, it is useful to observe that the premise P |=F entails
that F necessarily is a definite sentence and that there is a definite database P ′

such that P ′⊆P and P ′(F ) = true. Then, Theorem 1 is a direct consequence of
Definition 3 and the monotonicity of definite databases.

As soon as an excerpt is supposed to capture not only positive, but also
negative consequences of some database D, the latter need to be made explicit.
That motivates Definition 4, below, which recurs on ground only-if halves in D−.

Definition 4. Let D be a database and N a set of ground sentences. N is
called a negative excerpt of D if N ⊆D−.

As in Example 2, we assume that the usual equality theory of comp(D) is
associated by default to each negative excerpt.

Now, we are in the position to formalize our intuition of ‘excerpt’.

Definition 5. Let D be a database, P a positive excerpt of D and N a negative
excerpt of D. Then, the tuple E= (P,N) is called an excerpt of D. P is called
the positive part, and N the negative part of E. For each excerpt E, we denote
its positive part by E+, its negative part by E−, and the union of E+ and E−

by Ê. We say that two excerpts E, E′ overlap if Ê ∩ Ê′ 6= ∅.

The generalization of Theorem 1 below follows from Definitions 3 and 5.

Theorem 2. For each excerpt E of some database and each conjunctive sen-
tence F such that Ê |=F , F is true in each database of which E is an excerpt.

A partial order ≤ is defined in a natural way for excerpts, as follows.

Definition 6. Let D be a database and E = (P,N), E′ = (P ′, N ′) be two
excerpts of D. We define that E≤E′ if Ê⊆ Ê′, i.e., if P ⊆P ′ and N ⊆N ′.
We write E<E′ and say E is smaller than E′ if E≤E′ and not E′≤E holds.



3.2 Explanation Bases

An ‘explanation base’ E of the truth of a conjunctive sentence F (shortly, an
‘explanation base’ of F ) in a database D is going to be defined as an excerpt E of
D such that F is a logical consequence of Ê. For definite databases and definite
conjunctive sentences, a similar but simpler definition has been presented in [6].

Example 4. Let D= {p← q; p← r; q; r; s}. Clearly, P1 = {p← q; q} is a positive
excerpt of D that serves to explain why p is true in D. Also P2 = {p← r; r}
is a positive excerpt of D that explains why p is true in D.

It is easy to see that no negative excerpts are needed in order to explain
positive consequences of any definite database D; positive excerpts of D are
sufficient, as illustrated in Example 4. However, for causally explaining negative
consequences or, more generally, consequences of databases with negation in the
body of clauses, positive excerpts are not sufficient.

Indeed, it is not possible to infer any negative logical consequence, such
as sentences represented by negative literals or denials, from any positive ex-
cerpt. Of course, negative consequences can be inferred from the completion of
each positive excerpt, but not each such consequence is necessarily true in the
given database. For instance, all ground negative literals are true in the empty
database, which, by Definition 8, is a positive excerpt of each database D. More-
over, Example 5 below shows that the invariance results expressed in Theorems 1
and 2 cease to hold if negation is allowed in D or F .

Example 5. Consider again D= {p ← q; p← r; q; r; s} and Pi (i = 1, 2) as in
example 4. While each definite sentence that is true in Pi is also true in each
database D′ of which Pi is a positive excerpt, negative consequences of Pi do not
necessarily hold in each such D′. For instance, the conjunctive sentence s∧∼t is
true in D and each Pi, but is false in D′=D∪{t}, although each Pi is a positive
excerpt also of D′. Hence, Pi is not sufficient for explaining p.

The circumstance that positive excerpts are insufficient in general for ex-
plaining negative consequences of hierarchical databases can be seen by an even
simpler example.

Example 6. It is not possible to characterize a cause of ∼q in D= {p} by any
subset of D. In particular, none of the positive excerpts ∅ and {p} of D may
explain ∼q in D since each of them is also a positive excerpt of D′=D∪{q},
while the truth value of ∼q is not the same in D and D′.

In the preceding example, the absence of q in D must be captured explicitly
for explaining why ∼q is true in D. Thus, each explanation base is going to
consist of a positive and a negative excerpt, as defined subsequently.

Definition 7. Let D be a database, E an excerpt of D, and F a conjunctive
sentence such that D(F ) = true. E is called an explanation base of F in D if
Ê |=F.



Example 7.
a) Let D = {p← q, s; q; r} and F =∼p. Clearly, (∅, {p→ q, s; ∼s}) is an
explanation base of F in D. However, neither E1 = ({p← q, s}, {∼s}) nor E2 =
({p← q, s; q}, {∼s}) is an explanation base of F in D, since F is not a logical
consequence of Êi (i= 1, 2). Note that both excerpts Ei of D are also excerpts
of D′ = D ∪ {p← r}, but D′(F ) = false.

b) Let D= {p(x)← q(x),∼r(x); q(1); q(2); r(3)}. Then, D(p(1)) = true, but
p(1) is not explainable by any positive excerpt of D alone, since each subset of
D+ is also a positive excerpt of D′ = {p(x)← q(x),∼r(x); q(1); q(2); r(1)},
but D′(p(1)) = false. However, p(1) can be explained by the excerpt E =
({p(1)← q(1),∼r(1); q(1)}, {∼r(1)}) of D, since Ê |= p(1), and p(1) is indeed
true in each database D′ of which E is an excerpt.

The result below is an immediate consequence of Definition 7 and Theorem 2.

Theorem 3. For each database D, each conjunctive sentence F , each explana-
tion base E of F in D, and each database D′ of which E is an excerpt, it follows
that D′(F ) = true.

Theorem 3 expresses that the truth of each conjunctive sentence F in D that
is explained by some explanation base of F in D is independent of any clause
that is present or absent in D but not captured by E. Note that this result
holds although database negation is non-monotonic. Also the consequences of
Definition 7 in Proposition 1, below, hold in spite of non-monotonicity.

Proposition 1. Let D be a database, F a conjunctive sentence such that
D(F ) = true, and E an explanation base of F in D. Then, the following holds.
a) E+(F ) = true.
b) For each literal L that is terminal in D, ({L}, ∅) is the only explanation
base of L in D if L is positive, and (∅, {L}) is the only explanation base of L in
D if L is negative.
c) For each excerpt E′ of D such that E≤E′, E′ is an explanation base of F
in D.

Part a of Proposition 1 says that F is true in the positive part of each
explanation base E of F in D. However, as we have seen in examples 6 and 7b,
F is not necessarily true of each database of which E+ is a positive excerpt. Yet,
F is true of each database of which E is an excerpt, according to Theorem 3.
Part b says that each ground literal with extensional predicate explains itself.
Part c says that each excerpt which contains an explanation base of F in D
also is an explanation base of F in D. Thus, each explanation base is sufficient
for inferring the explained sentence from it, but its truth does not necessarily
depend on each element in a given explanation base, in general. Such a condition
of necessity is going to be added in the definition of causes, in 3.3.



3.3 Causes

As shown by Proposition 1c, there may be superfluous literals in an explanation
base, i.e., the presence or absence of such literals in an explanation base of some
formula F in some database D is irrelevant for explaining the truth of F in D.

Example 8. Clearly, ({p(1)← r(1, 2); r(1, 2); s(3)}, ∅) is an explanation base of
p(1) in D= {p(x)← r(x, y); r(1, 1); r(1, 2); r(2, 2); s(3)}, but s(3) is superfluous
for explaining p(1) in D.

Thus, a cause of F in D is going to be defined as a minimal explanation base,
without irrelevant elements, as follows.

Definition 8. For each database D, each conjunctive sentence F and each
explanation base E of F in D, E is called a cause of F in D if there is no
explanation base of F in D that is smaller than E.

Thus, a cause of a sentence F in a database D is an explanation base E of
F in D without superfluous clauses, i.e., it is not possible to explain F with any
extract obtained by dropping any element from E.

In Definitions 9–11, Definition 8 is extended to positive and negative answers,
constraint violation and satisfaction, and to integrity violation and satisfaction.

Definition 9. Let D be a database, B a conjunction of literals, θ a substitution
of the variables in B such that ∀(Bθ) = true, and E a cause of ∀(Bθ) in D.
a) If ←B is a query, we say: E is a cause of the answer θ to ←B in D.
b) If ←B is a constraint, we say: E is a cause of the violation of ←B in D.

Definition 10. Let D be a database, B a conjunction of literals, and E a
cause of the answer yes (i.e., the identity substitution) to the query ←∼answer
in D∪{answer←B}, where answer be a 0-ary predicate not occurring in D.
a) If ←B is a query, we say: E is a cause of the answer no to ←B in D.
b) If ←B is a constraint, we say: E is a cause of the satisfaction of ←B in D.

The following results are immediate consequences of Definitions 9 and 10.

Proposition 2. Let D be a database, E an excerpt of D, A a ground atom, B
a conjunction of literals, θ a substitution, and answer a predicate that does not
occur in D.
a) E is a cause of the answer yes (resp., no) to ←A in D iff
E is a cause of the answer no (resp., yes) to ←∼A in D.
b) E is a cause of the answer θ to ←B in D iff
(E+ ∪{answer ←Bθγ | γ is a substitution, Bθγ is ground}, E−) is a cause of
the answer yes to ← answer in D∪{answer ←B}.
c) If ←B is a query, then E is a cause of the answer no to ←B in D iff
(E+, E− ∪{answer →∃B}) is a cause of ∼answer in D∪{answer ←B}.
d) If ←B is a constraint, then E is a cause of the satisfaction of ←B in D iff
(E+, E− ∪{answer →∃B}) is a cause of ∼answer in D∪{answer ←B}.



Definition 11. Let D be a database, IC = {I1, . . ., In} an integrity theory con-
taining n constraints of the form Ii =←Bi (1≤i≤n, n>0), and E a cause of the
answer no (resp., yes) to ←∼answer in D∪{answer←Bi | 1≤i≤n}, where an-
swer be a 0-ary predicate not occurring in D. Then, we say that E is a cause
of the violation of integrity (resp., a cause of the satisfaction of integrity) in
(D, IC ), or simply, a cause of the violation (resp., satisfaction) of IC in D.

Below, Examples 9a, b illustrate Definitions 8 and 9a. Examples 9c, d illus-
trate Definition 9b. Examples 9e, f illustrate Definition 10a. Examples 9g–i illus-
trate Definition 10b; 9i also is an example for Definition 11. Finally, Example 9j
shows that causes of the violation of integrity (Definition 11) may not be com-
posed of the causes of the violation of constraints in that theory (Definition 9b).

Example 9.
a) Let D = {p← q(1, 2); q(2, y)← r(y); r(1)}. The only cause of ∼p in D,
as well as of the answer yes to ←∼p in D, is (∅, {p→ q(1, 2); ∼q(1, 2)}).

b) Let D = {p←∼q; q←∼r; q←∼s}. The two causes of ∼p and of the answer
yes to←∼p inD are ({q←∼r}, {p→∼q; ∼r}) and ({q←∼s}, {p→∼q; ∼s}).

c) Let D = {p← q; p←∼q} and I = ← p. The two causes of the violation of
I in D are ({p←∼q}, {∼q}) and (D, ∅).

d) Let D= {p(x)← r(x); r(1)} and I = ∃x(r(x)∧∼p(x)) be a constraint. Clearly,
D(I) = false (in fact, I is violated in each database that contains p(x)← r(x)).
A denial form of I is ← violated, where violated is defined by {violated←∼q;
q← r(x),∼p(x)} (q is a fresh 0-ary predicate). Thus, the causes of the violation
of I in D are the causes of violated in D′=D∪{violated←∼q; q← r(x),∼p(x)}.
Thus, for each K⊆Lc such that 1∈K, a cause of violated in D′ is given by
({violated←∼q}∪ {p(i)← r(i) | i∈K}, {q→∃x(r(x)∧∼p(x))}∪ {∼r(i) | i/∈K}).
There are no other causes of violated in D′.

e) Let D = {p← q(1, x); q(2, y)← r(y); r(1)}. The only cause of the answer
no to the query ← p in D is (∅, {p→∃x q(1, x)} ∪ {∼q(1, i) | i∈Lc}).

f) Let D= {p← r(x), s(x); r(1); s(2)}. Each cause E of the answer no to← p in
D contains the excerpt E0 = (∅, {p→∃x(r(x)∧s(x)); ∼s(1); ∼r(2)}) of D. Each
E also contains, for each i∈Lc, i> 2, either ∼r(i) or ∼s(i), and nothing else.

g) Let D = {p← q; p←∼q; q} and I =←∼p. The two causes of the satisfaction
of I in D (i.e., of p in D) are ({p← q; q}, ∅) and ({p← q; p←∼q}, ∅).

h) Let D = {r(1), r(3), s(2), s(4)} and I = ← r(x), s(x) a constraint. De-
pending on the extent of Lc, there may be many causes of the satisfaction
of I in D. The positive part of each such cause is empty, and each contains
the excerpt (∅, {violated→∃x (r(x)∧s(x))} ∪ {∼s(1), ∼s(3), ∼r(2), ∼r(4)}) of
D∪{violated← r(x), s(x)}. (Recall that the cause of the satisfaction of I in D
is the cause of ∼violated in D∪{violated← r(x), s(x)}.) Moreover, the negative
part of each cause of the satisfaction of I in D contains, for each i> 4 in Lc,
either ∼r(i) or ∼s(i), and no other element.



i) Let D = {p← q,∼q}, I1 = ← p and I2 = ←∼p. The only cause of the
satisfaction of I1 as well as of the violation of I2 in D is (∅, {p→ q ∧∼q}), which
also is the only cause of the violation of IC = {I1, I2} in D.

j) Let D = {r(1, 1); s(1)}, I1 = ← r(x, x), I2 = ← r(x, y), s(y) and IC =
{I1; I2}. The only cause of the violation of IC in D is ({r(1, 1)}, ∅), which is
smaller than the single cause (D, ∅) of the violation of I2 in D.

Note that examples 9 c, g, i feature constraints and an integrity theory that,
together with the rules in the database, are either tautological (i.e., always sat-
isfied) or contradictory (i.e., always violated), no matter which facts are in the
database. Interestingly, some of the causes in the mentioned examples are not
devoid of database facts, as one could suspect, since the truth of tautological sat-
isfaction and the falsity of contradictory violation is independent of the presence
or absence of facts in the database. The use of facts for explaining the violation
of contradictory constraints also means that our concept of causes is applicable
even in databases with unsatisfiable integrity theories, as opposed to CQA.

4 Defining and Computing AHI

In 4.1, we define that an answer to a query in a database D ‘has integrity’ if one
of its causes does not overlap with any cause of the violation of integrity in D. In
4.2, we show how to compute explanation bases and causes. In 4.3, we address
the problem of computing sufficiently many causes for checking if answers have
integrity.

4.1 Defining AHI

Definition 12. Let D be a database, IC an integrity theory, ←B a query and
α an answer to ←B in D. (i.e., α is either a substitution or the answer no).

a) We say that α has weak integrity in (D, IC ) if there is a cause of the answer
in D that does not overlap with any cause of the violation of IC in D.

b) We say that α has strong integrity if there is a cause of the answer in D that
does not overlap with any cause of the violation of any constraint in IC in D.

Example 10. Consider D as in Example 9f and let ←∼p be a constraint. Ac-
cording to Proposition 2, the causes of its violation in D are the same as the
causes of the answer no to the query ← p. From Definition 12, it follows that
the answers x= 1 and x= 2 to the queries ← r(x) and, resp., ← s(x) both have
strong integrity, while the answer no to ← p does not even have weak integrity.

It is easy to see that an answer has weak integrity if it has strong integrity.
Thus, we may say that an answer does not have integrity if it does not have
weak integrity. However, weak and strong integrity of answers according to Def-
inition 12 are not equivalent, as shown by the following example.



Example 11. Let D = {r(1, 1); s(1)}, IC = {← r(x, x); ← r(x, y), s(y)}. The
answer x= 1 to the query ← s(x) in D has weak integrity, since its only cause
({s(1)}, ∅) does not overlap with the only cause ({r(1, 1)}, ∅) of the violation of
IC in D. However, it does not have strong integrity, since ({s(1)}, ∅) overlaps
with the cause ({r(1, 1); s(1)}, ∅) of the violation of the constraint← r(x, y), s(y).
The answer {x=1, y=1} to ← r(x, y) in D does not have integrity, since its only
cause ({r(1, 1)}, ∅) overlaps with some cause of the violation of IC in D (in fact,
it is identical with the only cause of the violation of IC in D).

Example 11 illustrates the differentiation of weak and strong integrity in Def-
inition 12. In fact, a distinction between different grades of integrity is desirable,
since, for instance, the violation of ← r(x, y), s(y), which is caused, among oth-
ers, by the presence of s(1) in D, may cast some doubt on the integrity of the
answer x= 1 to the query ← s(x) in D. Even more refined differentiations of
the integrity of answers are possible, as shown in [6] for definite databases and
conjunctive queries without negative literals.

4.2 Computing Explanations and Causes

As seen in [6], SLD resolution [18, 21] provides an easy way to compute causes
of positive answers and integrity violation of definite queries and denials in def-
inite databases. Each cause of each answer corresponds to a refutation R that
computes the answer: input clauses of R, instantiated with the substitution
computed by R, are the elements of the cause. Hence, AHI can be computed by
comparing causes drawn from refutations with causes of integrity violation. If
the latter have been computed ahead of query time, then checking for overlaps
can already be done while the answer is computed.

Similarly, for each SLDNF refutation R and each finitely failed SLDNF tree
T of some query in a database, an explanation for the answer computed by R
or, resp., T can be obtained as described below in Definition 14. To prepare this
definition, we first recall some basic SLDNF issues from [21] and ask the reader
to agree on some denotations.

Let D be a database and←B a query. An SLDNF computation of D∪{←B}
is either an SLDNF refutation or a finitely failed tree of D∪{←B}. Each SLDNF

computation involves one top-rank computation and possibly several subsidiary
computations of lower rank, spawned by the selection of ground negative literals
in goals of derivations.

It is easy to see that no finitely failed tree of rank n-1 that is subsidiary to
some finitely failed tree T of rank n could contribute anything to explain the an-
swer no computed by T . Thus, such subsidiary trees are ignored in Definition 13.
It characterizes the set of computations involved in an SLDNF computation S
that contribute to an explanation of the answer to the root of S.

Definition 13. Let S be an SLDNF computation of rank n (n≥ 0).
a) The set Sr of explanatory refutations of S consists of each refutation R of rank
k involved in S such that either k=n and R=S, or k <n and R is subsidiary
to a tree in St of rank k + 1.



b) The set St of explanatory trees of S consists of each finitely failed tree T
of rank k involved in S such that either k=n and T =S, or k <n and T is
subsidiary to a refutation in Sr of rank k + 1.

Note that the mutual recursion of parts a and b in Definition 13 does not pose
any problem since D is hierarchical, i.e., the rank of each computation is bounded
by the rank of the top-rank computation, and the rank of each subsidiary com-
putation decreases iteratively until the lowest rank without subsidiary inferences
is reached.

An SLDNF computation S is called fair if, in each tree T ∈St and each goal
G in T , one of the most recently introduced literals is selected in G.

For each refutation R, let θR denote the substitution computed by R. The
projection of θR to the variables in the root of R is the computed answer of R. For
each database D, each query ←B and each finitely failed tree T of D∪{←B},
the computed answer of T is no.

For each clause C, each only-if half H and each substitution θ, let Cθ, resp.,
Hθ denote the formula obtained by applying θ to the ∀-quantified variables in
C or, resp., H. For each only-if half H, let h(H) denote the head of H.

Now, we are in the position to define computed explanations.

Definition 14. For each SLDNF computation S, the computed explanation ES

of S consists of
E+

S = {CθR | C ∈D, R∈Sr, C is input clause in R}
and

E−S = {Hγ | Hγ ∈D−, γ is a ground substitution,
h(H) is selected in some node of some tree in St}.

Thus, E+
S is obtained by instantiating the positive input clauses of each

refutation R∈Sr with θR. E−S is obtained by collecting the only-if-halves of all
ground instances of each positive literal selected in any node of any tree in St.

Example 12. Let D = {p(x)← q(x, x); q(1, 2); q(2, 3)}. The answer no to
the query ← p(x) is computed by a finitely failed tree consisting of a single
branch rooted at← p(x), which is reduced to the goal← q(x, x), which fails. The
only-if halves of the two selected positive literals in the tree are p(x)→ q(x, x)
and q(x, x) → (x=1∧x=2 ∨ x=2∧x=3). The latter obviously is equivalent to
∼q(x, x). Thus, (∅, {p(i)→ q(i, i) | i∈Lc}∪ {∼q(i, i) | i∈Lc}) is the computed
explanation of the tree, which in fact is also a cause of ∼p(x) in D.

Theorem 4 is easily inferred from Definition 14.

Theorem 4. For each database D, each query ←B and each SLDNF compu-
tation S of D∪{←B}, the computed explanation of S is an explanation base
of the answer computed by S. If St = ∅, then the computed explanation of S is
a cause of the answer computed by S.

The following example illustrates that explanations computed by finitely
failed SLDNF trees are not necessarily causes, since they may not be minimal
explanation bases.



Example 13. Let D= {p← q, r; r← s}. Depending on the selection function,
there are three SLDNF trees of D∪{← p}. In each, the goal ← q, r is derived
from the root. Then, if q is selected, the computation terminates with failure. If,
instead, r is selected, the derived goal ← q, s may fail in two ways, after selecting
either q or s. Hence, depending on the selection, precisely one of the following
three explanation bases (∅, {p→ q ∧ r; ∼q}), (∅, {p→ q ∧ r; r→ s; ∼q}),
(∅, {p→ q ∧ r; r→ s; ∼s}) can be drawn from the respective SLDNF tree. Only
the first and the last of these explanation bases are causes of the answer no to
the query← p in D, while the middle one is not because it properly contains the
first one and thus is not minimal.

If, in Example 13, a fair selection policy is employed, the computation of a
non-minimal explanation is avoided. However, fair selection alone is not enough,
in general, as shown by the following example.

Example 14. Let D = {p← q(x), r; q(1)}. Both left-to-right and right-to-left
selection is fair for computing the answer no to ← p in D. However, only the
latter yields a minimal explanation, while the former computes the explanation
(∅, {p→∃x(q(x)∧ r)} ∪ {∼q(i) | i∈Lc, i 6= 1} ∪ {∼r}), in which each ∼q(i) is
superfluous.

Thus, each explanation E computed by a SLDNF computation must eventu-
ally be minimized, by checking if any proper subset of E satisfies Definition 8.
Also, selection strategies such as those proposed in [9] can be used to obtain
finitely failed trees with minimal explanations.

4.3 Computing Causes for AHI

As stated by Theorem 4, each finitely failed SLDNF tree computes a single expla-
nation base, from which a cause for explaining its root can be drawn. However,
Definition 12 entails that all causes of violations may be needed for deciding
if the answer no to a given query has integrity or not. Thus, SLDNF computa-
tions may be incomplete for computing AHI. That is illustrated in the following
continuation of Example 13.

Example 15. Depending on whether q or r is selected in the goal ← q, r, the
cause drawn from a fair finitely failed SLDNF tree of D∪{← p} is either E1 =
(∅, {p→ q ∧ r; ∼q} or E2 = (∅, {p→ q ∧ r; r→ s; ∼s}. Now, let ←∼q be a
constraint. Clearly, the cause (∅, {∼q}) of its violation in D overlaps with E1 but
not with E2. Hence, each SLDNF computation of D∪{← p} that selects literals
from left to right fails to detect that the answer no to ← p in D has integrity.

The incompleteness of SLDNF for computing all minimal explanations of
answers had already been identified in [9]. A solution similar to that in [9] can
be applied for attaining completeness. Essentially, it consists in fairly selecting
and trying to resolve not just one, but several literals in each goal derived from
the root, such that several finitely failed trees are obtained. In Example 15,



for instance, both q and r have to be selected and processed for obtaining two
finitely failed SLDNF trees, from which the two causes E1 and E2 can be drawn.

At worst, each fairly selectable literal in each goal of an explanatory finitely
failed SLDNF tree may have to be selected and attempted to be resolved, when
aiming to draw sufficiently many causes from SLDNF computations, for comput-
ing AHI. Thus, the number of explanatory finitely failed trees to be built may
grow linearly with the number of selectable literals, polynomially with the rank
of computations and exponentially with the depth of explanatory finitely failed
trees. This indicates a worst case complexity of computing AHI like that of CQA.

Example 16, a continuation of Example 9f , shows that not each cause can be
drawn from the set of explanatory SLDNF computations obtained by selecting
and resolving (if possible) each literal in the goals of explanatory finitely failed
trees.

Example 16. Clearly, two SLDNF trees are built when selecting and resolving
both r(x) and s(x) in the goal← r(x), s(x) derived from← p. Using input clauses
r(1) or, resp., s(2), the respective resolvents← s(1) and← r(2) are derived. Each
of them fails when selected and processed, and so does the respective tree. From
the two trees, E1 = (∅, {p→∃x(r(x), s(x))} ∪ {∼r(i) | i∈Lc, i 6= 1} ∪ {∼s(1)})
and, resp., E2 = (∅, {p→∃x(r(x), s(x))} ∪ {∼s(i) | i∈Lc, i 6= 2} ∪ {∼r(2)})
can be drawn as a cause of the answer no of D∪{← p}.

Depending on Lc, many more causes of that answer may exist. For instance,
E = (∅, {p→∃x(r(x), s(x))} ∪ {∼r(i) | i∈Lc, i /∈{1; 3}} ∪ {∼s(1); ∼s(3)})
cannot be drawn from any of the two trees above, according to Definition 13.
However, E1 and E2 are sufficient for determining if the computed answer has
integrity or not, since each possible overlap with any cause of the answer no to
← p in D contains at least one of the elements in Ê1 ∪ Ê2.

For instance, consider the constraint I =←∼r(3). The cause of its violation
in D is (∅, {∼r(3)}). That overlaps with E1, but not with E2. Hence, the two
trees of D∪{← p} obtained as described above yield that the answer no to ← p
has integrity in (D, {I}).

The preceding example illustrates that the number of causes for explaining
an answer may far exceed the number of causes that can be drawn from SLDNF

computations, even if not just one, but several finitely failed trees are built for
obtaining sufficiently many causes of negative answers. Nevertheless, the follow-
ing lemma can be shown, by induction on the rank of computations. The symbol
α below may either stand for some answer substitution or the answer no. In
words, the lemma states that each element in each cause is contained in some
cause drawn from a computed explanation.

Lemma For each database D, each query ←B, each answer α to ←B in
D, each cause E of α and each e∈ Ê, there is an SLDNF computation S of
D∪{←B} with computed answer α such that e∈ Ê′, where Ê′ is a cause drawn
from ÊS .



From that, the subsequent result about the soundness and completeness of
computing AHI with SLDNF can be inferred.

Theorem 5. Let D be a database, IC an integrity theory, ←B a query, and
α an answer to ←B in D.
a) α has weak integrity iff there is an SLDNF computation S of D∪{←B} with
computed answer α and a cause E of α drawn from S that does not overlap with
any cause drawn from any SLDNF computation of the violation of IC in D.
b) α has strong integrity iff there is an SLDNF computation S of D∪{←B} with
computed answer α and a cause E of α drawn from S that does not overlap with
any cause drawn from any SLDNF computation of the violation of any constraint
I ∈ IC in D.

5 Related Work

In 5.1, we take first steps of comparing AHI with CQA. In 5.2, we relate belief
revision, knowledge assimilation and abduction to AHI. In 5.3, we address other
related work.

5.1 AHI vs CQA

There is yet no comprehensive analysis of commonalities and differences between
AHI and CQA. However, each of the following paragraphs identifies a point in
favour of answers that have integrity.

The simplicity of the basic definitions of AHI appears to be on a par with the
simplicity of the basic definitions of CQA. However, the minimality of explana-
tion bases required in Definition 8 does not suffer from the ambivalence of the
minimality of repairs in CQA.

As seen in 4.1, Definition 12 provides for a differentiation of various degrees
of consistency. Such a differentiation is not provided by CQA. For instance, recall
that, in Example 11, the answer x= 1 to the query ← s(x) in D has weak but
not strong integrity. According to CQA, the same answer also is a consistent
answer to the same query, since the only minimal repair of the violation of IC
is D′ = {s(1)}, obtained by deleting r(1, 1) from D. However, CQA does not
distinguish different grades of the consistency of answers, such as the distinction
of weak and strong integrity in Definition 12. In fact, some doubts may be raised
on the consistency of the answer y= 1 to the query ← s(y) in D, as claimed
by CQA, since the violation of the constraint ← r(x, y), s(y) is caused, among
others, by the presence of s(1) in D.

Inconsistency can be measured in accordance with AHI, simply by counting
causes, or by comparing sets of causes of the violation of constraints. A similar
way to measure inconsistency in accordance with CQA could be to quantify
the minimality of repairs, but that appears to be less simple, again due to the
multiplicity of notions of minimality.



By definition, an answer has integrity only if it is true in the given database.
More precisely, if, for an answer substitution θ of a query ←B in a database D,
∀(Bθ) has integrity in D, then D(∀(Bθ)) = true. Similarly, if the answer no to
←B in D has integrity, then D(∀(∼B)) = true. As opposed to that, consistent
answers according to CQA may be false in the given database. For instance, let
D= {p} be a database and IC = {← p} an integrity theory. Clearly, the answer
yes to the query← p does not have integrity and is not consistent. However, this
answer as well as the information about its lack of integrity is given only by AHI,
not by CQA. In fact, the answer to ← p in D given by CQA is no, since the only
minimal repair is the empty database. Arguably, the information conveyed by
the answer according to AHI (that p is true in D but does not have integrity) is
more useful than the answer no according to CQA.

Answers may or may not have integrity in databases with unsatisfiable in-
tegrity theories. As opposed to that, each answer is consistent by definition of
CQA if integrity is unsatisfiable. That is because each answer is vacuously true
in each repair if there is no repair. For instance, let D= {r(a), s(b, b)} and
IC = {∃ s(x, x); ← s(x, y)}, which is clearly unsatisfiable. Rewriting ∃ s(x, x) in
denial form yields IC ′= {←∼q; ← s(x, y)} and D′=D∪{q← s(x, x)}. The an-
swer {x=a} to the query ← r(x) in D′ has integrity, while the answer {x=b} to
← s(x, x) does not. Yet, both answers are consistent by the definition of CQA.

CQA does not consider that the integrity theory, rather than the database
could be in need of a repair, while AHI is impartial wrt both possibilities. For
example, letD= {q(1, 2, 3, 1), q(2, 3, 2, 4), q(2, 1, 2, 3)}, IC = {← q(x, y, x, z)} and
← q(2, x, y, z) be a query. Clearly, none of the two answers given to the query
has integrity in (D, IC ), since their respective cause coincides with one of the
two causes ({q(2, 3, 2, 4)}, ∅), ({q(2, 1, 2, 3)}, ∅) of the violation of IC in D. The
answer to the same query according to CQA is no, since the only minimal repair of
D is to delete the two tuples given as answers according to AHI. However, it might
well be that IC , rather than D is in need of a repair (which can of course only
be determined if the particular ‘real-world’ meanings of q and IC are taken into
account). For instance, a reasonable repair of IC could be IC ′= {← q(x, y, z, y)}.
For any change of IC , all answers given to queries in D according to AHI remain
the same, while answers given by CQA may change completely, such as they do
in the preceding example.

Causes for AHI in definite and in hierarchical databases can be computed
by SLD, resp., SLDNF derivations and only-if halves of predicate completions,
i.e., by conventional query answering procedures and, for hierarchical databases,
a well-known logic programming concept. As opposed to that, each of the four
known approaches to compute CQA [4] appears to be more complicated or more
unusual: One uses techniques from semantic query optimization [3]. Two others
compute CQA from compact representations of repairs, either by conflict graphs
or by extended disjunctive logic programs. Finally, repairs can be computed
explicitly in order to decide whether an answer is true in each repair.



5.2 Repairing, Belief Revision, Knowledge Assimilation, Abduction

AHI and CQA tolerate inconsistency, since extant integrity violations may persist
after the query has been answered. A less tolerant way to query a database D
that is inconsistent with its integrity theory IC is to actually repair D, i.e., to
minimally update D such that the resulting database satisfies IC , and then query
that database. In the context of knowledge bases, repairing is often called ‘belief
revision’ [25]. However, the minimality of repairs suffers from the ambivalence
already mentioned for CQA. Moreover, repairs usually are not unique, i.e. an
answer given with regard to a particular repair may not be a correct answer
with regard to some other repair. AHI does not suffer from such ambiguities.

A field closely related to repairing and belief revision is knowledge assimi-
lation (abbr. KA) [8]. For a database D, a query R (sometimes called ‘update
request’) and an integrity theory IC that is satisfied in D, KA is asked to com-
pute minimal updates such that the updated database satisfies IC and R is true
in it. View updating is a well-known special case of KA. Again, such updates are
not unique in general, and their minimality is ambivalent.

Abduction is a technique to compute KA [16]. Several abductive resolution
procedures, e.g., as described in [17, 24, 14, 13, 22], are able to compute answers
in a given database D, together with a set H of hypothesized facts, such that
D∪H is consistent with regard to a given integrity theory. The hypothesized
facts of abductively computed answers can also be interpreted as partial repairs
of extant integrity violations. (For a definition and discussion of partial repairs,
see [10].) We conjecture that the answers computed by the cited procedures in
the partially repaired databases have integrity. Moreover, a striking similarity of
AHI and the abductive (C)IFF procedures in [14, 22] is that each of them makes
explicit use of only-if halves of predicate completions.

5.3 Other related work

In [15], negative database consequences such as those that can be inferred from
iff-completions are made explicit for inconsistency-tolerant reasoning (and, in
particular, query answering) with explicit representations of the database theory,
including its integrity constraints. The formalizations in [15] have to sacrifice
several classical inference rules that are cornerstones of the logic framework
assumed in this paper, such as modus ponens and reductio ad absurdum.

Lots of other work is going on in terms of inconsistency-tolerant and paracon-
sistent reasoning, which all is somehow related to CQA, AHI or avoiding the infer-
ence of arbitrary answers according to the ex contradictione quodlibet principle.
For instance, inconsistency tolerance is discussed broadly in [2]. Another example
is inconsistency-tolerant integrity checking (abbr. ITIC), which has been related
to procuring the improvement of answer consistency in databases with extant
integrity violations in [10]. As outlined in [7, 6], a new approach to inconsistency-
tolerant integrity checking is possible, based on the concept of causes as described
in 3.3. As already indicted in 5.1, causes can also be used to measure inconsis-
tency, similar to quantifying inconsistency by counting the number of violated
instances of constraints, as done in [11].



There is a millenia-old tradition of philosophical treatment of causality. More
recently, it has come to bear on informatics and AI, mostly in the form of prob-
abilistic or counterfactual reasoning, as witnessed by a growing number of con-
gresses about computing and philosophy. Those treatments of causality mostly
go beyond the framework of causes as in this paper, which is confined by the
comparatively simple theory of databases, the semantics of which is given by
nothing but the completions of predicates.

6 Conclusion

This paper generalizes the concept of answers that have integrity (AHI) as pre-
sented in [6]. AHI distinguishes useful from doubtful answers: an answer is doubt-
ful, i.e., does not have integrity, iff its causes overlap with the causes of integrity
violation in the given state.

The contribution of this paper is twofold. Firstly, the definition of causes in
[6] has been extended to negative answers, by taking the only-if halves of com-
pleted predicate definitions into account. That extension permits to apply the
simple conceptual idea of answers that have integrity also to queries, constraints
and databases involving datalog negation. Secondly, the computation of positive
answers that have integrity by SLD, for definite queries in definite databases,
has been generalized by suitable extensions of SLDNF to positive and negative
answers for first-order queries in hierarchical databases.

In upcoming work, we intend to investigate the conjecture that it may suffice
to check overlaps of terminal literals in causes for deciding if an answer has
integrity or not. In [7], we have shown that this conjecture holds for positive
answers to queries and constraints in definite databases.

Also, ways to avoid redundant multiple selection of literals in goal nodes
is an important issue to be explored, in order to limit the cost of cause-of-
failure computations. For instance, consider D= {q(1), r(1), s(2)}. Four of the six
finitely failed SLDNF trees in the cause computation of D∪{← q(x), r(x), s(x)}
yield the same cause of the answer no to the given query, i.e., three of them are
redundant. This redundancy can be avoided without sacrificing completeness by,
e.g., never selecting any ground literal that is true in D, in any cause-of-failure
computation.

Moreover, we intend to look into possibilities of computing AHI by other
procedures for query evaluation, such as abductive logic programming [12, 22] or
answer set computing [20].

Moreover, it should be interesting to look into explanation bases and causes
for a fresh take on explanations in expert systems [19].
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