
Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

Aplicación Android para clasificar setas presentes

en España mediante procesamiento de imagen

TRABAJO FIN DE GRADO

Grau en Enginyeria Informàtica

Autor: Àngel Cubertorer Segarra.

Tutor: Dr. Salvatore Filippone

 Dr. Francesc Muñoz Escoí

Curso 2015-2016

Aplicación Android para clasificar setas presentes

en España mediante procesamiento de imagen

2

Resumen

La recolección de setas es una afición con una larga tradición. Las setas pueden
ser utilizadas para medicina o como alimento. Dentro del mundo de las setas hay
muchas especies diferentes y algunas de ellas guardan similitud en cuanto a forma
y color. Esta similitud puede dar lugar a errores.

En este proyecto se propone un programa para clasificar setas a partir de una
imagen. Este software utiliza diferentes procesos de Visión Artificial para conseguir
este resultado. Estos procesos, pueden ser agrupados en tres niveles principales:
Bajo Nivel, Nivel Medio y Nivel Superior. El programa propone un algoritmo para
eliminar el fondo de una imagen mediante: la ayuda de un usuario que pulse las
regiones de interés de dicha imagen, la computación del histograma de colores y
comparándolo con otros histogramas en nuestra base de datos. Y de esta manera
podamos encontrar a qué clase pertenece la seta.

La tecnología empleada para completar este proyecto son: librerías de Visión
Artificial de Código Abierto “OpenCV” y herramientas relacionadas con el desarrollo
para Android.

La puesta a prueba del programa muestra que funciona adecuadamente y que
logra: identificar el área perteneciente a la seta, computar y comparar el
histograma de colores y clasificar la seta seleccionada, en imágenes tomadas bajo
las condiciones apropiadas. Sin embargo, quedá pendiente la obtención de
suficientes resultados para evaluar el funcionamiento del programa con grandes
volúmenes de datos. Como se comenta en el artículo, otros aspectos del sistema
deberán ser también objeto de mejora.

Palabras clave: procesamiento de imagen, setas, OpenCV, Android.

3

Acknowledgements
Maria Vicenta Segarra Berges. Mamà, for teaching me that no matter the problem I
should never back down and do my best. Thanks for all the support during the MSc
and the thesis since the beginning until the end.

Dr. Salvatore Filippone, for your guidance and supervision in every stage. Thanks
for having the ambition to accept this project.

Dr. Francesc Muñoz Escoí, for your support and your willing to help through the
whole process not only in the thesis but all the paperwork in the UPV so I get
recognised the work I completed in this project. It was not the easiest thing but you
accepted anyway and I am glad you did so.

Pau Cubertorer Segarra, my beloved brother. Through your support and experience
you made me feel that I could always rely on you when I was not able to see the
path to follow.

Anna Audiovisuales, my girlfriend. I could not have asked for you to do anything
more during these months. You supported me through the MSc and now during the
thesis. Thanks for understanding what I was going through at every step and doing
everything you could for helping me.

4

Aplicación Android para clasificar setas presentes

en España mediante procesamiento de imagen

5

Contents

Resumen ..3
Acknowledgements..4
Contents ...6
List of abbreviations...7
List of figures...8
1. Introduction..9

1.1 Definition of object classification..9
1.2 Industry fields..9

1.2.1 Chain production..9
1.2.2 Security..9

1.3 Object classification in Agriculture & food...10
1.4 Mushroom classes..10

2. Methodology...11
2.1 Identify needs...11
2.2 Exploration of methods..11
2.3 Development and validation..12

3. Computer vision software for classifying mushrooms...12
3.1 Technology..13

3.1.1 Android SDK...13
3.1.2 Visual Studio..13
3.1.3 OpenCV...13
3.1.4 OpenCV4Android..13

3.2 User interface...14
3.2.1 Main view..14
3.2.2 Camera...15
3.2.3 Select cap and stem..15
3.2.4 See results..16

3.3 Low level processing...17
3.4 Intermediate level processing: Mushroom isolation..19
3.5 Intermediate level processing: Extract colour information..23
3.6 High level processing: Mushroom classification...25
3.7 Mushroom classes definition...25

4 Discussion..26
4.1 Results..26
4.2 Test plan...27

5 Conclusion...27
6 Future work...28

6.1 Features..28
6.2 Expert users..29

Bibliography...30

6

List of abbreviations
Android: Android operating system

App: Application program

SDK: Software Development Kit

IDE: Integrated Development Environment

NDK: Native Development Kit

GUI: Graphical User Interface

XML: eXtensible Markup Language

RGB: Red Green Blue colour space

HSV: Hue Saturation Value colour space

H: Hue

S: Saturation

V: Value

1D: one dimension

2D: two dimension

UPV: Universitat Politècnica de València

OOP: Object Oriented Programming

7

List of figures

Figure 1: Miniatures of the mushroom classes in the system...9
Figure 2: Program workflow with methods used...10
Figure 3: App workflow...13
Figure 4: Main view design..14
Figure 5: Mushroom with cap and stem touch-marked by user...15
Figure 6: Result window for a correct classification..16
Figure 7: Gaussian distribution..17
Figure 8: left: normal image, right: same image after applying Gaussian filter.................................17
Figure 9: HSV distribution scheme..18
Figure 10: left: image in RGB space; right: same image in HSV space..18
Figure 11: Result image after applying Canny edge detector..19
Figure 12: Result image after finding contours..20
Figure 13: Representation of a kernel overlapping an image...20
Figure 14: Result image after finding contours on a dilated image...21
Figure 15: Result image after eroding the image on Figure 14..22
Figure 16: Result image after filtering contours by area size...22
Figure 17: Example of 1D histogram...23
Figure 18: Cap histogram mask..24
Figure 19: Cap histogram mask after applying closing process...24
Figure 20: Stem histogram mask..24
Figure 21: Stem histogram mask after applying closing process...24
Figure 22: Example code of loading and comparing histograms...25
Figure 23: Two 2D histograms of images with same mushroom class and no background removed
..26
Figure 24: Two 2D histograms of image with same mushroom and background removed...............27

8

1. Introduction
Mushroom collection is a dangerous hobby if those who practice it are not capable
to differentiate between classes of fungi. Until recent years, when the phone and,
thus, apps for these devices were included in our daily life, inexperienced people
would rely on some people who, through studying books and years of experience in
the field, were able to classify a mushroom when they would find one.

Nowadays, mobile phones have improved the availability of information, as we can
reach it from almost any point on the planet earth. This is why some phone's apps
that aim to help people to identify mushrooms have been published in Spain as
Setas Bolets MushTools or Buscar Setas.

However, they require the user to input a lot of information about the mushroom's
characteristics. I proposed this project for my MSc thesis at Cranfield in order to
simplify and semi-automate this process, with a minimum input by the user
required. In order to perform the classification, the mushroom's colour has been
used as feature to differentiate between classes. In the following sections of this
paper we will define how object classification in computer vision is performed and
the requirements found in the literature to implement it will be described.

1.1 Definition of object classification
In imaging science, image processing is defined as the field where, having an
image as an input, an output is retrieved. This result can be another image or some
useful information.

The field of image processing is a broad field where object classification is one of
the main processes applied. Object classification in image processing is the
technique of labelling an object appearing in an image. The classification is made
by means of some object's features that can define the different classes.

1.2 Industry fields

1.2.1 Chain production

Many companies use computer vision system at some point on their manufacturing
in order to determine the quality of their products and then discard those which do
not achieve the minimum specifications. Duan, Wang, Liu, & Li (2007) proposed a
system for detecting damages on beer bottles using histograms for determination of
inspection area and two neural networks for defect detection. González, Villamizar,
& Lopez (2014) suggested another system for determining the level of liquid in a
soda bottle and exclude those below the acceptable limit, for doing so they used
conversion from RGB to HSV, removed V component and find contours, for later on
obtaining the filling ratio.

1.2.2 Security

Object detection and classification is widely used in the security industry, mostly for

9

detecting and tracking threats, this means that the object is detected and then
classified as a threat or not. Using image processing like applying a threshold,
Canny edge detector and find contours helped for detection of high speed flying
objects such as bullets or rockets (Cho, Kim, Kim, Lee, & Kim, 2016).

1.3 Object classification in Agriculture & food
 A system for identification of fruits and vegetables, using RGB to HSV conversion,
Canny edge detection, histogram comparison and using texture as a feature, has
been successfully tested (Chowdhury, Alam, Hasan, & Khan, 2013), (Ahluwalia &
Karani, 2014).

Measuring quality of fruits for public consumption within four different categories
was performed using background removal by colour thresholding and average
colour coordinates (Blasco et al., 2009).

Using a computer vision system that involves background removal, applying
Gaussian filter and white colour thresholding allows user to detect and count
number of tangerine flowers in an image for estimate tangerine crops (Dorj, Lee, &
Lee, 2013).

Another system for automatic apple harvesting based on computer vision using
contour tracing and colour pattern detection was proposed (Jeet Sharma & Kaur,
2014).

1.4 Mushroom classes
There have been discovered many fungi classes in the world. It has been said that
there are more than 5.1 million species (Blackwell, 2011). Not all of these species
are with the typical mushroom shape nor edibles. Because of this, I have narrowed
the species to classify to some of the most common species that can be found in
Spain.

10

The species selected and shown in Figure 1 are:

1- Cantharellus cibarius.

2- Boletus edulis.

3- Tricholoma terreum.

4- Agaricus campestris.

5- Craterellus cornucopioides.

6- Marasmius oreades.

7- Amanita caesarea.

8- Hygrophorus Latitabundus

9- Lactarius sanguifluus.

2. Methodology
From each of the following stages, information gathered was used to keep
researching on the next or previous stages. As an example, the validation of the
mushroom isolation resulted in coming up with new features such as the user
tapping on the image for cap and stem positioning.

2.1 Identify needs
There were three main needs from where the program took its structure.

11

Figure 1: Miniatures of the mushroom classes in the system

First, I myself am a fan of collecting mushrooms, so I was aware since the
beginning that the major need was to be able to identify the class a mushroom
belonged to.

Second, parting from the first need, we asked ourselves, what is necessary in order
to classify an object appearing on an image? And the solution is to first find the
object in the image.

Finally, once we have detected the object in the image, what is left in order to
classify this detected object? To compare it somehow with other objects

This way, we were able to identify the needs of our program and started exploring
the methods in order to satisfy these needs.

2.2 Exploration of methods
The first sight into the methods to use was given by the literature review and the
lectures at Cranfield University. After this, we were able to recognise which were
the transformations that should be performed and, thus, the methods to be applied.
Of course, not all of the initial methods thought were applied. During the
development step the output of these methods were analysed and those that did
not give the desired results were left apart since we wanted to apply only those that
suited the best in our system. Then, individual execution time of the methods was
performed and some were removed since the cost of a little improvement in the
solution was too high. In Figure 2 we can see the methods that were used in the
final solution separated by the level of processing it belonged to.

12

Figure 2: Program workflow with methods used

2.3 Development and validation
The information used in order to develop the final solution was gathered from
relevant Computer Vision and Programming sources. During the development of
the system a method for debugging is needed so in case of an unexpected error
occurring we are able to identify the cause of this error and quickly fix it. For this
case, the default debugger for Visual Studio was used since it was the environment
used for carrying out the development of the computer vision part. Furthermore,
since we were working with images, it was also needed during the development, to
know what were the values an image had on the different steps of the program. For
this purpose, the Visual Studio extension Image Watch was used. This extension is
merged into the default debugger and lets you see the value of an image at the
desired step.

Regarding validation, it was clear from the very beginning that the objective of this
thesis was to validate this program in a relevant environment, if the conditions were
met. However, these conditions were not met since it is not possible to find
mushrooms in their real environment within the time constraints for this thesis. That
is why the validation of the technology had to be made using a desktop version of
the program and with images already captured. The validation was carried out by
feeding the system with previously unseen images and then checking if the
program was able to successfully label them.

3. Computer vision software for classifying
mushrooms

Image processing and image analysis are the main components of computer vision
with many algorithms known as successful methods for achieving results.
Furthermore, image processing and image analysis implies several steps that can
be separated into three different levels: low level processing (acquiring the image
and pre-processing), intermediate level processing (image segmentation and
description) and high level processing (recognition and interpretation) (Sun, 2000).
Image processing is not supposed to obtain any information from the image but to
remove noise and prepare the image for our system.

3.1 Technology

3.1.1 Android SDK

Android is a mobile operating system developed by Google, it is mainly designed
for touchscreen devices. Android is the most installed operating system of any type.

The SDK includes among other things a set of software libraries, a debugger, an
emulator and a IDE known as Android Studio.

Android has third-party apps that can be downloaded from an app market named
Google Play. We built one of these apps using the SDK and Android Studio. For
Android Studio we needed to develop the GUI using XML language and Java

13

language for the activities.

3.1.2 Visual Studio

Visual Studio is an IDE developed by Microsoft and accepts different programming
languages. One of its usages is to develop computer programs.

In our case, we decided to use Visual Studio for debugging purposes, as it allows
including the OpenCV software libraries and the compilation time was shorter than
on Android Studio. So at the beginning the part of the program dedicated to image
processing was developed in C++ using Visual Studio and later on transported into
Android and Java.

3.1.3 OpenCV

OpenCV is a set of computer vision and machine learning software libraries,
developed firstly by Intel, now counts with more than 2500 optimised built-in
functions that recognise objects, faces, help with robot navigation, etc.

We chose OpenCV as our computer vision libraries because of the ability to be
included into Android projects, the broad online user community, and the possibility
to work both in Android and Java.

3.1.4 OpenCV4Android

OpenCV4Android is an SDK made available by OpenCV after the necessity of
using OpenCV functionalities in Android apps. It allows users, both, to use the
OpenCV libraries in Java and reuse C++ language code on our app by using a
wrapper and native development.

In this case, we first decided to reuse the C++ code we had for computer and use a
wrapper and the NDK in order to that. However, the instructions on how to do that
are out of date and not clear, so after a long time trying to configure it and failing we
decided that was better and would save us time to include the OpenCV libraries
and translate the C++ code into Java language.

3.2 User interface
The app's GUI has been written in XML and rendered using Android Studio. The
app has 4 different GUI one for each activity that the user must perform. In Figure 3
we can see the workflow the GUI follows.

14

3.2.1 Main view

The Main view is the very first window that the user has from the app. It is the view
that prompts when the app is initialized. In this window we can find a button, that
will lead us to the next step, opening the camera for capturing the mushroom, and
the app's logo.

The possibility of loading an image from the gallery is not given, the reason is that
this app is intended to be eco friendly. Even when the mushrooms are toxic it is
beneficial for the environment to let them grow, so if the user takes a picture of the
mushroom, collects it and later on checks whether it is toxic or it is not, thus
throwing it away and having harmed the environment. In Figure 4 it can be seen the
design of this window.

15

Figure 3: App workflow

3.2.2 Camera

The default Android camera appears, the user then can take the picture or go back
into the main view. After taking the picture the user is given the possibility of
retaking it, cancel the action or accept it as the image for querying. If the last option
is selected the user advances into the next step that is marking the cap and stem of
the mushroom in the picture.

3.2.3 Select cap and stem

After the image has been taken and the user selected it as valid for classification, it
is shown again in a new view, where now, the user will have to tap on the cap and
the stem of the mushroom and then click the button 'Continue' in order to get the
results. The first tap must be on the cap and the second one on the stem for the
program to work properly. In Figure 5 we can see the view after the cap and stem
are selected. In this view, if the user makes a mistake when taping and desires to
fix it there is no other solution than going back to the main view, take another
picture and start the process again. This is one of the point to improve on future
work.

16

Figure 4: Main view design

3.2.4 See results

Finally the classification has been performed and the results are shown. The result
consists of the image pending of classification, the model image of the class and a
brief description of the species of mushroom in case of being successfully labelled.
Otherwise, the input image and a cross will be prompted.

Figure 6 shows the brief description and the model image that the user will see.
Therefore, it is the user who, at the end, can decide whether the app performed a
correct classification or not.

17

Figure 5: Mushroom with cap and
stem touch-marked by user

3.3 Low level processing
Once we had the picture we could start working with it. However, raw images from
a camera present some noise that could make our system not to work properly. For
this reason, we needed to apply some preprocessing to our image in order to try
and minimise the noise and make the image more suitable for our app. In the
following lines, the steps this preprocessing consisted of are explained.

First of all, to reduce the execution time of the program, make it easier to work with
the image captured by the user and standardize the image size our app works with,
we had to resize the captured image. The standard size which the images are
resized to was stated as (480x450), this size was chosen after several processes of
trial and error over our set of images.

After resizing we had to get rid of the noise present on the image, there are
different filters to use like median filter, normalized or Gaussian filter. By applying
one of these filters we will “smooth” the image. For this, we chose to use a 5x5
Gaussian filter because is the only filter with weights for the influence of neighbours
on the new value of the pixel. In this case weights means how much a pixel
influences when calculating the new value. This filter convolves each pixel, and its
neighbours, at a time in the image with a Gaussian kernel and modifies its value to
the addition of all the results in the kernel. In Figure 7, it can be observed how the
weights of the neighbours are not the same through the whole kernel, it increases
when getting closer to the centre pixel. We can appreciate the smoothing that
results after applying the Gaussian filter to the image in Figure 8.

18

Figure 6: Result window for a
correct classification

Then, the next step was to convert the image from RGB colour space to HSV
colour space. The reason for this conversion lies on how HSV expresses the
colours. In Figure 9 we can appreciate that HSV colour space is composed of three
variables: Hue indicates the pure colour; Saturation expresses how bright the
colour is; and Value reveals how dark the colour is. It can be deduced that the V
component is very sensitive to change in lighting conditions making a colour based
system vulnerable. And the opposite way, if we change to HSV colour space and
remove the V channel from the image we obtain a robust system against changing
lighting conditions. Because of this, HSV is the colour space preferred for edge
detection and histogram comparison (Jeon, 2013). In Figure 10 we can appreciate
the difference between colour spaces for the sight of the image.

19

Figure 7: Gaussian distribution

Figure 8: left: normal image, right: same image after applying Gaussian filter

3.4 Intermediate level processing: Mushroom isolation
Having completed the preprocessing, we then had an image with reduced noise
and we were ready to move forward.

The second process to conduct for the classification was to identify where the
mushroom was located on the image. By isolating the mushroom, we removed the
information that was not needed that caused our system to not be stable, this was
because we wanted to compare the mushroom by its colour since it is something
constant on every mushroom from the same class while the background of the
images are different from one to another. Following are the steps taken in order to
achieve the isolation.

First of all we needed to recognise shapes on the image since this would help us to
find objects, thus, being able to distinguish the mushroom among these. What
describes a shape is its contours so first we needed to find the edges. For edge
detection the Canny edge detector method implemented in the OpenCV libraries
was used, with the following thresholds: low threshold was set to 70 and high
threshold to 150. The high level threshold defines the limit where, if the gradient
result of the possible edge is above the threshold, this edge will be marked as a
pure edge. Those possible edges between the two thresholds will be marked as an

20

Figure 9: HSV distribution scheme

Figure 10: left: image in RGB space; right: same image in HSV space

edge or not depending on whether they are in contact with a pure edge or not, and
the ones below the low threshold will be discarded. A threshold too high will miss
information and one too low will include irrelevant information. No tried and tested
approach for finding the proper thresholds exists yet. The usual approach is the so
called try and error, and is the one followed during this project.

In Figure 1 1,as a result of the edge detection, we were able to detect most of the
edges as well as some noise.

The edges are just lines on the image so we needed to join together those edges
that would form the contour of an object. For doing so, we used the findContours()
method implemented in the OpenCV libraries. This method retrieves contours from
a binary image using the algorithm suggested by Suzuki & Abe, 1985 that
distinguish between parent and child contours in the image.

21

Figure 11: Result image after applying Canny edge
detector

As it can be seen in Figure 1 2, where each contour got assigned a different colour,
we identified the contours of the image, however, the true contours got broken
down into small unconnected contours and the background appeared to have too
much noise. We needed to join the short contours in order to get closer to the real-
life contours and unify the background in order to facilitate the mushroom isolation.

For joining the small contours we used dilation and erosion. The dilation method
modifies the value of the pixels in an image. The new value is determined by its
neighbours. This process overlaps a kernel through the whole image substituting
the value of the pixel positioned on the anchor, which is the centre position of the
kernel; by the maximum value pixel in the kernel. This causes the bright region
within an image to “grow”. So we dilated the image. By doing so, we removed some
of the black holes appearing on the mushroom. In the example in Figure 1 3 the
anchor pixel would get 255 as its new value.

22

Figure 12: Result image after finding contours

We then found the contours again, with the previously explained findContours()
method, in this case we obtained a much clearer image of contours. However,
Figure 1 4 still had its contours open and we wanted to close them so we could
achieve more realistic shapes.

We closed the contours by applying erosion, this method can be seen as the
opposite of the dilation. Unlike in the dilation, the anchor pixel is substituted by the
minimum pixel value inside the kernel. In the example in Figure 1 3 the anchor pixel
would remain with a 0 value. Even though, they are opposite processes, the
appliance of one after the other does not result on the same initial image, since one
0-value pixel surrounded with all its neighbours being 255-value pixel when
applying dilation will be modified to 255 but if we apply then erosion it will stay in
255. The result of this process can be seen in Figur e 15 .

23

Figure 13: Representation of a kernel overlapping an image

Once we had most of the contours closed, we needed to remove those that are too
small, meaning it could have been produced by the processing of some noise in
previous steps, and taking into account that the object of interest in the image is the
mushroom what implies that its components have a big size, we decided to filter the
contours in the image by its area size. The result of this filtering can be appreciated
in Figure 16 where we obtained an image with few big contours.

24

Figure 14: Result image after finding contours on a
dilated image

Figure 15: Result image after eroding the image on
Figure 1 4

The last step for the isolation was to be able to select the areas that constitute the
mushroom. In this step we retook the points entered by the user as where the cap
and the stem are, we then computed which areas these points belonged to. So then
we recorded those areas as the mushroom's components. This step is the critical
step on the program, since it influences highly the correctness of the system and is
more prone to errors. These errors can happen due to either the user marked the
cap and the stem in the wrong places on the image or there was some noise on the
image that made the mushroom shape to not be recognised properly. In both cases
we would compute the wrong histogram masks, thus, computing the wrong colour
histograms what would cause a wrong classification.

3.5 Intermediate level processing: Extract colour information
The method used for computing how similar two images are is to compute the
colour histogram of both images and obtain the distance between histograms.

A colour histogram is a representation of the distribution of colours in an image. It
represents the number of pixels of an image that falls within a range of intensity. In
Figure 17 we can see a 1D histogram, in our case we worked with 2D histograms.
In the case of OpenCV the dimension of the histogram is not the variables
represented on the axes of it but the number of parameters whose pixel distribution
are being computed on the histogram.

25

Figure 16: Result image after filtering contours by area
size

Coming from the previous section, having identified the mushroom's components
we proceeded to extract the colour information needed. As previously mentioned,
the colour was the feature selected for performing the classification as it is the main
classification criteria used by humans.

As stated on previous sections, the Value channel of the HSV image is sensitive to
changing lighting conditions so before calculating the histogram we drop the V
channel from the image.

For computing the histograms we used the function calcHist() from the OpenCV
libraries. This method allows us to compute the histogram of just a part of the
image by passing a mask as a parameter when calling the function. We, then,
computed two different binary masks, for the cap and stem, from the areas
obtained in the previous step and we passed these masks as parameters when
computing each histogram, but before that we made applied a process called
closing, that removes some holes and sharpens the shape of the mask by turning
into bright those dark regions surrounded by white pixels. Both the masks (Figure
18, Figure 20) and the result of this process (Figure 19, Figure 21) can be
appreciated below these lines.

26

Figure 17: Example of 1D histogram

Figure 18: Cap histogram mask Figure 19: Cap histogram mask
after applying closing processFigure 20: Stem histogram

mask
Figure 21: Stem histogram
mask after applying closing
process

We finally obtained the histograms for the cap and the stem and we were ready to
get into the final part of comparing it to the models of each class. In this project,
since there are only 9 classes, using only the cap histogram for performing the
classification was enough. However, the program already computes the stem
histogram in view of future work, because if we increase the number of classes
more parameters for classification will be needed. In the future work section can be
read a deeper explanation.

3.6 High level processing: Mushroom classification
From previous steps we had computed successfully the histogram of the cap and
the stem from the user input. It was only left then to compare these histograms with
the models.

In Figure 22 can be seen a code snippet where we:

1. Loaded the class histograms that are stored on a local file.

2. Calculated the similarity between these and the query image histogram. The
higher the similarity, the higher the probabilities of the query mushroom
belonging to that class.

3. However, we still needed to check if this most likely class is the true class,
where the mushroom belongs to, since mushrooms that are not in any class
would still show some similarity. This is the reason why we needed to define
a set of limits independent to each class that would determine if the input
mushroom belongs indeed to that class or not. If the similarity of the
mushroom with the class was above the limit then we could label it as
belonging to that class and thus being edible, otherwise it was being labelled
as non-edible.

27

Figure 22: Example code of loading and comparing histograms

Once we checked if it was above the limits of the most probable class then we
could give the results to the user as explained in previous section about GUI.

3.7 Mushroom classes definition
In previous sections we stated that the histograms of each mushroom class were
loaded from a file for later comparison with the query image. The procedure we
conducted for computing those histograms and storing them on a local file was the
same as when the program receives a new query image but with a slightly change
of the code, instead of loading histograms from a local file and comparing we were
writing the histograms into a local file with the name of each class.

The process above mentioned is unavailable for the user as the file containing the
classes histograms is not intended for the user to modify it.

By keeping the histograms on a file instead of in a web server we allow users to
use the app correctly whether they are connected to the net or not, and having in
mind that mushroom collection usually happens in places with connection
difficulties, as mountains or forest, we saw it as the best choice for our app.

4 Discussion

4.1 Results
Regarding the results of the app, we faced a big problem through the whole project
and was receiving quality images taken with Android phones. As the usual season
for the mushroom collection is Autumn and this work finished in August we could
not gather together the images by ourselves or ask any other people to do so
because there are no mushrooms at the time. No database with images of enough
quality existed on the web even though we asked some experts clubs from Spain.

On the other hand, we still obtained local results for some images, depending on
which conditions they were taken under, the system performed properly. We were
able to achieve our objective of labelling mushrooms as different classes starting
from an image and removing the background and comparing histograms. Figure 23
shows the result of computing the histogram of two images where it appears a
mushroom in both of them, these two mushrooms belong to the same class, while
Figure 24 is the result of calculating the histogram of the same two images,
however, this time, we successfully removed the background. It can be seen that
the images in Figure 24 are more similar than those in Figure 23, even though both
cases contain mushrooms from the same class. With this we can see that the
background was successfully removed with our steps and we improved the colour
histogram comparison by doing so.

28

4.2 Test plan
The solution we decided for gathering enough quality pictures captured by an
Android phone is that before the mushroom season starts and experts go to the
mountains to collect them, we will get in touch with mycology clubs around Spain
and distribute them our app so, they will be able, at the same time, to offer it to their
members with the condition that those members will not be making decisions based
on the app results but based on their experience. So the app will only be available
for a group of experts until enough feedback has been collected.

The expert users will provide us feedback on whether the app worked properly or
not and in which cases it did fail. After executing our app and looking at the results
given by it, the experts will take note of: the expected classification, the result
classification, the date and time of the picture, and if the mushroom was placed in

29

Figure 23: Two 2D histograms of images with same mushroom class and no background removed

Figure 24: Two 2D histograms of image with same mushroom and background removed

the shadows or in the light. With this form we will be able to take record of the
classification accuracy, which classes present more error, thus adapt our model
class to more realistic values; and under which lighting conditions the picture was
taken.

With this system we would be able to obtain enough objective reviews about the
correctness of the app and then prepare statistical results for deciding if the
program is accurate enough for being published on the market for users to use and
trust it and if it is robust against lighting conditions because using the HSV colour
space was the right choice in this case as a barrier against these changes.

5 Conclusion
Although, as stated in the previous section, we could not gather enough pictures for
obtaining a reliable accuracy rate, we did successfully tested the program on
different images obtaining the desired result of classifying mushrooms appearing on
an image by removing the background and comparing colour histograms. This
means that the program worked well for pictures captured under the right conditions
of both the environment and the camera used.

In conclusion, we can say that the program proved that it is possible to classify
different mushroom species and that the techniques used were the appropriate for
the mushroom isolation and classification. It has been also proved that the colour
histogram comparison is a reliable classification method when the background is
removed and the histogram is computed for the mushroom shape only.

As a result of the work completed for this thesis I can say that I have learned
several things that extend the knowledge I had from the lectures.

The main one is to plan a project like this for 3 months, with the aid of my
supervisors, managing my time and resources in order to deliver a good result. In
this case putting to work what I learned in the UPV course Project Management.

Then, being able to code both in Java and C++, as learned in the Introduction to
Programming on my first year of studies at UPV and the course C++ at Cranfield
University. As both of them are OOP languages my whole degree at UPV was
useful because they taught me a way of thinking into the OOP world and I found
small differences when translating code from C++ into Java.

This project, as any other, had stages of debugging and it was needed to keep the
code in a clear structure and commented in order to save the work from day to day
and still be able to remember what every line of your code does. All of these good
practices were learned on the UPV course Software Engineering.

The courses Image Processing and Image Analysis at Cranfield University
introduced me into the OpenCV libraries and their main functionalities that helped
me through the whole project. However, I could have never imagined how wide
were the possibilities that computer vision in general and OpenCV libraries in
particular had. At this point I have more knowledge about the difference between
colour spaces, being able to reduce the noise present on an image and being able
to reconstruct shapes.

30

Finally, I learned a lot about the Android environment. I followed a Udacity and
Google course for Android developers, which taught me how to connect to the
cloud, build different activities on the same project and how to communicate among
them; create a background thread where to place the majority of the workload in
order to not stall the GUI.

6 Future work

6.1 Features
There are several new features for the program that could be implemented in the
future. The first one is to add more species to the initial nine. If we want to increase
the number of classes and keep the reliability of our system we should add new
comparison parameters like the colour histogram of the stem, that is already being
computed but not used as explained on previous sections, or shape features that
are unique to some classes.

The second is to include GPS location and the possibility to save the location where
a mushroom was found with the class information to a private map. This will help
users to locate where the mushroom was found in previous seasons; since
mushrooms, if not damaged, tend to grow on the same place every year.

Then, as previously stated, improve the user experience when selecting the cap
and the stem from the image. It should be allowed for the user to slide the crosses
around the picture, if needed, for marking the region of interest instead of having to
start the whole process again.

Finally, expand the app to other mobile operating systems like Windows Phone or
IOS for reaching those users that do not have Android on their devices.

6.2 Expert users
For the expert users, the same users that gave us the feedback will be given the
possibility of signing in our app with an expert profile once the app has been
released and is available in the market.

These expert users will keep the ability of giving feedback to the administrators of
the system and will have new abilities.

 One of this new abilities will be to upload pictures of misclassified mushrooms, so
the model class can be modified in order to approach more realistic values. In this
case, it will be needed a minimum number of modification requests made by
different expert users in order for the administrators to modify the class histogram.

Another one is to set a new mushroom class that they think should be available for
the rest of the users. In this case, as before, it will be needed more than one
request in order to be taken in to account by the administrators. After the minimum
number of requests have been reached but before setting the new class, the
administrators will have to verify the class data.

Finally, in both cases the experts what they do is to make a request for a change to

31

be made by the administrators, together with the request the image captured is
sent. After this, the administrators of the system will be the ones deciding if that
change is needed or not, since the problem behind the request may be affecting a
few isolated cases.

32

Bibliography
Ahluwalia, A., & Karani, R. (2014). Review Paper on Vegetable Identification and Detection using

Image Processing. International Journal of Current Engineering and Technology, 4(6), 4260–
4262.

Blackwell, M. (2011). The Fungi: 1, 2, 3 ... 5.1 million species. American Journal of Botany, 98(3),
426–438. http://doi.org/10.3732/ajb.1000298

Blasco, J., Aleixos, N., Cubero, S., Juste, F., Gómez-Sanchis, J., Alegre, V., & Moltó, E. (2009).
Computer vision developments for the automatic inspection of fresh and processed fruits. First
International Workshop on Computer Image Analysis in Agriculture, 21–24.

Cho, C., Kim, J., Kim, J., Lee, S., & Kim, K. (2016). Detecting for high speed flying object using
image processing on target place. Cluster Computing, 19(1), 285–292.
http://doi.org/10.1007/s10586-015-0525-x

Chowdhury, T., Alam, S., Hasan, M. A., & Khan, I. (2013). Vegetables detection from the glossary
shop for the blind . IOSR Journal of Electrical and Electronics Engineering, 8(3), 43–53.

Dorj, U. O., Lee, K. K., & Lee, M. (2013). A computer vision algorithm for tangerine yield
estimation. International Journal of Bio-Science and Bio-Technology, 5(5), 101–110.
http://doi.org/10.14257/ijbsbt.2013.5.5.11

Duan, F., Wang, Y., Liu, H., & Li, Y. (2007). A machine vision inspector for beer bottle.
Engineering Applications of Artificial Intelligence, 20, 1013–1021.
http://doi.org/10.1016/j.engappai.2006.12.008

González, M., Villamizar, J., & Lopez, J. (2014). LIQUID LEVEL CONTROL OF COCA-COLA
BOTTLES USING AN AUTOMATED SYSTEM. In CONIELECOMP 2014 - 24th
International Conference on Electronics, Communications and Computers (pp. 148–154).

Jeet Sharma, D., & Kaur, J. (2014). Automatic Apple Harvesting Using Computer Vision Based On
Shape & Colour-Based Analysis and Object Positioning. International Journal of Science,
Engineering and Technology Research, 3(9), 2278–2281.

Jeon, G. (2013). Measuring and Comparison of Edge Detectors in Color Spaces. International
Journal of Control and Automation, 6(5), 21–30.

Sun, D. (2000). Inspecting pizza topping percentage and distribution by a computer vision method.
Journal of Food Engineering, 44, 245–249.

Suzuki, S., & Abe, K. (1985). Topological Structural Analysis of Digitized Binary Images by
Border Following. Computer Vision, Graphics, and Image Processing, 46, 32–46.

33

	Resumen
	Acknowledgements
	Contents
	List of abbreviations
	List of figures
	1. Introduction
	1.1 Definition of object classification
	1.2 Industry fields
	1.2.1 Chain production
	1.2.2 Security

	1.3 Object classification in Agriculture & food
	1.4 Mushroom classes

	2. Methodology
	2.1 Identify needs
	2.2 Exploration of methods
	2.3 Development and validation

	3. Computer vision software for classifying mushrooms
	3.1 Technology
	3.1.1 Android SDK
	3.1.2 Visual Studio
	3.1.3 OpenCV
	3.1.4 OpenCV4Android

	3.2 User interface
	3.2.1 Main view
	3.2.2 Camera
	3.2.3 Select cap and stem
	3.2.4 See results

	3.3 Low level processing
	3.4 Intermediate level processing: Mushroom isolation
	3.5 Intermediate level processing: Extract colour information
	3.6 High level processing: Mushroom classification
	3.7 Mushroom classes definition

	4 Discussion
	4.1 Results
	4.2 Test plan

	5 Conclusion
	6 Future work
	6.1 Features
	6.2 Expert users

	Bibliography

