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Resum
Els sistemes de traducció automàtica s’han fet servir desde la seva concepció per tra-

ductors professionals per a accelerar i facilitar la seva tasca. Aquestos sistemes reben tra-
duccions editades professionalment a través del seu ús, lo que pot pontecialment millorar
el seu rendiment. En les últimes décades, Xarxes Neuronals Artificials s’han utilitzat per
a desenvolupar sistemes de traducció automàtica complets.

En aquest treball s’han utilitzat dos algoritmes d’aprenentatge online per a millorar
traductors neuronals, que ja havien acabat l’etapa d’entrenament. Una amplia gamma
d’experiments s’han dut a terme per trobar els hiperparàmetres óptims per els algorit-
mes en cada tasca de traducció, i després el rendiment d’aquestos sistemes, adaptats
amb cadascun dels algoritmes aprenentatge (configurats amb aquestos hiperparàmetres
óptims), s’ha mesurat abans i després en quatre tasques de traducció, i s’han extret con-
clusions sobre com han millorat o empitjorat.

S’ha modificat el codi del traductor neuronal, s’ha implementat un dels algoritmes
presentants i s’ha desenvolupat un nou codi per oferir una interfície per a fer experiments
de forma automatitzada. Una altra familia d’algoritmes ha sigut implementada i probada
amb els models i tasques disponibles, sense resultats positius.

Finalment, línies futures d’investigació en adaptació de traductors neuronals han si-
gut considerades i discutides al final d’aquest treball, a més de la seva situació en l’estat
actual de la traducció automàtica.

Paraules clau: aprenentatge automàtic, xarxes neuronals, xarxes neuronals recurrents,
traducció automàtica, traducció neuronal

Resumen
Los sistemas de traducción automática han sido utilizados desde su concepción por

traductores profesionales para acelerar y facilitar su tarea. Estos sistemas reciben traduc-
ciones editadas profesionalmente a través de su uso, que pueden potencialmente mejorar
su rendimiento. En las últimas décadas, se han utilizado redes neuronales artificiales para
desarrollar sistemas de traducción automática completos con éxito.

En este trabajo se han usado dos algoritmos de aprendizaje online para mejorar redes
neuronales ya entrenadas. Un amplio abanico de experimentos se ha llevado a cabo para
encontrar el conjunto óptimo de hiperpárametros para los algoritmos en cada tarea, y
se ha calculado el rendimiento de estos sistemas, adaptados con cada algoritmo con sus
hiperparámetros óptimos encontrados de forma empírica. Se han extraído conclusiones
acerca de la mejora o empeoramiento de los traductores.

Se ha llevado a cabo una modificación de la base de código del traductor neuronal,
junto con la implementación de uno de los algoritmos y el desarrollo de una nueva he-
rramienta para proporcionar una interfaz para realizer experimentos de forma automa-
tizada. Otra familia de algoritmos ha sido implementada y probada con los modelos y
tareas disponibles, con resultados insatisfactorios.

Finalmente, líneas potenciales de investigación en adaptación de traductores neuro-
nales han sido consideradas y discutidas al final de este trabajo, junto con su situación en
el estado actual de la traducción automática.

Palabras clave: aprendizaje automático, redes neuronales, redes neuronales recurrentes,
traducción automática, traducción neuronal
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Abstract
Machine Translation systems have been used since their inception by professional

translators to speed up and ease their work. Those systems receive professionally edited
translations through their use, which could potentially improve their performance. In the
last decades, Artificial Neural Networks have been used to develop complete Machine
Translation systems to great success.

In this work two online learning algorithms for Artificial Neural Networks have been
used to enhance already trained neural translators. A wide array of experiments have
been carried out to find the optimal hyperparameters for the algorithms in each task,
and then the performance of those systems, adapted with each algorithm with their em-
pirically found optimal set of hyperparameters, has been measured before and after in
four translation tasks, and conclusions have been extracted on how they improved or
worsened.

A modification of a neural translator codebase has been carried out, along with the
implementation of one of the algorithms and the development of new codebase to pro-
vide an interface to perform experiments in an automated way. One additional family of
algorithms has been implemented and tested with the available model and tasks to no
avail.

Finally, possible future lines of research on adaptation of neural translators have been
considered and discussed at the end of this work, along with their situation in the current
state of Machine Translation.

Key words: machine learning, neural networks, recurrent neural networks, machine
translation, neural translation
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CHAPTER 1

Introduction

1.1 Background

In 1949 Warren Weaver laid the foundations for Machine Translation (MT) by proposing
the use of computers to tackle the challenge of translation. Consequently, in the 50s and
60s, several attempts were made to create practical translators, and by the mid sixties
the newly created ALPAC (Automatic Language Processing Advisory Committee)[15]
published a report in which they painted the future of MT as bleak.

About 10 years later nonetheless, after the conception of some new approaches and
the increase in processing power of computers, there was a renewal of the expectancies
for MT, and research and interest rose back up.

So far, MT is a challenge that has been engaged with multiple approaches and method-
ologies, but most of them can, nowadays, be classified into three categories[10]: Rule-
Based approaches, Corpus-Based ones and a hybrid approach in between. Rule-Based
Systems (RBS) require the use of human knowledge on languages, and the use of gram-
mars and vocabularies. Corpus-Based Systems (CBSs) use big parallel corpora of text for
the system to learn them and reproduce their features. A big advantage of CBSs over
Rule-Based Systems (RBSs) is that language data is readily available for almost any lan-
guage in the world, a big amount of information in several languages. From books to
news, movie scripts, trial transcripts and laws, there is a large number of sources from
which data can be extracted that Corpus-Based translators can use to improve the quality
of their product. Since CBSs are trained on data, they also have (usually) the possibility of
scaling up and out with hardware, while RBSs are usually limited by the quality of their
rules.

1.2 Motivation

Professional translators use MT systems regularly to speed up their task. The translations
obtained through those systems though are of irregular quality, and many if not most
of them must be amended by human translators to obtain a satisfactory result. Those
corrections can be used to improve the MT system being used to, in the long term, reduce
the number of corrections that the professional needs to apply to future translations. The
limit being of course “perfect translations”, where no corrections are needed.

The correction of machine-generated translations human translators is known as post-
edition. In a post-edition context, the human translator inputs a source sentence, the
software generates a hypothesis in the target language and the human corrects the trans-
lation. In a simple system this correction is only useful to the user, since the system will

1



2 Introduction

not benefit from it. The goal here is to exploit this new information by feeding it back
to the system to enhance it. Every pair of source sentence and post-edited translation
is a sample of data that the system can use to try to fix its defficiencies, the parts of its
model that decided that the imperfect, generated hypothesis was more desirable to the
user than the corrected translation.

There are different approaches on how to modify the model to fit this new data. In
this thesis, two different online learning algorithms for this task will be compared: Ada-
Grad and Stochastic Gradient Descent (SGD). A third family of algorithms called Passive-
Aggressive will also be studied. A set of already-trained models will be adapted with the
first two algorithms and the results will be compared to their previous performance, to
gauge how much they have improved.

1.3 Goals

Having more than one online learning algorithms available for harnessing the data pro-
duced by professional translators, one of them has to be chosen for each task so that the
systems are as capable as possible. Our objective in this work is to find out whether any
of the algorithms being discussed in section 3.2 dominates the other (in these tasks) or
whether they perform better or worse than one another depending on the task in ques-
tion.

To that end, we will use different translation tasks to measure the quality of the trans-
lations before and during an online training scenario. The before measure represents the
quality of the translations issued by the model without intervention of the retraining al-
gorithms. The during measure is obtained by evaluating the quality of each translation
obtained by the model before being retrained on the relevant sentence pair. That is, first
we obtain a translation for a source sentence, then we retrain the model with that sen-
tence and its respective target sentence. Thus, the during measure represents the quality
of the translations that were issued by a model being retrained with a given algorithm,
emulating the post-edition case that was presented before. It is to be expected then, that
if the model improves through this process, a translator based on this model and using
this retraining algorithm when receiving data through normal use will improve as well.
We assume also that, when independently retraining the same model with two different
algorithms and obtaining a higher degree of enhancement in the hypotheses generated
by one of them than in the ones generated by the other, this relationship will hold also
for two software translators based on that model and using the respective algorithms for
retraining.

Since both algorithms we compare have hyperparameters, it is essential to find a good
approximation of the hyperparameters that work best for each combination of algorithm
and task. Otherwise, we could be using a set of hyperparameters that makes an otherwise
effective algorithm aggressively change the model, making the algorithm look faulty or
useless when it only has been badly configured.

Therefore, once we have found the appropriate hyperparameters for each algorithm
and task, we will use this combination to obtain before and during measures of the retrain-
ing of the models on the respective tasks using the relevant algorithms and hyperparam-
eters. With these results we will be able to judge the affirmations made at the beginning
of this section.

To accomplish this, the relevant parts of the software that powers the models which
will be used for experimentation will have to be modified to accommodate the new algo-
rithm implementations and the experiments environment. Moreover, new code will have
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to be produced to provide an interface used to conduct experiments in an automated and
flexible way.

1.4 Structure

In Chapter 2 of this document, the basis of Neural Machine Translation (NMT) is laid
out and the state of the art discussed. In Chapter 3, the aforementioned online learning
algorithms are introduced, and their characteristics are explained. Chapter 4 describes
the nature of the data that was used in the experiments, how those experiments were
performed and their results. Also, information about the software used in this work and
implementation details of the algorithms can be found here. Finally, Chapter 5 contains
the conclusions drawn from the obtained results and what additional research is neces-
sary to further the goals of this work.





CHAPTER 2

State of the art

Natural Language Processing (NLP) is a knowledge field within Artificial Intelligence
and Computational Linguistics, devoted to the study of methods that involve computers
understanding or manipulating human languages.

NLP comprises several tasks, the most popular of them usually being Speech Recog-
nition, Text Recognition, Speech Synthesis and Machine Translation. This thesis is con-
cerned with a very particular topic within the last of them.

2.1 Statistical Machine Translation

In MT, within the Corpus-Based Systems, there is Statistical Machine Translation (SMT).
The goal of a SMT system is to find, given a source sentence x of length J in a source
language F , a target sentence y of length I in the target language E . If P(y|x) is the
probability of y being the closest translation of x in the target language, we want to find
ŷ such that:

ŷ = arg max
y∈E

P(y|x) (2.1)

Most of the popular MT systems use the so-called phrase-based models [17, 9] to
model P(y|x). Phrase-based translation works by breaking down the source sentence
into phrases, translating those phrases and then reordering those translations to obtain
the target sentence.

State-of-the-art SMT systems, though, use what is known as the log-linear approach
[20]. In this approach, the candidate is selected as a weighted sum of statistical models:

ŷ = arg max
y∈E

M

∑
m=1

λmhm(y, x) (2.2)

where λm is the weight of model m, hm(y, x) is the feature function that represents this
model and M is the number of models. Commonly used features in this approach are:

1. The target language model p(y).

2. The phrase-based model and inverse phrase-based model, p(y|x) and p(x|y).

5



6 State of the art

3. A reordering model.

4. Target word penalty (ωI) and phrase penalty (ρK), where I is the length of the target
sentence, and K the number of phrases the source sentence is broken down into.
This is to compensate for the system bias towards short sentences.

2.2 Neural Machine Translation

In the late 90s, there were attempts to use Neural Networks to tackle the task of MT [6].
They, however, have not been embraced by the MT academia until very recently. In 2014,
Cho et al. and Sutskever et al. independently proposed two similar approaches to NMT.
Both of them describe a system with sentences as input, that are projected into a constant-
length continuous vector representation by a process known as encoding, and retrieved as
translations by a process known as decoding.

The use of a continuous representation for words and sentences dates back to 1997,
when it was used by Bellegarda[3] in an n-gram based statistical language model. This
representation offers many advantages that are not found in classical, discrete represen-
tations of language. One of the most important ones is that continuous representations al-
low to account for much richer syntactic and semantic relationships. As seen in [18], those
relationships have several degrees, and are preserved in the high-dimensional space
where the words are projected. Traditional n-gram based approximations to language
modeling fail to account for word similarity, and rely on the training set to contain most
word combinations or segments of them. This property allows NLP systems that use this
approach to find similar, or in some way related, words close to each other by some mea-
sure, that can be computed from just their feature vectors. As an example obtained from
[18], if we denote the continuous vector representation of a word w as Vector(w), it was
found that the result of the operation Vector(“King”)−Vector(“Man”)+Vector(“Woman”)
resulted in a vector that was close to Vector(“Queen”).

The approach followed in this work consists of the use of a matrix E for each lan-
guage (one source language matrix and one target language matrix). E has as many rows as
the vocabulary size of the language. The number of columns of E is a parameter, which
represents the dimensionality of the continuous representation. The latter is set arbitrar-
ily, trying to find a suitable balance between efficiency (high dimensionality will make it
harder and longer to train, given the sparseness of the space and the increase in number
of trainable parameters) and efficacy (low dimensionality will give little advantage over
integer representations, given how little information can be stored/used in a few dimen-
sions). Since this work deals with already trained models, the size and current values of
the matrix E is provided along with the other parameters, and is retrained in the same
way.

As an example, consider an already trained model is provided, with a vocabulary (of
the source language) consisting of just two words: “King” and “Queen”, in that order.
The dimensionality of the continuous representation had been chosen to be 3 (again, ar-
bitrarily; and deliberately small for the purpose of the example). Any possible matrix E
for this model will have two rows (the size of the vocabulary) and three columns (the
dimensionality). A possible instance of it would be the following:[

1 2.1 3
4 5 6.4

]
Vector(“Queen”) is the row corresponding to the word “Queen” in the matrix. At

this point Vector(“Queen”) =
(
1 2.1 3

)
, so this matrix can also be thought as a lookup
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Figure 2.1: One example of 3-4-2 Recurrent Neural Network topology. x(i)t stands for the i-th
input at time-step t, h(i)t is the i-th element of the hidden state at t and y(i)t is the i-th output at t.

The loops in the hidden layer are what set them aside from regular Neural Networks.

table. The initial values of the language matrices are arbitrary, and the whole matrix is
modified like another weight matrix of the system in the training phase. That means that
the vector representation of a given word may change repeatedly as part of the training.

There is another advantage to using continuous representations: since the words are
real-valued vectors, one can expect the function to be learned by our model to have some
local smoothness properties. Those properties are absent when words are discrete values,
because a change in one of the words can result in drastic differences in the value of the
function to be learnt[4].

2.2.1. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of Neural Networks where some connec-
tions of the network constitute a directed cycle. Those cycles allow the units involved to
hold a sort of hidden state, that contains information of previous inputs of the network.
This behavior makes RNNs the perfect candidate to process variable-length sequences,
like sentences: we can process the words one by one taken into account other words in
the sentence, independently of how long it is, because the representation and processing
of those words are encoded in the hidden state.

Given this hidden state, the output vector yt of a RNN is no longer a function of
its input vector xt only, but also of its hidden state at the current time-step ht. Since
this hidden state is in turn a function of the current input and the previous hidden state
(recursively, of the previous inputs), we can say that y is just a function of the hidden
state, as indicated in Equation (2.3) and Equation (2.4).
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x1
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x2

h2

y2

xt

ht−1

y
t

...
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Input layer Hidden layer Output layer

Figure 2.2: Visualization of a RNN unfolded in time. xt stands for the t-th input processed by the
network (alternatively, at the t-th iteration), ht is the hidden state of the network at iteration t

and yt is the output of the network at iteration t.

ht = fh(xt, ht−1) (2.3)
yt = fo(ht) (2.4)

fh and fo depend on the architecture of the network and the choice of activation func-
tions.

RNNs, however, have one well-known shortcoming when it comes to sequence pro-
cessing: the vanishing gradient problem[5]. Gradient-based training algorithms update
the network weights in proportion to the gradient of the error function with respect to
each of them. Since layers “further away” from the output layer (in terms of connec-
tions) have smaller contributions to output values, this aforementioned gradient is in
turn smaller. In the case of sequence-processing RNNs, this means that information from
elements far “in the past” is almost lost. To solve this problem, many RNN-based systems
have successfully used the RNN architectures that are about to be discussed.

In the late 90s, a family of RNNs appeared, called Long Short Term Memory (LSTM)
networks [14], which have shown very good results in many sequence learning tasks.
They make use of a set of gates to keep some kind of memory. LSTM units are trained to
retain different degrees of memory, which allows RNNs to successfully remember long
sequences. [25] used LSTMs to build a relatively simple neural translator that achieved
results comparable to those of state-of-the-art SMT systems.

Another type of gated units are GRUs, developed in [7] for a phrase scoring system
based on Neural Networks, as a part of a Phrase-Based translator. They are simpler than
regular LSTM units, they have fewer gating units, thus reducing their training time. They,
however, have been shown to be as powerful as LSTM.
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Figure 2.3: Illustration of the Gated Recurrent Unit (GRU). The reset gate adjusts how much of
the previously stored information is retained and the update gate adjusts how much of the

newly acquired (current iteration) information is kept. xt and ht follow the same notation as in
Figure 2.2, while h̃t represents the updated state at iteration t, rt is the output of the reset gate at

iteration t and zt is the output of the update gate at iteration t.

At a given time t, a GRU cell holds a hidden state ht. Given its hidden state in the last
iteration (at t− 1), its current updated state h̃t and the output of the update gate zt, the
current hidden state will be computed as follows:

ht = (1− zt)� ht−1 + zt � h̃t (2.5)

where � stands for the element-wise multiplication.

The updated state h̃t can be computed from the current input xt, the previous hidden
state ht−1 and the output of the reset gate rt:

h̃t = tanh(Wxt + U[rt � ht−1]) (2.6)

where W and U are weight matrices, parameters of the model. Bias terms have been left
out for readability.

Finally, the output of the reset and update gates are computed following these formu-
lae:

rt = σ(Wrxt + Urht−1) (2.7)
zt = σ(Wzxt + Uzht−1) (2.8)

where Wr are Ur reset gate weight matrices, Wz and Uz are update gate weight matrices
and σ is the element-wise logistic function.
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Figure 2.4: Structure of a BRNN.

2.2.2. Bidirectional Recurrent Neural Network

In order to improve the quality of the translations, when it comes to processing a given
word in the middle of a sentence, we can choose to examine not only the words that
precede but also the ones that follow it. In order to do that, we need to process the
sentence both ways: forward and backwards. The current architecture of RNN that has
been introduced only accounts for previous words, but we can include an additional
hidden layer, independent of the previous one, that will process words from last to first.
This architecture, introduced in [24] as Bidirectional Recurrent Neural Network (BRNN),
will allow the network to take decisions based on the whole sentence context.

In this architecture, there are two hidden states: forward (hf) and backward (hb), that
are computed as follows:

hf
t = fh(xt, ht−1) (2.9)

hb
t = fh(xt, ht+1) (2.10)

yt = fo(hf
t , hb

t ) (2.11)

2.2.3. Encoder-Decoder model

In the model proposed by Cho et al. (2014) and Sutskever et al. (2014), we have a system
composed of two RNNs: an Encoder and a Decoder. The model used in this work is the
one proposed by Bahdanau et al. (2014), which is an extension of the aforementioned
two.
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The Encoder, which in our case is a BRNN, encloses the input sentence in a context
vector. By means of reading each element of the input sentence, the hidden state of the
network changes, and after completing the reading it is a compendium of the sentence.
In our case, the context vector is obtained from the concatenation of the hidden states of
the forward recurrent layer and the backward recurrent layer.

The Decoder in turn has the task to generate the output sentence from the aforemen-
tioned context vector. Iteratively, the Decoder will generate a word given the context
vector and the previously generated words. Once the Decoder generates a special “end
of line” word, the complete sentence is the system’s hypothesis for the source sentence.

For each word xj (1 ≤ j ≤ J) in the source sentence, belonging to the source vocab-
ulary Vs, we produce a vector xj ∈ {0, 1}Vs , where every entry is set to zero except the
one corresponding to xj, which is set to one. This is called one-hot codification. Then, the
words are projected to a fixed-size continuous vector in the following way:

xj = Esxj (2.12)

where xj is the embedding of word xj and Es is the source language projection matrix.

The sequence of word embeddings, represented as x = x1, ..., xJ , is the input of the
Encoder. After processing each word xj, the hidden state of the Encoder hj is recorded.
Since we have opted for using a BRNN as the Encoder, our hidden state is actually

hj = [hfᵀ

j ; hbᵀ

j ]ᵀ (2.13)

Once the sentence has been fully processed, an iterative process begins. At each step,
a non-linear function q is applied to the sequence of hidden states and to the hidden state
of the Decoder network at the previous step, in order to obtain a context vector c. In this
work an attention mechanism has been used, therefore the function q is a weighted sum
of the hidden states. This works like an alignment model, implemented by a Multilayer
Perceptron (MLP), between the source sentence and the target sentence, and thus, we
have a different context vector ci for each step i:

ci = q({h1, ..., hJ}, gi−1) (2.14)

Thus, ci is a dynamic representation of the input sentence, based in the state of the
Decoder.

This context vector is then fed to the Decoder. The Decoder processes the context vec-
tor, and outputs Vs real numbers between zero and one, where the i-th output represents
the probability of the i-th word in the target language to be next in the translation of the
source sentence. This output depends on ci, gi and the word embedding representation
of the last emitted word. This is implemented through a softmax layer, which ensures
that all the probabilities add up to one:

y′k =
yk

∑Vs
l=1 yl

(2.15)

where yi represents the i-th input of the softmax layer, and y′i represents its i-th output,
always between zero and one.

Therefore, the probability of a word at time-step i would be:

p(yi|y1, ..., yi−1, x; θ) = yᵀ
i ϕ(Vη(yi−1, gi, ci)) (2.16)
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where ϕ(·) is a softmax function, yi is the one-hot vector representation of word yi, V is
the weight matrix and η is the output of a RNN with GRU units and a maxout output
layer[12].

2.2.4. Training

Following Equation (2.1), our network aims to approximate P(y|x) in the following way:

P(y|x) =
I

∏
i=1

P(yi|y1, ..., yi−1, x) (2.17)

In order to maximize P(y|x) for our training set, consisting of a bilingual corpus of S
sentence pairs, and according to Equation (2.17), we need to find a set of parameters for
our model θ̂ such as:

θ̂ = arg max
θ

S

∏
s=1

I

∏
i=1

p(y(s)i |y
(s)
1 , ..., y(s)i−1, x(s); θ)

= arg max
θ

S

∑
s=1

I

∑
i=1

log(p(y(s)i |y
(s)
1 , ..., y(s)i−1, x(s); θ)) (2.18)

where x(s) and y(s) represent the s-th sentence of the training set in the source and target
languages respectively, and I is the length of the s-th target sentence.

Since each word of the system’s hypothesis depends on previously generated words
and the context vector, and the context vector depends only on the source sentence, both
Encoder and Decoder can be trained as a whole to maximize the conditional probability
of the target sentences given the source sentences.

So far, we have introduced the knowledge field of Machine Translation. We have out-
lined the approaches that have been adopted in the last decades to advance the quality of
translators, and we have described state-of-the-art techniques that power the top trans-
lation software in the field. Finally, we have reviewed in depth the Encoder-Decoder
approach and the Neural Networks employed in it. What follows is a description of the
work that was carried out in order to perform the experiments.



CHAPTER 3

Online learning

3.1 Training Neural Networks

Our objective in training is to maximize the log-likelihood of the data we use for training,
in an attempt to produce a system that can generalize that set of translations into the
overall translation task. By following Equation (2.18), we can tune the system parameters
θ to maximize this sum of log-probabilities. The trainable parameters of RNNs are the
weight matrices. Most Neural Network training algorithms are iterative, they update the
network weights according to a rule step by step, until a given condition is accomplished.
Update rules, step size and stopping condition define the different learning techniques.
The following is a classification by step size[19]:

• Batch learning techniques are those that update the weights of the network after
the whole training set has been processed. Once the system has evaluated every
sample, its weights are updated to fit those, and a new training iteration begins. If
the termination condition is reached, the training stops.

• Mini-batch learning techniques indicate that the updates must be applied after an
arbitrary number of samples have been processed.

• Online learning techniques, finally, are those that update the network weights after
every single sample. They are a particular interest of us, on account of them being
a perfect fit for the situation described at the beginning of this work: improving a
system after a new sample is obtained.

With the goal of enhancing a neural translator with its use, a setup like the follow-
ing can be adopted: the system generates translations for a human translator, who
inputs corrected versions of those translations, which the system uses one by one
to update the weights of its internal Neural Network.

3.2 Online learning algorithms

In the next sections we describe the algorithms we have chosen to compare.

13
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3.2.1. Stochastic Gradient Descent

SGD is a learning algorithm[22] that approximates Gradient Descent by updating the
weights of the system using the following rule:

θs = θs−1 − η∇`s(θs−1) (3.1)

This update is performed with the gradient for each sample of the training set, thus
approximating the gradient of the whole set.

In (3.1) η is the learning rate, which sets the pace of the updates to the model. This is
the only parameter we can tune in this algorithm. It is usually set to values lower than
one, in order to modify the model in small steps towards minima in the error function.
Every time the weights of the network are updated, the system tries to improve its per-
formance towards the new sample, and in the process, its performance with previously
seen samples may get worse. In order to try to achieve a good performance in the target
data of the system as a whole, the learning rate is used. If the learning rate were too
high, the system would aggressively try to fit new samples at the expense of past data,
resulting likely in an overall bad performance. If it were too small, the network would
conservatively learn the data, requiring a very high number of iterations, and thus a very
long time, to be trained.

3.2.2. AdaGrad

AdaGrad is a family of adaptive, subgradient, online learning algorithms developed in
[11], based on SGD, that is expected to outperform it for high-dimensional, sparse fea-
tures. The implementation used in this work is an approximation obtained from [13]. Its
update rule is as follows:

vs = vs−1 − ηG−1/2
s ∇v` (3.2)

Gs = Gs−1 + (∇v`)
2 (3.3)

where v is any given weight of θ, ∇v` represents the gradient of the loss function with
the previous weight set with respect to weight v before processing sample s and Gs rep-
resents the sum of squared gradients before processing sample s. At any given time,
Gs = ∑s

i=1∇v`2
i .

In this case, we also have a learning rate parameter that we can tune in order to seek
the optimal performance of the algorithm.

3.2.3. Passive-Aggressive

Passive-Aggressive are a family of margin-based online learning algorithms, proposed in
[8]. The goal of those algorithms is to find, at each step, the model which, being as close
as possible to the current one, achieves some given margin on the current sample. This is
a constraint optimization problem that is solved by the Lagrange multipliers technique
to find an update rule that meets the conditions. Since the margin requirement might be
a hard one, the PA-II and PA-III algorithms include an “aggressiveness” hyperparameter
that allows for a trade-off between the desired margin and the proximity to the current
model.
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These algorithms have the following update rule:

θs+1 = θs + sign(ys − ŷs)τsxs (3.4)

where τs depends on the particular algorithm:

τs =


`s
||xs||2 , PA

min(C, `s
||xs||2 ), PA-I

`s
||xs||2+ 1

2C
, PA-II

(3.5)

where C is a parameter called aggressiveness in [8] and `s is the value of the loss function
at time t.

As we can see in Equation (3.4) and Equation (3.5), PA-I has no hyperparameters and
PA-I and PA-II have one: C.

In order to solve θ̂ = arg minθ
1
2 ||θ− θs||2 s.t. `(θ, xs, ys, hs) ≤ 0 we use the Lagrange

multipliers technique:

`(θ, xs, ys, hs) = log pθ̂(hs|xs)− log pθ̂(ys|xs) (3.6)

We start by obtaining Lagrange function:

L(θ, λ) =
1
2
||θ− θs||2 + λ`(θ, xs, ys, hs) (3.7)

where λ is a Lagrange multiplier.

Next we obtain the gradient, which would be zero at the minimum:

∇θL(θ, λ) = θ− θs + λ∇θ`(θ, xs, ys, hs) = 0 (3.8)
θ = θs − λ∇θ`(θ, xs, ys, hs) (3.9)

Afterwards, we get the pseudo-dual function:

LD(θ, λ) =
1
2

λ2||∇θ`(θ, xs, ys, hs)||2 + λ`(θ, xs, ys, hs) (3.10)

As we did before, we look for the minimum:

∂LD(θ, λ)

∂λ
= λ||∇θ`(θ, xs, ys, hs)||2 + `(θ, xs, ys, hs) = 0 (3.11)

λ̂ = − `(θ, xs, ys, hs)

||∇θ`(θ, xs, ys, hs)||2
(3.12)

Which is the optimal solution for the Lagrange multiplier λ. Along with Equation (3.9),
we can obtain the pseudo optimal solution:

θ = θs +
`(θ, xs, ys, hs)∇θ`(θ, xs, ys, hs)

||∇θ`(θ, xs, ys, hs)||2
(3.13)

PA-I requires solving θ̂ = arg minθ
1
2 ||θ− θs||2 + Cξ s.t. `(θ, xs, ys, hs) ≤ ξ, which is

done similarly to equations 3.7 to 3.13:
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L(θ, λ1, λ2) =
1
2
||θ− θs||2 + Cξ + λ1(`(θ, xs, ys, hs)− ξ)− λ2ξ

∇θL(θ, λ1, λ2) = θ− θs + λ1∇θ`(θ, xs, ys, hs) = 0
θ = θs − λ1∇θ`(θ, xs, ys, hs)

∂L(θ, λ1, λ2)

∂ξ
= C− λ1 − λ2 = 0→ C = λ1 + λ2

LD(θ, λ1, λ2) =
1
2

λ2
1||∇θ`(θ, xs, ys, hs)||2 + Cξ

+ λ1`(θ, xs, ys, hs)− (λ1 + λ2)ξ

∂LD(θ, λ1, λ2)

∂λ1
= λ1||∇θ`(θ, xs, ys, hs)||2 + `(θ, xs, ys, hs) = 0

λ̂1 = min(C,− `(θ, xs, ys, hs)

||∇θ`(θ, xs, ys, hs)||2
)

θ = θs −min(C,− `(θ, xs, ys, hs)

||∇θ`(θ, xs, ys, hs)||2
)∇θ`(θ, xs, ys, hs) (3.14)

whereas PA-II requires solving

θ̂ = arg min
θ

1
2
||θ− θs||2 + Cξ2 s.t. `(θ, xs, ys, hs) ≤ ξ

L(θ, λ) =
1
2
||θ− θs||2 + Cξ2 + λ(`(θ, xs, ys, hs)− ξ)

∇θL(θ, λ) = θ− θs + λ∇θ`(θ, xs, ys, hs) = 0
θ = θs − λ∇θ`(θ, xs, ys, hs)

∂L(θ, λ)

∂ξ
= 2Cξ − λ = 0→ ξ =

λ

2C

LD(θ, λ) =
1
2

λ2||∇θ`(θ, xs, ys, hs)||2 + C
( λ

2C

)2

+ λ`(θ, xs, ys, hs)− λ
( λ

2C

)
∂LD(θ, λ)

∂λ
= λ||∇θ`(θ, xs, ys, hs)||2 +

λ

2C
+ `(θ, xs, ys, hs)−

λ

C
= 0

λ̂1 = − `(θ, xs, ys, hs)

||∇θ`(θ, xs, ys, hs)||2 − 1
2C

θ = θs +
`(θ, xs, ys, hs)∇θ`(θ, xs, ys, hs)

||∇θ`(θ, xs, ys, hs)||2 − 1
2C

(3.15)

As can be seen in Equation (3.13), θ is found in both sides of the equation, thus
the need for the approximation using fixed-point iterators, which can be seen in Al-
gorithm 3.1 for the PA algorithm, while PA-I and PA-II are identical, requiring only a
change in the update line for the corresponding formula, to be like Equation (3.14) and
Equation (3.15).

Although the implementation is further explained in Section 4.1.2, it is worth noting
that in the preliminary experiments no promising results were achieved with either of the
three versions of the algorithm, and therefore it was dropped from the experimentation
plan towards the end of the project.
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Input:
Parameters at the beginning of the iteration θs
Source sentence xs
Target sentence ys
Hypothesis hs
Output: θnew
Initialization: θnew = θs
repeat

1. θold = θnew

2. θnew = θs +
`(θold,xs,ys,hs)∇θ=θold `(θ,xs,ys,hs)

||∇θ=θold `(θ,xs,ys,hs)||2

until θold == θnew

Algorithm 3.1: Passive-Aggressive approximation pseudocode.





CHAPTER 4

Experiments

4.1 Software

The NMT system used in the experiments of this work are built in a Python library called
GroundHog, and the pertinent modifications were made with Theano, another Python
library on which GroundHog is based.

4.1.1. Theano

Theano is a Python library that allows for the compilation and optimization of symbolically-
specified linear algebra functions[2, 26]. It also allows for the execution of those opera-
tions in GPUs easily, which greatly speeds up computations when a GPU is available.

It was extensively used on top of GroundHog to implement the AdaGrad and Passive-
Aggressive algorithm in this work. The SGD algorithm was already implemented on
GroundHog.

The main part of the training algorithms is the update rule, and its application is
implemented through Theano functions. A Theano function, in a simplified way, is a
routine that has input values, output values and update rules. Those update rules were
used to implement the weight and parameter updates in the learning algorithms. They
are executed “in parallel”, meaning that if a variable was updated in the function but a
different update depended on that variable, the latter update would be performed as if
the variable had not been updated yet, using its previous value.

4.1.2. GroundHog

GroundHog1 is a library developed in Python that uses the library Theano. It provides
tools to build RNNs with ease, keeping track of trainable parameters and showcasing
how to use its parts.

GroundHog was developed by the Lisa lab in the Université de Montréal by Razvan
Pascanu, KyungHyun Cho and Caglar Gulcehre; and is licensed under the 3-clause BSD
license.

This project began with the analysis and experimentation with GroundHog in order
to understand its structure and information flow. The neural translation system imple-
mented in GroundHog is completely configured through a big dictionary of options that
rule the networks’ architecture, the input processing, the training details... The use of a

1https://github.com/pascanur/GroundHog
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huge data container that is being accessed by all parts of the library makes it difficult to
understand the dependencies between modules, and consequently the first part of this
work included small refactorings that limited the visibility of the state and enhanced in
general the structure of the library.

Moreover, since most of the functionalities provided by the library were tightly cou-
pled in scripts, a separated code repository was created in order to fulfill the role of some
of those features and allow for nimble experimentation without having to deal with bi-
nary state files. Before this change, a GroundHog NMT system would consist of a file
containing the weight values of the networks and a state file, representing a dictionary of
the model structure and training details; both stored as binary files. With this latter repos-
itory of code, the state would be stripped of its role in the training and a command-line
interface would assume the responsibility of dealing with the choice of training algo-
rithm, its hyperparameters, input processing and input and output files, among others.

The creation of this tool was essential to the project, because it allowed for the autom-
atization of batches of experiments and their logging.

Secondly, once the algorithms detailed in Chapter 3 had been researched, they were
implemented in the GroundHog repository, for coherence with the other learning algo-
rithms already provided. An implementation detail is provided below:

SGD

An implementation of SGD was already available in GroundHog main repository, and
very few modifications were necessary:

• The original implementation introduced noise in both the input data and the weights
of the networks, and it had been programmed with mini-batch learning in mind.
This had the effect of quickly distorting the model even when a very small learning
rate was in use, because the noise was not regulated by the learning rate, and in
online learning the noise injections in the weights were several hundreds of times
more frequent than in the mini-batch tasks that the model was tested on.

The needed modification was to include a flag in the training process which the
algorithm implementation would read to know whether to inject noise in the model
and data. This flag was disabled for all the experiments in this work, so noise was
effectively absent during the retraining.

• Some of the code in the implementation was redundant and was thus trimmed
down to its essence in order to avoid bugs and bad performance.

AdaGrad

Given how close the update rule of the approximation of AdaGrad is to the update rule of
plain SGD, the implementation of AdaGrad was heavily based on the provided SGD im-
plementation. A small modification was needed at first to store the accumulated squared
gradients of the weights, for each weight, which in Equation (3.2) is represented by Gs.

Theano update rules are applied in parallel, so it is not possible to update a value and
readily use that value for a different value update. Thus, our coded version of the update
rule is equivalent to Equation (3.2), but in order to improve the performance by using
only one Theano function instead of two, the following transformation is applied:

vs = vs−1 − η(Gs−1 + (∇v`)
2)−1/2∇v` (4.1)
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This way, all the weights and Gs for all s are updated in parallel with their correct
values.

Passive-Aggressive

The Passive-Aggressive approximation algorithm is different to the previous two and the
other algorithms available in GroundHog in that it is iterative. For each sample, it was
expected to be executed repeatedly until some degree of convergence was achieved. This
difference called for evaluation of the loss and the norm of the updates in each training
step and branching on the result.

Another difference present in this algorithm is that it explicitly required the hypothe-
ses emitted by the model to update the weights. This difference warranted a change in
the interface of the training algorithms to include the last generated hypothesis in each
training step.

Moreover, as can be observed in Algorithm 3.1, we need to store a copy of the weights
at the beginning of each iteration (θs) to use them in the internal iterative process of
the algorithm. To that end, a new set of matrices with the same shape as those of the
weights of the networks were created and their value is assigned at the beginning of each
iteration.

Input:
Training data: (x1, y1), ..., (xN , yN)
Parameters of the model: θ
Aggressiveness: C (only for PA-I and PA-II)
Output:
Retrained parameters of the model θ
Set of hypotheses generated by the model during the process: (h1, ..., hN)
for each (xs, ys) in the training data do

Obtain hypothesis from xs: hs
θs = θ
θnew = θ
repeat

θ = θnew

θnew =


θs +

`(θ,xs,ys,hs)∇θ`(θ,xs,ys,hs)
||∇θ`(θ,xs,ys,hs)||2 for PA

θs −min(C,− `(θ,xs,ys,hs)
||∇θ`(θ,xs,ys,hs)||2 )∇θ`(θ, xs, ys, hs) for PA-I

θs +
`(θ,xs,ys,hs)∇θ`(θ,xs,ys,hs)

||∇θ`(θ,xs,ys,hs)||2− 1
2C

for PA-II

until θ == θnew
end for

Algorithm 4.1: Passive-Aggressive approximation execution flow.

4.2 Experimentation framework

A model already trained with GroundHog was used for each of the following four trans-
lation tasks: Xerox English to Spanish, Xerox Spanish to English, EU English to Spanish
and EU Spanish to English. Those models (one for each task) underwent the following
process of online training: for each sample (x, y) in the development set of the task, the
model was fed the source sentence x, a hypothesis h was obtained from it, the hypothe-
sis was stored and the model was retrained with the pair (x, y). The performance of the
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Corpus Task
Set size

Preprocessing Vs VtDevelopment Test

Xerox
En-Es 1012 1125 Lowercase 11425 14480
Es-En 1012 1125 Lowercase 14480 11425

EU
En-Es 400 800 None 30001 30001
Es-En 400 800 None 30001 30001

Table 4.1: Corpora characteristics. Set size for development and test is given in number of sen-
tence pairs.

model was obtained by comparing the list of hypothesis h and the list of target sentences
y in the development set.

The result of this comparison is the BiLingual Evaluation Understudy (BLEU) score[21].
BLEU is based on the n-gram precision and aims to measure the correspondence between
machine-generated translations and human-generated ones. [21] shows that this measure
is highly correlated with human evaluation, and it is relatively inexpensive to obtain. It
is widely used in the MT academia [27, 7, 20, 1, 13].

Although BLEU is defined for a candidate sentence with one or more reference sen-
tences, in this work only pairs of sentences are used, therefore each candidate sentence is
only assigned a single reference sentence.

In order to compute the BLEU score, first we compute its modified n-gram precision.
We will only consider n-grams up to n = 4. To that end, we count all the n-grams of a
given order in the candidate sentence. We will call that number Count(n-gram), for each
n-gram. For each of those n-grams, we count how many times they appear also in the
reference sentence, and we call the minimum of those two numbers Countclip(n-gram).

Finally, we compute ∑n-gram Countclip(n-gram)

∑n-gram Count(n-gram)
to obtain the BLEU score of the pair.

When applied to a set of sentences, the formula used is the following[21]:

pn =
∑C∈{Candidates} ∑n-gram∈C Countclip(n-gram)

∑C∈{Candidates} ∑n-gram∈C Count(n-gram)
(4.2)

where pn is the modified n-gram precision of degree n.

We compute the brevity penalty BP as

BP =

{
1 if c > r
e(1−r/c) if c ≤ r

(4.3)

where r is the reference corpus length and c is the length of the candidate translations.

Finally, we compute the BLEU score as follows:

BLEU = BP · exp

(
N

∑
n=1

wn log pn

)
(4.4)

where wn are weights used in the weighted geometric average of the modified unigram
precisions. In our case, N = 4 and wn = 0.25 for 1 ≤ n ≤ 4.

Two bilingual corpora were used for two tasks and one language-pair. The tasks were
Xerox (Xerox printer manuals) and EU (Bulletin of the European Union), and the chosen
language pair was English-Spanish.
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Corpus Task
Initial BLEU

Development set Test set

Xerox
English-Spanish 66.0 55.2
Spanish-English 65.3 46.1

EU
English-Spanish 37.2 36.8
Spanish-English 35.1 35.7

Table 4.2: Initial BLEU obtained in each set of each task.

For each task, all source sentences were processed to obtain a list of hypotheses, and
the BLEU obtained from comparing this list with the target sentences list. The result is
used to gauge the improvement or worsening of the performance of the models, and is
included in the tables of the following section.

Additionally, since our models have a computational cost proportional to the size of
vocabulary used, the vocabulary used for translation tasks is reduced to a reasonable size.
Some of the models have different vocabulary size and this affects both the number of
features and their density this data have been provided in Table 4.1 as well. For example,
in the case of the EU models, we are using only the 30000 most frequent words of the
corpus. Words that are not found in the vocabulary that appear in the source sentence
are all grouped into a special token or symbol, usually called UNK. The model handles
UNK as any other word.

The time it took for each of them to finish the training has also been recorded (CPU
time) for the sake of comparison, in the case of experiments that involve the test set.

4.3 Hyperparameter search

As we have seen in Chapter 3, both studied algorithms have a single hyperparameter:
the learning rate. In order to make a useful comparison between the algorithms, we
are going to try to find the learning rate that works best with each model and task by
performing several experiments with the development set of each corpus. Once we have
found the optimal hyperparameter for each case, we will evaluate the performance of
both algorithms with their best hyperparameters for each task, using this time its test set.

Additionally, we consider also the possibility of performing several updates after each
sample, since this has shown to improve the results in preliminary experiments and is
possible within the post-edition context of this work. Therefore, there are two hyperpa-
rameters we can tune for our experiments. In the following tables there is the exploration
that has been carried out to find the best combination of those for each translation task.
In bold are represented the hyperparameters that were chosen for experimentation with
the test set, and their results in the development set.

4.3.1. Xerox task

The Xerox corpus[23] consists of Xerox printer manuals in three different language pairs:
Spanish-English, French-English and German-English. In this work only the first one is
used, in both translation directions (Spanish to English and English to Spanish). The cor-
pus was tokenized and transformed into lower case, as can be seen in Table 4.1. This last
transformation is expected to reduce the complexity of the task and allow the translator
to achieve a better performance. Hence the BLEU obtained before retraining was as high
as 66.
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Iterations
Learning rate

0.05 0.1 0.2 0.4 0.8
1 66.2 66.0 65.9 64.2 61.0
3 66.0 66.2 - - -
5 66.4 66.2 65.3 60.9 -
10 66.5 66.4 66.1 60.8 -
20 66.6 66.8 - - -

Table 4.3: Hyperparameter search for the Xerox task, from English to Spanish, with SGD algo-
rithm.

Iterations
Learning rate

0.05 0.1 0.2 0.4 0.8
1 69.9 69.9 69.8 68.7 63.7
3 70.1 69.8 70.6 68.4 61.3
5 70.5 70.0 69.5 69.3 60.0

Table 4.4: Hyperparameter search for the Xerox task, from Spanish to English, with SGD algo-
rithm.

SGD

Table 4.3 shows general but small improvement using a learning rate lower than 0.2. It
is possible that slightly better results could be achieved with even lower learning rates,
but those experiments fell outside the scope of this work. The set of hyper parameters
(0.05, 5) was selected as a trade-off between performance and quality, since the best result
(66.8) was achieved performing 20 iterations per sample, setup which would be liable of
slowing down too much translation software.

Table 4.4 nonetheless showed much better results than Table 4.3, arguably because of
differences in the models (different number of hidden nodes in their networks, different
training time...), or maybe because this task was easier than the former (is translating
from English to Spanish harder than from Spanish to English?). The best result in this
batch of experiments achieved an improvement of 5.3 points in the BLEU score.

AdaGrad

According to Table 4.5, the model in the English-Spanish task improved the most by
performing 20 training iterations per sample with a learning rate of 0.0001, and just as
well by performing 3 iterations per sample with a learning rate of 0.0005. Since speed

Iterations
Learning rate

5e-5 1e-4 5e-4 1e-3
1 67.5 67.7 69.0 67.7
3 67.7 68.2 69.4 68.0
5 67.8 68.8 69.3 68.3
10 68.3 69.1 68.6 67.6
20 68.9 69.4 68.9 66.6

Table 4.5: Hyperparameter search for the Xerox task, from English to Spanish, with AdaGrad
algorithm.
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Iterations
Learning rate

5e-5 1e-4 5e-4 1e-3 5e-3
1 69.9 69.8 71.0 70.8 59.8
3 69.8 70.2 71.1 - -
5 69.8 70.1 71.7 70.5 57.6

Table 4.6: Hyperparameter search for the Xerox task, from Spanish to English, with AdaGrad
algorithm.

Iterations
Learning rate

0.05 0.1 0.2 0.4 0.8
1 35.5 35.3 35.4 34.8 33.3
3 35.3 35.5 36.1 35.6 35.4
5 35.4 35.6 35.8 36.1 -

Table 4.7: Hyperparameter search for the EU task, from English to Spanish, with SGD algorithm.

is important in the context of this work, the latter has been chosen as the optimal set of
hyperparameters for AdaGrad in this task.

It is worth noting that none of the results of this table result in a decline in the perfor-
mance. Moreover, the average improvement was of 2.3 percentage points, which shows
that AdaGrad achieved a much better overall improvement in this set than SGD. Nev-
ertheless, this task is being used for hyperparameter search, so conclusions must not be
drawn from this comparison, given that we purposely select the best result of each of
them.

In Table 4.6 we see improvements of the same order of Table 4.4, which leads to think
that this task is quite adept at being retrained.

4.3.2. EU task

The EU corpus[16] was obtained from the Bulletin of the European Union, which is pub-
licly available in all the official languages of the European Union. As in the Xerox tasks,
only Spanish to English and English to Spanish were used. The corpus was tokenized as
well, but not transformed to lower case as we did in Section 4.3.1.

SGD

Table 4.7 shows a case not encountered so far: none of the results show an improvement
in the quality of translations. There are several factors that can contribute to this phe-
nomenon. First of all, this set is much smaller than that of the previously shown tasks:
400 sentence pairs versus 1012 in Xerox. Since the BLEU score is a measure that attempts
to match human judgement when averaged over a corpus[21], its value when the set is
small can be expected to be less reliable than the case where it is applied to a big corpus.

Furthermore, the domain of the EU corpus is in all likelihood more complex than the
domain of Xerox. Xerox corpus is full of short sentences, with very repetitive words, like
printer features and options. Numbers in Xerox are most of the time model identifiers,
which do not change. EU bulletin is very diverse, has long sentences, a high quantity
of numbers of records, dates, percentages, file sizes, and so on. Also, the initial BLEU in
both could not be any more different, and the vocabulary size in both languages in Xerox
is less than half than in the EU models.
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Iterations
Learning rate

0.05 0.1 0.2 0.4 0.8
1 35.1 35.1 35.1 35.3 34.4
3 35.0 34.8 35.2 36.0 35.5
5 35.1 35.7 35.8 35.8 34.8

Table 4.8: Hyperparameter search for the EU task, from Spanish to English, with SGD algorithm.

Iterations
Learning rate

5e-5 1e-4 5e-4 1e-3
1 35.9 35.4 35.7 35.0
3 36.1 35.7 36.1 35.5
5 35.8 36.2 35.7 33.7

Table 4.9: Hyperparameter search for the EU task, from English to Spanish, with AdaGrad algo-
rithm.

We can say without a shade of doubt that the Xerox translation models in this work
are more effective than their EU counterparts. It remains a question whether this makes
the task of retraining easier or harder, or whether it is inmaterial to it. Further research
would be necessary to answer it.

Finally, given the assumptions of correlation between model and algorithm perfor-
mances in different tasks that were issued in the introduction of this work, we must as-
sume too that the experiment with the test set that involves this particular configuration
will deteriorate the model performance, but not as much as with the other parameters
that were tried.

A small improvement can be observed in some of the entries of Table 4.8. Even those
setups that resulted in a decline in quality of translations did so only by a very small
amount. This could be attributed to the small size of the development set, in comparison
to the other corpus.

AdaGrad

The results in Table 4.9 appear to be very similar to those in Table 4.7: no improvement
in any case. This can likely be attributed to the same hypothetical reasons that were
given for the results in Table 4.7. The best result of the table was chosen for furhter
experimentation.

Table 4.10 shows slightly more promising results than Table 4.8, even though slightly
fewer cases were attempted.

Iterations
Learning rate

5e-5 1e-4 5e-4 1e-3
1 35.3 35.7 35.8 35.0
3 35.5 36.1 35.4 35.5
5 35.7 35.9 36.3 35.8

Table 4.10: Hyperparameter search for the EU task, from Spanish to English, with AdaGrad algo-
rithm.
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Task
BLEU

Initial SGD AdaGrad
Xerox En-Es 55.2 55.9 57.1
Xerox Es-En 46.1 51.7 50.4

EU En-Es 36.8 36.4 36.4
EU Es-En 35.7 34.8 36.0

Table 4.11: BLEU score obtained in the experiments on the test set of each task, both without re-
training and by retraining with each algorithm using the hyperparameters selected in Section 4.3.

Xerox En-Es Xerox Es-En EU En-Es EU Es-En
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Figure 4.1: Differences in BLEU obtained in the test set of each task by retraining with each al-
gorithm, using the hyperparameters selected in Section 4.3. The values used can be found in

Table 4.11.

4.4 Test set experiments

From the data in Table 4.11 we see that AdaGrad outperforms SGD in two of our four
cases, and matches it in another one. The data, however, is insufficient to draw con-
clusions about AdaGrad being in general better for this scenario. SGD outperformed
AdaGrad in Xerox Spanish-English by a relatively large margin, in comparison with the
other results. The improvement achieved by each algorithm on each model is plotted in
Figure 4.1.

Both algorithms showed considerably better results in the Xerox tasks than in the EU
ones, which could be attributed to, among other things, the task complexity and/or the
already-existing model performance. The models that obtained a high BLEU initially im-
proved their results, they probably took profit of the data and enhanced their parameters
as to better fit the translation task. The models that obtained a relatively low BLEU in the
initial measurement may have not been able to assimilate the new data and may have
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Figure 4.2: Execution time of experimens in the test sets.

been negatively affected by the parameter updates (as they may have in the experiments
with the development set), but even then, the quality of the hypotheses was not much
worse off, and AdaGrad algorithm could achieve an improvement in the EU Es-En task

The decline in performance observed by retraining in both EU tasks in previous ex-
periments is consistent with these results. The Xerox English-Spanish translation task has
produced much different results than prior experiments, obtaining much lower improve-
ments, while Xerox Spanish-English has maintained a high degree of improvement with
both algorithms.

In Figure 4.2 we can observe the different execution times of each algorithm, averaged
over the number of sentence pairs of the relevant set. We can observe that the execution
time for EU tasks was much longer than for Xerox tasks, likely due to their longer sen-
tences and higher vocabulary size (which makes their models even larger).



CHAPTER 5

Conclusions and future work

We have developed a full-fledged experimentation environment for online adaptation of
neural translators, able to perform automated batches of experiments with proper han-
dling and storing of the results. We have selected and processed data for experiments,
and performed several of them with different sets of hyperparameters, and have found
the ones among them that work best for each combination of task and algorithm. With a
different set but for the same task, we have performed experiments with both algorithms
configured to their empirically-found best capacities and have obtained a comparison of
how the algorithms can improve or worsen the quality of neural translators.

We have obtained an iterative approximation of the Passive-Aggressive family of on-
line learning algorithms, produced an implementation for our experimentation frame-
work and observed the lack of promising results. Due to this, no further experimentation
was carried out with those algorithms.

In three out of four translation tasks, we observed a slight correlation between the
results in the development set and the results in the test set. AdaGrad algorithm resulted
more promising than SGD, but the latter outperformed the former in one task. All things
considered, we cannot state that AdaGrad would be the best choice for every task, but a
priori it is a better candidate.

Several questions remain unanswered, such as to why is there such disparity in the
results between development set and test set in the Xerox English-Spanish task, or why the
EU tasks put up such a challenge against both algorithms. Further research is required to
answer those questions.

More experiments, involving more datasets and more language pairs are required,
since neural translators are usually trained and used for single language pairs, and the
results observed using one of them may not correspond at all with results obtained from
a different one. In this work we have used two corpora and one language-pair (in both di-
rections), and even then we have found significant differences between tasks (especially
between both directions of the Xerox English to/from Spanish tasks).

The size of the EU development set, especially when compared to that of the Xerox
corpus, raises the question of whether the hyperparameter search for the EU tasks may
have been compromised, or at the least whether the size of this set has handicapped the
hyperparameter search for those models. More similar pairs of sets could be used to help
dispel this doubt.

Finally, the approximation of Passive-Aggressive algorithms must be revised in search
of alternative methods to fixed point iterators, to eventually test them against the chal-
lenges presented in this work, and compare them to the other two algorithms we have
used.
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Acronyms

A. Acronyms

BLEU . . . . . . . . . . . BiLingual Evaluation Understudy

BRNN . . . . . . . . . . . Bidirectional Recurrent Neural Network

CBS . . . . . . . . . . . . Corpus-Based System

GRU . . . . . . . . . . . . Gated Recurrent Unit

LSTM . . . . . . . . . . . Long Short Term Memory

MLP . . . . . . . . . . . . Multilayer Perceptron

MT . . . . . . . . . . . . Machine Translation

NLP . . . . . . . . . . . . Natural Language Processing

NMT . . . . . . . . . . . Neural Machine Translation

RBS . . . . . . . . . . . . Rule-Based System

RNN . . . . . . . . . . . Recurrent Neural Network

SGD . . . . . . . . . . . . Stochastic Gradient Descent

SMT . . . . . . . . . . . . Statistical Machine Translation
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