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Abstract

We present a novel microstructured optical fiber having a quasiperiodic distri-
bution of air holes based on the Thue–Morse sequence. The transverse section of
these fibers are basically a two-dimensional photonic quasicrystal which can also
provide complete photonic band gaps without being a perfect periodic structure.
Like in conventional photonic crystal fibers, if the “quasiperiodicity” is broken
by decreasing the size of some air holes or by introducing an extra air hole, the
modified holes become defects that localize and guide light along the fiber. The
guidance is attributed to the inhibition of transverse radiation produced by the pho-
tonic quasicrystal cladding. Dispersion curves of guided modes for different struc-
tural parameters are calculated, along with the transverse intensity distribution of
the fundamental mode. In particular, several specially designed Thue–Morse qua-
sicrystal fibers with nearly-zero ultraflattened group-velocity dispersion are pre-
sented.

1 Introduction
Photonic Crystal Fibers (PCFs) are “in general” thin silica fibers that have a regular
array of microscopic holes that extend along the whole fiber length [1]. Any transverse
section of the fiber presents an identical 2D silica-air photonic crystal, which for some
specific geometries provides a characteristic photonic bandgap structure [2]. If one of
these holes is modified, the periodicity is broken and a defect appears in the otherwise
regular structure. The well known fact that light can be trapped at defects [3] turns into
a propagation feature, being guidance attributed to the inhibition of transverse radiation
produced by the 2D photonic crystal cladding [4].

There is a high number of different photonic crystal configurations. The most com-
mon PCFs comprises a triangular lattice with a defect generated by the absence of a
hole [5]. In this case, donor guided modes appear simultaneously in the upper and the
lower forbidden bands of the triangular photonic crystal [6]. Alternatively, guidance
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is also possible in honeycomb fibers in which the defect is generated by an extra hole
located off the lattice. An intraband acceptor guided mode appears in the vicinity of
the defect [7]. Other configurations have also been proposed in the literature and each
of them has its own specific properties. Some examples are the hollow core fibers
(PCFs guiding light by an air-core surrounded by 2D lattice) [8] and the bragg fibers
(photonic-bandgap fiber formed by concentric rings of multilayer film distributed peri-
odically) [9].

All these configurations with solid-core or air-core have in common claddings char-
acterized by periodic lattices with discrete translational and rotational symmetry that
provides a photonic band gaps structure, analogous to the electronic band gaps of a
semiconductor. Note that the concept of crystal is usually restricted to periodic or-
der. However, the concept of order without periodicity has been studied extensively
in science and technology [10]. In fact, some interesting review articles on photonic
quasicrystals can be found in the literature [11, 12]. It has been demonstrated that
photonic quasicrystals can also exhibit photonic band gaps [13–15]. These aperiodic
structures can be generated by deterministic rules and posses long-range order [16].
Unlike periodic structure, aperiodic deterministic structures lack both translational and
rotational symmetries but present scale invariance symmetry (self-similarity) in their
spectral and structural structure [17]. Fibonacci multilayers is an example of aperi-
odic system with discrete Fourier spectrum characterized by self-similar bragg peaks
which determine the location and width of the frequency band-gap [18, 19]. Another
example of a deterministic aperiodic system is the one-dimensional [20, 21] and two-
dimensional Thue–Morse lattices [22] which also exhibits band gaps phenomena [23].
These photonic quasicrystals can be considered as a square arrangement where some
lattice points have been removed following the rules given the aperiodic Thue–Morse
sequence in two dimensions.

Within this context, Photonic Quasicrystal Fibers (PQFs) are presented as a new
family of microstrutured optical fibers. The transverse section of PQF consists of a two-
dimensional Photonic Quasicrystal (the Thue–Morse lattice in our case) of microscopic
air holes in silica glass that extend along the entire fiber length (like in conventional
PCFs). This kind of fibers may be realized with a standard fabrication process [24] In
this work we demonstrate that breaking the “quasiperiodicity” with a defect (with a ex-
tra hole or reducing the size of some of them), it is also possible to localize light in the
silica core, preventing transverse radiation by the photonic band gap structure provided
by the aperiodic lattice. Moreover, the combination of the unusual geometric disper-
sion behavior shown by the aperiodic lattice, and the material dispersion corresponding
to silica core allows us to identify some designs with flattened dispersion profiles at the
Ti:sapphire wavelength window and ultraflattened dispersion profiles around 2 µm.

2 Design of the Thue–Morse based PQF
The construction of the one-dimensional Thue–Morse sequence is shown in Fig. 1 up
to fourth order. This aperiodic distribution starts at stage S0 with the binary value {1},
where “1” is represented by a blue square in Fig. 1. Then, each element of sequence is
obtained iteratively by replacing “1” by “10” and “0” by “01”. Therefore, S1 = {10},
S2 = {1001}, S3 = {10010110}, and so on. In Fig. 1 the elements “0” are represented
by red squares.

In a similar way, the two-dimensional Thue–Morse lattice shown in Fig. 2 is con-
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Figure 1: The one-dimensional Thue–Morse sequence up to fourth order.
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Figure 2: Construction of the two-dimensional Thue–Morse distribution up to fourth
order.

structed as follows [25]. Starting from the 1×1 matrix seed T0 = (0), the same trans-
formation rules can be applied, first in the y-direction obtaining an intermediate column
vector

(
0
1

)
. At this point, we apply the Thue–Morse rule to expand each element along

the horizontal direction, x, obtaining the 2×2 matrix T1 =
(

0 1
1 0

)
. In order to obtain the

next 2D Thue–Morse matrix, we will apply again the y inflation rule on each column
of the matrix obtained previously. This step will generate an intermediate 4×2 matrix.
Applying again the y-expansion of every element of its rows, we will finally generate
a square 4×4 Thue–Morse matrix, T2 (see Fig. 2). Note that the matrix T2 can be also
obtained from T1 using the generalized substitution rules (0)→

(
0 1
1 0

)
and (1)→

(
1 0
0 1

)
.

Higher-order Thue–Morse matrices, Tn, can be simply obtained by repeating the same
iteration scheme up to desired generation order. Mathematically, it is also possible to
obtain each element of the 2D Thue–Morse matrix of order n as [Tn]i, j = [Sn]i� [Sn] j,
where [Sn]i and [Sn]i are is the ith and jth element, respectively, of the 1D Thue–Morse
vector Sn, and � represents the XNOR function.

From this geometrical representation two designs of PQFs based on the Thue–
Morse lattice of order four can be constructed (see Fig. 3). The first microstructured
optical fibers corresponds to the air holes being located at the center of the blue squares
(direct Thue–Morse fiber) of Fig. 2, the second in the center of the red squares (inverse
Thue–Morse fiber). Note that the cladding of these PQFs can be considered as a rect-
angular arrangement of air holes in silica [26] where some of them have been removed
according to the Thue–Morse rules. The core of the fibers is performed by reducing
the size of the central holes in the direct fiber or by introducing an extra central hole in
the inverse fiber. In this way, donor and acceptor defects are considered in the direct
and inverse fibers, respectively, like in conventional PCF [4].

The concepts of donor and acceptor modes comes from semiconductor Physics.
The addition of donor impurities contributes electron energy levels high in the semi-
conductor band gap. On the other hand, the addition of acceptor impurities contributes
hole levels low in the semiconductor band gap. Within the context of microstructured
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Figure 3: a) Transverse section of two models of PQFs based on the 2D Thue–Morse
lattice of order four: a) Direct Thue–Morse fiber where the air holes are located at the
center of the blue squares in Fig. 2 and a donor defect is introduced by reducing the
size of the central holes. b) Inverse Thue–Morse fiber where the air holes are located at
the center of the red squares in Fig. 2 and an acceptor defect is introduced as a central
extra hole.

fibers, a donor defect performed by reducing the size of the central air-holes gener-
ates guided modes into the forbidden bands from the neighboring conduction bands.
In a similar way, an acceptor defect in the 2D lattice (an extra air-hole) causes guided
modes to leave the upper conduction band and to enter the forbidden band located just
below [4]. In this work we demonstrate that PQFs are governened by the same guiding
mechanism when the quasiperiodicity is broken with a defect.

3 Guiding and dispersion properties
We have simulated different direct and inverse PQFs based on the Thue–Morse se-
quence. The structural parameter that define PQF geometry are the “quasiperiodicity”,
Λ, the radius of the air holes, a, and the radius of the central air holes, b, that de-
fine the donor or acceptor defects in the fiber, as depicted in Fig. 3. Our numerical
calculations are performed with a 2D full-vector modal method that incorporates the
material dispersion in a natural way [27]. Figure 4 shows the two different band-gap
structures and the modal dispersion curves for the guided modes in silica-air direct and
inverse PQFs. Reducing the size of the four central air holes in the direct fiber (b < a),
guided modes appear simultaneously above and below the first conduction band. These
donor guided modes arise from the next lower conduction band when the ratio b/a is
reduced, moving through the forbidden band provided by the aperiodic lattice. In par-
ticular, the guided mode shown in the upper semi-infinite forbidden band in Fig. 4(a)
is the fundamental mode of the direct PQF. On the other hand, Figure 4(b) shows how
introducing an extra air hole in the center of the inverse Thue–Morse lattice, an ac-
ceptor guided mode leaves the upper conduction band and enters the forbidden band
located just below, so the fundamental guided mode for this configuration is intraband.
Therefore, it is demonstrated that intraband guidance phenomena are also possible with
aperiodic lattices as in conventional PCF [4]. The transverse irradiance distribution for
the fundamental guided modes in direct and inverse PQFs are shown in Fig. 5(a) and
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Figure 4: a) Modal dispersion curve for three donor modes characterized by different
ratios b/a of the four central holes in the direct PQF with a inverse normalized radium
Λ/a = 2.357. b) Modal dispersion curve for three acceptor modes characterized by dif-
ferent ratios b/a of the central extra hole in the inverse PQF with a inverse normalized
radium Λ/a = 2.357. Shaded areas correspond to the conduction bands formed by the
structure radiation modes, while the white areas are the forbidden bands.

5(b), respectively, for a wavelength λ = 800nm. Calculations reveal that the funda-
mental modes in direct and inverse PQFs are, in fact, linear polarization doublets, as a
consequence of the discrete rotational symmetry of the fibers.

In order to analyze the dispersion properties of PQFs based in the Thue–Morse se-
quence, we have simulated a number of different direct and inverse designs by changing
the equivalent quasiperiod, Λ, the hole radius of the aperiodic lattice, a, and the hole
radius of the defects, b. In this way, by analyzing the dispersion curves of these dif-
ferent PQFs, we have found that it is possible to control their dispersion characteristics
following a procedure similar to that described in [28]. The group velocity dispersion,
D, including the material dispersion, can be evaluated as

D(λ ) =−λ

c
d2neff

dλ 2 , (1)

where neff is the effective refractive index of the guided mode. As a first approximation,
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Figure 5: Transverse irradiance for the fundamental guided mode of the a) direct and
b) inverse PQF described in Fig. 3. In both cases, Λ = 424nm, a = 180nm, b/a = 0.4,
and λ = 800nm.

the dispersion of a magnified structure, DM , is given by [29]

DM(λ )≈ 1
M

{
D
(

λ

M

)
−Dm

(
λ

M

)}
︸ ︷︷ ︸

Dg,M(λ )

+Dm(λ ) , (2)

being M = Λ/Λ0 the magnification with respect to a reference structure with Λ = Λ0
the dispersion of which is D, and Dm the material dispersion of the reference material
(silica in this case). The first term in the right-hand side of Eq. (2) corresponds to Dg,M ,
the geometric dispersion of the magnified structure, i.e., the dispersion of the magnified
fiber with the condition that the material is non-dispersive. The above equations allows
us to obtain the structural parameters that provides approximately the expected disper-
sion behavior. Then, we can tune these parameters with the exact Eq. (1) to obtain
the desired dispersion profile. Using this procedure, it is possible to obtain interesting
dispersion configurations with PQFs based on the Thue–Morse lattice. In order to re-
duce the design parameters, we have considered the direct PQF shown in Fig. 3(a) with
a solid core (b = 0). The fundamental guided mode for this configuration looks like
Fig. 5(a) without the effect shown around the small central air holes. In Fig. 6(a) we
present some example of flattened designs with a zero third-ordered dispersion point
centered at different wavelengths. It is clear the tunability of the structure. We can
appreciate how the flattened dispersion curves are displaced along the wavelength axis
and are broaden as the ratio Λ/a increases. It is remarkable the possibility of obtaining
a constant dispersion at Ti:sapphire wavelength window around 0.8 µm (red curve).
Further increasing the ratio Λ/a, we have obtained in Fig. 6(b) three different ultraflat-
tened dispersion designs in the long wavelength communication window around 2 µm
improving in this way the performance of standard microstructured fibers with ultra-
flatten behavior around 1.55 µm [9, 30]. These dispersion curves present two points
with zero third-ordered dispersion and a middle point with zero fourth-ordered disper-
sion. The tunability of this aperiodic fiber is also clearly demonstrated by the fact that
these ultraflattened designs own positive, nearly zero, and negative D.
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Figure 6: Dispersion versus wavelength for the fundamental guided mode of the di-
rect Thue–Morse structure shown in Fig. 3(a) with a solid core (b = 0). a) Flattened
dispersion curves. b) Ultraflattened dispersion curves.

4 Conclusions
In this work we have designed a new type of microstructured optical fiber based on
aperiodic series. In particular, a two-dimensional structure based on the Thue–Morse
sequence is presented. After demonstrating that the designed structure is able to guide
modes, as conventional PCFs, by introducing both donor and acceptor defects in the
quasiperiodic structure, we have studied the dispersion behavior under the manipu-
lation of the design parameters, reaching some interesting configurations with flatten
group-velocity dispersion around 800nm and a tunable ultraflatten group-velocity dis-
persion at the 2 µm band.
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