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Abstract: 13 

The use of pasteurization units (PU) as a measure of the processes lethal effect was 14 

proposed with the aim of comparing both conventional and novel thermal technologies. 15 

Kiwifruit puree was subjected to microwave (1000 and 900 W) and conventional (97 16 

ºC) heating. Processing conditions of the treatments were selected to cause a 90% of 17 

kiwifruit peroxidase inactivation. The temperature profiles of the samples during 18 

processing were registered at different positions. The coldest and hottest spot of the 19 

product were identified and the associated PU numbers were calculated. Significantly 20 

(p<0.05) higher thermal load was necessary in order to inactivate the target level of 21 

peroxidase under conventional (19.27 min) than microwave heating mode (0.22-1.8 22 

min) at any of the studied conditions. Higher effectiveness of microwave heating could 23 

be attributed to non-thermal effects associated to this technology.  24 

 25 
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lethality.  27 

 28 

1. INTRODUCTION 29 

Microwave heating (MW) appears to be a promising novel technology for food 30 

preservation (Cañumir et al., 2002; Vadivambal & Jayas, 2010). During the last 31 

decades, many studies have been carried out on the evaluation of MW benefits respect 32 

to conventional heat treatments. Its suitability for pasteurization, sterilization and 33 

dehydration processes as well as its capacity of producing safe and better quality 34 

products has been widely demonstrated (Igual, García-Martínez, Camacho, & Martínez-35 

Navarrete, 2010; Huang, Sheng, Yang, & Hu, 2007). Although MW could potentially 36 

replace conventional heat processes for some specific applications (Awuah, 37 

Ramaswamy, & Economides, 2007), there are still problems that are inherent to this 38 

technology, such as non-uniform product temperature distribution (Salazar-González, 39 

San Martín-González, López-Malo, & Sosa-Morales, 2012), that contribute delaying the 40 

exploitation of MW to its fullest potential in the food industry.  41 

On the other hand, improper comparison between treatments, because of inadequate 42 

control of processing parameters such as sample temperature exposure, roughly selected 43 

exposure periods or poor kinetic data accommodation, may be generating doubts and 44 

causing conflicting opinions regarding the superiority of this technology against the 45 

conventional heat treatments. Some authors have proposed different ways of comparing 46 

microwave and conventional treatments: (i) to select processing conditions to get equal 47 

heating rates (ºC/min) (Fujikawa, Ushioda, & Kudo, 1992), (ii) to reach similar 48 

temperature profile in samples under both technologies (Welt, Tong, Rossen, & Lund, 49 

1994) and (iii) to carry out kinetic studies (Latorre, Bonelli, Rojas, & Gerschenson, 50 



2012; Matsui, Granado, Oliveira, & Tadini, 2008; Tajchakavit, Ramaswamy, & Fustier, 51 

1998). This lack of homogeneity in comparison procedures can result in mistaken 52 

interpretations and hiders the contrast of different research works.   53 

In the present study, the concept of accumulated lethality (F0), parameter 54 

traditionally employed to evaluate conventional heat treatments, is proposed as a tool 55 

for both conventional and novel thermal technologies comparison. The process lethal 56 

effect is determined in base of the time-temperature history of the product and it is 57 

expressed as a numerical value in arbitrary units. The pasteurization unit (PU) was 58 

proposed by Shapton, Lovelock and Laurita-Longo (1970) as a measure of accumulated 59 

lethality but more specifically adapted for pasteurization processes.  60 

The objective of the present research work was to assess the suitability of PU 61 

parameter to compare the thermal load of microwave and conventional kiwifruit puree 62 

pasteurization treatments.  63 

 64 

2. MATHERIAL AND METHODS 65 

2.1. Sample preparation 66 

Kiwifruit (Actinida deliciosa var. Hayward) was purchased in a local supermarket. Fruit 67 

pieces were peeled and finally triturated in a Thermomix (TM 21, Vorwerk, Spain), 68 

using the fourth power level for one minute. The physicochemical characteristics of 69 

kiwifruit puree (water content, soluble solids, water activity and pH) were determined in 70 

order to control the fruit which was used as raw material (data not shown).  71 

 72 

2.2. Treatments  73 

Processing conditions were chosen based on preliminary experiments to simulate a 74 

pasteurization treatment (Benlloch- Tinoco, Pina-Pérez, Martínez-Aguirre, Rodrigo, & 75 



Martínez- Navarrete, 2012). The treatments selected inactivated 90% of peroxidase 76 

enzyme and reduced more than 5 log10 cycles of the most important pathogenic 77 

microorganism (Listeria monocytogenes) (data not shown). These data correspond to 78 

the global inactivation achieved in the samples. Three replicates of each treatment were 79 

run. 80 

2.2.1.  Microwave treatment 81 

A household microwave oven (3038GC, Norm, China) was used to treat the kiwifruit 82 

puree. For each treatment, a sample of 500 g was tempered to an initial temperature of 83 

25º C and then heated in the microwave oven in a standard size glass beaker (BKL3-84 

1K0-006O, Labbox, Spain). Two microwave treatments, based on different power-time 85 

combinations, were carried out: 1000W-200s and 900W-300s. Processing conditions 86 

were selected based on preliminary experiments to cause approximately a 90% of 87 

peroxidase inactivation (Benlloch-Tinoco, Pina-Pérez, Martínez-Aguirre, Rodrigo, & 88 

Martínez-Navarrete, 2012). Three replicates of each treatment were run. The microwave 89 

oven was provided with a probe (CR/JP/11/11671, Enelec, Spain) which was connected 90 

to a fiberoptical thermometer (FOTEMP1-OEM, Enelec, Spain) to continuously register 91 

the time-temperature history of the sample during the microwave treatments. Because 92 

MW has been traditionally associated with non-uniform heating, the coldest and the 93 

hottest spots were identified and the temperature at these points was recorded.  94 

 95 

2.2.2. Conventional thermal treatment 96 

The selected treatment consisted in heating the sample at 97 ºC for 30 s in a 97 

thermostatic water bath (Precisterm, Selecta, Spain). After kiwifruit was triturated, 20 g 98 

of puree were introduced in TDT stainless steel tubes (13 mm inner diameter and 15 cm 99 

length) and closed with a screw stopper. A thermocouple which was connected to a data 100 



logger was introduced through the sealed screwed top in order to register the time-101 

temperature history of the sample during the treatment. Three replicates were carried 102 

out to define an average temperature profile of the process. Previously, samples were 103 

preheated at 25 ºC to shorter and standardise the come-up time (150 s). 104 

 105 

2.3. Peroxidase enzyme determination 106 

Peroxidase activity (POD) was measured in all the treated samples (microwaved and 107 

conventionally heated ones) and also in the non-treated sample, which was used as 108 

control, according to the method proposed by De Ancos et al. (1999) with the following 109 

modifications. For enzymes extraction pH 6.5 was used, centrifugation was done for 20 110 

min and filtration step was avoided. Extracts were made in duplicate. Enzyme extract 111 

(0.050 mL) was used for enzymes activity measurement and pH 6.5 was fitted. A 112 

solution containing all the components except the enzyme extract, which was replaced 113 

by 0.050 mL of sodium phosphate buffer, was used as a blank. One unit of POD was 114 

defined as the amount of enzyme that caused an increase of one in the absorbance per 115 

min (Abs·min-1·g-1), calculated from the linear part of the obtained curve. The 116 

percentage of enzyme inactivation (I) was calculated by using Eq. (1). 117 
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Where: 120 

AF: enzyme activity of fresh kiwifruit puree 121 

AT: enzyme activity of treated kiwifruit puree.  122 

 123 

2.4. 2L. monocytogenes inactivation study 124 



L. monocytogenes is recommended by the National Advisory Committee on 125 

Microbiological Criteria for Foods to be used as a target microorganism for products of 126 

similar characteristics. Kiwifruit puree, prepared as described above, was inoculated by 127 

adding 1 mL of a L. monocytogenes (CECT 4032, Spanish Type Culture Collection) 128 

inoculum to give a final concentration of 107 CFU/g. Kiwifruit puree was blended for 129 

30 s with the aim of ensuring a homogeneous initial content of the bacterium. After 130 

processing, serial decimal dilutions of both treatments and the untreated one were 131 

performed in 0.1% (w/v) sterile peptone water (Scharlab Chemie S. A., Barcelona, 132 

Spain). The enumeration medium used for viable cells was Tryptic Soy Agar (TSA) 133 

(Scharlab Chemie S. A., Barcelona, Spain). The selected dilutions were incubated at 37 134 

ºC for 48 h. 135 

 136 

2.5. Pasteurization units calculation 137 

The pasteurization units corresponding to the microwave and conventionally treated 138 

samples were calculated using Eq. (2) (Heinz, Toepfl, & Knorr, 2003; Lau & Tang, 139 

2002) with a reference temperature of 80ºC and a z-value of 13.62 ºC, previously 140 

determined for Listeria monocytogenes in a kiwifruit puree under thermal processing. 141 

 142 
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 144 

Where,  145 

t: Treatment time (s);  146 

T(t): Product temperature at each treatment time; 147 

Tref: 80ºC; 148 

z: Temperature sensitivity (ºC) for Listeria monocytogenes. 149 



 150 

2.6. Statistical analyses 151 

Significant differences were evaluated by means of the corresponding analysis of 152 

variance (ANOVA) using Statgraphics Plus 5.1. Differences of p<0.05 were considered 153 

to be significant. 154 

 155 

3. RESULTS AND DISCUSSION 156 

Microwave and conventional heating comparison has been the base of many studies 157 

dealing with MW processes applications, such as those performed by Cañumir et al. 158 

(2002), Gentry & Roberts (2005) or Igual et al. (2010). The difficulty of comparing both 159 

technologies lies in the particular way of heating which takes place during MW 160 

treatments (Banik, Bandyopadhyay, & Ganguly, 2003). While in conventional heating 161 

holding period is expected, in the case of MW, non-isothermal heating takes exclusively 162 

place (Latorre et al., 2012). Additionally, fixing those parameters affecting the heating 163 

process such as (i) the heating rate, (ii) the range of temperatures at which the samples 164 

are exposed or (iii) providing appropriated sample homogenization, is not usually 165 

possible. In this way, products conventionally and microwave treated are not normally 166 

subjected to equivalent temperature-time combinations and comparing the effect of both 167 

technologies on the product quality may result complicated.  168 

Given the different nature of heating processes taking place under conventional and 169 

microwave modes, the temperature control should not be limited to the initial and the 170 

final point of the process, but the whole temperature history of the product should be 171 

taken into account. In this context, the PU parameter offers the possibility of evaluating 172 

the complete thermal load of the heating processes at any reference temperature, as if it 173 

had taken place under isothermal conditions. This implies that the product is considered 174 



to instantaneously reach the reference temperature (Matsui et al., 2008), so the effect of 175 

processing factors that could be promoting differences in the nature of the heat 176 

transference such as (i) product characteristics including consistency, solid/liquid ratio 177 

and thermophysical properties, (ii) sample quantity and (iii) container type, size and 178 

shape (Augusto & Cristianini, 2011; Awuah et al., 2007), is avoided.  179 

The concept of accumulated lethality has been previously used in relation to 180 

microwaves in order to validate the lethal effect of a formerly established preserving 181 

treatment (Chen, Campanella, & Peleg, 2011; Wang, Wig, Tang, & Hallberg, 2003). It 182 

has also been employed as a tool for assessing the effect of a conventional and a 183 

combined microwave-conventional pasteurization process on the nutritional and sensory 184 

quality of asparagus by calculating C-value (Lau & Tang, 2002). However, up to date, 185 

PU has still not been used with the aim of evaluating the thermal load of various 186 

conventional and novel heating processes to perform comparison. 187 

In the present study the temperature profiles of various kiwifruit puree samples 188 

subjected to some microwave and conventional thermal treatments were registered in 189 

order to compare the different processes lethal effects (Figure 1). Although the 190 

conventionally treated and the microwaved samples showed the same level of POD 191 

inactivation (90%) and L. monocytogenes reduction (>5 log10-cycles), noticeable 192 

differences in the temperature-time profiles can be observed in Fig. 1. The thermal load 193 

associated to each treatment was calculated through the PU parameter. Mean value (and 194 

standard deviation in brackets) of PU numbers obtained for all the assayed treatments 195 

are presented in Table 1. As expected, substantial differences were found in the thermal 196 

load received by the product at the two locations studied during the microwave 197 

treatments. The PU obtained at the hottest spot was considerably higher than the PU 198 

obtained at the coldest spot. On the other hand, the conventional heating mode required 199 



a significantly (p < 0.05) higher thermal load to achieve the pre-set level of POD 200 

inactivation in the kiwifruit puree than any of the microwave treatments studied, 201 

irrespective of whether the comparison was carried out at the coldest or hottest spot of 202 

the sample. When the microwave treatments were compared, 900W-225 s was the one 203 

showing the highest and lowest thermal load at the hottest and coldest spot, 204 

respectively. However, significant differences (p < 0.05) were only observed in relation 205 

with the hottest spot. The greater effectiveness of MW with respect to conventional 206 

heating treatments for food stabilization has been widely reported by various authors, 207 

such as Matsui et al. (2008) and Soysal and Söylemez (2005). Although differences 208 

observed in MW and conventional heating processes have traditionally been attributed 209 

to the faster heating rates ofMW (El-Abassy, Donfack, & Materny, 2010), in our case 210 

this premise cannot be accepted to explain the differences observed, because the PU 211 

data were calculated as if the treatments had taken place under isothermal conditions. 212 

Consequently, they might indicate the possibility of some contributory non-thermal 213 

effects associated with MW. Although other authors have reported similar findings 214 

(Banik et al., 2003), in-depth research work on this area is considered necessary. 215 

 216 

4. CONCLUSIONS 217 

The pasteurization unit seem  to be an adequate parameter to evaluate the thermal 218 

load associated to conventional and microwave heating processes. This parameter can 219 

be taken as a common base to compare the effect of different heating technologies on 220 

the products quality and stability. Microwave heating required lower thermal load than 221 

conventional heating to pasteurize the product any of the power levels studied, which 222 

might be attributed to some contributory non-thermal effects associated with this 223 

technology. 224 
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