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Abstract Inverse sequential simulation (iSS) is a new inverse modeling approach for the characterization
of hydraulic conductivity fields based on sequential simulation. It is described and demonstrated in a syn-
thetic aquifer with non-Gaussian spatial features, and compared against the normal-score ensemble Kalman
filter (NS-EnKF). The new approach uses the sequential simulation paradigm to generate realizations bor-
rowing from the ensemble Kalman filter the idea of using the experimental nonstationary cross-covariance
between conductivities and piezometric heads computed on an ensemble of realizations. The resulting
approach is fully capable of retrieving the non-Gaussian patterns of the reference field after conditioning on
the piezometric heads with results comparable of those obtained by the NS-EnKF.

1. Introduction

The quality of a groundwater model, particularly when studying the fate and transport of contaminants,
relies very much on the quality of the characterization of hydraulic conductivities. Many studies have shown
that, unless the heterogeneity of hydraulic conductivity is well captured in the groundwater model, the
resulting transport predictions could be totally wrong [Sudicky, 1986; G�omez-Hern�andez and Wen, 1994;
Eggleston and Rojstaczer, 1998; Li et al., 2012]; for instance, G�omez-Hern�andez and Wen [1994] show the high
impact that not properly accounting for heterogeneity has in transport predictions. But not only it is impor-
tant to account for heterogeneity, as important is using the most adequate heterogeneity model. For many
years, the only model considered for the spatial variability of hydraulic conductivity was the mutiGaussian
model of log-conductivity, until it was recognized that the spatial patterns often observed in the subsurface
(i.e., channels, permeability barriers, high conductivity streaks) were better modeled using alternatives to
the multiGaussian model [Wen and G�omez-Hern�andez, 1998; Fu and G�omez-Hern�andez, 2009; G�omez-Hern�an-
dez and Wen, 1998], and, in addition, many natural heterogeneity patterns are simply unsuitable for a multi-
Gaussian modeling. Since then, there have been many attempts to define non-multiGaussian random
functions capable of capturing the spatial features difficult to capture by the multiGaussian ones, and then,
to build algorithms for the spatial representation of hydraulic conductivity according to these new random
function models [Carle and Fogg, 1996; Strebelle, 2002; Mariethoz et al., 2010; Haslauer et al., 2012].

Probably the most successful approach for the generation of realistic hydraulic conductivities is the one
based on training images and multiple-point statistics [Guardiano and Srivastava, 1993; Str�ebelle, 2000,
2002]. The next challenge was how to use these random functions in inverse modeling, that is, how to gen-
erate realizations of hydraulic conductivity that not only are consistent with the training image and condi-
tional to the local measurements, but also that are inverse conditioned onto observed measurements of the
state variables, such as piezometric head or solute concentration. Inverse modeling in hydrogeology and
petroleum engineering has a long tradition [see Zhou et al., 2014 for a review] but, again, most inverse mod-
els rely on the assumption that hydraulic conductivity follows a multiGaussian model. Recent attempts to
couple inverse approaches and non-multiGaussian random functions have been attempted by Sun et al.
[2009]; Sarma and Chen [2009]; Li et al. [2009]; Alcolea and Renard [2010]; Jafarpour and Khodabakhshi
[2011]; Hu et al. [2013]; Zhou et al. [2011, 2012a]; and Attia and Sandu [2014], among others, with different
degrees of success. Most of these approaches are extensions of algorithms that work for multiGaussian
fields.
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In this paper, we propose a completely new algorithm that is the result of blending some of the ideas
underlying multivariate Gaussian sequential simulation [G�omez-Hern�andez and Journel, 1993] and ensemble
Kalman filtering [Evensen, 2003]. We have called this new algorithm inverse sequential simulation (iSS). The
iSS algorithm aims at the characterization of hydraulic conductivity from observations of hydraulic conduc-
tivity and piezometric heads, and has been built to work for non-multiGaussian fields. As a benchmark, the
algorithm will be compared with the normal-score ensemble Kalman filter (NS-EnKF) [Zhou et al., 2011],
which is one of the algorithms that best performs for non-multiGaussian inverse modeling. The paper con-
tinues with a description of the algorithm, followed by the comparison between NS-EnKF and iSS on a syn-
thetic example, and ends with some discussion and conclusions.

2. Methodology

The new algorithm is a breed of sequential simulation and the normal-score ensemble Kalman filter. First,
we borrow, from the ensemble Kalman filter (EnKF) [van Loon et al., 2000; Evensen, 2003; Bl€oschl et al., 2008;
Karri et al., 2014], the idea of using an ensemble of realizations to compute an experimental, nonstationary
conditional cross-covariance between conductivities and piezometric heads, and also experimental nonsta-
tionary conditional autocovariances of both conductivity and piezometric head. Second, we borrow, from
the normal-score ensemble Kalman filter [Zhou et al., 2011], the idea of performing a normal-score transfor-
mation and thus work with a marginally Gaussian multivariate random function. We are fully aware that a
normal-score transformation only produces marginally distributed Gaussian variables, never multiGaussian
ones; however, it has been shown in the NS-EnKF that this transformation is quite effective in capturing
non-Gaussian patterns [Zhou et al., 2011, 2012b; Li et al., 2011; Xu et al., 2013]. We do not claim that higher-
order moments, after the normal-score transform, will correspond to those of a multiGaussian distribution;
what we claim, based on our experience working with the NS-EnKF, is that, when applying a method that is
optimal for multiGaussian variables to non-multiGaussian ones, the results are better if a normal-score trans-
form is applied than if not. And third, we use standard multivariate sequential Gaussian conditional simula-
tion [G�omez-Hern�andez and Journel, 1993; Friedel and Iwashita, 2013] to generate realizations of the normal
scores of conductivity conditioned to the normal scores of conductivity and to the piezometric head meas-
urements. The state equation relating conductivity and piezometric heads, with its initial conditions, bound-
ary conditions, and forcing terms, is indirectly included in the sequential simulation through the
experimental conditional autocovariance and cross-covariance that are computed on the ensemble of real-
izations. When and if new head measurements are taken, the generated ensemble of conductivity realiza-
tions are used to forecast an ensemble of head realizations, new experimental covariances are computed,
and a new ensemble of conductivity realizations is generated conditioned to the new head measurements.

The iSS method has been developed for its application under transient conditions, with a regeneration of
the ensemble of conductivity fields each time new piezometric heads are measured. Consider that piezo-
metric heads are collected sequentially in time. The method starts with an ensemble of conductivity fields
generated according to a given random function model—for the generation of this initial set, no informa-
tion about piezometric heads is used, this initial set should be conditional to conductivity measurements
and other soft information such as geophysical data, when available. Then, for each time step for which pie-
zometric heads are observed, the algorithm carries out the following: (i) an ensemble of piezometric head
realizations are predicted on the basis of the last ensemble of conductivity fields by means of a numerical
flow model, (ii) the conductivity and head autocovariance and cross-covariance are computed from the
ensemble of realizations—these covariances will be nonstationary, (iii) using a sequential multivariate simu-
lation algorithm, a new ensemble of conductivity fields conditioned to the conductivity data, if any, and to
the measured piezometric heads is generated. A flowchart of the iSS is included in Figure 1 and its imple-
mentation details are explained next:

Consider that there are Ne realizations in the ensemble, and that each realization is discretized into N nodes.

1. Initialization step: We need to start from an ensemble of conductivity fields. This ensemble should be gener-
ated with the algorithm that is most adequate for the type of heterogeneity that describes the conductivity
spatial variability. This ensemble can be made conditional to hard measurements of conductivity, and also to
soft measurements such as those derived from geophysics. Measurement errors are easily accounted for by
simply adding a random error (drawn from the measurement error distribution function) to each hard
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measurement prior to using it for the
generation of each realization of the
ensemble. For the purpose of illustra-
tion, we choose a formation with
channel-like features that introduce a
high connectivity of the facies in the
direction of flow. We select this type of
heterogeneity because it is well known
that it is difficult to capture by
multiGaussian-based approaches. In our
synthetic case, the initial ensemble of
realizations is generated in two steps. In
the first step, an ensemble of binary
facies realizations is constructed using
single normal equation simulation
Str�ebelle [2000], a very efficient imple-
mentation of sequential normal-
equation simulation, first developed by
Guardiano and Srivastava [1993] and
improved by Str�ebelle [2000]. Then,
each facies (channel/sand and non-
channel/shale) is independently popu-
lated with log-conductivity values using
sequential Gaussian simulation; the
conductivities of each facies have very
distinct mean values, ensuring that
each realization has a clearly bimodal
distribution, with the highest-value
mode in the channel elements and the
lowest-value mode in the nonchannel
elements. The specific parameters used
for the generation of the initial ensem-
ble of log-conductivities are described
in the next section. At the end of this
step, there is an ensemble of hydraulic
conductivity fields that will be denoted
by K0, with K 0

i;j being the conductivity
for realization i at node j. The superin-
dex is used for the time coordinate and
zero indicates that these are the initial

conductivity estimates. For notation purposes, we will use Ki,� to denote realization i of the ensemble, and K,j

to denote the set of Ne conductivity values collected from all realizations at node j. During the initialization
step, it is also necessary to specify the initial piezometric heads H0, as well as boundary conditions and forc-
ing terms necessary to solve the transient groundwater flow equation.

2. Forecasting step: In this step, the simulated piezometric heads ðHt11Þ are calculated for the (t 1 1)th time
step based on the piezometric heads and the hydraulic conductivity estimates from the tth time step
using a transient flow model:

Ht11
i;� 5wðHt

i;�; K t
i;�Þ; i51; . . . ;Ne: (1)

The groundwater flow equation, represented by wð�Þ has to be solved independently for each realization
of the ensemble.

3. Normal-score transformation step: A normal-score transformation will be applied to all the conductivity
values of all the realizations:

Figure 1. Flowchart of the iSS. For the flowchart of the NS-EnKF, replace the
bracketed processes for the floating ones in brackets on the right.
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~K t
i;j 5G21ðFjðK t

i;jÞÞ; i51; . . . ;Ne;

j51; . . . ;N:
(2)

where ~K
t

and Kt are the normal-
score transformed hydraulic conduc-
tivity vector and the hydraulic con-
ductivity vector estimates at time
step t, respectively; F(�) is a vectorial
normal-score transform function,
with N components, one for each
location. The normal-score transform
function is, generally, a nonparamet-
ric function that is built as described
in Appendix A. After the normal-
score transform of all the elements
in all realizations, the transformed
ensemble of normal-score conduc-
tivity realizations will follow a mar-
ginal Gaussian distribution with zero
mean and unit variance.

4. Covariance calculation: As it will be
explained later, for the updating step, the normal-scored conductivity autocovariance and the cross-
covariance between normal-scored conductivity and piezometric heads will be needed. These covarian-
ces are nonstationary and need to be computed accounting for the locations of each variable. The proce-
dure is described next. First consider the augmented variable vector

S5
~K

H

" #
(3)

with Ne realizations of 2N variables, the covariance between any two variables S.,k and S.,l is given by

Ck;l5
1

Ne

XNe

m51

ðSm;k2hS:;kiÞðSm;l2hS:;liÞ k51; . . . ; 2N; l51; . . . ; 2N (4)

with

hS:;�i5
1

Ne

XNe

m51

Sm;� (5)

Since piezometric heads change in
time, and hydraulic conductivities
are also updated in time, the covari-
ance is recalculated at each time
step and, therefore, it is time-
dependent. The covariance matrix C
contains 2N 3 2N elements; how-
ever, it will be explained later that
not all elements have to be com-
puted, and the effective number of
elements that must be calculated is
2N32N0, with N0 being one or two
orders of magnitude smaller than N.

5. Sampling step: Piezometric heads
are sampled at a few locations Nh at
time step t 1 1

Figure 2. Location of the conditional data. The red nodes denote shale and the
green nodes denote sand.

Figure 3. Training image used to generate the ensemble of binary facies
realizations.
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6. Update step: In this step, a new ensemble of ~K is generated conditioned to the hard conductivity meas-
urements and to the just sampled piezometric heads. Sequential multivariate Gaussian simulation is used
as outlined next; the reader interested in knowing all the implementation details of the algorithm is
referred to G�omez-Hern�andez and Journel [1993], Deutsch and Journel [1998], and Delbari et al. [2009]. The
steps of the sequential simulation algorithm to generate realization ~Ki;: (the superindex t 1 1 is omitted
for clarity):

1.1. Assign the normal-score transformed values of the conditioning conductivity measurements to the
closest nodes in the grid.

1.2. Assign the observed piezometric heads to the closest nodes in the grid.

1.3. Generate a random path through all N grid nodes to be simulated.

1.4. Visit a node along the random path. At the node location, search, within a predefined search neigh-
borhood, all ~K values already in the grid, and all observed piezometric heads. Then, compute the con-
ditional distribution function given the ~K and H data found. Under the assumption of multivariate
Gaussianity, this conditional distribution function is Gaussian and its mean and variance are given by
the solution of a set of simple kriging equations [e.g., Deutsch and Journel, 1998; Goovaerts, 1997].
Denoting the node for which the conditional distribution is to be computed by j, the row vector of n
conditioning data (normal-scored conductivities and piezometric heads) by S(n), the covariance
matrix between any two variables at the conditioning locations by Ca, and the covariance column
vector between the conditioning locations and the location being estimated as Cj,b, the conditional
mean at j is given by

Table 1. Parameters of the Random Functions Describing the Spatial Continuity of the Sand and Shale Log-Conductivities

Facies Proportion
Mean Std. Dev Variogram kx ky

Sill(ln (m/d)) (ln (m/d)) Type (m) (m)

Sand 0.35 3.5 1.0 Exponential 20 20 1
Shale 0.65 22.5 0.6 Exponential 20 20 0.35

Figure 4. Reference lnK field. It shows the boundary conditions and it also shows the source line (dashed) and the control planes at which
breakthrough curves are computed (solid lines) in the transport experiment.
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m ~Ki;j
5h ~Ki;j i1C21

a Cj;bðSðnÞ2hSðnÞiÞ;
(6)

where h�i refers to the average
value computed through the
ensemble of realizations at a given
location as in equation (5), and the
conditional variance is given by

r2
~Ki;j

5Cj;j2CT
j;bC21

a Cj;b: (7)

where T denotes transpose. Note
that the use of a search neigh-
borhood limits the pairs of varia-
bles for which their covariance is
needed while building Ca and
Cj,b, it is for this reason that the
number of covariance values that
have to be precomputed at step
4 is limited to 2N3N0, with N0.

being the number of nodes within the search neighborhood (generally much smaller than N).

1.5. Draw a random number k from a standard Gaussian distribution with zero mean and unit variance,
and generate ~Ki;j as

~Ki;j 5m ~Ki;j
1k

ffiffiffiffiffiffiffiffi
r2

~Ki;j

q
(8)

1.6. Assign ~Ki;j to node j and return to step (d) to visit another node until all nodes in realization i have
been visited.

The update step is repeated for all realizations in the ensemble.

7. Back transformation step: Back transform the just generated normal-score transformed conductivities
into conductivities using the inverse of the previously computed normal-score transform functions:

Ki;j5F21
j ðGð ~Ki;j ÞÞ; i51; . . . ;Ne; j51; . . . ;N: (9)

8. Go back to the step 2 and repeat the process for as many time steps as there are observed piezometric heads.

The main difference between the iSS algorithm and the NS-EnKF algorithm is in the updating step. The
updating step in the NS-EnKF (as in any other variant of the ensemble Kalman filter) is based on the pre-
mise that if there is a departure between forecasted piezometric heads and observed ones it is because
there must be a departure between the conductivity estimates and their real values, and this departure
can be computed by simple cokriging of the head departures. In the NS-EnKF, at each time step, there is
a refinement of the conductivity fields according to the expression

~K t11
i;j 2 ~K t

i;j 5C21
a Cj;bðSðnÞ2Sf

i;ðnÞÞ; i51; . . . ;Ne; j51; . . . ;N (10)

where S(n) is a vector with all the observed piezometric heads, Sf
i;ðnÞ is a column vector containing the

forecasted piezometric heads at observation locations for realization i, Ca is a matrix with the covariances
of forecasted heads at observation locations, and Cj,b is a vector with the cross-covariance between
normal-scored conductivity at location j and piezometric heads at observation locations.

3. Synthetic Example

A synthetic bimodal confined aquifer composed of 35% high-permeability sand and 65% low-permeability
shale is constructed on a 50 m by 50 m square discretized into a grid of 50 by 50 by 1 cells. The thickness of

Figure 5. The histogram of the reference log-conductivity field.
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the confined aquifer is assumed to be 5 m.
(The actual units are irrelevant for the pur-
pose of the study, as long as consistency
among them is kept.) The construction of the
reference field is done in two steps. First, a
two-facies field with nine conditional data
(Figure 2) is generated via the SNESIM code
by Strebelle [2002] using the training image
in Strebelle [2002] (see Figure 3). Second, this
binary field is populated independently for
each facies with log-conductivity values
using the sequential Gaussian simulation
code GCOSIM3D G�omez-Hern�andez and Jour-
nel [1993] with the parameters shown in
Table 1. The resulting reference log-
conductivity field and its histogram are
shown in Figures 4 and 5. The two figures
show that the distribution of log-conductivity
is clearly non-Gaussian, the histogram has
two modes (one for each facies) and the
global mean and standard deviation are
20.9 ln(m/d), and 2.9 ln(m/d), respectively.

Figure 6. Location of wells. Red triangles denote observation wells; blue
squares denote injection (1, 2) and pumping wells (3, 4, and 5). The obser-
vation wells 6, 7 are used as calibration wells.

Figure 7. Log-conductivity histograms of the initial ensemble of realizations and of the updated ensemble of realizations after the 50th assimilation step of the two scenarios.
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The transient groundwater flow simulator MODFLOW [e.g., McDonald and Harbaugh, 1988; Harbaugh et al.,
2000] is used to solve the transient groundwater equation. The model boundary is impermeable (see Figure
4). Figure 6 shows the locations of wells, including 25 observation wells, 2 injection wells, and 3 pumping
wells. Observation wells 6 and 7 will be used as calibration wells (post audit) and will not be used for condi-
tioning. The injection rates at the two injection wells 1 and 2 are 16 and 15 m3/d, respectively. The pumping

Figure 8. Ensemble mean and ensemble variance of lnK for the initial realizations.

Figure 9. Ensemble mean of lnK after assimilating observation heads at the 10th and 50th time steps for the two scenarios.
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rates at the three pumping wells 3, 4, and 5 are 7.5, 7.5, and 14.5 m3/d, respectively. The initial head is set to
8 m throughout the study domain. Specific storage is set to 0.03 m21. The total simulation time is 500 days,
discretized into 100 time steps of increasing size following a geometric series with ratio 1.02 (the length of the
first time step results in 1.60 days). The piezometric heads simulated in the reference field are sampled at the
observation wells for each time step and used as input data for both algorithms.

As already mentioned, the performance of the iSS will be compared to that of the NS-EnKF. We will analyze
two scenarios, scenario S0 with the results obtained applying the NS-EnKF, and scenario S1 with the results of
the iSS. The data supplied to both algorithms are the same. Both algorithms use the same initial ensemble of
600 conductivity realizations. The initial ensemble of conductivity realizations is generated in a manner similar
to which the reference field was generated: first an ensemble of facies realizations, conditional to the same
nine facies values as the reference, is built using SNESIM; then, each facies is independently (and uncondition-
ally) populated using GCOSIM3D with the same parameters in Table 1. We acknowledge that, in practice, we
will never have access to the underlying statistics of the conductivity field; however, we choose to use the
same random function model to generate the reference field and the initial fields of the ensemble to test the
method, making sure that whatever departures there are between the reference and the simulations are due
to the implementation of the algorithm and not to uncertainty in the underlying random function model.

4. Analysis

Both the NS-EnKF and the iSS have been used to incorporate the observed piezometric heads during the
first 50 time steps (135.4 days) for the generation of an ensemble of conductivity realizations. These realiza-
tions are analyzed by looking at several aspects:

Figure 10. Ensemble variance of lnK after assimilating observation heads at the 10th and 50th time steps for the two scenarios.

Water Resources Research 10.1002/2014WR016320

XU AND G�OMEZ-HERN�ANDEZ INVERSE SEQUENTIAL SIMULATION 2235



1. Histogram of the ensemble: Figure 7a
shows the log-conductivity histogram for
the initial ensemble. Figures 7b and 7c
display the log-conductivity histograms of
the updated ensemble after the 50th time
step for scenario S0, and scenario S1,
respectively. We can see from Figures 7b
and 7c that the histogram of log-
conductivity with its bimodality is retained
after 50 time steps in both scenarios.

2. Ensemble mean and ensemble variance:
Figures 8a and 8b shows the ensemble
mean and variance for the initial ensemble.
The only conditioning data used for the
generation of the initial ensemble are the
facies type at nine locations. This limited
information is not enough to control the
spatial heterogeneity of each realization;
therefore, the ensemble mean only shows
some localized high and low values and

the ensemble variance is quite high everywhere, with only some small values around the facies conditioning
locations. Figures 9 and 10 show the ensemble mean and ensemble variance, after 10 and 50 time steps,
respectively. As time passes, and more piezometric heads are used to characterize the ensemble, the realiza-
tions of the ensemble are more alike, resulting in ensemble means that delineate the locations of the chan-
nels much better than in the initial set, and ensemble variances with zones of virtually no variance and small
variances elsewhere. The areas with the highest ensemble variances are those areas with conductivity values
which are not as sensitive to the piezometric heads at observation locations as the rest of the aquifer; in a
practical case, one could propose the sampling of conductivities at those locations. Both methods perform
equally well, with the highest variance reductions for the longer times. The only significant difference is that
the ensemble means obtained with the iSS algorithm appear to have a slightly, larger short-scale variability
than the ensemble means obtained with the NS-EnKF.

3. Root mean square error (RMSE) and ensemble spreading (ES) of log-conductivity. In synthetic examples
like this one, we can calculate the deviation of the realizations from the ‘‘truth,’’ since we have access to

Figure 11. RMSE, ES, and RMSE/ES.

Figure 12. Evolution in time of the piezometric head at the two calibration wells for the initial ensemble of log-conductivity realizations. The red square line corresponds to the piezo-
metric head in the reference, the gray lines correspond to the realizations, and the vertical-dashed lines marks the end of the conditioning period, the green delta line corresponds to
the average of the gray lines.
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the underlying conductivity distribution from which the piezometric heads have been observed. The
RMSE measures the accuracy of the algorithm in reproducing the reference field, and the ES measures
the precision of the ensemble of realizations. The RMSE and ES are given by

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

j51

ðln K ref
j 2hln KjiÞ2

vuut ; (11)

ES5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

j51

r2
ln Kj

vuut ; (12)

where ln K ref
j is the ln K value at node j in the reference field, hln Kji is the ensemble mean, and r2

ln Kj
is the

ensemble variance. As discussed by Chen and Zhang [2006] when the RMSE and the ES have a similar
magnitude, the resulting ensemble variance provides a realistic measure of the uncertainty associated to
the ensemble mean estimate.

Figure 11 shows the evolution in time of the RMSE, ES, and the ratio of RMSE to ES for both methods. We
can see that the RMSE corresponding to the NS-EnKF is smaller than that for the iSS, indicating that, on

Figure 13. Evolution in time of the piezometric head at the two calibration wells after the 50th time step. The red square line corresponds to the piezometric head in the refer-
ence, the gray lines correspond to the realizations and the vertical-dashed lines marks the end of the conditioning period, the green delta line corresponds to the average of the
gray lines.
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average, the realizations obtained with the NS-EnKF are closer to the reference than those obtained by
iSS. The ES is similar in both cases. And the ratio RMSE/ES remains closer to 1 for the NS-EnKF than for
the iSS, indicating a better characterization of the uncertainty with the former approach. Yet, these differ-
ences are small, and the absolute values of RMSE and ES sustain the conclusions derived from the visual
analysis of the ensemble means and variances discussed before.

4. Reproduction of the piezometric heads at the two calibration wells: Figure 12 shows the evolution of the
piezometric heads for the initial ensemble of conductivity realizations at the two calibration wells 6 and
7—these wells were not used for conditioning. Since no piezometric information was used to generate
the initial conductivity ensembles, the spread among the individual responses of each realization is quite
large. Figure 13 shows the evolution of the piezometric heads in the updated ensembles for both
approaches. The vertical-dashed line indicates the end of the use of the observed piezometric heads as
conditioning data. Comparing Figures 12 and 13, the effect of conditioning on piezometric heads is pat-
ent, with a significant reduction of the spread of the piezometric head curves in all realizations about the
reference one for both approaches.

5. Solute breakthrough curves (BTCs): A transport prediction experiment of an inert solute is carried out
to further evaluate the goodness of the characterization of conductivity by the updated conductivity
realizations. For this purpose, 10 000 conservative particles are released along a vertical line at
x 5 2.5 m and the arrival times are recorded at two control planes, located at x 5 15 m and x 5 45 m
(see Figure 4). The random walk particle tracking program RW3D [Fern�andez-Garcia et al., 2005] is
used to solve the transport equation. Porosity is assumed constant and equal to 0.3. Figure 14 shows
the BTCs at the two control planes for the initial ensemble. Figure 15 shows the BTCs at the two con-
trol planes using the conductivity fields updated after 50 times steps. We can see that the uncertainty
about the BTC predictions is significantly reduced after conditioning to the piezometric head data.
Comparing Figures 15b and 15d with Figures 15a and 15c, we can find that the iSS performs a little
better than the NS-EnKF, since the spread of the BTC predictions is smaller, and the median BTCs is
closer to the reference BTCs. The reproduction of the BTCs is not as good as the reproduction of the
piezometric heads, since concentration data were not used for conditioning, this explains that
although the spread of the BTCs is significantly reduced, there is a larger bias in the estimation of the
reference BTC by the median of the BTCs computed in the updated conductivity fields than in the ini-
tial fields, which we do not attribute to the goodness of any of the two approaches. The next step
would be to include some concentration data as conditioning data and check how well either
method is able to produce conductivity fields that are conditional to BTC information.

Figure 14. Breakthrough curves (BTC) at the two control planes for the initial lnK realizations. The red square line corresponds to the BTCs in the reference. The black lines correspond to
the 5 and 95 percentiles of all realization BTCs, and the green delta line corresponds to the median.
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5. Discussion

From the above analysis, we can conclude that the quality of the ensemble of realizations generated by
iSS is comparable to that of the ensemble generated by the NS-EnKF. The main difference between the
two approaches is that iSS is a stochastic simulation approach, whereas the NS-EnKF works by progres-
sively refining an initial ensemble of realizations on the basis of the discrepancy between forecasted
and predicted piezometric heads. In the iSS, at each time step, a new ensemble of realizations is gener-
ated using as conditioning data the last set of observed piezometric heads; the ensemble of realizations
keeps improving as time progresses, through the updating of the experimental ensemble nonstationary
covariances. We start with an initial unconditional random function model; at the initialization step, the
initial ensemble of realizations already produces a random function model that is conditional on con-
ductivity data; and then, after each time step, the random function model is modified by making it con-
ditional to the observed piezometric heads, too. Furthermore, since iSS is based on the sequential
simulation algorithm, which uses a search neighborhood to decide the information to use when com-
puting the cumulative distribution function at a given location, it avoids the use of spurious correlations
for long distances, since conditioning data which are far from the point being simulated are never used,

Figure 15. Breakthrough curves (BTC) at the two control planes for the lnK realizations updated after the 50th time step. The red square line corresponds to BTCs in the reference. The
black lines correspond to the 5 and 95 percentiles of all realization BTCs, and the green delta line corresponds to the median.
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solving, in this way, a common problem of the ensemble Kalman filter implementations. There is noth-
ing that prevents the use of the iSS algorithm to condition not only on the observed piezometric heads
at time t 1 1, but simultaneously on piezometric heads measured at time t, and at other previous times
(something that can also be achieved with the use of ensemble smoothers); including these additional
past data would imply only computing the cross-covariances between normal-scored conductivities and
the forecasted piezometric heads at the earlier steps, and could improve the final characterization of
conductivities. The power of iSS, as compared with other stochastic simulation techniques, is based on
the same principle that has made the ensemble Kalman filter so successful, the use of nonstationary
covariances experimentally computed from a set of ensemble realizations of conductivity and the result-
ing ensemble of piezometric heads obtained after running a numerical flow model on the conductivity
realizations. Notice that iSS, being an inverse simulation technique, is neither an optimization algorithm
nor a filter, it is a stochastic simulation technique.

The code we have developed for the purposes of demonstrating the algorithm is far from been optimal and
therefore it does not make too much sense to benchmark it in terms of CPU times. However, we can antici-
pate that the most time consuming step of the workflow is the computation of the nonstationary covarian-
ces; it is this step that should attract the largest optimization efforts at the beginning, once this step has
been optimized, we should optimize the simulation algorithm, even considering the use of alternative
covariance-based stochastic simulation ones.

This paper presents a new approach for inverse modeling in a stochastic context, which is conceptu-
ally very simple and easy to implement. At this stage, the results do not indicate that it should be
used for inverse modeling as a replacement of the NS-EnKF, since it performs equally well. However,
we believe that the novelty of the approach will warrant extensions and refinements that will yield
it superior to existing methods. The algorithm is still in its early stages, but we are confident that it
could be used for inverse stochastic simulation under a wide variety of scenarios, not limited to the
field of hydrogeology.

6. Summary and Conclusions

A new inverse stochastic simulation method, the inverse sequential simulation (iSS), has been proposed
for the purpose of generating a set of hydraulic conductivity realizations that, when used to model
groundwater flow, can reproduce observed piezometric heads. The method is based on the sequential
simulation paradigm making use of the nonstationary covariance experimentally inferred form an ensem-
ble of conductivity fields and the corresponding piezometric head responses, in a manner similar as how
it is done in ensemble Kalman filtering. We have benchmarked the technique against the normal-score
ensemble Kalman filter (NS-EnKF), possibly the current algorithm that best performs for inverse modeling
using transient piezometric heads. The iSS compares very well with the NS-EnKF in all aspects analyzed
(histogram reproduction, ensemble mean and variance, reproduction of observed piezometric heads, and
reproduction of breakthrough curves), and it can be considered an alternative approach for inverse sto-
chastic simulation. The new algorithm has room for expansion and has the potential of application in
other fields.

Appendix A: Normal-Score Transform

We have Ne realizations, each one discretized into N nodes. Let Ki,j the conductivity for realization i at node j.
For each node, determine the experimental cumulative distribution function (cdf) from the set of values
fKi;j; i51; . . . ;Neg:

FjðkÞ5ProbðK � kÞ; j51; . . . ;N; (A1)

these cdfs are generally nonparametric, and they are defined in tabular form by pairs of (k,Fj(k)) values. Let
G(y) be the cumulative distribution function of a variable y having a Gaussian distribution of zero mean and
unit variance.

The normal-score transformation is given by:
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~Ki;j 5G21ðFjðKi;jÞÞ; i51; . . . ;Ne; j51; . . . ;N: (A2)

Similarly, the normal-score back transform is given by:

Ki;j5F21
j ðGð ~Ki;j ÞÞ; i51; . . . ;Ne; j51; . . . ;N: (A3)
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