

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

Springer Verlag (Germany)

Decker, H. (2011). Causes of the Violation of Integrity Constraints for Supporting the Quality
of Databases. Lecture Notes in Computer Science. 6786:283-292. doi:10.1007/978-3-642-
21934-4_24

http://dx.doi.org/10.1007/978-3-642-21934-4_24

http://hdl.handle.net/10251/77673

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221433973

Causes of the Violation of Integrity Constraints for Supporting the Quality of

Databases

Conference Paper · June 2011

DOI: 10.1007/978-3-642-21934-4_24 · Source: DBLP

CITATIONS

10
READS

12

1 author:

Hendrik Decker

Institut für Informatik

167 PUBLICATIONS 1,155 CITATIONS

SEE PROFILE

All content following this page was uploaded by Hendrik Decker on 16 September 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221433973_Causes_of_the_Violation_of_Integrity_Constraints_for_Supporting_the_Quality_of_Databases?enrichId=rgreq-64acf6776d8a69210eb43b0b36020036-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQzMzk3MztBUzoyNzQzNDE3ODcwNzQ1NjBAMTQ0MjQxOTU4NzA2MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221433973_Causes_of_the_Violation_of_Integrity_Constraints_for_Supporting_the_Quality_of_Databases?enrichId=rgreq-64acf6776d8a69210eb43b0b36020036-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQzMzk3MztBUzoyNzQzNDE3ODcwNzQ1NjBAMTQ0MjQxOTU4NzA2MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-64acf6776d8a69210eb43b0b36020036-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQzMzk3MztBUzoyNzQzNDE3ODcwNzQ1NjBAMTQ0MjQxOTU4NzA2MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hendrik_Decker?enrichId=rgreq-64acf6776d8a69210eb43b0b36020036-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQzMzk3MztBUzoyNzQzNDE3ODcwNzQ1NjBAMTQ0MjQxOTU4NzA2MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hendrik_Decker?enrichId=rgreq-64acf6776d8a69210eb43b0b36020036-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQzMzk3MztBUzoyNzQzNDE3ODcwNzQ1NjBAMTQ0MjQxOTU4NzA2MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hendrik_Decker?enrichId=rgreq-64acf6776d8a69210eb43b0b36020036-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQzMzk3MztBUzoyNzQzNDE3ODcwNzQ1NjBAMTQ0MjQxOTU4NzA2MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hendrik_Decker?enrichId=rgreq-64acf6776d8a69210eb43b0b36020036-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQzMzk3MztBUzoyNzQzNDE3ODcwNzQ1NjBAMTQ0MjQxOTU4NzA2MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Causes of the Violation of Integrity Constraints
for Supporting the Quality of Databases

Hendrik Decker

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia, Spain

Note:
This is a revised version of a paper with the same title, published in the proceed-
ings of the ICCSA conference, Santander, Spain, June 20–23, 2011, pp. 283-292.
The copyright of the original paper is owned by Springer-Verlag Berlin Heidel-
berg. Consult the original paper at the following reference:

Hendrik Decker:
Causes of the Violation of Integrity Constraints for Supporting the Quality of
Databases.
In Computational Science and Its Applications (ICCSA), Part V, 11th Interna-
tional Conference, 2011. Proceedings edited by Beniamino Murgante, Osvaldo
Gervasi, Andrés Iglesias, David Taniar and Bernady O. Apduhan, published in
Springer Lecture Notes in Computer Science, vol. 6786.

Causes of the Violation of Integrity Constraints
for Supporting the Quality of Databases

Hendrik Decker ?

Instituto Tecnológico de Informática, Valencia, Spain

Abstract. The quality of the information provided by databases can
be captured by integrity constraints. Thus, violated cases of constraints
may serve as a basis for measuring the quality of given database states.
A quality metric with the potential of more accuracy is obtained by
measuring the causes, i.e., data that are responsible for constraint viola-
tions. Such measures also serve for controlling quality impairment across
updates.

1 Introduction

In [5, 7], we have shown that the quality of stored data can be modeled, measured
and monitored by declarative integrity constraints. The latter describe semantic
properties of stored data that are required to hold in each database state. Thus,
violations of such constraints reflect a lack of data quality. Hence, as soon as
violations of integrity can be quantified, the quality of the data on which the
constraints are imposed can be measured. Quality can then also be controlled, by
checking, upon each update, whether the amount of integrity violation increases
or decreases. We are going to see that most, though not all known integrity
checking methods in the literature can be used for this kind of control.

Constraint violations can be quantified in several ways. In [5, 7], the basic idea
of quantifying the quality of stored data was to count the number of violated
cases, i.e. instances of constraints that are not satisfied. Not only the cardinality
of sets of violated cases, but also these sets themselves constitute a valuable
metric space, together with the partial order of set inclusion.

In this paper, we show that, instead of cases, also the causes of violated cases
can be counted, for measuring the amount of extant inconsistency in a database.
And, similar to cases, also the powerset of causes of violations constitutes a
metric space in which sets of causes can be compared for monitoring whether
given updates would introduce new integrity violations or not. Causes essentially
are minimal sets of stored data that are sufficient for violating some constraint.
They are easily determined for denial constraints without negated literals, but
more involved if there is non-monotonic negation.

While cases of violated constraints are only statements about the lack of qual-
ity of stored data, causes precisely are the data that lack quality. Hence, counting
? partially supported by FEDER and the Spanish grants TIN2009-14460-C03 and

TIN2010-17139

causes and checking their increase or decrease may provide more accurate qual-
ity metrics than cases. Essentially, the main idea of this paper is to improve the
original concept of quantifying the quality of databases as elaborated in [5, 7],
by replacing cases with causes in the main definitions.

In Section 2, we outline the formal framework of this paper. In Section 3, we
revisit the definition of cases, originally used for inconsistencytolerant integrity
checking [6]. Cases are instances of constraints that are apt to model the qual-
ity of information in a more differentiated manner than universally quantified
constraints. In Section 4, we discuss several inconsistency metrics. In particular,
we revisit the metrics based on cases, as introduced in [5, 7], and introduce met-
rics based on causes in an analogous manner. In Section 5, we show that, apart
from providing quality metrics, measures of integrity violations based on cases
or causes also may serve to control and contain impaired data quality across
updates. In Section 6, an outlook to future work concludes the paper.

2 Background and Framework

Background and framework of this paper, including notations and terminology,
are consititued by datalog, as referred to in the standard literature, e.g., [1] [9].

2.1 Databases, Updates, Constraints

An atom is an expression of the form p(a1, ..., an), where p is a predicate of
arity n (n ≥ 0); the ai, called arguments, are either constants or variables. A
literal is either an atom A or a negated atom ∼A. A fact is an atom where
all arguments are constants. A database clause is either a fact, the predicate of
which corresponds to a relational table and the arguments of which correspond
to column values in that table, or a formula of the form A←B, where the head
A is an atom and the body B is a conjunction of literals; all variables in A←B
are implicitly quantified universally in front of the formula.

A database is a finite set of database clauses. For each database D and each
predicate p, the set of clauses Dp in D the head of which has predicate p is called
the definition of p in D. If q is a predicate in the body of some clause in Dp,
then p is said to recur on q; p is also said to recur on each predicate on which q
recurs. A database D is definite if there is no negated atom in the body of any
clause in D. It is hierarchical if there is no predicate in D that recurs on itself.

An update is a finite set of database clauses to be inserted or deleted. For
an update U of a database state D, we denote the updated database, where all
inserts in U are added to D and all deletes in U are removed from D, by DU .

An integrity constraint (in short, constraint) is a first-order predicate logic
sentence which, for convenience and without loss of expressive power, we assume
to be always represented as denials, i.e., formulas of the form ←B, where the
body B states what must not hold. Implicitly, each variable in B is universally
quantified at the front of ←B. A denial is definite if there is no negated atom
in its body. An integrity theory is a finite set of constraints.

Constraints can be read as necessary conditions for the quality of stored
data. If all intended application semantics are expressed by constraints, then the
integrity theory represents a complete set of conditions that, when satisfied, is
also sufficient for ensuring the quality of the stored data.

The DBMS is supposed to ensure that the database satisfies its integrity
theory at all times, i.e., that all constraints are logical consequences of each
state. To achieve this, database theory requires that, for each update U , the
‘old’ database D, i.e., the state to be updated by U , must satisfy all constraints,
such that integrity checking can focus on those constraints that are possibly
affected by the update. If those constraints remain satisfied, then the ‘new’ state
DU reached by committing U also satisfies all constraints.

Despite the theoretical insistence on total consistency at all times, the qual-
ity of a database is likely to suffer and deteriorate in the course of its evolu-
tion. Hence, it is necessary to have mechanisms that are able to tolerate certain
amounts of integrity violations. As we are going to see, the cause-based approach
developed in this paper is inconsistency-tolerant.

From now on, let D, IC , I, U and adornments thereof always stand for a
database, an integrity theory, a constraint and, resp., an update. For convenience,
we write D(I) = true (resp., D(I) = false) if I is satisfied (resp., violated) in D.
Similarly, D(IC) = true (resp., D(IC) = false) means that all constraints in IC
are satisfied in D (resp., at least one constraint in IC is violated in D).

2.2 Integrity Checking

The quality of stored data that is described by integrity constraints can be con-
trolled by checking integrity for each update that could potentially violate it.

Below, we revisit a definition of integrity checking that abstracts away from
any technical detail of how checking is done [6]. It describes each integrity
checking method M as a mapping that takes as input a database D, and in-
tegrity theory IC and an update U , and outputs either sat or vio. If M is
sound, M(D, IC , U) = sat indicates that U preserves integrity satisfaction, i.e.,
DU (IC) = true. If M is also complete, then M(D, IC , U) = vio indicates that
U violates integrity i.e., DU (IC) = false. Also the output vio of an incomplete
method may mean that the update would violate integrity. But it may also
mean that further checking is needed for determining the integrity status of DU ;
if there are not enough resources to do so, then U should be cautiously rejected.

Definition 1. (Sound and complete integrity checking)
LetM be a method for integrity checking.M is called sound or, resp., complete
if, for each (D,IC,U) such that D(IC)=true, (1) or, resp., (2) holds.

If M(D, IC, U) = sat then DU (IC) = true . (1)

If DU (IC) = true then M(D, IC, U) = sat . (2)

Quality maintenance by integrity checking would tend to be too expensive,
unless some simplification method were used [2]. Simplification essentially means

that, for an update U , it suffices to check only those instances of constraints that
are potentially violated by U . That idea is the basis of most methods for integrity
checking proposed in the literature or used in practice [2].

Example 1. Let married(Man,Woman) be a relation with predicate married
about married couples in the database of a civil registry (column names are
self-explaining). Let I be the denial constraint

I = ← married(x, y), married(x, z), y 6= z .

I states that no man x may be married to two different women y and z, i.e., I
forbids bigamy.

Now, let U be an update that inserts married(joe, sue). Usually, integrity
then is checked by evaluating the following instance I ′ of I:

I ′ = ← married(joe, sue) ∧ married(joe, z) ∧ sue 6= z .

Since U makes married(joe, sue) true, I ′ can be simplified to

I ′
s = ← married(joe, z) ∧ sue 6= z .

The simplification I ′
s asks if joe is married to any person z whose name is not

sue. Its evaluation essentially amounts to a simple search in the table of married,
in order to see if there is any woman with name other than sue who would be
married with joe. If so, U is rejected; if not, U can be committed. Clearly, the
evaluation of I ′ is significantly cheaper than the evaluation of I, which would
involve a join of the entire married relation with itself.

In principle, also the following instance I ′′ of I would have to be evaluated:

I ′′ = ← (married(joe, y) ∧ married(joe, sue) ∧ y 6= sue) .

I ′′ is obtained by resolving married(x, z) in I with the update married(joe, sue).
However, no evaluation of I ′′ is needed since I ′′ is logically equivalent to I ′.

3 Causes of the Violation of Integrity

Informally, causes are minimal explanations of why a constraint is violated. Sim-
ilarly, causes also may serve as concise justifications of why an answer to a
query has been given, and for computing answers that have integrity in incon-
sistent databases, as shown in [4, 3]. In this paper, we are going to use causes
for two purposes: firstly, in Section 4, for quantifying the lack of quality in
databases, by sizing sets of causes of integrity violation; secondly, in Section 5,
for inconsistency-tolerant integrity checking, by which quality can be controlled.

For simplicity, we contend ourselves in this paper with causes of the violation
of definite denials, i.e. constraints without negation in their bodies, and definite
databases. Due to the non-monotonicity of database negation, the definition of
causes for more general constraints in hierarchical databases is more complicated;
it is elaborated in [3].

Definition 2. (cause)
Let D be a database and I =←B be a constraint.
a) A set E such that each element in E is a ground instance of a clause in D is
called an explanation of the violation of I in D if there is a substitution θ such
that E |=Bθ.
b) An explanation C of the violation of I in D is a cause of the violation of I
in D if no explanation of the violation of I in D is a proper subset of C.
c) E is called a cause of the violation of IC in D if there is an I ∈ IC of which
E is a cause.

In part a, E |=Bθ entails that D |=Bθ, i.e., I is violated in D. Parts b and
c formalize that causes are minimal explanations of the violation of I or, resp.,
IC in D.

Example 2. Let the constraint I = ←married(x, y), same-sex(x, y) be imposed
on the database D of Example 1. The predicate same-sex be defined in D by
same-sex(x, y)←male(x), male(y) and same-sex(x, y)← female(x), female(y).
Clearly, I denies cosexual marriages. Yet, assume married(fred, rory) is a fact
in D, where both male(fred) and male(rory) hold, the latter due to a registered
gender reversal after marriage. Formally, that amounts to a violation of I. Thus,
{married(fred, rory), male(fred), male(rory)} is a cause of the violation of I in D.

It is easy to see that causes can be obtained as a by-product of standard
query evaluation, i.e., the computation of causes is virtually for free.

4 Measuring Quality by Quantifying Causes

Database quality can be quantified by measuring inconsistency, and in particular
by quantifying causes of integrity violations. In 4.1, we present a general axiom-
atization of inconsistency metrics. It enhances the axiomatization in [7]. In 4.2,
we introduce a quality metric based on causes. In 4.3, we argue why cause-based
inconsistency metrics are preferable to case-based metrics.

4.1 Axiomatizing Inconsistency Metrics

Let 4 symbolize an ordering that is antisymmetric, reflexive and transitive. For
expressions E,E′, let E≺E′ denote that E4E′ and E 6=E′.

Definition 3. We say that (µ, 4) is an inconsistency metric (in short, a metric)
if µ maps pairs (D, IC) to some set that is partially ordered by 4, and, for each
pair (D, IC) and each pair (D′, IC ′), the following properties (3) – (5) hold.

If D(IC) = true and D′(IC ′) = false then µ(D, IC) ≺ µ(D′, IC ′) (3)

If D(IC) = true then µ(D, IC) 4 µ(D′, IC ′) (4)

µ(D, IC) 4 µ(D, IC ∪ IC ′) (5)

Property (3), called violation is bad in [5, 7], ensures that the measured
amount of inconsistency in any pair (D, IC) for which integrity is satisfied is
always smaller than what is measured for any pair (D′, IC ′) for which integrity
is violated. Property (4), called satisfaction is best, ensures that inconsistency is
lowest, and hence quality is always highest, in any database that totally satisfies
its integrity theory. Property (5) requires that the values of µ grow monotonically
with growing integrity theories.

Occasionally, we may identify a metric (µ,4) with µ, if 4 is understood.

Example 3. A simple example of a coarse, binary inconsistency metric β is pro-
vided by the equation β(D, IC) = D(IC), with the natural ordering true ≺ false
of the range of β, i.e., integrity satisfaction (D(IC) = true) means lower incon-
sistency and hence higher quality than integrity violation (D(IC) = false).

More interesting inconsistency metrics are defined and featured in [5, 7]. In
fact, property (5) of Definition 3 has not been discussed in [5, 7], but all examples
of inconsistency metrics given there actually satisfy (5) as well.

For instance, the function that maps pairs (D, IC) to the cardinality of the
set of cases (instances) of violated constraints is a convenient quality metrics.
Inconsistency can also be measured by taking such sets themselves, as elements
of the metric set that is constituted by the powerset of all cases of IC , together
with the subset ordering. Other metrics can be based on causes of violations, as
outlined in the following subsection.

4.2 Cause-based Inconsistency Metrics

The lack of quality in databases can be reflected by counting and comparing sets
of causes of the violation of constraints.

Let CauVio(D, I) denote the set of causes of the violation of I in D, and
σ(D, IC) = {C | C ∈CauVio(D,I), I ∈ IC} be the set of all causes of the violation
of any constraint in IC . Then, (σ,⊆) is an inconsistency metric, and so is (ζ,≤),
where the mapping ζ is defined by ζ(D, IC) = |σ(D, IC)| and | . | denotes set
cardinality. In words, ζ counts causes of integrity violation.

Example 4. Let IC consist of the constraint I (no bigamy) in Example 1, and
a person named sheik be registered as a male citizen. i.e., male(sheik)∈D. Fur-
ther, suppose that also the n facts married(sheik, wife1), . . ., married(sheik, wifen)
(n≥ 2) are in D, and that there is no other man in D who is married more than
once. Then, for each i, j such that 1≤ i, j≤n and i 6= j, {married(sheik, wifei),
married(sheik, wifej)} is a cause of the violation of IC in D. Hence, the incon-
sistency in D as measured by ζ is ζ(D, IC) = 1 + 2 + . . .+n–1. Thus, for n> 3,
the inconsistency as measured by ζ that is caused by a man who is married to
n different women is higher than the inconsistency of n men being married to
just 2 women.

4.3 Causes vs Cases

As seen in Example 3, integrity and hence the quality of databases can be
coarsely measured by checking the integrity constraints imposed on them. In
[5, 7], we have shown that this assessment of quality can be further refined by
focusing on cases, i.e., instances of constraints that are actually violated. That
focus takes into account that the majority of instances of constraints (which
typically are universally quantified formulas, in general) remains satisfied, while
only certain cases lack integrity and hence suffer from quality impairment.

Still, the association of the quality of a database with constraint violations,
or even with violated cases of constraints, does not directly tell which are the
actually stored data that are responsible for violating constraints, i.e. for the
lack of quality. Hence, measuring quality by quantifying causes is preferable to
the case-based approach, as illustrated by the following example.

Example 5. Suppose the predicate p in the constraint I = ← p(x, x) (which
requires the relation corresponding to p to be anti-reflexive) is defined by the two
clauses p(x, y)← q(x, y), q(y, x) and p(x, y)← r(x, z), s(y, z). Further, suppose
that the case I ′ = ← p(c, c) of I is violated. With that information alone, as
provided by focusing on violated constraints, it is not clear whether the violation
of I is due to the existence of the tuple q(c, c) in the database or to the existence
of one or several pairs of tuples of the form r(c, z) and s(c, z) in the join of r
and s on their respective last column. In fact, an arbitrary number of causes
for the violation of I and even of I ′ may exists, but the case-based approach
of quantifying the quality of databases does not give any account of that. As
opposed to that, the cause-based approach presented in 4.2 clearly does.

Another advantage of causes over cases is that the latter do not provide any
means for computing reliable answers to queries in inconsistent databases, while
the former do, as shown in [4, 3].

5 Controlling Impaired Quality

In 5.1, we are going to recapitulate from [5, 7] that metric-based inconsistency-
tolerant integrity checking can be used to monitor and control the evolution of
impaired quality across updates. In 5.2, we are going to define inconsistency-
tolerant cause-based integrity checking methods, by which the monitoring and
control of quality impairment can be implemented.

5.1 Metric-based Inconsistency-tolerant Integrity Checking

For monitoring and controlling quality impairment in databases, it is desirable
to have a mechanism that is able to preserve or improve the quality across
updates, while tolerating extant impairments of quality. By Definition 4, below,
which generalizes Definition 1, we are going to see that each inconsistency metric
induces a sound integrity checking method that provides the desired properies.

Definition 4. (metric-based inconsistency-tolerant integrity checking)
LetM be a method for integrity checking and (µ,4) be an inconsistency metric.
M is called sound, resp., complete wrt. metric-based inconsistency tolerance if,
for each triple (D, IC, U), (6) or, resp., (7) holds.

If M(D, IC, U) = sat then µ(DU , IC) 4 µ(D, IC). (6)

If µ(DU , IC) 4 µ(D, IC) then M(D, IC, U) = sat. (7)

If (6) holds, then M is also called metric-based, and, in particular, µ-based.

Definitions 1 and 4 are structually quite similar. However, there are two es-
sential diferences. Firstly, the premise D(IC) = true in Definition 1 is missing
in Definition 4. This premise requires that integrity be totally satisfied before
the update U . By contrast, inconsistency-tolerant integrity checking, as char-
acterized by Definition 4, does not expect the total satisfaction of all integrity
constraints. Rather, it ignores any extant violations (since the total integrity
premise is absent), but prevents that the quality degrades across updates by
additional violations, as guaranteed by the consequence of condition (6). So,
the second difference to be mentioned is that the consequence of condition (6)
clearly weakens the consequence of condition (1), and, symmetrically, the premise
of condition (7) weakens the premise of condition (2). Obviously, (1) (resp., (7))
coincides with (1) (resp., (4)) for µ=β (cf. Example 3). If, additionally, M is a
traditional integrity checking method that insists on the total integity premise,
then both definitions coincide.

5.2 Cause-based Integrity Checking

Obviously, Definition 4 does not indicate how M would compute its output.
However, for each metric (µ, 4), condition 8, below, defines a µ-based method,
as already proved in [5, 7].

Mµ(D, IC,U) = sat iff µ(DU , IC) 4 µ(D, IC). (8)

Hence, for µ=σ or µ= ζ, we obtain two sound and complete cause-based
inconsistency-tolerant integrity checking methods for controlling quality. That
is illustrated by the following example. It also illustrates that different modes or
degrees of inconsistency tolerance can be obtained by suitable choices of metrics.

Example 6. Let D and IC be as in Example 4. Further, suppose that sheik
divorces from wife1, and is about to wed with wifen+1, as expressed by the up-
date request U = {delete married(sheik, wife1), insert married(sheik, wifen+1)}.
Thus, married(sheik, wifen+1) ∈ DU and married(sheik, wifen+1) /∈ D, hence
σ(DU , IC) *σ(D, IC), henceMσ(D, IC , U) = vio. On the other hand, we clearly
have ζ(DU , IC) = ζ(D, IC), hence Mζ(D, IC , U) = sat .

6 Conclusion

We have revisited the idea to model the quality of stored data by integrity
constraints. We have outlined how to measure the lack of data quality by focusing
on causes, i.e., sets of data that are responsible for constraint violations.

In a previous approach that was also based on quality modeled by constraints
[5, 7], violated instances of constraints called cases had been measured. The
basic idea of measuring quality by causes is very similar to the basic idea of
measuring quality by cases: the less/more cases or causes of violated constraints
exist, the better/worse is the quality of data. However, we have seen that cause-
based metrics quantify the data that lack quality in a more directly and hence
more accurately than the metrics based on cases. Moreover, we have shown that
quality metrics, and in particular those based on causes, also serve to monitor
and control the increase of unavoidable quality impairment.

Apart from our own previous work and the trivial inconsistency measure β,
as characterized in Example 3, the ideas of quantifying the quality of databases
by measuring the causes of integrity violation and of controlling the evolution
of quality by inconsistency-tolerant measure-based integrity checking is original
of this paper. Thus, the there is no further related work, except the basic paper
on inconsistency measures in databases [8] and the literature on inconsistency
tolerance in general, as discussed in [4, 6].

The work presented in this paper essentially is of academical nature. A lot
of details remain open for making our theoretical ideas useful in practice. One
example of many is given by the question of how to incorporate common practical
constructs such as NULL values and aggregate functions into the concept of
cause-based inconsistency-tolerant integrity checking. These and other issues are
on the agenda for future investigations.

Other upcoming work of ours is going to deal with assigning application-
specific weights to causes that violate cases of constraints. The purpose of that
is to obtaining quality metrics that reflect the given application semantics in a
more dedicated manner. Moreover, we are working on efficient ways to compute
causes for the general case of databases and constraints that allow for negation
in the body of clauses, as a basis for implementing cause-based inconsistency
metrics. Preparatory theoretical studies in that direction have been initiated in
[3].

References

1. S. Ceri, G. Gottlob, L. Tanca. What you always wanted to know about Datalog
(and never dared to ask). TKDE 1(1):146-166, 1989.

2. H. Christiansen, D. Martinenghi. On simplification of database integrity constraints.
Fundam. Inform. 71(4):371–417, 2006.

3. H. Decker. Answers that Have Integrity in Databases that Violate Constraints.
Presented at the ICALP workshop SDKB 2010, to appear in the post-workshop
proceedings of SDKB, 2011.

4. H. Decker. Toward a Uniform Cause-based Approach to Inconsistency-tolerant
Database Semantics. Proc. 9th ODBASE, Part II, pp. 983–998. Springer LNCS
vol. 6427, 2010.

5. H. Decker. Quantifying the Quality of Stored Data by Measuring their Integrity.
Proc. DIWT 2009, Workshop SMM, pp. 823–828. IEEE, 2009.

6. H. Decker, D. Martinenghi: Inconsistency-tolerant Integrity Checking. TKDE
23(2):218-234, 2011.

7. H. Decker, D. Martinenghi. Modeling, Measuring and Monitoring the Quality of
Information. Proc. 28th ER, Workshops, pp. 212–221. Springer LNCS vol. 5833,
2009.

8. J. Grant, A. Hunter. Measuring inconsistency in knowledgebases. J. Intelligent
Information Systems 27(2):159–184, 2006.

9. R. Ramakrishnan, J. Gehrke. Database Management Systems. McGraw-Hill, 2003.

View publication statsView publication stats

https://www.researchgate.net/publication/221433973

