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Abstract 7 

This study demonstrates the feasibility of the dynamic acousto-elastic effect of a 8 

continuous high frequency wave for investigating the material nonlinearity upon transient 9 

vibration. The approach is demonstrated on a concrete sample measuring 15x15x60 cm3. 10 

Two ultrasonic transducers (emitter and receiver) are placed at its middle span. A 11 

continuous high frequency wave of 500 kHz propagates through the material and is 12 

modulated with a hammer blow. The position of the hammer blow on the sample is 13 

configured to promote the first bending mode of vibration. The use of a continuous wave 14 

allows discrete time extraction of the nonlinear behavior by a short-time Fourier 15 

transform approach, through the simultaneous comparison of a reference non-modulated 16 

signal and an impact-modulated signal. The hammer blow results in phase shifts and 17 

variations of signal amplitude between reference and perturbed signals, which are driven 18 

by the resonant frequency of the sample. Finally, a comprehensive analysis of the 19 

relaxation mechanisms (modulus and attenuation recovery) is conducted to untangle the 20 

coupled fast and slow hysteretic effects. 21 
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1. Introduction 1 

Investigation of the nonlinear dynamic properties of materials and structures is attracting 2 

keen interest among several scientific communities such as geosciences1, medicine2, and 3 

materials science3, thanks to their improved detection of microstructural features within 4 

materials4. The link between the concerned materials among the different research areas is the 5 

presence of defects in a wide range of scales (from nano- to macro-scale), which enhances the 6 

nonlinear acoustic phenomena5–7. The internal friction between rough interfaces in their 7 

imperfect microstructures causes a hysteretic behavior in terms of their quasi-static stress-strain 8 

relationships. The resulting nonlinear modulus (M) including mechanical hysteresis can be 9 

written as5  10 

   ,...1 2  UMM o ,      (1) 11 

where the linear elastic modulus (Mo) is extended to include classical elastic higher order terms 12 

of strain, and, and a function that takes account of mechanical hysteresis; usually written as8 13 

    ))(··(,   signU  ,       (2) 14 

where α is a parameter that controls the magnitude of the hysteretic behavior, Δε is the strain 15 

amplitude, ε is strain, and   is strain rate. Under moderate dynamic strain amplitudes, ~10-7 and 16 

above9, the hysteretic behavior is manifested as an apparent softening of the material, so-called 17 

non-classical behavior. The velocity of propagation and attenuation of the material depend on the 18 

strain amplitude (fast dynamic effect), which in turn is accompanied by a long period of 19 

relaxation after dynamic excitation (slow dynamic effect). The two mechanisms are thought to 20 

coexist during dynamic excitation (material conditioning)10, and dominate the nonlinear behavior 21 

of highly heterogeneous media such as those in concrete-like materials11. The equation of state as 22 
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presented in Eq. 1 falls short of describing the slow dynamic effect, and only the fast dynamic 1 

effect can be considered therein11. The fast dynamic effect has been broadly investigated through 2 

nonlinear resonant techniques. They consist in the investigation of the downward resonant 3 

frequency shift observed in consecutive acquisitions by increasing the excitation amplitude8. The 4 

normalized downward resonant frequency shift is in most materials proportional to the strain 5 

amplitude10 and is related to the parameter α because of the fast dynamic effect as8 6 

 


·
of

f
,          (3) 7 

where fo is the resonant frequency obtained in the linear strain regime. Therefore, the 8 

investigation of the material nonlinearity through nonlinear resonant spectroscopy-based 9 

techniques relies on the fast dynamic effect (Eq.3), and the unavoidable effect of slow dynamics 10 

contributes to the error in the estimation of the parameter α 10,11. Such an effect is normally 11 

minimized by increasing the time lapse between successive resonant frequency acquisitions. 12 

Recent research on the application of nonlinear acoustics for the characterization of 13 

biological tissues allowed investigation of the whole range of nonlinear phenomena with the 14 

technique termed dynamic acousto-elastic test (DAET)12. The DAET consists in monitoring the 15 

variations of the speed of sound through the material, normally through variations in the time of 16 

flight of ultrasonic pulses (probe wave), while a low frequency burst that matches a fundamental 17 

resonant mode perturbs the media (pump wave). Assuming that Poisson’s ratio, and density 18 

variations are negligible during pump wave excitation, the resulted variations of modulus are 19 

related to the speed of sound (c) as  20 
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Considering that the variations of the speed of sound (Δc) with respect to the speed of sound in 2 

the linear elastic regime (c0) are so small that c ≈ c0 —and hence, )(2 0
2
0

2 cccc  —, the 3 

corresponding relative variations of time of flight (Δt/to) are approximately related to the material 4 

nonlinearity as12-14 5 
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where, additional to the quadratic and cubic nonlinear classical parameters (β and δ) and strain 7 

rate-dependent hysteresis U(,  ), the function CE(Δε) takes into account the material 8 

conditioning effect: the apparent mix of slow and fast dynamics10 which offsets the relation 9 

between strain and the relative variation of modulus. In addition, the variations of material 10 

attenuation produced during low frequency burst excitation, are also derived from the amplitude 11 

of the ultrasonic pulses12-14. 12 

Two conditions must be accomplished in DAET experiments. First, the time of flight (t0) 13 

of the ultrasonic probe wave must be less than 1/10 times the value of the low frequency 14 

excitation13. In this way, the instantaneous variations of time of flight can be precisely related to 15 

the strain amplitude of the pump wave excitation. Second, the repetition rate of the ultrasonic 16 

pulse generator has to be set so that the ultrasonic wave is completely attenuated between pulses. 17 

Therefore, the succeeding ultrasonic pulses are not affected by the coda wave of the preceding 18 

ones12-14.  In consequence of the last, the variations of time of flight and amplitude are obtained 19 

for few values of strain in several cycles of the low frequency burst (constant strain amplitude 20 
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excitation). Therefore, the test has to be repeated after changing the phase of the ultrasonic pulse 1 

generator to obtain more experimental data, and describe properly the variations of time of flight 2 

and amplitude over the whole strain range excitation12-14. These conditions make unpractical to 3 

leverage the potential of DAET in on-site assessment of structures or in structural health 4 

monitoring applications wherein the use of ambient vibrations and transient events (variable 5 

strain amplitude excitation) are required to monitor passively the dynamic properties of 6 

structures15-17.  7 

In this study, a DAET is conducted by modulating a continuous monochromatic high 8 

frequency probe that propagates through the material. The approach is demonstrated on a 9 

prismatic concrete sample. The modulation of the continuous wave signal is achieved by a 10 

hammer blow configured to promote its first bending mode of vibration. The signal analysis is 11 

conducted with a short-time Fourier transform based approach. It is based on extracting the 12 

phase and amplitude variations by the simultaneous comparison between a reference (non-13 

modulated) and an impact-modulated signal. Thus, the changes in velocity in the medium 14 

produced upon transient vibration rely on the phase changes of the continuous probe. Unlike 15 

previous DAET configurations13,14,18-20, the approach presented herein has two main advantages.  16 

It overcomes the inconvenience of changing the phase of the high frequency probe (in case of 17 

ultrasonic pulses) in consecutive experiments for discretizing the variations of wave velocity 18 

over the whole range of strain excitation, and it allows investigation of the discrete time variation 19 

of material nonlinearity over only one cycle of low frequency excitation. Therefore, the 20 

variations of modulus can be investigated during the ring down of the mechanical energy 21 

introduced by a hammer blow. Otherwise, when a hammer blow is used as low frequency source 22 

and ultrasonic pulses as probe wave21,22, the only measurable parameter is the maximum offset of 23 
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the normalized time shift (Δt/to), since the strain amplitude is variable over time. Conversely, the 1 

parameters extracted herein show similarity with the nonlinear acoustic behavior derived from 2 

Eq.5, and previously observed in compressional mode DAET experiments13,14,18-20. These are: 1) 3 

an offset of the material modulus upon low frequency excitation, 2) a phase delay between the 4 

onset of the strain amplitude and the relative variations of modulus, and 3) an incomplete 5 

recovery of the dynamic properties of the material when the strain energy of the low frequency 6 

signal is completely damped.  7 

2. Materials and methods 8 

2.1. Materials 9 

The tests were conducted on a concrete sample measuring 15x15x60 cm3. The 10 

composition of concrete is listed in Table 1. At the moment of test, the concrete sample was fully 11 

matured. For reference, the compressional and shear wave velocities were determined using 12 

direct transmission of an ultrasonic pulse, along the straight-line path respect to the sample 13 

width. For compressional wave velocity measurement, two ultrasonic transducers GE-14 

Measurement & Control (model G 0,25 G code 67422, central frequency of 250 kHz) were used. 15 

For shear wave velocity measurement, two transducers Panametrics-NDT (model V151, central 16 

frequency of 250 kHz) were used. The compressional and shear wave velocities were 4056 m/s 17 

and 2483 m/s. The density of the sample was ρ = 2350 kg/m3; thus Mo = 37.8 GPa, and 18 

Poisson’s ratio ν = 0.20.  19 

Table 1. Mix design of concrete and properties. 20 

Cement CEM I/52.5N (kg/m3) 370 

Water (l/ m3) 212 
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Fine aggregates 0/4 (kg/m3) 774 

Coarse aggregates 4/14 (kg/m3) 1069 

Compressive strength at 28 days (MPa) 53 

 1 

2.2. Experimental configuration  2 

Figure 1 shows a schematic depiction of the experimental configuration. Two ultrasonic 3 

transducers (Panametrics-NDT model V101, central frequency of 500 kHz) were placed on the 4 

sample at its middle span with a distance (d) between them, center to center, of 10 cm. A 5 

continuous sinusoidal high frequency probe was modulated by a hammer blow, while an 6 

accelerometer (Bruel & Kjaer model 4525B, sensitivity of 1.046 mV/(m.s-2)) monitored the out-7 

of-plane acceleration at the center of the sample. The relative position between impact and 8 

accelerometer was configured to promote the first bending mode of vibration. The strain 9 

amplitude owed to the first bending mode of vibration was derived from the accelerometer 10 

response (see section 2.4). An instrumented hammer (Bruel & Kjaer model 8207, sensitivity of 11 

0.230 mV/N) with a polymeric tip was used to perform the measurements. Five different energy 12 

impacts were conducted between 1kN to 5kN, which resulted in values of resonant frequency 13 

between 1442 Hz and 1440 Hz. The time lapse between different acquisitions was set at one 14 

minute. 15 
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 1 

Figure 1. Schematic representation of the experimental setup. 2 

Recently, Fröjd and Ulrikssen23 investigated the effect of a static load on the amplitude 3 

and phase of a continuous wave excitation at 47 kHz. In such study, the authors argued that the 4 

continuous wave source produced a steady-state diffuse field which consisted of direct 5 

propagation, scattered waves, and reflections from the boundaries of the concrete sample being 6 

investigated therein. In this study, the frequency of the continuous ultrasonic probe was set to 7 

500 kHz. At such a frequency, multiple scattering effects occur in concrete and a strong 8 

attenuation of the energy in every direction is produced24,25. Thus, the resulted field is mainly 9 

dominated by direct propagation, but reflection contributions from sample boundaries are 10 

dramatically minimized. For reference, the amplitude of the continuous wave excitation in a 11 

through-thickness continuous wave measurement was reduced more than 80% that obtained by 12 

using the original test configuration (as shown in Figure 1). Therefore, the reflected energy 13 

recorded by the receiver in the original position is not a significant contribution to the total 14 

received energy.  The continuous wave is then perturbed by a hammer blow and as a result, the 15 

amplitude and phase of the continuous probe are modulated because of the material nonlinearity. 16 
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The distance between the transducers has to be set, so that the instantaneous variations of phase 1 

and amplitude can be precisely related to the strain values derived from the acceleration 2 

response.  Despite, any specific bulk wave can be attributed to the continuous wave excitation, 3 

the time of flight obtained for compressional wave was used to meet this requirement. To this 4 

end, the distance between the transducers was set to d= 10 cm. Then, indirect propagation (as 5 

shown in Figure 1) of five cycles at 500 kHz provided a time of flight of to= 26.8 μs (p-wave 6 

arrival). This value of to ensured that the instantaneous variations of amplitude and phase 7 

correspond to less than 1/10 times the period of the low frequency excitation13.  On other hand, 8 

we noticed that the value of to was significantly lower than that obtained using direct 9 

transmission (see section 2.1). This effect is most likely due to the different material properties in 10 

the near-surface regions with respect to the inner core of the concrete samples26,27.  11 

2.3. Signal processing 12 

The out-of-plane particle displacement because of the continuous monochromatic probe 13 

wave before a hammer blow excitation (yr(t)) can be written as 14 

)()··sin()( · tetBty rrr
dr   ,       (6) 15 

where B is the amplitude of the signal, ωr is the angular frequency of the probe, γr is the 16 

ultrasonic attenuation, and Ψr(t) is a function containing the non-coherent information of the 17 

multiple scatters recorded on propagation from the emitter to the receiver. Subscript r stands for 18 

“reference”, whereby the ultrasonic probe is assumed to propagate through the medium in the 19 

linear elastic regime. Namely, in absence of hammer blow excitation. The high frequency probe 20 

yr(t) is then perturbed by a hammer blow.  As a result of the presence of contact-like defects 21 

within the imperfect microstructure of concrete, the modulus of the material varies upon 22 
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compression and tension cycles induced by the pump wave excitation28. Then, the phase and 1 

amplitude of the probe wave signal are modulated. The resulting impact-modulated signal yp(t) 2 

can be written as  3 

 
)())(·sin()(

)(
tettBty p

dr
rp

t


 
 .     (7) 4 

The functions Ω(t) and Γ(t) are the phase and amplitude modulation contributions. Both 5 

functions must consider the periodic variations of phase and attenuation, as well as the 6 

instantaneous offsets produced with the onset of the strain amplitude. Phase and amplitude 7 

modulation manifest as sideband peaks with respect to the frequency of the probe wave, when 8 

the whole modulated probe signal is transformed to the frequency domain. The relative energy of 9 

the sideband components, with respect to the energy of the probe wave, has been used as a 10 

measurement of material nonlinearity28. However a more detailed description is proposed herein. 11 

The variation of material modulus because of the presence of contact-like defects can be 12 

quantified through the instantaneous phase difference of the impact-modulated probe (Eq.7) with 13 

respect the reference (Eq.6). The resulting instantaneous phase difference between both signals is 14 

the function Ω(t). To this end, a sliding window moves through the time domain signals of the 15 

probe waves (Eqs. 6 and 7) and transforms the time segments within the window to the 16 

frequency domain. At every windowed time segment (τ), the time shift (∆t) between perturbed 17 

and reference signals is obtained from their spectral phases (Φp(ω) and Φr(ω)) at the probe 18 

frequency (ωr) as 19 

r

rp

tt

t
rr













00

)()(
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Given that a continuous probe lacks a clear wave path, and it does not allow extraction of phase 1 

velocity, in this study we assume that the time shift variations between reference and modulated 2 

signals are related to the variation of the material modulus. Therefore, the relative time shift 3 

modulation obtained from Eq. 8 provides insight into the relative variation of the modulus as 4 

deduced in Eq. 5. A normalization of the time shift (Δt) by t0 is still needed, especially when 5 

different materials are to be compared22. The time of flight obtained for indirect propagation of 5 6 

cycles at 500 kHz was selected as the reference value (t0= 26.8μs). In addition, at every window 7 

position, the variation of the attenuation properties between reference and impact-modulated 8 

probe can be considered as14 9 

d
F

F

r

r

r

p

rp



















 




)(

)( 
ln ,       (9) 10 

where |Fr(ω)| and |Fp(ω)| stand for the spectral amplitude at the probe frequency ωr, 11 

corresponding to the windowed time segment τ of the signals yr(t) and yp(t). The instantaneous 12 

variations of attenuation are Γ(t), since γp(t)= γr(t)+ Γ(t). 13 

Figures 2a-2c show typical recorded signals and a schematic representation of the signal 14 

processing. At overall, the signal processing consists in a sliding window that simultaneously 15 

transforms the time segment of the reference (yr) and perturbed (yp) signals, and computes the 16 

relative time shift (Eq. 8) and amplitude variations (Eq. 9) between them. Figures 2d-f show 17 

magnified plots of the signals. Herein, the window length was set to five cycles of the high 18 

frequency probe that corresponds to 1/69 times the resonant frequency corresponding to the first 19 

bending mode of vibration. Such a window length provides an almost constant value of 20 

acceleration (see Figure 2d). Then, time shift and amplitude variations can be precisely related to 21 
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the in-plane strain which is derived from the accelerometer response (see section 2.4). Figures 2e 1 

and 2f compare a time segment of yr and yp, before and after an impact event. Before the impact 2 

event, the phase differences between the signals yr and yp are close to zero (Figure 2e), whereas 3 

they become evident after the hammer blow (Figure 2f). 4 
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Figure 2. (Color online) Typical time domain signals and schematic representation of the signal 1 

processing: a) signal recorded by the accelerometer, b) ultrasonic monochromatic reference 2 

signal (yr), c) impact-modulated ultrasonic signal (yp), d) a time segment of the acceleration signal 3 

after the hammer blow; it shows an almost constant value of acceleration (and hence strain) within the 4 

length of the window (10 s), e) a time segment of the ultrasonic probes yr and yp before the hammer blow 5 

(the window is shown in red), and f) a time segment the ultrasonic probes yr and yp after impact (the 6 

window is shown in blue). 7 

2.4. Measurement of strain from acceleration response 8 

Different resonant modes are generated upon hammer blow excitation. For reference, the 9 

frequency domain spectra for the five hammer blows are represented in Figure 3a. The 10 

broadband excitation generated upon a hammer blow ranges from 0 to nearly 2 kHz. A numerical 11 

eigen-frequency analysis of linear isotropic material, and for the specific sample the geometry 12 

and material properties of the concrete sample —Mo, ν and ρ, see section 2.1— leads to the first 13 

bending mode occurring at 1449 Hz, the first torsional mode at 1981 Hz, the second bending 14 

mode at 3249 Hz, and the longitudinal mode at 3335 Hz. For the given impact point and 15 

frequency band generated, only the first bending mode (1442 Hz obtained experimentally) 16 

contributes to the strain field, and other fundamental and higher order modes will not be excited 17 

(Figures 3a and 3b).  18 
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1 
Figure 3. (Color online) a) Frequency response for the five impulse signals as acquired by the 2 

hammer load cell, and b) frequency spectra from acceleration signals. Inset figures show the 3 

mode shapes obtained by the numerical eigen-frequency analysis. 4 

From the acceleration response, the dynamic strain on the outermost fiber of the beam 5 

owed to the first bending mode of vibration can be derived from the solution of the Euler-6 

Bernouilli beam equation29. However, the assumptions of the Euler-Bernouilli beam theory do 7 

not apply in the case of short beams30. Alternatively, Payan and colleagues31 proposed estimating 8 

the strain from a numerical finite element model (FEM), relating the out-of-plane acceleration 9 

(azz) to the in-plane strain (εxx); in this case that owed to the first bending mode of vibration, as 10 

expzz
numzz
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where K is an amplification factor used by the FEM software to display relative values of strain 12 

and acceleration in the solution of free boundary conditions. The factor K is then divided out, 13 

εnum and azz,num are the in-plane strain and out-of-plane acceleration obtained in the eigen-14 

frequency analysis; azz,exp is the out-of-plane acceleration obtained experimentally. In the 15 

following, we use the convention of negative strains for compression of the material. 16 
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3. Results and discussion 1 

Figures 4a-d show representative results of the relative variations of time shift and the 2 

variation of signal attenuation as the mechanical energy input naturally decreases. The results 3 

reveal a sudden softening of the material produced after a hammer blow, which manifests as a 4 

decrease of material modulus and an increase of attenuation (decrease of signal amplitude). The 5 

instantaneous variations of both extracted signals —derived from Eqs. 8 and 9, and shown in 6 

Figures 4a and 4c— are mainly driven by the first resonant bending mode of the sample, and 7 

harmonics at twice the fundamental resonance frequency. Simultaneously, the signals are 8 

instantaneously offset because of the non-classical contributions: the fast and slow hysteretic 9 

motions. For better understanding of the classical and non-classical contributions, the signals 10 

were decomposed, to untangle the effect of material conditioning from the relative variation of 11 

time shift and the variation of attenuation properties: CE and CD respectively. Such 12 

decomposition can be attained by applying a low pass filter to the resulting time shift and 13 

amplitude variation signals13. Herein, the cutoff frequency was set to 1/3 of the low frequency 14 

excitation. The instantaneous offsets (CE(t) and CD(t)) were then subtracted from the whole time 15 

shift and amplitude variation curves. Such decomposition allows one to analyze separately the 16 

relaxation kernel (material conditioning) after a hammer blow, and the instantaneous 17 

modification of the classical material nonlinearity (β and δ) with decreasing strain amplitude 18 

(Δε). Once the relaxation kernels (the instantaneous offsets CE and CD) of the signals have been 19 

untangled, the resulting mean-centered variations of the time shift signal include the low 20 

frequency excitation (h=1), and H harmonics (see Figure 4e). The resulting signal can be 21 

described as  22 
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,       (11) 1 

where Ap is the amplitude of the signal corresponding to the harmonic h; the variable htakes 2 

into account the decaying energy for every harmonic h of the relative variation of modulus (see 3 

inset plot in Figure 4e). On other hand, the strain owed to the first bending mode resonant 4 

frequency (ωM) can be described as 5 

tti
xx

MMeSt   1)( ,         (12) 6 

where S1 is the amplitude of the strain signal (see Figure 4d), and Mis the modal damping ratio. 7 

For simplicity, Eqs. 11 and 12 do not consider time-dependent frequency and attenuation 8 

behavior, which are normally observed during the ring down of the signals in concrete32,33. After 9 

substituting Eq. 11 and Eq. 12 into Eq. 5, a relative quantification of the classical higher order 10 

terms can be obtained  as β’=A1/S1 and δ’=A2/S1
2. Herein, the amplitudes A1, A2, and S1 were 11 

estimated using a sliding window that computes the spectral amplitude over ten cycles of their 12 

corresponding signals (Figures 4e and 4f). Therefore, these amplitudes are weighted averaged 13 

values obtained through a Fourier transform. The obtained values are β’= -300 and δ’= -7.4ˑ107, 14 

within the strain amplitudes of S1=3·10-6 and 1·10-6.  Such analysis leads to similar values of β’ 15 

and δ’ and CE obtained through a second order polynomial fit of the relation between the relative 16 

time shift (as -2·Δt/to) and strain (see polynomial fit in Figure 4b). The main drawback of the 17 

polynomial fit method14,18-20, is the lack of fit of the second order polynomial to the observed 18 

behavior (Figure 4b), and hence, a Fourier analysis can be preferred. However, the amplitudes 19 

A1, A2 and S1 obtained from the Fourier analysis of transient response signals are weighted 20 
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averaged values of the actual amplitude, which can result in an underestimation of the actual 1 

amplitudes.  2 

Normally, the relation between time shift variations and strain resembles a bow tie, and 3 

likewise for the attenuation variations, since both signals are delayed in phase with respect to the 4 

strain signal (Figures 4b and 4d). Such phase delay depends on the storage and loss modulus of 5 

the material, namely the relation between the real and imaginary parts of the frequency domain 6 

signals34, as well as on the hysteretic contribution U( Further, by integrating the relation 7 

between the relative variations of modulus with strain, the stress-strain relationship can be 8 

obtained as 9 

  


  d
M

M
MM

o

ooNLL )()()( ,     (13) 10 

where σL and σNL are the linear and nonlinear contributions to the stress-strain relationship. 11 

However, because of the relative characteristic of the measure of material nonlinearity conducted 12 

herein, the nonlinear stress-strain counterpart can be quantified as 13 

 

  d

t

t
NL

0

2)(' ,        (14) 14 

where the nonlinear stress counterpart σNL is proportional to σ’NL (results shown in Figure 4g). On 15 

other hand, the energy dissipated (ΔE) during a hysteretic stress-strain cycle, because of internal 16 

friction, can be quantified as35 17 

2



o

NL

o M

d

E

E  



,         (15) 18 
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where Eo is the elastic energy stored in the specimen when the strain is a maximum. The results 1 

obtained from the analysis conducted through Eqs. 14 and 15 show how the hysteretic behavior 2 

progressively vanishes, as a measure that the strain amplitude decreases. As a result, the energy 3 

dissipated in every cycle (Figure 4h) decreases with decreasing strain amplitude.  4 
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Figure 4. (Color online) Dynamic properties extracted for a single impact (force = 4.7 kN): a) 1 

relative variation of time shift as a function of time; inset plot shows the cyclic response whose 2 

frequency matches the first bending mode of vibration, b) relative variations of time shift as a 3 

function of strain; dashed line shows a second order  polynomial fit as 
Eo Ctt   '2'/2 , 4 

c) variation of ultrasonic attenuation with time, d) variation of ultrasonic attenuation as a 5 

function of strain, e) untangled mean-centered variations of the relative variations of time shift 6 

(Eq. 11) in frequency domain, and analyzed in short windows of 10 cycles; inset plot shows the 7 

corresponding time domain signal and the sliding window, f) strain signal in frequency domain, 8 

g) relative nonlinear stress (σ’NL)-strain relationship derived from Eq. 14, and h) specific loss 9 

(Eq. 15) as a consequence of the hysteretic behavior. Dashed lines in a) and c) show that the 10 

recovery of the modulus takes a longer time than that found for the variation of the ultrasonic 11 

attenuation. 12 

When the material is investigated at different impact energies, the same behavior as 13 

presented in Figure 4 is consistently reproduced (results not shown here). However, the more 14 

energy is introduced by the hammer blow, the more the material modulus and attenuation are 15 

offset. Figures 5a and 5b show the maximum offset of the relaxation kernels (CE,min and CD,max, 16 

shown as square symbols), and the behavior of CE and CD as a function of the strain amplitude 17 

during the ring down. As regards the elastic softening of the material, it is observed that the 18 

minimum value of CE at every impact exhibits an inverse proportionality to the attained strain 19 

amplitude as  20 

    ·)(min CEEC ,        (16) 21 
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which leads to a value of αCE = -800. This approach is in fact equivalent to the nonlinear 1 

resonance spectroscopy-based techniques (Eq. 3), since the variable CE represents the time-2 

averaged relative variations of modulus (ΔM/Mo), as shown in previous studies18. However, the 3 

behavior of CE(Δε) and CD(Δε) observed during ring down differs from the simple observation of 4 

their maximum absolute offsets (Eq. 16 and Figures 5a and 5b ), most likely because of the 5 

contribution of the slow dynamic effect. Similar results were anticipated by Van Damme and 6 

Van Den Abeele36 in the investigation of fatigue damage in carbon fiber-reinforced polymer 7 

plates. In that study, the dependence between resonant frequency and strain amplitude followed 8 

different trends when the material nonlinearity was investigated at increasing excitation 9 

amplitudes, and when it was investigated through the analysis of the ring down of the sample 10 

(see Figure 3 in Van Damme and Van Den Abeele36). These findings suggest that the relaxation 11 

of the elastic properties after a nonlinear dynamic excitation is the result of the coupled 12 

mechanisms of fast and slow hysteretic motions. Therefore, the instantaneous variations of the 13 

resonant frequency during the ring down of the sample are a consequence of the attained strain 14 

amplitude at every impact, as well as of the past history load37.  15 

Fast motion hysteresis is thought to be driven by the recovery of asperities that are 16 

eventually broken during the strain field generated on resonance of the sample38. Conversely, a 17 

different volume of asperities remains in metastable equilibrium once the dynamic excitation 18 

vanishes, and will return to the initial state because of thermal fluctuations38 and other 19 

mechanisms not yet established11 which takes place on a longer timescale (slow dynamics). 20 

Since the two mechanisms seem to coexist during a dynamic excitation10, the elastic softening CE 21 

can be written as the superposition of fast and slow contributions as 22 
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slowEfastEE CCC ,,  ;         (17) 1 

and analogously for CD. If it is assumed that the fast hysteretic motion is mainly driven by the 2 

onset of the strain amplitude signal, the relaxation kernel owed to slow hysteretic motion (CE,slow) 3 

can be found by scaling the envelope of the strain amplitude —in the case that only one resonant 4 

mode dominates the dynamic response— and subtracting it from the total contribution as 5 

 
max

,

)(
.min









t
CCC EEslowE .       (18) 6 

We can therefore assume that the fast dynamic effect (CE,fast) is proportional to the strain 7 

amplitude —as shown in Eq. 16—while the deviation of the proportionality behavior of CE is 8 

gathered in the variable CE,slow. The value of αCE after untangling the slow dynamic contribution 9 

for a single impact is αCE = -710 (Figure 5c), and approximately the same for every different 10 

hammer blow. Interestingly, these values are close to those obtained through the quantification 11 

of αCE from the minimum offset obtained for five impacts (Eq.16). Likewise for the analysis 12 

conducted on CD (Figures 5b and 5d). Therefore, after the slow dynamics of a single impact are 13 

untangled, the estimation of the parameter α approximates to the value obtained with a nonlinear 14 

resonant spectroscopy approach, wherein the effect of the slow dynamics is minimized10. The 15 

contribution of the slow dynamics becomes more evident when the signals are shown as a 16 

function of time. Figures 5e and 5f show the untangled fast and slow hysteretic effects on the 17 

relaxation kernels as a function of time. The fast counterpart is the scaled envelope of the strain 18 

signal (Eq. 18), while the slow contribution directs the global behavior of the relaxation kernels, 19 

CE and CD, away from the scaled strain signal envelope. Remarkably, the slow dynamic 20 

contribution seems to be enhanced on CE compared with CD. This observation is not unique. 21 
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Similar behavior was also observed in compressional mode DAET experiments conducted on 1 

rock17. Although more research is needed in this respect, the fast hysteretic motion is most likely 2 

captured by the attenuation variation (CD) which recovers completely to the initial properties, γo 3 

(Figure 5f), at the time that the strain signal is completely damped. This observation suggests 4 

that the underlying mechanisms of slow dynamics differ in the recovery processes of the elastic 5 

and attenuation properties.  6 
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 1 

Figure 5. Relaxation kernel observed for five different impact energies, for a) the elastic 2 

properties (CE) for five different impact energies, b) the attenuation properties (CD). Untangled 3 

fast and slow dynamic contributions from a single impact as a function of strain amplitude, for  4 

c) CE and d) CD, and  untangled fast and slow dynamic contributions from a single  impact as a 5 

function of time, for e) CE, and f) CD. 6 
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Despite only one concrete sample was tested herein, the extent of material nonlinearity is 1 

reasonable for undamaged concrete when compared with previous studies31-33. We expect 2 

however, that the full range of nonlinear characteristics extracted herein be enhanced as a 3 

measure that cracking-like damage progresses. To this end, prospective work will focus in 4 

assessing distributed microcracking damage and surface-breaking cracks in concrete samples. On 5 

other hand, the methodology proposed in this study can be transposed to various applications 6 

which involve non-steady-state vibration, such as the analysis of earth response during ground 7 

motion, in structure health monitoring applications by using ambient noise, as well as on-site 8 

assessment of infrastructure materials, where usually only one face is available for 9 

nondestructive inspection. Some of these applications were previously devised in other 10 

studies21,22. However, the approach and analysis conducted here allows a more detailed 11 

description of the material nonlinearity. 12 

4. Conclusions  13 

This study shows the feasibility of extracting the full nonlinear behavior of materials by 14 

using a hammer blow to modulate a continuous high frequency probe. The approach was 15 

demonstrated in one undamaged concrete sample. The analysis focused on investigating the 16 

amplitude and phase changes produced in the continuous probe wave upon transient vibration. 17 

The extracted dynamic features in this study are those expected for materials that present 18 

distributed contact-like defects such as concrete or rocks: 1) the relative variations of modulus 19 

with strain resembled a bow tie, 2) the modulus decreased and progressively was recovered with 20 

the onset of the strain amplitude, and 3) the modulus was not completely recovered at the time 21 

that the strain amplitude was completely damped. Consequently, these phenomena were also 22 

reproduced on the attenuation properties. In addition, the recoveries of modulus and attenuation 23 
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properties (CE and CD) during the ring down of the sample were analyzed. The analysis consisted 1 

in decomposing the modulus and attenuation recoveries in those contributions strictly 2 

proportional to the strain amplitude (fast dynamic effect), and those that directed away from such 3 

proportional relationship the recoveries (slow dynamic effect). After untangling the slow 4 

dynamic contribution, the hysteretic parameters (αCE and αCD) obtained from a single impact 5 

event were similar to those obtained from a nonlinear resonant spectroscopy based approach; that 6 

is obtaining the hysteretic parameters from multiple impact events. 7 
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